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Despite the ubiguitous presence of recurrent synaptic connections in sensory neuronal sys-
tems, their general functional purpose is not well understood. A recent conceptual advance
has been achieved by theories of reservoir computing in which recurrent networks have
been proposed to generate short-term memory as well as to improve neuronal represen-
tation of the sensory input for subsequent computations. Here, we present a numerical
study on the distinct effects of inhibitory and excitatory recurrence in a canonical linear
classification task. It is found that both types of coupling improve the ability to discriminate
temporal spike patterns as compared to a purely feed-forward system, although in differ
ent ways. For a large class of inhibitory networks, the network'’s performance is optimal
as long as a fraction of roughly 50% of neurons per stimulus is active in the resulting pop-
ulation code. Thereby the contribution of inactive neurons to the neural code is found to
be even more informative than that of the active neurons, generating an inherent robust-
ness of classification performance against temporal jitter of the input spikes. Excitatory
couplings are found to not only produce a short-term memory buffer but also to improve
linear separability of the population patterns by evoking more irregular firing as compared
to the purely inhibitory case. As the excitatory connectivity becomes more sparse, firing
becomes more variable, and pattern separability improves. We argue that the proposed
paradigm is particularly well-suited as a conceptual framework for processing of sensory

information in the auditory pathway.
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INTRODUCTION

The computational role of recurrence in neuronal networks is a
long-standing matter of investigations. Theoretical models pro-
pose recurrence to serve a multitude of purposes such as forming
attractor states (Hopfield, 1982; Zhang, 1996), organizing topo-
graphic maps (von der Malsburg, 1973; Linkser, 1986), or sharp-
ening of receptive fields (Ben-Yishai et al., 1995). Networks in
sensory areas are exposed to the conflict that recurrence generally
destroys information about the stimulus, owing to correlations
of neuronal firing. This problem is partially amended by dimen-
sional expansion of the relatively few sensory receptors to the
very many neurons in the central processing units, rendering a
large information content despite correlations. More recent ideas
connect recurrence with network-level short-term memory. As
so-called dynamical reservoirs (Maass et al., 2002; Jaeger and
Haas, 2004; Ganguli et al., 2008; Sussillo and Abbott, 2009), the
recurrent networks are thought to retain the information about
the input in their phase-space trajectories for some time. How-
ever, the “real” effect of the network dynamics and that of the
dimensional expansion have not yet been disentangled. Also, most
theories of recurrent neuronal computation thus far focus on the
effects of excitatory principal neurons. Inhibitory interneurons
are usually only thought of as a means to achieve sign inversion.
The computational power of interneuronal networks themselves

is hardly addressed so far, despite their ubiquitous occurrence in
the brain.

Here, we consider a simple model of a sensory brain area in
which input spike trains are fed into a recurrent network. The net-
work should be able to reliably transmit the information about the
input to higher brain areas and translate the timing information
of the input into a population rate code. Such a task is usually
assigned to the auditory pathway that transforms acoustic infor-
mation at the millisecond time scale to activity patterns that can
be processed by cortical neurons with integration time constants
of several tens of milliseconds (Popper and Fay, 1992).

To assess the discriminability of spatio-temporal activity pat-
terns of the network, we evoke transient network responses via
feed-forward synaptic connections and show that the effect of
dimensional expansion (as a few inputs are fed into many network
neurons) can be separated from computational effects of network
dynamics. At first, we model all neurons as inhibitory and find that
the network activity conveys particularly high information about
the input, if the inhibition is adjusted such that about half of the
neurons are silent per time window of downstream integration.
Later, we introduce excitatory neurons into the network and show
that they account for both short-term memory and an improve-
ment of classification performance by increasing the variability of
spiking.
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RESULTS

PARADIGM

As a model for sensory-evoked neuronal activity, we consider
short snippets of Nj, =10 independent Poisson spike trains,
which we think of as the spiking activity of Nj, sensory input
fibers (Figure 1A). All snippets are of identical duration (90 ms)
and all fibers fire at identical mean rate (10 Hz). The spike pat-
terns during these snippets thus differ in the arrangement of
spike times as well as in how the spike counts are distributed
among the input fibers. A random sequence of these spike pat-
terns is delivered as inputs to a network of N integrate-and-
fire neurons at fixed time intervals of 810 ms. In addition we
deliver ongoing spontaneous background spikes (noise) accord-
ing to another independent Poisson process. The combined inputs
are fed into the network with a feed-forward connectivity of
50%. Initially, the synaptic currents of the feed-forward con-
nections are modeled to decay with an extremely long time
constant of 100 ms, which can be thought of as to cover all
short-term memory effects of upstream stimulus processing.
Later on we will show that this time constant can be shortened
toward more biologically realistic values by introducing recurrent
excitation.

To quantify the information transmission by the neuronal
network, we assess the discriminability of the network activity
patterns by an artificial linear classifier (Sonnenburg et al., 2010).
The classifier is trained to perform a binary classification task on
rate patterns, which are generated by counting the spikes in time
bins that match the duration of an input pattern (Figure 1A). The
read-out of network activity is delayed with respect to the presen-
tation of the respective input patterns, accounting for the latency
induced by the feed-forward synaptic connections. Further details
of our model are described in the Materials and Methods section.

For each experiment, we begin by first feeding P input pat-
terns into the network, followed by training the classifier using
the P output vectors from the network. For testing, we shuffle the
order of the original input patterns and lay these shuffled patterns
over a new background noise. This “test input” is then streamed
into the same network for a new set of output vectors, and the
accuracy at which the previously trained classifier identifies the
class labels of these new output vectors is the quantity we use to
gauge the network’s capacity to encode temporal input patterns.
For benchmarking, we also perform the same experiment without
the network, i.e., training and testing the classifier directly over the
input vectors.
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FIGURE 1 | Paradigm. (A) Schematic of the classification task.
Sensory-evoked spikes (black ticks) from N,, = 10 Poisson processes (3
shown) and spontaneous background spikes (gray) are fed into a recurrent
network. The left black box marks the 90-ms snippet that defines the input
pattern. Half of the patterns are labeled (+), the other half (—). The network'’s
output is read-out at the same temporal bin size of 90 ms, either
simultaneous to the input pattern (black box on the right) or time-delayed
(gray box). The output patterns are translated into population vectors of spike
counts and then used to train a linear classifier to distinguish the (+) vectors
from the (—) vectors. (B) Example of test accuracy as a function of the
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number of trained patterns (P) for 10 (orange), 20 (green), 30 (blue), and 40
(red) network neurons without recurrent connections. The black line indicates
the accuracy achieved by training on the input patterns (10 spike trains). The
number Py, is defined as the number of patterns at which the test accuracy
crosses 90%. (C) Network gain /590 = Py (network) /Py (input) as a function of
network size N. The black and blue lines show the Py, values when each
pattern is presented only once for background noise levels of 0 and 0.2 Hz,
respectively. Training each pattern 10 times for different realizations of 0.2 Hz
noise gives the green line. Finally, training each pattern 10 times at 2 Hz
background noise results in the red line.
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First examples of testing results (for an uncoupled network with
noise-free input) are shown in Figure 1B to illustrate the effect of
dimensional expansion. Although the number Nj, of dimensions
of the input is fixed (at 10), its projection onto a multitude of net-
work nodes provides more dimensions in which linear separation
between patterns is possible. At a network size N = 10, the net-
work’s test accuracy is the same as that of the input patterns, which
is expected as there is no dimensional expansion. As the network
size increases, the computational capacity improves. To quantify
this improvement we take the number of patterns P at which the
test accuracy crosses 90%, a quantity we call Pog. The true gauge of
the network’s ability to transmit information is its relative capac-
ity as compared to that of the input. For this purpose we also
define the normalized capacity Pyy = Py (network) / Poo (input)
(Figure 1C), which shows a linear relation between capacity and
network size with slope 1/Nj,. This slope indicates that the frac-
tion o = Pgy/N for the network patterns is identical to that for
the input. In other words, our feed-forward connections provide
a plain dimensional expansion of the input, without changing the
nature and quality of the code.

As a next step we add noise to the input and observe that
the slightest presence of background noise degrades the mean
mutual information of both the input and the network (blue line
in Figure 1C). One notices that the network is actually more nega-
tively impacted by the presence of noise than the input, and hence
a larger network size is required to achieve the same value of Py .
When also including repetitions during the training phase with
different background noise, the adverse effect of the noise can be
mitigated (green line in Figure 1C). In what follows we use as
a default input setup a background noise level of 2Hz and 10
repetitions of each stimulus during training (red line), unless oth-
erwise noted. The reason is that low capacities (as resulting from
increased background noise) require less computational resource,
as fewer patterns have to be trained and tested.

INHIBITORY RECURRENCY

As the goal of this work is to use the designed input streams to
study the effect of recurrence, we next investigate the effect of
the synaptic weight of a homogeneously connected inhibitory
network. The synaptic weight is tuned in arbitrary units of w
(see Materials and Methods), which are normalized such that the
total amount of inhibition received per neuron is invariant to the
size and connectivity of the network (see Materials and Meth-
ods). Figures 2A—C show spike rasters for different inhibitory
weights. Not surprisingly, inhibition suppresses the overall activ-
ity. More importantly, as the network inhibition increases, one
observes the network’s discrimination performance reaching a
maximum, which is ~30% larger than the performance of the
purely feed-forward network (Figure 2D). At the optimal weight,
this 30% improvement roughly remains for all different network
sizes (Figure 2E).

BINARY MUTUAL INFORMATION

To discover the mechanistic explanation underlying the optimum
weight, we study the mean mutual information of the network
neurons as a function of synaptic weight (see Materials and Meth-
ods). The expectation is that the mean mutual information, as

a function of network synaptic weight, would also exhibit a peak
similar to that shown in Figure 3A. However, computing the mean
mutual information (MI) per neuron as a function of synaptic
weight, based on the network’s outputs (Figure 3B), does not
show a maximum. Also the average MI per neuron for the top-
10 information-rich neurons shows no peak, which excludes that
the optimum from Figure 3A just reflects the most informative
subset of neurons. Both curves merely seem to reflect the fact that,
as inhibitory weight increases, the overall activity of the network
decreases,and hence also the entropy of the rate patterns decreases.

If one instead computes the average cell-wise MI by setting
all non-zero values in the network response to 1 (called binary
MI), then one arrives at the curves shown in Figure 3C, displaying
good qualitative agreement with test accuracy (Figure 3A). This
suggests that instead of classifying on the integer values of spike
numbers, the classifier mostly distinguishes the network’s output
vectors based on whether there is activity or not. From this, one
would assume that the optimal network response to a stimulus
would fall close to 50% silence, rendering a theoretical maximum
of the binary entropy (Dayan and Abbott, 2001). Figure 3D cor-
roborates this hypothesis, showing the optimum to coincide with
a fraction of zeros slightly below 0.5. We interpret this optimum
silence fraction as most of the pattern-separation occurring along
the silent dimensions and little along those with high firing counts.
In fact, this optimum occurs at where the entire network fires
at roughly the same silence fraction as its most information-rich
neurons (green and orange in Figure 3D intersect, at 46% silence).
When the network deviates away from this point, its most informa-
tive neurons tend to be the ones that fire closest to the optimum
fraction. Figure 3D thus suggests a theoretical optimum weight
between 5 and 10 w in our setting. However, for the purpose of
simplicity, the rest of this work will employ 5 w as the optimum
weight, unless otherwise stated.

Another method we have tested to sparsify the population firing
is through feed-forward inhibition on a network lacking intrinsic
connectivity: upon each incoming spike, an inhibitory synaptic
current is activated on each network neuron with some delay
after the excitatory synaptic input. Figure 3E examines the net-
work performance of such an approach and compares it to the
recurrent network, and the feed-forward inhibition clearly under-
performs irrespective of the delay. We interpret this observation as
follows. In the optimum case of recurrent inhibition, network neu-
rons are allowed to accumulate input current and fire in response
to the excitation, until roughly 50% of the neurons have fired
(for each individual input pattern), before the feedback inhibition
becomes strong enough to suppress activation of the yet-to-fire
neurons. In the case of feed-forward inhibition the deviations
from the 50% firing fraction (that is only achieved on average)
are stronger over the whole set of input patterns (Figure 3F), since
the inhibitory suppression acts independently of the activity thatis
actually elicited in the network. It thus seems that the ~50% opti-
mum firing fraction is meaningful only if it results from recurrent
inhibitory feedback, whereas producing the same firing fraction
via feed-forward inhibition does not convey the same richness of
information.

The above results are robust with respect to changes in the
inhibitory recurrent connectivity, input connectivity, and input
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FIGURE 2 | Recurrent inhibition. (A) An example of a default input accuracy vs. P, for network weights of 0 (black), 5 w (red), 10 w (blue),
stream and the network’s response at 0 inhibitory synaptic weight. The 15 w (orange), and 20 w (green). The read-out of the network patterns
input pattern (10 Hz) is contained within the gray box, over ubiquitous is time-delayed by 30 ms as compared to the input. (E) Network gain
background noise (2 Hz). (B,C) Input stream and network response for Py as a function of N for optimum weight (5 w, black) and the 0 weight
inhibitory synaptic weights of 5 and 20 w, respectively. (D) Test (gray).

rate (not shown). Also there, the optimal regime is characterized
by a fraction of 40-50% silent neurons, with similar P9y values.
We should point out that, for higher (lower) input rates, stronger
(weaker) synaptic inhibition is needed to achieve the optimum
silence fraction. These results suggest that for inhibitory networks,
classification will in general perform optimally, if the stimulus-to-
network transformation ends up at a “good” binary probability of
about one half.

SHORT-TERM MEMORY

Thus far the network patterns are derived with a time delay of
30 ms reflecting the latency induced by the cellular integration of
the inputs (Figure 2). However, as also can be seen from the raster
plots in Figure 2, the network activity persists for a little while after
each stimulus. As a consequence the (relatively arbitrary) choice of
this read-out delay strongly influences the composition of the out-
put vector. To investigate this dependence, we implement a scheme
where the read-out of the network’s response to a particular input
pattern is performed at various time delays (Figure 4A).

The classification results are shown in Figure 4B, and they
reveal three important characteristics of our paradigm. Firstly, the
time constant (100 ms) of the excitatory post-synaptic currents
from the input to the network creates enough excitation in the
network such that memory persists more than 200 ms after the pre-
sentation of the input pattern. This memory, however, dissipates
away before the next pattern is presented (810 ms after the prior
pattern). Secondly, one observes the existence of an “optimum
time delay” at which the network expresses the most informa-
tion regarding the inputs. This optimum delay (30 ms), in fact,
is approximately independent of the network synaptic weight, as
shown in Figure 4C. Lastly, the inset of Figure 4C shows the binary
composition of the network’s output, as a function of time delay.
One notices that the optimal latency does not coincide with an
optimal binary entropy with a fraction of 40-50% silent neurons.
The explanation is that, as network read-out is further delayed with
respect to the stimulus, the network firing becomes more and more
dominated by the background noise. Therefore, unlike the synap-
tic weight and the input connectivity, the optimal read-out delay
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Distribution of fractions of 0's across the set of all input patterns for two
simulations from (E) at a mean fraction of 0's of 0.4. All results are
obtained for N =100.

is not directly related to the optimal binary entropy, but rather
reflects the point in time when the signal-to-noise ratio is highest.

ROBUSTNESS

Even though the signal-to-noise ratio is highest at the current read-
out, what if the signal itself is corrupt? Can a network trained over
a set of input patterns still identify them correctly, if the said pat-
terns are slightly mutated? To test robustness against such noise,
we perform two experiments: a temporal jitter experiment and
a spike-removal experiment. For the jitter experiment, we first

construct the training and test inputs as described before, with
each pattern repeated 10 times. This time, a temporal jitter is
applied to every single spike in a pattern’s time slot. Each jitter
is an independently chosen zero-mean Gaussian time shift char-
acterized by the prescribed SD (jitter size). The network is hence
trained and tested on these jittered patterns. For the spike-removal
experiment, we randomly remove a single spike from each pattern
in the training and test inputs.

Figure 5A displays the respective Pgg as a function of net-
work size, for several jitter sizes and a single spike removed (11%
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of the signal on average). We find that all relative capacities
Pgo(jittered) > 1 and, hence, the network clearly out-performs
the input for all values of jitter. Moreover, our results illustrate
that, since Py (jittered) > Pyy(no jitter), the network even protects
the information against jitter relative to the input. On the other
hand, the removal of spikes from signals deteriorates the network’s
performance much more substantially. Nevertheless, the network
still out-performs the input.

The network’s resistance to temporal jitter can be explained
as follows. The classification performance crucially depends on
the binary nature of the network spike patterns (Figure 3), which
particularly means that the non-spiking neurons contribute con-
siderable information. Since not-spiking is obviously invariant
against jitter, this provides a high level of protection against jitter.
As a further proof of this hypothesis, we conduct an experiment
that looks at the dependence of the classifier on the silent dimen-
sions of the network outputs in performing the classification task.
The inputs are a standard set of patterns, without background
noise. On average, about 50% of the network’s output vector is
silent. During the testing stage, the 0’s of the output vectors are
artificially modified with the addition of a positive constant (set to
be the network’s average neuronal spike count per time bin). We

term this manipulation “flooding.” The aim is to see how much the
classifier depends on these flooded neurons to identify trained pat-
terns, by looking at how much the test accuracy is changed relative
to the unflooded case. The same experiment, but this time with the
non-zeros flooded, is also conducted for comparison. In Figure 5B,
the different colors indicate levels of flooding. The key observa-
tion is that flooding the zeros in the network pattern dramatically
reduces the test accuracy, whereas flooding the non-zeros only
mildly reduces it, even though both the zeros and non-zeros consti-
tute half of the output dimensions. This observation corroborates
our theory that the network’s computational capacity depends on
the binary composition of the network’s activity, which, because
of the many non-firing neurons, implies an inherent robustness
against temporal jitter.

MIXED NETWORK

As mentioned before, the temporal memory is rather artificially
introduced by the very long time constant of the excitatory synap-
tic inputs. Previous echo-state models, however, generated this
temporal memory by excitatory connections within the network
(Maass et al., 2002; Jaeger and Haas, 2004; Ganguli et al., 2008; Sus-
sillo and Abbott, 2009). We now also introduce excitatory neurons
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into the network, with a much shorter excitatory time constant of
20 ms to see which of the findings of the purely inhibitory network
still hold in this case.

An example of our mixed network’s response to stimuli is
shown in Figure 6A, where the input raster and the read-out delays
are analogous to those in Figure 4A. However, a much larger net-
work size is employed due to the sparseness of our mixed network’s
connectivity (5%). One can see that the mixed network shows
response behavior similar to that of the inhibitory network. After
an input pattern, the activity in the network persists for a duration
that exceeds the synaptic time constant, and just as in the case
of the purely inhibitory network, the best signal-to-noise ratio is
obtained at a 30-ms delay (Figure 6B). However, the test perfor-
mance decays much more steeply with increasing read-out delay,
hinting at a reduced short-term memory performance although
the activity decays at a similar rate (see Discussion).

Just like in the purely inhibitory case, the optimum inhibitory
synaptic weight (in arbitrary units of w, see Materials and Meth-
ods) and the binary structure of the network’s response as a
function of w (Figure 6C) are determined. In Figure 6C, one sees
that, at the optimum weight (10 @), the network average of silence
fraction falls discernibly below that of the purely inhibitory case.
This implies that more of the pattern-separation is found along
the spiking dimensions of the network (though the most informa-
tive neurons still fire close to 50% of the time). Along this line of
thought, one would suspect the mixed network’s neurons to fire in
a more irregular, non-stereotypic manner such that classification
can be made between the non-zero spike counts within each time
bin. To further investigate this claim, one needs to take a closer
look at the spiking statistics of the two networks.

Figure 7A and its inset compare the two networks’ distributions
of inter-spike intervals (ISI) and correlation coefficients (see Meth-
ods). Although the mixed network fires at a higher rate (shorter
ISI) on average, the coefficient of variation (CV) of its ISI distri-
bution is larger compared to that of the inhibitory network (0.67
vs. 0.48), indicating a longer tail of the ISI distribution and more
irregular single-cell firing behavior. At the same time, the neurons
in the mixed network fire in a more correlated manner than in the

inhibitory network, as one might expect from excitatory network
connections.

While correlations among neurons reduce information con-
tent, Figures 7B,C illustrate how the mixed network may still
provide superior computational capacity to its inhibitory coun-
terpart. As the connectivity within the mixed network drops the
spiking behavior of the neurons becomes increasingly diverse. This
is shown by the mean CV of the ISIs (Figure 7B). The increased
CV lets us assume that the single-cell spike counts also become
more entropic as the connectivity decreases, which we could verify
by the increasing width of the spike count distribution (Figure 7C)
as well as by the entropy increase of the top-10 most entropic neu-
rons (Figure 7D,). As a result of excitatory recurrent coupling,
the population patterns are more variable than in the inhibitory
network and provide more opportunity for separation between
non-zero activity levels. At the same time, the correlation between
the neurons falls off steeply with sparser connectivity, reducing
the negative impact of correlation on the information content.
It should also be pointed out that, within the range of connec-
tivity values experimented, the optimum network silence fraction
remains unchanged (not shown).

Lastly, Figure 7E compares the performance and robustness
of the two types of network. One first notices that the unjittered
mixed network out-performs its inhibitory counterpart by more
than a factor of 2. On the other hand, when a small jitter is intro-
duced, the mixed network sees a substantial drop in performance,
while the inhibitory network actually becomes better relative to
the input. The mixed network’s higher susceptibility to jitter could
be ascribed to the correlation between its neurons, in that adverse
effects from jittering are propagated by the excitatory neurons to
the entire network. Nevertheless, the higher population entropy of
the mixed network over-compensates this reduced robustness, as
one observes that the mixed network out-performs the inhibitory
network also in the case of jitter.

DISCUSSION
We report on a numerical study, in which we have developed
a quantitative measure for the gain of linear separability of
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with 5% random connectivity. (B) Test accuracy as a function of P for the information-rich neurons (gray), as a function of inhibitory synaptic weight.

spatio-temporal spike patterns achieved by a recurrent network.
We find that recurrence further improves linear separability as
compared to the gain by the non-linear expansion that is already
achieved with a non-coupled purely feed-forward network. We
address both effects of recurrent inhibition and recurrent excita-
tion. Regarding inhibition, our simulations suggest that, indepen-
dent of network topology and composition, the neural network’s
ability to discriminate temporal spike patterns is optimal so long
as the downstream processing produces close to 50% silence (per
stimulus) amongst the network neurons. For the excitatory cou-
plings, we observe two effects. First, they realize a short-term
memory buffer as activity is retained by traveling through com-
plex high-dimensional trajectories. Second, they improve linear
separability of the population patterns by inducing more irregular
firing as compared to the purely inhibitory case.

The capacity for short-term memory of an excitatorily cou-
pled network has been shown to strongly depend on the recurrent
connectivity of the network (Ganguli et al., 2008): Whereas for
normal (e.g., symmetric) coupling matrices, short-term mem-
ory only exists if traded with test accuracy, non-normal cou-
pling matrices can achieve memory retention times of order /N
even for high test accuracy. The random connectivity matri-
ces used in our simulation are not strictly normal but contain
a large normal component according to the central limit the-
orem. It is therefore not surprising that the accuracy values in
Figure 6B drop off rather quickly with read-out time delay. A sim-
ple example for non-normal connectivity matrices are realized by
sequence-replaying networks (Abeles, 1991; Leibold and Kempter,
2006), in which network activity is made out of self-sustained
sequences of patterns. The general problem with non-normal
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times excitatory weight is kept constant. (C) Distribution of spike counts square). The jitter size is 10 ms. All results are obtained at the optimum
(per 90 ms bin) for the simulations with excitatory connectivities of 0.05 weights and read-out delay. In (A-C,E), N =1000.

matrices is that the high retention times only can be achieved
if the network is properly addressed by the input structure. For
the example of the sequence-replaying network, this means that
the sequence has to be started at some point. This requires that
the feed-forward weights are adjusted to the expected stimuli
according to some learning rule. Since in our model, we do not
assume any prior knowledge of the input patterns, generating such

sequence-replaying networks does not necessarily produce better
classification performance.

Our results pertain to the field of reservoir computing (RC),
a biologically inspired branch of machine learning (Lukosevicius
and Jaeger, 2009). Our paradigm of input/network/read-out is
very similar to RC studies, which have proposed a variety of net-
work topologies (Watts and Strogatz, 1998; Barabasi and Albert,
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1999; Maass et al., 2002; Haeusler and Maass, 2007) and learn-
ing schemes (Lazar et al., 2009; Sussillo and Abbott, 2009) to
improve the computational capacity and robustness of artificial
neural networks. Specifically, plasticity of recurrent connections
has been shown to generate network patterns that are optimal
for a fixed pre-defined set of inputs (Lazar et al., 2009; Sussillo
and Abbott, 2009). A natural extension of our framework would
thus be to train not only the classifier but also include synaptic
learning rules for the recurrent connections intending to optimize
recurrent processing to the selected set of input patterns.

A classical way of learning recurrent weights is to use a Heb-
bian weight matrix as suggested in Hopfield (1982), which result in
attractor dynamics. The function of such networks is error correc-
tion by pattern completion, and short-term memory. These fea-
tures, however, comes at the price of much lower capacity, because
their capacity (number of attractors) is subject to dynamical con-
straints of the network, whereas in the framework of dynamical
reservoirs (like in our model) the capacity is only determined by
linear separability. Moreover, attractor networks are less suitable
for real-time computations owing to the time required to converge
to the attractor (Maass et al., 2002).

As a biological motivation, we consider the auditory pathway,
which translates the temporal code of the auditory nerve into
the sparse rate code of the auditory cortex (Hromddka et al,
2008), or at least relaxes the required temporal precision of cor-
tical processing to the time scale of tens of milliseconds. This
translation between time and rate representation is assumed to
gradually occur along the multiple processing centers in the audi-
tory brainstem (Joris et al., 2004). A central stage in the ascending
auditory pathway is taken by the auditory midbrain, i.e., the infe-
rior colliculus (IC), which collects almost all afferent projections
and transfers them to the thalamo-cortical system (Winer and
Schreiner, 2005). In this sense the IC acts as a hub, meaning that
allauditory information that has to be processed by cortical centers
has to be represented in the IC.

While detailed understanding of the inferior colliculus circuit is
still elusive, anatomical studies have shown massive convergence
of parallel auditory pathways at the IC, recurrent synaptic con-
nections (Huffman and Henson, 1990), as well as a rich array of
projections from the IC to the higher auditory centers (Winer and
Schreiner, 2005), suggesting that the IC is a central processing
unit, responsible for the integration, transformation, and redis-
tribution of auditory information. It is there where maximum
discriminability and robustness are desired. As an analogy to our
simulation paradigm, the recurrent network would represent the
IC, and the input stream would correspond to the ascending path-
ways connecting to the IC. The key for this network is then to
translate the spike trains of these pathways into easily separa-
ble population rate patterns that would then be read-out by the
thalamo-cortical system.

Our representation of the thalamo-cortical system warrants
some discussion. For simplicity, we employ a linear classifier as
a stand-in for this unmodeled, highly complex circuitry. While it
is clear that the thalamo-cortical system does not merely perform
linear classification (e.g., Otazu and Leibold, 2011), the extraction,
and discrimination of relevant sensory cues by the cortex requires
them to be neuronally represented upstream in a discriminable

way. We chose to use linear separability as a benchmark for dis-
criminability, because it can be most easily represented by neural
elements and requires the least assumptions about the read-out
structure. The linear classifier is therefore mainly used as a means
for quantifying discriminability and not meant to be a direct
biological representation of latter-stage auditory information pro-
cessing. Moreover, the choice of a two-class classification task can
easily be generalized as one may simply tack on more binary read-
out units for multi-class differentiation, as necessary, e.g., in speech
recognition.

Based on our findings, and assuming the population code in the
IC to be optimized for linear discrimination, the many intrinsic
synaptic connections of the IC could serve to maximize entropic
firing and minimize neuronal correlation. This translates to sparse
connectivity amongst the excitatory neurons, strongly varying
inter-spike intervals, and firing patterns that are somewhat below
50% silence per downstream integration time window.

MATERIALS AND METHODS

NEURON MODEL

For our neuronal model, we use the integrate-and-fire neuron
with exponentially decaying post-synaptic current from the Neural
Simulation Technology (NEST) Initiative software package, ver-
sion 2.0 (Gewaltig and Diesmann, 2007). The simulations are run
at a time resolution of 1 = 0.1 ms. The membrane capacitance is
C =250 pF. Resting potential is —70 mV. The spike threshold is set
to Vi, = —55mV. After a spike the voltage is reset to the resting
potential. The neurons have a refractory time of t,.f=2ms and a
membrane time constant of 7., = 10 ms.

SYNAPSE MODEL

Synaptic currents are modeled as exponentially decaying with time
constant of 8 ms for inhibition. Feed-forward excitation decays at a
time constant of 100 ms for purely inhibitorily coupled networks,
and at a time constant of 20 ms for the mixed networks, which is
the same as for the excitatory recurrent synapses.

For the inhibitory network, excitatory feed-forward weights
result in a current amplitude of 500 pA. Inhibitory synaptic
weights are given in units of w= —200pA/(N X c), where ¢ is
the network connectivity and N is the network size, such that the
total amount of inhibition received per neuron is invariant to the
size of the network.

For the mixed network the excitatory feed-forward weights
generate an amplitude of 400 pA, and the recurrent excitatory
synapses generate an amplitude of Iexc,r =800 pA/(N X p X ¢),
where p is the fraction of the excitatory neurons in the network.
The inhibitory weight is tuned in units of @ = —IexcR-

All synaptic transmissions introduce an additional delay
of 1 ms.

INPUT SCHEME

For our linear classification task, half of the input patterns are ran-
domly picked to be placed under the (+) label, with the other half
under the (—) label. A schematic of an input pattern is shown in the
first panel of Figure 1A. For all of our simulations, we use 90 ms
time bins and 10 Hz spike rates to construct the input patterns.
The spacing between the input patterns is fixed at 810 ms.
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NETWORK TOPOGRAPHY

The inputs are feed-forwardly directed to a network of N integrate-
and-fire neurons. Each input is randomly connected to exactly
50% of the network neurons, for both the inhibitory network and
the mixed network. Each network neuron is connected to N x ¢
other network neurons. That means not only does the neuron have
the possibility of connecting to itself, but its number of connec-
tions also varies according to binomial statistics with expectation
value N x c.

The network connectivity, ¢, differs between the inhibitory net-
work and the mixed network. For our inhibitory network, we
set ¢ =100% by default. For our mixed network, we use ¢ =5%
throughout.

LINEAR CLASSIFIER

As a linear classifier we use the LIBSVM support vector machine
implementation provided by the SHOGUN machine learning
toolbox (Sonnenburg et al., 2010). We have also employed a
self-programmed Perceptron and obtained the same results.

MEAN MUTUAL INFORMATION

We compute the mean mutual information of our network
response from the averaged marginal entropies. If the variable
r represents the spike count per bin of a neuron, then the mean
response entropy per neuron is computed as

N
H:—%Zzpi[r]logzpi[r], (1)

i=1 r

where N is the total number of network neurons, and P;[r] is the
probability of occurrence of r for the ith neuron, computed over
all output vectors.

REFERENCES Hopfield, J. J. (1982). Neural networks

If r(+) denotes a neuron’s response to a class label (+) stim-
ulus, and r(—) to a class label (—) stimulus, then the mean noise
entropy is

N

1
Hoise = == > ) Pi[r ()]log, Pi [r (+)]

i=1

N
1
- ﬁzzpi[f(—)]logzmr(—)], )

=1
and our mean mutual information per neuron is computed as
Iy = H — Hioise (3)

CORRELATION COEFFICIENT
The correlation coefficients between pairs of neurons are com-
puted as follows. First, the spike counts of each network neuron,
in response to the entire set of input patterns, are collected into a
vector. Then the correlation coefficient between each pair of neu-
rons is simply the correlation coefficient between their respective
spike count vectors. In addition, when computing the mean cor-
relation coefficient of the entire network, only absolute values are
considered.
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