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Conventional synaptic plasticity in combination with synaptic scaling is a biologically plau-
sible plasticity rule that guides the development of synapses toward stability. Here we
analyze the development of synaptic connections and the resulting activity patterns in dif-
ferent feed-forward and recurrent neural networks, with plasticity and scaling. We show
under which constraints an external input given to a feed-forward network forms an input
trace similar to a cell assembly (Hebb, 1949) by enhancing synaptic weights to larger stable
values as compared to the rest of the network. For instance, a weak input creates a less
strong representation in the network than a strong input which produces a trace along
large parts of the network.These processes are strongly influenced by the underlying con-
nectivity. For example, when embedding recurrent structures (excitatory rings, etc.) into a
feed-forward network, the input trace is extended into more distant layers, while inhibition
shortens it. These findings provide a better understanding of the dynamics of generic net-
work structures where plasticity is combined with scaling. This makes it also possible to
use this rule for constructing an artificial network with certain desired storage properties.
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1. INTRODUCTION
Synaptic plasticity in neural systems needs to be regulated without
which unwanted effects, like overly strong growth or shrink-
age, might occur, destabilizing the network function. Little is
known about the underlying biophysical mechanisms which con-
trol weight growth. Learning rules (plasticity rules) usually achieve
this by weight regularization terms (Bienenstock et al., 1982; Oja,
1982; Miller and MacKay, 1994; Gerstner and Kistler, 2002). A
possible alternative arises when considering so-called “synaptic
scaling.” This is a mechanism, discovered around 1998, by which
network activity is homeostatically regulated (Turrigiano et al.,
1998; Turrigiano and Nelson, 2000, 2004). Overly active networks
will – on a time axis of hours up to days – down scale their activity
and vice versa. This is achieved by altering the synaptic strengths
usually across many neurons, which acts like a scaling mechanism
(Turrigiano and Nelson, 2000). Thus, synaptic weights ω seem to
be regulated by an activity dependent difference term. This term
compares for every neuron – hence locally – output activity v
against a terminal activity vT such that dω

dt ∼ γ (vT − v), where
γ � 1 is a rate factor that strongly limits this effect and thereby
defines a time scale much slower than that of conventional plastic-
ity (e.g., Hebbian plasticity Hebb, 1949 or Spike-timing dependent
plasticity, STDP; Bi and Poo, 1998), which is dominated by another
rate factor 1�µ>γ .

As a consequence, synaptic change needs to be described by a
combination of a conventional plasticity rule together with this
more slowly acting scaling rule: dω

dt = µG(u, v)+γH (vT − v ,ω),

where G and H describe the specific instantiations of these rules
(u is the presynaptic activity). For example, G would be different
for a plain hebbian rule (G= uv) as compared to the BCM rule
(G= uv(v −2)).

In a previous study (Tetzlaff et al., 2011) we have shown that
such a combination of Synaptic Plasticity and Synaptic Scaling
(SPaSS) leads to a rule which is globally stable for a wide vari-
ety of conditions as soon as scaling depends quadratically on the
weights (H∼ω2). Several interesting properties were discussed.
For example, a strong external input delivered to a neuron leads
to large (stable) post-synaptic weights for this neuron and its
direct as well as indirect target neurons. This way reliable propa-
gation of the external signal along several stages becomes possible
because all these neurons are connected with each other with
strong synapses. Thus, an input trace is stored. This appears inter-
esting as the SPaSS rule apparently allows the system to form such
linked groups of neurons, which could be considered as a “cell
assembly” (Hebb, 1949; Hahnloser et al., 2002; Harris et al., 2003).
So far the dynamic creation and stabilization of cell assemblies has
remained an enigma. While the SPaSS rule seem to achieve this
(at least to some degree) so far it also remains unclear how these
dynamics evolve. Thus, the goal of the current study is to analyze
the dependency of size (number of neurons/stages) and strength
(weights) of these input traces on the underlying connectivity and
used plasticity parameters.

To this end we will use a combined rule with a hebbian plasticity
term for G and the above mentioned quadratic weight dependence
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for H (Tetzlaff et al., 2011) between neurons i and j :

ω̇ij = µ uj vi + γ (vT − vi)ω
2
ij

= µ
(

uj vi + κ
−1(vT − vi)ω

2
ij

) (1)

with ω̇ij =
dωij

dt and κ =µ/γ . In contrast to (Tetzlaff et al., 2011),
we will continue to useµ andκ and notµ andγ . This is because the
fixed points of such systems are only influenced by the γ toµ ratio
(i.e., κ) and µ as such merely alters the time scale of our model.
Additionally we assume that the output of neuron i depends lin-
early on the product of input and weight: vi=6j wij·uj. Then we
can adopt the results of a one synapse system from (Tetzlaff et al.,
2011) and state the stable excitatory fixed point by using κ as:

ω∗ij =
vT

2 uj
+

√
κ uj +

(
vT

2 uj

)2

(2)

or rewritten with vi=wij·uj as:

v∗i =
vT

2
+

√
κ u3

j +

(vT

2

)2
. (3)

This activity value v∗i is the target activity of neuron i given
input uj. This target activity becomes equal to the terminal activ-
ity vT if synaptic plasticity does not influence synaptic weights
anymore (i.e., κ = 0).

Now, we want to reintroduce in more detail the results from
(Tetzlaff et al., 2011) which are relevant for the current study:
Figure 1A shows a schematic rendering of a network of 100 neu-
rons that has been designed with three connections from each
neuron to randomly chosen target neurons. All neurons are rate
coded and we have used hebbian plasticity together with scaling
as defined in equation (1). Three neurons have received strong,
constant, external input, all other neurons only weak random
input. This leads to two groups of neuronal descendent-lines in
the network. Group 1: The three neurons receiving the strong

FIGURE 1 | Given a strong external input synaptic plasticity combined
with synaptic scaling (equation 1) leads to an input trace similar to a
cell assembly. (A) Schematic of post-synaptic connectivity of selected
neurons up to stage five. The red neuron receives a strong external input
(yellow arrow). Parts of the descendent network stages are highlighted to
show the general connectivity structures analyzed in this study (c.f.
Figure 2). (B) Neural activities (dashed lines) and weights (solid lines) after
stabilization found for the first four stages. Weights and activities of the
stages linked to the external input (black) are significantly larger compared
to control neurons (gray) over the first three stages representing an input
trace (cell assembly).

input (input neurons) project to 9 children, 27 grandchildren,
81 great-grandchildren, etc., where – due to the randomness of
the connection patterns – loops can be formed, too. Group 2:
The same descendent line arises for any randomly chosen other
three neurons (control neurons), too. After network relaxation
we have analyzed how the fixed points of activities and weights
look like for these two groups of neurons. The black lines in
Figure 1B show activities (solid) and weights (dashed) for the
input-descendent group; the gray lines for the control descendent
group. Neurons that descend from the input neurons represent
the input along at least three connection stages by producing
higher activities and higher, stable weights. Thus, this network
was able to store an input trace and form a “cell assembly” (Hebb,
1949). For more details concerning this result see Tetzlaff et al.,
2011.

In the current study we are going to investigate the sphere
of influence of the given external input on the fixed points of
weights and activities of the network dependent on the underly-
ing connectivity. For this, we split the complex random network
(c.f. Figure 1A) in smaller, more generalized parts (e.g., purple
areas in Figures 1A and 2) and analyze their influence on size
(number of neurons/stages) and strength (weights) of the input
trace (cell assembly).

First, we obtain analytical results for excitatory feed-forward
networks (Figure 2A) with and without lateral connections and
with feed-forward or lateral inhibition. In addition, we derive sta-
bility constraints for the maximally allowed input strength. An
interesting result is that the combination of plasticity and scaling
reduces lateral signal dispersion in feed-forward networks even
without inhibition.

Second, we investigate recurrent network structures which are
generally more difficult to handle and analytical results are hard
to derive (here we mostly rely on numerics). However, we still
provide analytical insights which lead to two observation: First,
recurrences increase activity compared to feed-forward structures
and, therefore, extend the input trace (cell assembly) within the
network. Second, if we connect neurons so that they form a
recurrent ring, the stability of rings of different size in a net-
work is determined by the stability of the ring with the small-
est number of neurons. All these aspects are consolidated by
numerics.

To help navigating through this diversity, we provide at the end
of most subsections a short paragraph that summarizes the results
from this subsection. As part of the Discussion section we, finally,
summarize all main findings (also in Table 1) and based on the
main findings of this study give an example of a topology which
results in localized cell assemblies (Figure 8).

2. MATERIALS AND METHODS
2.1. GENERAL FIXED POINT ANALYSIS
The differential equations of weights and activities for different
network topologies are derived in the main text and analyzed
according to their fixed point structure. This analysis is based
on standard methods for a given set of differential equations
dω
dt = ω̇ = ϒ(ω) determining the dynamics of ω and its fixed

pointsω∗, where ω̇ = 0. To assess the stability of these fixed points,
we analytically computed the Jacobian Jϒ (ω) of ϒ ; a fixed point
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FIGURE 2 |The different networks investigated in this study.
(A) A feed-forward network consists of M layers each with Nk

neurons. Each neuron j m of each layer m connects to all neurons of
the source-layer m−1 and target-layer m+1 and has no
connections within its layer. In this example neuron n= a of the first
layer k =0 (pink) receives an input = while the other neurons within
this layer do not. (B) The smallest recurrent system: a neuron with a
self-connection receiving external input. (C) A neuron receives an
external input and is recurrently connected to another neuron.
(D) Three neurons build a ring structure.

Table 1 |Tabular summary of the influence of different network

structures compared to a pure feed-forward network.

Network structure vmax Input

interval

Length of

inp. trace

Global

fixed

point (g)

Lateral excitation ⇓ ⇓ ⇑ ⇓

Feed-forward inhibition ⇑ ⇑ ⇓ ⇑

Feedback inhibition ⇑ ⇑ ⇓ ⇑

Recurrent exci.(deeper layers) − − ⇑ −

Recurrent exci.(earlier layers) − ⇓ ⇑ −

Each network structure analyzed in this study influences different properties of the

propagation mechanism in a feed-forward network with the SPaSS rule. Arrows

(⇑, ⇓) show the change of these properties in comparison to the pure feed-

forward network. Bar (−) means no difference. Properties: vmax: position of the

upper boundary for bounded development; input interval: interval of inputs lead-

ing to bounded development; length of inp. trace: number of layers needed to

reach the global fixed point; global fixed point (g): weight value (ω(g)) of the global

fixed point. For more details see main text.

ω∗ is stable if all eigenvalues at ω=ω∗ are smaller than zero, and
unstable otherwise. Numerics are done by solving the differential
equations with the Euler method.

2.2. FEED-FORWARD NETWORK
The feed-forward network (see Figure 2A) consists of M lay-
ers each with Nk neurons. Each neuron n ∈ {1, . . ., N } of each
layer k ∈ {0, . . ., M − 1} has an all-to-all connection to all neurons
of the target-layer k + 1 and no connection to neurons within
its layer k if not stated differently. Therefore, neuron n= i(m)

of layer m receives its inputs from all neurons j(m−1) of layer

m− 1 with their activities v(m−1)
j via synapses of strength ω(m)i,j .

Thus, the output activity v(m)i of neuron i(m) is the function

F
(∑Nm−1

j ω
(m)
i,j · v

(m−1)
j

)
. It will be transmitted to all neurons of

layer m+ 1. For simplicity, in this study the function F is chosen
to be the identity which does not influence the results qualitatively
(Tetzlaff et al., 2011).

3. RESULTS
3.1. FEED-FORWARD NETWORKS
3.1.1. Weights and activities in feed-forward networks
The simplified structure in Figure 2A depicts how an input signal
to a random network is traveling along topological stages (layers)
within this network and how the network “reacts” to the input by
adapting weights and activities. For this we simulate the behavior
of such a feed-forward network with one neuron per stage (c.f.
Figures 1A and 3) given a noisy input to layer one (activity of
red neuron). As shown before (Figure 1), this activity leads to a
strong post-synaptic synapse resulting in high (but not as high as
red) activity at layer 1 (green neuron). This behavior is propagated
until the activity vanishes in layer 4 (gray). This is the basic prop-
erty of the above described input trace (cell assembly). Even if the
input is reduced for a certain duration the network can re-adapt
to its previous stable state very fast (c.f. Figure 3). Thus, even
with a noisy external input, the network can construct a stable cell
assembly along several stages.

In the following we analyze analytically the fixed points of
weights and activities for each stage dependent on feed-forward
connections and the input. We consider an input of average
strength = given to a neuron j(0)

= a of the first layer k = 0 (pink
neuron in Figure 2A), which leads then to the input activity

v(k=0)
j=a = v(0)a = = of the first layer (the other neurons in layer

k = 0 have v(0)j 6=a = 0). Next, we calculate the weights ω(1)i,j and

activities v(1)i of a neuron i(1) of the next layer k = 1 assuming that
the dynamics have stabilized:

v(1)i =

N∑
j=1

ω
(1)
i,j · v

(0)
j = ω

(1)
i,a · v

(0)
a = ω

(1)
i,a · =. (4)

Given this result, equation (1) and u(m)j = v(m−1)
j the dynamics

for weights in the second layer write

ω̇
(1)
i,a = µ

(
v(0)a · v

(1)
i + κ

−1
(

vT − v(1)i

)
·

(
ω
(1)
i,a

)2
)

= µ

(
=

2
· ω

(1)
i,a + κ

−1
(

vT − = · ω
(1)
i,a

)
·

(
ω
(1)
i,a

)2
) (5)
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This equation still has only one fixed point in the excitatory regime
(i.e., ω> 0):

ω
(1)
i,a =

vT

2=
+

√
κ = +

v2
T

4=2
≡ ω

(1)
(·),a (6)

Substituting this solution into equation (4) gives

v(1)i =
vT

2
+

√
κ =3 +

v2
T

4
≡ v(1)(·) (7)

We write v(m)(·) as this solution applies for all i(1)
∈{1, . . ., N 1} of

layer k = 1 because neuron j(0)
= a is connected to all neurons of

layer k = 1.
All neurons of layer k = 1 have the same activity and since we

use an all-to-all connectivity between each layer, neurons within
each subsequent layer k ≥ 1 will have equal activity, too. Hence, the
(equal) activity of each neuron in layer k =m and also the (equal)
strength of each weight projecting to layer k =m merely depends
on the (equal) activity of each neuron in layer k =m− 1 and the
number of neurons N (m−1) in this layer:

ω
(m)
i,(·) =

vT

2 N(m−1) v(m−1)
(·)

+

√√√√κ v(m−1)
(·) +

(
vT

2 N(m−1) v(m−1)
(·)

)2

≡ ω
(m)
(·),(·) (8)

v(m)i = N(m−1) · ω
(m)
i,(·) · v

(m−1)
(·) =

vT

2

+

√
κ N 2

(m−1)

(
v(m−1)
(·)

)3
+

(vT

2

)2
≡ v(m)(·) (9)

In the next subsection we will analyze and discuss the dynamics of
these equations for different parameters given the same number
of neurons in each layer (N =Nk, ∀k∈{0, . . ., M − 1}).

3.1.2. Development of weights and activities along layers
Equations (8) and (9) describe the dynamics of weights and activ-
ities in a feed-forward network that is stimulated by just one
input. When we look at the propagation of the activity (after sta-
bilization of the weights) for different parameter values, we will
find two qualitatively different scenarios: Activities will increase
(divergent regime) or decrease (bounded regime) from layer to
layer. As divergence should be avoided and bounded development
enforced, the following relation has to be fulfilled for all neurons

m > 1 : v(m)(·) ≤ v(m−1)
(·) . We now calculate lower and upper bounds

for the activity and the weights so that we stay in the bounded
regime.

v(m)(·)

!

≤ v(m−1)
(·)

vT

2
+

√
κ N 2

(
v(m−1)
(·)

)3
+

(vT

2

)2
≤ v(m−1)

(·)(
v(m−1)
(·)

)3
−

1

κ N 2

(
v(m−1)
(·)

)2
+

vT

κ N 2
v(m−1)
(·) ≤ 0

⇒ v(m−1)
(·) ≤ 0

∨
1

κ N 2

(
1

4 κ N 2
− vT

)
≥

(
v(m−1)
(·) −

1

2 κ N 2

)2

The first inequality applies for negative firing rates. Thus, we
ignore this result in the following. The second inequality defines
an upper and lower bound on the activity or rather on the input=:

v(m−1)
(·) ≤

1

2 κ N 2
+

√
1

κ N 2

(
1

4 κ N 2
− vT

)
≡ vmax (10)

v(m−1)
(·) ≥

1

2 κ N 2
−

√
1

κ N 2

(
1

4 κ N 2
− vT

)
≡ vmin (11)

The two constraints equations (10) and (11), and the nullcline
for the weights (equation A1 in Appendix) define the weight-
activity phase space (cf. Figures 4A–C) as well as the development

FIGURE 3 | A noisy external input leads to propagation of activity along several stages. The first neuron (red) receives a time varying (noisy) input which
leads to a strong post-synaptic synapse. Thus, the activity is transmitted to the next stage (green) resulting in high (but smaller than the input) activity and
weight. This transmission occurs along several stages until the activity vanishes (gray). Even a short decrease of the input can be compensated quite fast.
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of the fixed points of activity and weight along layers or rather
stages m (cf. Figures 4D–E) in a feed-forward network. The tra-
jectory depends on the terminal firing rate vT and the number of
neurons N (c.f. Figure 4).

The phase space consists of two qualitatively different curves.
The first class of curves represents the fixed points of each layer
(equation 8). These fixed points do not depend on layer number
k directly but on the input to this layer which is the output of the
preceding layer vm−1

i . In Figures 4A–C these fixed points are rep-
resented by the solid line. The second class of curves deals with the
layer to layer fixed points of our system, i.e., with the previously
calculated two constraints equations (10) and (11) and, addition-
ally, equation (A1) for the weights. These constraints define the
limits of a region within which activity stays bounded from layer
to layer. In Figures 4A–C these curves are dashed lines (vertical
black lines are vmin and vmax; the purple line is the nullcline ωequ

for ωm
=ωm

−1). The constraints vmin and vmax divide the phase
space into three qualitatively different regimes: if the activity of
only a single layer is smaller than vmin, the activity of the next layer
“jumps” to vmin and stays there for the descendant layers. If the
activity is larger than vmax, activities increases from layer to layer;
only if the activity stays between vmin and vmax, activities decrease
from layer to layer and stay bounded (c.f. arrows in Figure 4A).
Only vmax is significantly influenced by N leading to a smaller
stable range as more neurons excite one neuron in the next stage.

Now we can understand how fixed points develop from layer
to layer and, thus, how large a cell assembly, given input strength
=, gets.

First, we apply an input from the bounded regime that causes
activities and weights of the first layer to converge to their fixed
points which lie on the blue line (e.g., k = 0 in Figure 4A). The
resulting activity v(0)∗ is then transmitted to the next layer and
causes in turn weights of the next layer to converge. Intuitively,
this is visualized by a line going downward until it reaches the
weight nullcline ωequ. From here, weights together with the activ-
ity of the previous layer once again cause the activity of the next
layer (k = 1) to converge, too. This is visualized by a line going
leftwards to the blue fixed point curve.

This process repeats from layer to layer until the global fixed
point at (v(g )

= vmin,ω(g )
= 1) is reached for layer k = g. Activities

and weights will not change for subsequent layers k > g. In other
words, the external input cannot influence layers k > g.

Thus, in a pure feed-forward network any kind of information
storage can only exists for the first k layers since the system reaches
its global fixed point for layers beyond k independent of the initial
input (as long as the input is in the bounded regime).

3.1.3. Influence of parameters
To assess the capacity of information storage (size of input trace),
we need to determine the influence of network parameters on g. It
turns out that most influence on g is caused by vT. Figures 4D,E
demonstrate activity and weight development for three different
values of vT. Note that although the development moves along
discrete layers, we plot continuous lines.

Next, we estimate the “number of jumps” from the distance
between weight nullcline wequ and the blue fixed point curve (c.f.

arrows between blue and purple line in Figure 4A). A smaller dis-
tance (compare Figures 4B,C) leads to smaller “jumps” from layer
to layer which in turn leads to more layers toward the global fixed
point. However, at the same time the difference between vmin and
vmax decreases which leads to a reduced total distance between the
input value and vmin.

In Figures 4A1–A6 we also show numerical results of activ-
ity and weight development when the input is chosen to be in
one of each of the three different regimes; this confirms our ana-
lytical observations. For inputs greater than vmax the network
diverges (Figures 4A5 and A6). For inputs less than vmin the net-
work converges quickly to its global fixed point (v = vmin, ω= 1;
Figures 4A1 and A2). Only for inputs between vmin and vmax

(Figures 4A3 and A4) we notice distinctively different fixed points
along several layers until at around layer eight the global fixed
point is eventually reached. Thus, such a feed-forward network
with inputs between vmin and vmax stores different values for activ-
ities and weights, here up to layer 7. The numerical results of A3
and A4 are qualitatively very similar to the analytical curves in
Figures 4D,E.

We now define the theoretical limits of this system. On the one
hand we see from Figure 4D that in order to maximize g the dis-
tance between vmax (equation 10) and vmin (equation 11) should
be small and vT should then be ξ = (4κN 2)−1:

lim
vT→ξ

vmax
= lim

vT→ξ
vmin
=

1

2κN 2

Given an input between vmin and vmax, the system would need
m→∞ to reach vmin. However, with vT→ (4κN 2)−1 the interval
(vmin, vmax) from which inputs can be chosen becomes smaller –
eventually zero – and the network is specialized to “store” only a
few (or one) distinct inputs. Additionally, the difference between
input representation (minimum fixed point weight ωmin) and
global fixed point (ω(g )

= 1) also becomes smaller (green curve in
Figures 4D,E). So a noisy read-out of the stored inputs is compli-
cated as an input difference could easily fall inside the noise level.
On the other hand, to get a stable read-out and at the same time
to “store” a large range of different inputs, the difference between
vmin and vmax should be maximized. From equations (10) and
(11) we find that vT should be as negative as possible, however,
in a pure feed-forward network vT< 0 would lead to a negative
firing rate for v(g )

= vmin< 0 which is mathematically possible but
biologically implausible. Thus, vT should minimally go to zero:

lim
vT→0

vmax
=

1

κN 2

lim
vT→0

vmin
= 0.

To sum up, there is a trade-off, which depends on vT, between
the number of layers representing an input and the stability of this
representation against noise. On the one hand, a high vT ensures
an extended representation over many layers, but, on the other
hand, this representation is now quite susceptible to noise during
the read-out process as fixed points are close to each other, and
vice versa for a small vT.
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FIGURE 4 |The phase space of a feed-forward network and how the
representation of a given input depends on the parameter vT. (A–C) The
constraints vmin, vmax (vertical black dashed lines), and ωequ (purple dashed line)
define the direction of change of weight and activity (arrows) from layer to
layer on the fixed point curve (colored continuous line). (A1–A6) The
sub-panels show the fixed point values of the weights (top) and activities

(bottom) of the layers at different regimes (colored according to the phase
space). (D,E) Resulting from these curves the number of layers m needed to
reach the global fixed point (thus, representing an input) varies for different vT.
Dashed lines are the respective vmin lines. For more details see main text.
Parameters: k = 2, N =1; (A) vT = 10−3; (B) vT =10−2; (C) vT =10−1 (D–E)
==0.3.
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3.1.4. Signal dispersion in a feed-forward network with local
connectivity

Signals and therefore information in feed-forward networks are
transmitted from layer to layer. If we demand that there is still
information of our initial signal even after many layers, the net-
work has to maintain the spatio-temporal integrity of inputs.
Ideally, inputs should not disperse randomly both in space and
in time.

We therefore test the capability of a feed-forward network
(Figure 2C) for signal representation and transportation. The
synapses of the network are modified by the SPaSS rule. Con-
stant weights represent the control (to mimic, for instance, weight
hard-bounds). In the first of our two scenarios we present a
spatially restricted signal (transport signal) to the first layer and
then measure the dispersion along layers (Figures 5A,B). In
the second scenario we inject as an input two adjacent sig-
nals with a small spatial gap between them (resolution signal ;
Figures 5C,D). With both scenarios we are able to analyze the
network’s capability to differentiate its inputs after a certain num-
ber of layers. Different from the previously analyzed network
the feed-forward network is constructed as follows: each neuron
projects and in turn receives synapses to and from a neuron at the
same position and its two neighbors in the next and the former
layer.

If the weights are set to a constant value ωc, the input smears
out with every subsequent layer. This is best visible in Figure 5B
when comparing the activity profile of each layer with the dashed
lines of the original signal. Additionally, the amplitude of the sig-
nal gets reduced with every subsequent layer. Although smearing
is reduced by using smaller constant weights ωc, this also leads
to a stronger reduction of amplitude. The SPaSS rule, on the
other hand, can reduce (after weight stabilization) both smear-
ing and amplitude reduction (cf. Figure 5A) at the same time.
It is interesting to note that only in the first layer the activity
of the border neurons is significantly increased. In all subse-
quent layers, the signal amplitude of these border neurons does
not increase but merely follows the general reduction of signal
amplitude.

In the second scenario smearing reduces the gap between the
two initially separate signals from layer to layer (Figure 5D). For
constant weights ωc the signals are difficult to distinguish after
the third layer (Figure 5D). For plastic synapses the resolution
decreases, too, but both signals are still distinguishable until the
signal vanishes at layer five (Figure 5C). This effect has its origin
in the scaling mechanism which tries to balance incoming signals.
This leads to a suppression of later signals while at the same time
the strong forward pathways are being maintained.

In summary, the SPaSS rule avoids a spreading or rather smear-
ing of spatially restricted signals in deep layers of feed-forward
networks. Therefore, the rule ensures that spatially distinct signals
presented to a network are still distinguishable after passing several
neuronal layers.

3.1.5. Feed-forward networks with excitatory and inhibitory
connections

In this section we consider step by step our feed-forward net-
work with -i- lateral excitatory connections within layers (top

row in Figure 6), -ii- feed-forward inhibition (middle row in
Figure 6), and -iii- feedback (self-)inhibition (bottom row in
Figure 6) while all intra-layer connections stay constant. Under
these constraints, analytical results can still be obtained and
we state only the main equations here. All calculations – sim-
ilar to those shown above – are provided in the Appendix.
In principle we could also do analytics for mixtures of the
structures presented in Figure 6 but calculations get lengthy
and opaque then, and the same is true for plastic intra-layer
connections.

3.1.5.1. Lateral excitation. First we introduce lateral excitatory
connections with weights ωR (top row in Figure 6). We consider
a system in which each neuron i(m) of layer m still receives input
from all neurons j(m−1) of the previous layer m− 1 and, addition-
ally, inputs from R neurons within its own layer m. As all neurons

in a layer receive the same input, the activity v(m)i is the same for
all these neurons:

v(m)i =

N∑
j=1

ω
(m)
i,j v(m−1)

j +

R∑
l

ωR v(m)l

= N ω
(m)
(·),(·) v(m−1)

(·) + R ωR v(m)(·) ≡ v(m)(·) (12)

If we compare fixed point solutions (equations A2 and A3 in
Appendix) and constraints (equations A4–A6 in Appendix) with
those of the pure feed-forward network without lateral excitatory
connections (equations 8–11; equation A1 in Appendix), we find
that only the number of input neurons N is rescaled by the number
of lateral excitatory connections R so that we can replace

N

1− R ωR
= NLat (with R ωR < 1). (13)

A larger number of lateral excitatory connections R and/or
stronger weights ωR increase the effective number NLat of input
neurons per layer to neuron i(m). Such an increase leads to a
strong decrease in vmax while the change in vmin remains neg-
ligible (dashed lines in Figure 6A). Thus, for a stable trace the
inputs are now restricted to a smaller region. The positions
of fixed points within a layer (continuous red lines), however,
do not change much compared to the pure feed-forward net-
work (blue line). This finding lets us expect that global con-
vergence is reached earlier. However, this does not apply (see
Figures 6B,C) as layer to layer fixed points for ω shift (not
shown), too, leading to almost the same activity value. Only the
weight value of the global fixed point ωglobal is reduced. This
depends on the strength of the lateral excitatory connections
(ωglobal≈ 1−RωR; see Figure 6C, constant parts of the curves).
However, more layers are needed to reach this global fixed point
(Figure 6B).

Thus, with respect to signal dispersion, lateral excitation
in feed-forward networks leads to a reduced decay of activ-
ity from layer to layer compared to a pure feed-forward
structure (Figure 5) without effecting the smearing effect
much. Thus, as smearing remains limited, distinct signals
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FIGURE 5 | Signals travel along layers in a pure feed-forward network
depending on the used plasticity mechanisms. (A,B) Spatial smearing of a
signal is analyzed by presenting one spatially restricted input to a small group
of neurons in the feed-forward network. Constant weights ωc lead to
smearing (compare activity profile of given layer in red with the footprint of
the original signal shown by the dashed lines). The SPaSS rule produces much

less smearing and the signal propagates along layers mostly remaining inside
the originally stimulated region until it vanishes. (C,D) This focusing effect of
the SPaSS rule increases the resolution to distinguish two spatially distant
signals in higher (e.g., blue bars of layer 1) and deeper layers (e.g., layer 3).
Parameters: ωc =0.2, κ =2, vT =10−2, ==0.1, =background =10−4, N =20, M =10
the first six layers are shown.

are transported over more stages when lateral excitation is
present.

3.1.5.2. Inhibition. Next, we introduce inhibitory lateral con-
nections with weights ωI. As we define ωI as positive, we use
a minus sign in all formulas. Inhibitory weights stay constant
throughout this study and the derivative of ωI is set to
zero (ωI= const.) because plasticity mechanisms for inhibitory
synapses are still highly debated (Woodin et al., 2003; Haas et al.,
2006; Caporale and Dan, 2008).

We investigate feed-forward and feedback inhibition; both
types are equivalent to simpler structures (middle row in Figure 6,
beneath the blue arrows) that are easier to analyze.

Feed-forward inhibition: Feed-forward inhibition (Figure 6,
middle row) is an important structure in neuronal networks as,
for instance, the ubiquitously present lateral inhibition can be
approximated by multiple feed-forward structures.

Feed-forward inhibition (Figure 6 middle, above blue arrow)
consists of three neurons of which one sends signals to the other
two neurons. One of these two neurons in turn inhibits the second
neuron. This neuron – receiving excitatory and inhibitory inputs –
is defined to be the output. We simplify this structure to two
neurons (Figure 6 middle, beneath blue arrow) which is iden-
tical to the original structure if the connection from the source
neuron to the inhibitory neuron is set to the identity and neuronal
transfer functions are, as before, linear. In the simplified struc-
ture the source neuron directly sends signals to the output neuron
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FIGURE 6 | Inhibition and recurrent connections influence fixed points of
activity and weights from layer to layer. The (A,D,G) show the phase space
of the modified feed-forward networks (blue lines show the control from
Figure 4A). Different structures results in different activity (B,E,H) and weight
(C,F,I) development over stages m. (A–C) In the feed-forward network there
are constant excitatory recurrent connections of weight ωR within each layer.
These recurrences shift the constraints vmin and vmax of the fixed points and

narrow the regime of possible inputs. However, the length of a trace and its
difference are larger for stronger recurrences (RωR). (D–F) Fixed points with
feed-forward inhibition (G–I). As (A–C), however, with inhibitory recurrent
connections. Inhibition (feed-forward and feedback) enlarges the regime of
inputs resulting in stable development over layers. However, length and
difference of the traces are shortened. Parameters: κ =2, vT =10−2, N =1,
and RωR/I = 0, 0.1, . . ., 0.5. For (B,C,E,F,H,I) ==0.2.

through a plastic excitatory synapse ωE and an inhibitory synapse

with constant weight ω
ff
I .

The activity of the output neuron is then simply the difference
between both weights multiplied with the activity of the source
neuron u:

v = u ωE − u ω
ff
I

= u
(
ωE − ω

ff
I

)
.

(14)

The results for fixed points and constraints (equations A8–
A12 in Appendix) show that feed-forward inhibition increases
the region of a stable input trace defined by the difference
between vmax and vmin (Figure 6D). The length of the input
trace (cell assembly), however, decreases (Figures 6E,F). If
we compare this behavior with our pure feed-forward net-
work, we find that feed-forward inhibition influences the
dynamics similar to a change in vT toward smaller values
(Figure 4). The global stable fixed point weight, however,
increases with higher inhibitory weights ωI for feed-forward
inhibition (Figure 6F, constant parts of the curves) but not

when reducing vT; then it always stays at a value of 1
(Figure 4E).

In summary, feed-forward inhibition in a feed-forward net-
work effects the fixed point structure in a similar way as a reduced
vT in a pure feed-forward network.

Feedback inhibition: Conceptually different to feed-forward
inhibition is feedback inhibition (Figure 6, bottom). Here, a neu-
ron inhibits itself via a second neuron (Figure 6 bottom,above blue
arrow). The second neuron receives excitatory input from – and in
turn inhibits – the first neuron which receives inputs from preced-
ing layers and sends signals to subsequent layers. We simplify this
structure, similar to the feed-forward inhibitory structure, by set-
ting the excitatory weight to one and, as we do anyhow by (again)
using linear transfer functions for all neurons (Figure 6 bottom,
beneath blue arrow). Thus, we have one neuron left which inhibits

itself with constant weight ω
fb
I ; only the weight ωE is plastic.

Therefore, the output activity v of the neuron is:

v = u ωE − v ω
fb
I (15)

⇔ v =
u ωE

1+ ω
fb
I

. (16)
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The equations for fixed points and constraints (equations A16–
A18 in Appendix) determine the phase space of such a system
(Figure 6G). The influence of feedback inhibition mainly shifts
vmax to higher activity values – similar to feed-forward inhibi-
tion. This again enlarges the regime of inputs that results in a
stable input trace. However, such a representation needs less layers
(Figure 6H) than in a pure feed-forward network.

In summary, in a feed-forward network feedback inhibition
has similar effects as feed-forward inhibition but already smaller
inhibitory weights ωI yield the same results. Another difference is
that the fixed point curve (equation A18 in Appendix) shifts less
than for feed-forward inhibition and the dynamics of a network
with feedback inhibition are more similar to the dynamics of a
pure feed-forward network.

3.2. RECURRENT NETWORK STRUCTURES
Until now we looked only at feed-forward structures but recur-
rent structures are as important, for instance, to understand the
dynamics of randomly connected networks. For the rest of this
study we will focus on recurrent network structures. We start with
presumably the simplest recurrent system: a self-connected neuron
(Figure 2B) and then move on to slightly more complex ring-like
structures (Figures 2C,D).

Two main results emerge from this investigation. First, the
resulting activities v in different network structures after stabiliza-
tion are ordered as follows: self− connected > bi− directional >
three − ring >N − ring > feed − forward. Intuitively we need to
consider that recurrent structures lead to a self-enhancement
of activity but at the same time the number of neurons that
are involved in such a recurrent ring decrease the activity if
connections are on average below 1. As a consequence a sec-
ond, more important observation arises: recurrent connections
can be indeed stabilized by the SPaSS rule and if a recurrent
structure with only a few number of neurons involved is stable,
then all recurrent structures with more neurons involved will be
stable, too.

3.2.1. Self-connected neurons
The simplest recurrent network is a single neuron with an input
= and a self-connecting synapse with weight ω (Figure 2B). The
activity vt at time t of such a neuron is simply the sum of a con-
stant external input = and the weighted output of the neuron a
time step before. (Instead of one time step a fixed delay term d
could be used.)

vt = =+ ωt · ut = =+ ωt · vt−1 (17)

To obtain stability both variables v and ω have to be constant
over time, i.e., ω̇= 0 and v t = v t−1. This leads to the following
dependency between activity and weight:

v =
=

1− ω
. (18)

We insert this equation into the differential equation for weight
development:

ω̇ = µ

(
=

2

(1− ω)2
+ κ−1

(
vT −

=

1− ω

)
· ω2

)
= 0 (19)

and the solutions of equation (19) are

ω∗1 =
1

12

(
−
√

3ϒ −3− 3b
)

ω∗2 =
1

12

(
−
√

3ϒ +3− 3b
)

ω∗3 =
1

12

(√
3ϒ −3− 3b

)
ω∗4 =

1

12

(√
3ϒ +3− 3b

)
(20)

with

ϒ =

√
3b2 + 8ac + 2

5
2 a
(
c2 + 12ad

)
0−1 + 2

4
3 a0 ,

3 =
√

6

√√√√√ 3b2
+ 8ac − 2

4
3 a
(
c2
+ 12ad

)
0−1
− 2

2
3 a0

+3
3
2
(
b3
+ 4abc

)
ϒ−1

,

0 =

(
− 2c3

+ 27b2d + 72acd

+

√
−4
(
c2 + 12ad

)3
+
(
−2c3 + 27b2d + 72acd

)2
)1/3

,

a = vT , b = =− 2 vT , c = =− vT , and d = κ =2.

These solutions have to be real (complex part equals zero) and
the derivative of equation (19) at these solutions has to be smaller
than zero in order to stabilize the dynamics, so parameters =, κ ,
and vT have to be restricted. The calculations for assessing these
parameters are complex and closed-forms can not be derived any-
more. Therefore, the stability for a given set of parameters has to
be assessed by numerical calculations of the roots. To reduce the
number of parameters only the ratio of the rates (e.g., equations
8–22) κ =µ/γ is considered and we plot the maximally allowed
input =max that still leads to a stable weight. All smaller inputs
(0<=<=max) lead to a stable weight ω, too, and inputs above
this value (=>=max) lead to divergent weight dynamics. Thus, we
show the parameters which lead to stable dynamics in a κ-vT-plot
with =max color coded (Figure 7A). The self-connected neuron
stabilizes best if γ is as large as µ (κ ≈ 1) but for the more realistic
ratios of one order of magnitude difference (κ ≈ 10) stabilization
is still possible for a wide regime. Furthermore, stability requires
that vT is small or even negative. Here we stress that (1) negative
vT does not imply negative neuronal firing rates as these systems
balance plasticity and scaling (v∗i 6= vT ; see equation 3 and Tetzlaff
et al., 2011) and (2) negative vT values can be avoided by simply
adding inhibition to any of these recurrent networks (Figures 2B–
D). As shown above, constant weight inhibition (Figures 6D–I)
leads to a shift of the network properties toward larger allowed
positive values. The general disk-like shape of the stability plot,
however, does not change with inhibition added and we will thus
continue to consider only excitatory recurrent networks (although
vT might be negative).

We have confirmed our numerical calculations with simula-
tions up to four places after the decimal point for weight ω and
activity v. (For example, for κ = 2, == 0.065, and vT= 0.01 the
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weight and the activity in the simulation as well as in the numerics
is ω= 0.5674 and v = 0.1503 respectively).

We now compare the activity of a neuron with a self-connection
vsc with the activity vff of a neuron in a feed-forward structure
receiving the same input = if equation (19) is simplified in the
following way (see also Appendix): as ω is smaller than one,
weight-dependent terms of order three (2(ω3)) and higher can
be ignored. This leads to following neuronal activity:

v ≈
=

1−
√

κ =2

=−vT

(21)

which is larger than vff==.
In summary, self-connected structures in a neuronal network

will raise the risk of instability. As this instability depends on the
input (or rather the activity given to the self-connected neuron)
this risk will decrease if a self-connected structure is in deeper
layers (because activity has already declined there). However, as
the resulting fixed point activity of self-connected neurons is
larger than the activity of a neuron in a feed-forward structure,
self-connections will extend input trace into deeper layers.

3.2.2. Simple recurrent ring networks: bi-directional and
three-ring

In recurrent networks there are also other types of recurrent
structures than simple self-connected neurons. Thus, in the fol-
lowing we derive the influence of larger recurrences on the stability
and activity of neuronal networks. Equations (A19) and (A20)
in Appendix show that also for the bi-directional connection the
activity is increased compared to the feed-forward networks. This
effect could be expected as already constant recurrences enhance
network activity, but the SPaSS rule sustains the enhancement
and still guarantees stable weights. Interestingly, this effect does
not depend on the position of the bi-directional structure within
the feed-forward network. The second neuron can be part of the
feed-forward network but it can also be outside of the layered
structure.

Additionally, we numerically calculated the stable regime for
different parameter values and plot the results similar to the
self-connected neuron. This analysis (Figure 7B) confirms the
result that stability is independent of the chosen parameters vT and
κ . However, we observe that the maximally allowed input=max that

still leads to convergence increases compared to the self-connected
neuron (mind the changed color scale bars in Figures 7A,B).

For the three-neuron ring an enhancement of these observa-
tions is observed. Its equations (equation A23 in Appendix) again
show that for the three-ring the activity is increased, but less, as
compared to the feed-forward networks.

Furthermore, we find that the stability range for the three-
ring (Figure 7C) looks similar to the one discussed above
(Figures 7A,B) and the maximally allowed input =max has further
increased.

These considerations can be generalized in a straight-forward
way for an N -ring, too (not shown).

To conclude, the results presented above confirm what we stated
at the beginning of this section. First, if the smallest existing ring
structure in a randomly wired recurrent network is stable, then
every longer ring will be stable, too. Second, there is an ordering
of the resulting activities (see Appendix):

w.l.o.g. vT → 0

vsc ≈
=

1−
√
κ=

> vbi ≈
=

1− ω1,2
√
κ=

>

vnr ≈
=

1− ω1,N 5
N
i=3ωi,i−1 ·

√
κ=

> vff = =,

with ωi,j < 1∀i, j ∈ N

(self− connected > bi− directional >N − ring > feed − forward).
Furthermore (similar to the direct self-connection discussed
above) if one neuron connects recurrently via a ring to itself,
its fixed point activity is enlarged. Thus, given a feed-forward
network, this fact ensures that also all following (down stream)
layers will have an increased activity and, therefore, more layers
are needed to reach the global fixed point. This effect is in gen-
eral even stronger with the SPaSS rule than with constant weights
(c.f. section 5) as the denominator of the activity depends on the
input =. Thus, the length of the input trace is increased with any
excitatory recurrent structure.

4. DISCUSSION
Hebb (1949) proposed that a group of interlinked neurons forms
a “cell assembly.” In this study we show that the combination
of synaptic scaling and hebbian plasticity can lead to such “cell
assemblies.”

FIGURE 7 | Different recurrent structures are stabilized by SPaSS
rule. For different parameter values κ and vT the maximal input =max

leading to stable weights is calculated and shown in color code (note
the different scale bars). (A) Self-connected neurons, (B) bi-directional

structures, and (C) three-neuron rings are analyzed. If one structure is
stabilized for a given parameter set (κ, vT) all other structures are
stable, too. Only the maximal input decreases with more direct (less
neurons) recurrences.
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Synaptic scaling is a slow biological process which interacts
with faster conventional synaptic plasticity (Abbott and Nelson,
2000; Turrigiano and Nelson, 2000). In a previous study (Tetzlaff
et al., 2011) we showed that the (mathematical) combination of
both processes leads to stable and reasonable weight growth. In the
current study we have extended the analysis of this combined plas-
ticity and scaling (SPaSS) rule to different types of feed-forward
and recurrent networks. Our main goal was to try to understand
why such networks are capable of forming an input trace in a stable
way, with stably enhanced weights along several network stages as
shown in Figure 2B. Thus, such networks are to some degree capa-
ble of learning and storing a “cell assembly” (Hebb, 1949) along the
network layers.

Our main results are: (1) feed-forward networks indeed obtain
a stable sequence of fixed points along several network stages,
which can still be analytically calculated. This happens for a certain
input range vmin<=< vmax. If the network has many layers even-
tually a final stable fixed point is reached for all layers k> g, after
which no more useful information processing takes place. Lateral
connections and inhibition (feed-forward and feedback) can mod-
ify this range of information processing, hence, the extend of the
input trace (see Table 1). For the lower layers one finds that net-
works with a SPaSS rule reduce signal dispersion as compared to
networks with constant connections (see Figure 5). (2) As soon as
one introduces recurrent connections, calculations become more
difficult and most results have to rely on a numerical analysis. Here

FIGURE 8 | Connectivity shapes the size of input traces. In a pure
feed-forward network (gray) an input leads to an input trace along several
stages. The weights (dashed) and activities (solid) decrease from layer to
layer (as already explained in section 2). On the one hand, by introducing
recurrences the weights have significantly larger fixed points (see black line
of the first layers), thus, the cell assembly is more stable against
perturbation and more prominent in the network. Long-range inhibition, on
the other hand, decreases activities and weights in a way that the cell
assembly is “cut” from layer to the next (here, for instance, between 2 and
3). This an example of using the results of this study to define a
connectivity which leads to strongly localized cell assemblies. Parameters:
ωR = ω

ff
I = 0.1; others see Figure 3.

we find that small excitatory recurrent structures (self-connection,
or small rings) are more “dangerous” than large rings as it is easier
to get unstable dynamics from small as compared to large rings.
Thus, if one stabilizes the smallest ring in a network, one will find
that larger rings are stable, too. However, as the resulting activity
from a ring is larger than in a feed-forward structure, recurrences
enhance the length of an input trace and, thus, extend the influ-
ence of an external input into the deeper layers of the network.
This way a larger cell assembly representing this input is formed.

Furthermore, we can take the results obtained in this study
and conclude how big a cell assembly representing an external
input would be and how to change its size by parameters and con-
nectivity. For instance, a feed-forward network with one neuron
per layer (also named transmission line) and recurrent (here con-
stant) connections between layers (comparable to section 5 and 2)
would lead to an input trace with stronger weights compared to
a pure feed-forward network. If we introduce additionally long-
range feed-forward inhibition the input trace can be “cut” after
a few stages. Thus, short-range excitatory feedback together with
long-range feed-forward inhibition lead to localized cell assem-
blies “around” the input neuron (compare black curve in Figure 8
with gray).

Thus, the SPaSS rule naturally leads to spatially restricted for-
mation of input representations. Such a representation might be
indicative of a memory process, which is here reflected by the still
very simple process of storing an input trace and this way forming
a cell assembly. So far it has proven to be difficult to achieve stable
representations of spatial-temporal patterns in time-continuous
systems (c.f. Morrison et al., 2007 for STDP). In this study we ana-
lyzed mainly the spatial dispersion of such an input representation
and how this dispersion is influenced by different connectivities.
After stabilization removal of the input leads to slow forgetting,
which however can be reversed quite fast by presenting the input
again (see Figure 3). This process of forgetting and re-learning and,
furthermore, the temporal aspect of the input representations has
to be analyzed in future studies. However, the analysis here suggests
that the combination of synaptic plasticity and synaptic scaling
might be a good candidate to allow the formation of short term
memories (Dudai, 2004) also in larger networks. The aspect of
stable learning in attractor neural networks remains largely unre-
solved (Mongillo et al., 2008; Cutsuridis and Wennekers, 2009;
Lansner, 2009) and we would hope that the results presented here
will lead onward helping to solve this problem and leading to a bet-
ter understanding of (short term) memory formation processes.
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APPENDIX
NULLCLINE OF WEIGHT DEVELOPMENT OVER STAGES IN FEED-FORWARD NETWORKS:
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which simplifies to the following nullcline for weights ω(m)(·),(·) :
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LATERAL EXCITATION IN FEED-FORWARD NETWORKS
As defined in the main text, the activity of neuron i(m) is

v(m)i =
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j=1
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leading to the stability assumption
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Thus, the differential equation of the weight becomes:

ω̇
(m)
(·),(·) = µ


(

v(m−1)
(·)

)2

1− R ωR
ω
(m)
(·),(·) + κ

−1

(
vT −

v(m−1)
(·)

1− R ωR
ω
(m)
(·),(·)

)
·

(
ω
(m)
(·),(·)

)2

 !
= 0.

The resulting positive stable weight is
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with associated activity
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However, to guarantee bounded development for activities (vk=m−1
(·) ≥ vk=m

(·) ) of the network two constraints, comparable to the pure
feed-forward network (equations 10 and 11), have to be maintained
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Furthermore, the ω-nullcline is:
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FEED-FORWARD INHIBITION IN FEED-FORWARD NETWORK
Here, the activity of the output neuron is the difference between both weights multiplied with the activity of the source neuron u:

v = u ωE − u ωI

= u (ωE − ωI ) .
(A7)

As mentioned in the main text, only the excitatory weight has a non-zero derivative
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This equation has only a positive stable fixed point at
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The term ωI
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is approximately zero as ωI is defined to be smaller than ωE:
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This leads to an output activity of
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Also for this system there exists constraints defining if the output v is smaller than the input u:
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Additionally, nullclines can be calculated for weights if the system consists of feed-forward inhibition motifs linked together in a
feed-forward structure:
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Feedback inhibition
The output activity v of the neuron is

v = u ωE − v ωI

⇔ v =
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(A13)

and, thus, the dynamics of the excitatory weight is
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The positive stable fixed point of this equation is
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and the related output activity of this structure is
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The constraints of this system for having a smaller output v than input u are

u ≤
(1+ ωI )

2

2 κ
+

√
(1+ ωI )

2

κ

(
(1+ ωI )

2

4 κ
− vT

)
≡ vmax

fbi (A17)

u ≥
(1+ ωI )

2

2 κ
−

√
(1+ ωI )

2

κ

(
(1+ ωI )

2

4 κ
− vT

)
≡ vmin

fbi . (A18)

Additionally, for the weight the nullcline is
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CALCULATIONS FOR BI-DIRECTIONAL AND N-RING RECURRENCES
A bi-directional system can be written as
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)
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For the stability conditions, v2 is inserted into v1 and v1 into v2 resulting in
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This leads to the following weight equations
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Although these equations can be solved, the solutions are complex expressions for ω1,2 and ω2,1 which are hard to interpret.
However, the activity v1 of neuron 1 is larger than in a feed-forward network with the same input. On the other hand, given para-
meters µ= 0.01, γ = 0.005, == 0.065, and vT= 0.01 the activity v1= 0.0746>= is still smaller than for the self-connected neuron
(v = 0.1503). The activity of neuron 2 for these parameters is also larger than the activity of the second neuron in the feed-forward
network (v2= 0.0343> 0.0290= vk

=1). This can also be shown by an approximation of ω̇2,1 = 0, thereby neglecting all terms of order
θ(ω3

i ) and higher as they are small (ωi < 1) anyhow:
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The only stable weight from this approximation that is positive is equal to the feed-forward weight ωff (equation 1) with input =
and N = 1 (equation 8). Thus, the activity v2 of neuron 2 is approximately

v2 =
ω2,1 · =

1− ω1,2 · ω2,1
≈

ωff
· =

1− ω1,2 · ω
ff
=

vk=1

1− ω1,2 · ω
ff
> vk=1 , as ω1,2, ωff < 1. (A22)

Furthermore, the activity of the first neuron receiving external input is approximately

v1 = vbi =
=

1− ω1,2 ω2,1
≈

1

1− ω1,2 ω
ff

. (A23)

Therefore, bi-directional connections increase the activity compared to feed-forward networks. As stated in the main text, this fact does
not depend on the position of the bi-directional structure within the feed-forward network. The second neuron can be part of the
feed-forward network, but it can also be outside of the layered structure.

For an N -ring with N neurons the stability conditions for the activities are

vN
1 =

=

1− ω1,N 5
N
i=2ωi,i−1

vN
2 =

ω2,1 =

1− ω1,N 5
N
i=2ωi,i−1

...

vN
N =

5N
i=2ωi,i−1 =

1− ω1,N 5
N
i=2ωi,i−1

.

The weight ω2,1 can be again approximated by ωff if weight-dependencies of order three or even higher are neglected. Thus, the
activity of neuron 1 is approximately

vN
1 = vnr ≈

=

1− ω1,N 5
N
i=3ωi,i−1 · ω

ff
. (A24)

As all weights should be smaller than one, vnr is larger than the activity in feed-forward networks. This relation holds independent of
the length (number of neurons N ) of the ring structure.
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