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Many cortical networks contain recurrent architectures that transform input patterns
before storing them in short-term memory (STM). Theorems in the 1970’s showed
how feedback signal functions in rate-based recurrent on-center off-surround networks
control this process. A sigmoid signal function induces a quenching threshold below
which inputs are suppressed as noise and above which they are contrast-enhanced
before pattern storage. This article describes how changes in feedback signaling,
neuromodulation, and recurrent connectivity may alter pattern processing in recurrent
on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium,
and slow after-hyperpolarization (AHP) currents control sigmoid signal threshold and slope.
Modulation of AHP currents by acetylcholine (ACh) can change sigmoid shape and, with
it, network dynamics. For example, decreasing signal function threshold and increasing
slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the
number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell
activities to cluster. These results clarify how cholinergic modulation by the basal forebrain
may alter the vigilance of category learning circuits, and thus their sensitivity to predictive
mismatches, thereby controlling whether learned categories code concrete or abstract
features, as predicted by Adaptive Resonance Theory. The analysis includes global,
distance-dependent, and interneuron-mediated circuits. With an appropriate degree of
recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced
pattern for 800 ms or longer after stimuli offset, then resolve to no stored pattern, or
to winner-take-all (WTA) stored patterns with one or multiple winners. Strengthening
inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to
stability, while strengthening excitation causes more winners when the network stabilizes.
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INTRODUCTION
Local cortical circuits have recently attracted growing attention
(Song et al., 2005; Yoshimura et al., 2005; Perin et al., 2011)
especially now that new experimental techniques can assess these
circuits in functionally revealing ways, such as mapping fine-scale
anatomical connectivity in parallel with behavioral responsive-
ness (Ohki et al., 2005; Bock et al., 2011). The ability of these
local circuits to retain information about input signals after their
input sources become silent is the foundation of short-term mem-
ory (STM; Grossberg, 1973, 1988; McCormick et al., 2003). STM
is important in many aspects of perception, cognition, emotion,
and action. Correspondingly, many cortical networks exhibit a
recurrent anatomy that can support this capability (e.g., Levitt
et al., 1994; Bosking et al., 1997; Schmidt et al., 1997; Chisum
et al., 2003; Song et al., 2005; Morishima and Kawaguchi, 2006).
This article proposes how the transformation of input patterns
and their storage in STM in spiking neural networks is influenced
by changes in their recurrent anatomy, feedback signal functions,

and modulation by after-hyperpolarization (AHP) currents and
acetylcholine (ACh).

Rate-based recurrent neural networks enable a diverse set
of nonlinear dynamics useful for perceptual, cognitive, emo-
tional, and motor functions, including STM storage (Grossberg,
1973, 1978), cortical dynamics of form and motion perception
(Raizada and Grossberg, 2001; Berzhanskaya et al., 2007), speech
perception and word recognition (Grossberg and Myers, 2000;
Grossberg and Kazerounian, 2011), reinforcement learning and
motivation (Phillips and LeDoux, 1992; Grossberg and Seidman,
2006; Dranias et al., 2008), syntactic structure in linguistic pro-
cessing (Elman, 1991), cognitive working memory (Grossberg
and Pearson, 2008; Silver et al., 2011), and incremental learn-
ing of recognition categories (Carpenter and Grossberg, 1987;
Grossberg and Versace, 2008). In these networks, the cells typ-
ically obey membrane, or shunting, equations (Hodgkin and
Huxley, 1952; Grossberg, 1968), the on-center of self-excitatory
feedback is narrow, and the off-surround of lateral inhibition
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reaches a broader expanse of cells. Such networks are thus called
recurrent shunting on-center off-surround networks, or recurrent
competitive fields. See Figure 1.

Recurrent excitation and inhibition need to be approximately
balanced to prevent too much or too little network activity. For
example, in the earliest theorems about STM storage in shunting
on-center off-surround networks (Grossberg, 1973), recurrent
excitatory and inhibitory signals were of equal strength and the
effects of different feedback signal functions on pattern transfor-
mation before STM storage were studied. These theorems showed
that a linear signal function could store an arbitrary input pat-
tern, but only at the price of amplifying noise in the network.
Later modeling studies clarified how laminar circuits can develop
to realize a balance between excitation and inhibition in both
the deep and superficial layers of visual cortex (Grossberg and
Williamson, 2001). The balance of excitation and inhibition has

often been simulated in models that do not incorporate key neural
constraints (e.g., Lau and Bi, 2005). For example, linear signal
functions (Xie et al., 2002; Yi et al., 2003) and recurrent networks
without shunting dynamics (Wersing et al., 2001) are common,
despite their disagreement with experimental findings (Hodgkin
and Huxley, 1952; Freeman, 1979; Fellous et al., 2003).

Wang and colleagues have examined the role of inhibition and
excitation in STM in biologically detailed recurrent networks of
prefrontal cortex (Camperi and Wang, 1998; Miller et al., 2003).
Their models utilize cells that exhibit strong bistability; that is,
the cells remain either an “up” state, in which activity is main-
tained without input, or a “down” state, in which activity rapidly
decays away. Grossberg (1973) (see also the reviews in Grossberg,
1980, 1988) showed how a cubic or, more generally, any faster-
than-linear signal function could lead to winner-take-all (WTA)
STM dynamics in a recurrent shunting on-center off-surround

FIGURE 1 | Recurrent on-center off-surround shunting networks and

their modulation. Four recurrent circuits are depicted: (A) a rate-based
recurrent circuit analyzed in Grossberg, 1973 (B) a spiking recurrent circuit in
which principle pyramidal cells connect directly to each other (C) a spiking
recurrent circuit in which inhibition is mediated indirectly by interneurons
(D) a spiking recurrent circuit in which connection weights are
distance-dependent, specifically scaled by a Gaussian of distance.

(E,F) Two diagrams depict how all four circuits show qualitatively similar
dependence on (E) the strength of recurrent connectivity and (F) the
shape of cellular transfer functions. The diagrams are conceptual synopses
of the network dynamics across the various circuit types. Light gray
signifies gradual dynamics, medium gray indicates fast dynamics
and small stored patterns, dark gray indicates fast dynamics and large
stored patterns.
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network. Such faster-than-linear dynamics enable cells to resist
noise when driven into an “up” state (Camperi and Wang, 1998).
However, this feature comes at the cost of losing the analog
sensitivity of each cell to input strength.

This shortcoming has been overcome at the network level by
positing a large number of cells (e.g., 12,000) whose collective
activities implement a binary code with a range of sensitivities
or signal function thresholds across the cell population (Miller
et al., 2003). In contrast, Grossberg (1973) proved how rate-
based recurrent shunting on-center off-surround networks with a
sigmoid feedback signal function could transform and store par-
tially contrast-enhanced patterns in STM. Such a stored pattern
preserves analog sensitivity to the input pattern while also sup-
pressing noise. The current study with spiking neurons builds
upon this insight and studies how STM can occur with a small
collection of cells (e.g., 40) in a recurrent shunting on-center
off-surround network, with a sigmoid signal function, whose
individual cells retain their analog sensitivity to input strength.

BALANCED EXCITATION AND INHIBITION
This article first manipulates the balance of inhibitory and exci-
tatory signals in four anatomical variants of recurrent shunting
on-center off-surround networks, three of which are spiking cir-
cuits (fast narrow excitation and global inhibition, fast narrow
excitation and global interneuron-mediated inhibition, distance-
dependent excitation and inhibition; Figures 1B–D). This anal-
ysis addresses how changing parameters affects the speed with
which network dynamics converges to equilibrium. With appro-
priately chosen excitation and inhibition, spiking networks main-
tain a partially contrast-enhanced pattern for 800 ms or longer
after stimuli termination, then resolve to no stored pattern, or
to WTA stored patterns with one or multiple winners. Mapping
the stability of network dynamics parametrically as a function
of excitation and inhibition reveals several regions of network
behavior (Figure 1E). Strengthening inhibition prolongs a par-
tially contrast-enhanced pattern by slowing the transition to sta-
bility, while strengthening excitation causes more winners when
the network stabilizes. With excitation and inhibition chosen to
be balanced in the recurrent circuits, we examine other important
factors in the network dynamics.

INPUT TRANSFORMATION BY DIFFERENT FEEDBACK SIGNALS
Within recurrent networks, the choice of feedback signal has
a major impact on network transformations of input patterns
before the patterns are stored in STM. Beginning in Grossberg
(1973), theorems about rate-based models have provided insights
into how the choice of feedback signal can alter how input pat-
terns are stored (e.g., Ellias and Grossberg, 1975; Grossberg and
Levine, 1975; Wersing et al., 2001). In particular, global theorems
in Grossberg (1973) showed how different signal functions in
recurrent shunting networks with narrow on-centers and global
off-surrounds [see Figure 1A and Equations (1), (3), (4)] trans-
form input patterns before they are stored in STM as sustained
patterns of neural activity as the network settles to equilibrium.

As shown in Figure 2A, if the signal function is linear (e.g.,
f (x) = Ax), then the relative activities of the initial input pat-
tern are preserved. If the signal function is slower-than-linear

(e.g., f (x) = Ax (B − x)−1), then all differences in the input are
uniformized. In both of these cases, noise is amplified. If a sig-
nal function is faster-than-linear (e.g., f (x) = Ax2), then noise
is suppressed. In fact, noise is suppressed so vigorously, and the
input pattern is so vigorously contrast-enhanced, that only the
cell (population) with the largest input survives the competition,
and its activity is stored in STM. This is thus a WTA network.

In order to enable cells with activities less than the maximum
to be stored in STM, a sigmoid, or S-shaped, signal function
suffices, because it is a hybrid of the other signal functions.
Any signal function needs to be faster-than-linear at low activity
levels in order to suppress noise, and any biologically plausi-
ble signal function needs to be bounded at high activity values.
A sigmoid signal function is the simplest one that combines
both constraints. At high activity values, it is slower-than-linear.
Because it is faster-than-linear at low activities, it is approxi-
mately linear at intermediate activities, by continuity. Thus, a
sigmoid signal function can begin to contrast-enhance an input
pattern as the shunting on-center off-surround network interac-
tions begin to normalize cell activities and drive them into the
approximately linear range, where they can be stored as a par-
tially contrast-enhanced pattern; namely, an activity pattern in
which a subset of the most active cells are contrast-enhanced and
stored in STM, while activities of less active cells are completely
suppressed.

QUENCHING THRESHOLD AND HILL FUNCTION
The net effect on network dynamics is to define a quench-
ing threshold, or initial activity level below which activities are
treated like noise and suppressed, and above which they are
contrast-enhanced and stored in STM. The quenching threshold
can be tuned, thus leading to a tunable filter: in the limit of a
high quenching threshold, it can perform like a WTA network. If
in response to an unexpected event the quenching threshold goes
down, then the network can store a distributed pattern of input
features, until hypothesis testing can select the features that can
better predict future outcomes (discussed in section “Discussion:
The Role of ACh in STM Storage and Vigilance Control”).

The adaptability of this quenching threshold is crucial. For
example, WTA dynamics might be preferable in a situation in
which a fast decision must be made or an unambiguous stim-
ulus must be rapidly perceived. On the other hand, longer
maintenance of a partially contrast-enhanced pattern might facil-
itate comparison between possible representations, or enable
distributed recognition categories to be learned (cf. Carpenter,
1997). As described in the rate-based analysis (Grossberg, 1973),
the quenching threshold can be determined by considering the
hill function; that is, g(x) = f (x)/x, so-called because, given a sig-
moidal signal function, this function takes the shape of a hill. The
peak of a hill function, where it is approximately flat, denotes the
region of approximate linearity of the signal function that tends
to preserve a partially contrast-enhanced activity pattern. A wider
plateau of the hill function leads to slower change in the activity
pattern when network activities are in that range. The quenching
threshold and the hill function are thus key factors in the rate of
partial pattern contrast enhancement and in the form of patterns
retained in STM.
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FIGURE 2 | Dynamics of signal functions control pattern in a recurrent

architecture. (A) How the choice of four different non-linear signal functions
determines network storage behavior including whether noise is amplified or
suppressed (Grossberg, 1973). The sigmoidal case is noteworthy, because it
features a quenching threshold which enables noise suppression and partially
contrast-enhanced activity patterns to be stored in STM. Modulation of the
quenching threshold enables the number of stored items to be varied.

(B) To analyze the resultant network activity patterns, cells are labeled as
winners or survivors, based on whether their activity relative to the network
overcomes a winning threshold (WT) or a surviving threshold (ST). (C) Once
the network stabilizes after stimulation has ceased, the network pattern can
be classified as no pattern storage, partial contrast enhancement, or
winner-take-all. A venn diagram of the cell activities and an example (Ex) of a
stored pattern are shown for each case.

AFTER-HYPERPOLARIZATION CURRENTS DETERMINE SIGMOID
SIGNAL SHAPE
What processes control the shape of sigmoid signal functions
within biophysically detailed models of spiking neurons and con-
sequently the hill function and quenching threshold? In networks
of spiking neurons, transfer functions, defined as the relationship
between input and output spiking rates, are postulated to act anal-
ogously to the signal functions that are used in rate-based models.
Physiological observations confirm that neurons often exhibit a
sigmoidal relationship between input and output (Freeman, 1979;
Fellous et al., 2003). For a sigmoidal curve, apart from rescal-
ing by boosting excitability, there are two elementary degrees

of freedom: threshold translation and slope change. Translation
of the sigmoidal threshold occurs when the region of highest
sensitivity for the function shifts along the input domain, and
mathematically equates to movement of its point of inflection.
Slope varies when the curve either steepens or becomes more
gradual, and mathematically relates to the magnitude of the
derivative around the point of inflection. Because biological cell
activation is limited to a restricted operational domain, thresh-
old translation and slope alterations manipulate the curvature of
the signal function. What factors shape the two sigmoidal degrees
of freedom during development, or modulate them dynamically
during on-going behaviors?
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AHP currents, defined as hyperpolarizing currents that occur
following action potentials, are prime candidates for adap-
tive control of cell transfer functions, because of their depen-
dence on recent activity and their susceptibility to external
modulation. These AHP currents are predominantly carried
by calcium-dependent potassium channels (Hotson and Prince,
1980; Lancaster and Adams, 1986), but also partly by calcium-
independent potassium currents (Lorenzon and Foehring, 1992,
1995). Calcium (Ca2+)-dependence implies spike dependence,
because calcium concentrations fluctuate via voltage-dependent
channels that open as a result of depolarization during action
potentials. Studies of these currents in layer 5 Betz cells of cat sen-
sorimotor cortex (Schwindt et al., 1988b) and pyramidal cells in
layers 3–6 of human neocortex (Lorenzon and Foehring, 1992)
have identified three distinct AHP currents: a fast, medium, and
slow current. Henceforth, we refer to these currents as fAHP,
mAHP and sAHP, respectively. Other reports confirm similar
mAHP and sAHP currents in a variety of rat slices (Storm, 1987,
1989; Lee et al., 2005). The difference in the time course of these
AHP currents has not been completely explained, but recent evi-
dence suggests that proximity to calcium channels may be the
dominant factor rather than, for example, the time constant of
calcium binding to the channels themselves (Lima and Marrion,
2007).

Recent work (Palma et al., 2011) demonstrates how the three
AHP conductances can together control the shape of a sigmoidal
transfer function by independently translating its threshold and
changing its slope. The Palma et al. (2011) analysis revealed sim-
ple rules that govern conductance changes in the three AHP
currents as they combine to generate desired changes in signaling.
It was shown that, for spiking neurons, a leftward threshold shift
occurs when the sAHP and mAHP currents decrease, while the
fAHP current increases. Likewise, it was shown that the slope of
the transfer function becomes steeper when the sAHP and fAHP
currents decrease, while the mAHP current increases. The analysis
defined threshold and slope manipulations as operations, which
occur in the parametric space of cell membrane conductances,
and can be mapped onto the operational space of cell signaling.

Given that AHP currents can control the shape of trans-
fer functions, how do changes in slope and threshold impact
network dynamics when the cells are spiking neurons in recur-
rent shunting on-center off-surround networks? By extending the
pyramidal cell model and techniques from our previous work, we
demonstrate here how changes in the shape of sigmoidal trans-
fer functions by AHP conductances can control the maintenance
of a partially contrast-enhanced pattern and the number of cells
remaining active in each of the four anatomies in Figure 1 stabi-
lizes. Mapping the stability of network dynamics parametrically as
a function of the signal threshold and slope reveals several regions
of network behavior (sketched in Figure 1F). To better under-
stand these effects in cortical spiking circuits, we compare them
with rate-based models of network dynamics.

AHP MODULATION BY ACETYLCHOLINE
Numerous studies have shown that AHP currents are modulated
by the level of ACh and other neurotransmitters (McCormick
and Williamson, 1989; Vogalis et al., 2003 for review). ACh is

believed to increase gain on sensory input in cortical cells both
by reducing AHP currents as well as strengthening sodium cur-
rents to boost cell excitability (Sarter et al., 2005; Giocomo and
Hasselmo, 2007). This description and associated computational
models portray ACh as a promoter of sensory processing by
decrease in a single AHP current either by lumping distinct AHP
currents together or neglecting two of the three currents (Barkai
and Hasselmo, 1994; Cox et al., 1997; Wang et al., 2003; Soto et al.,
2006; Grossberg and Versace, 2008). However, these models have
not clarified the functional roles of the multiple timescales on
which AHP currents have been observed and have not evaluated
the effect of changes in AHP on STM.

How does ACh biophysically coordinate the control of AHP
currents at all three different timescales? Palma et al. (2011) pro-
posed that ACh modulates the three AHP currents, and thus
sigmoid signal shape, by predominantly shifting the threshold. By
including a combination of three AHP currents, each uniquely
modulated by ACh, the model clarified how ACh may simulta-
neously cause a steepening in the sigmoid slope and a lowering
of the sigmoid threshold. Here we show how, when this modu-
latory effect on individual signal functions occurs throughout a
recurrent network, it can lengthen the persistence of a partially
contrast-enhanced pattern, increase the number of winners, or, if
connectivity is distance-dependent, cause cell activities to cluster.

How can such ACh modulation influence behavior through
its action on entire brain systems? Adaptive Resonance Theory,
or ART (Grossberg, 1980; Carpenter and Grossberg, 1987, 1991;
Carpenter, 1997) proposes how cortical recognition categories
may be learned through interactions of an attentional system
with an orienting system. Bottom-up adaptive filters and top-
down attentive prototypes interact within the attentional system
to match input feature patterns with active top-down attentive
prototypes. A sufficiently large mismatch may cause reset of cur-
rently active recognition categories and thereby trigger search for
a better matching category that is either within the repertoire of
already learned categories, or by initiating learning of a new cate-
gory. If the match between bottom-up and top-down information
is good enough, then feedback between bottom-up and top-down
signals triggers a resonant state capable of driving fast learning of
the attended data. Hence the name Adaptive Resonance Theory.

The criterion of what constitutes a good enough match is con-
trolled by a gain, called vigilance that is computed within the
orienting system (Carpenter and Grossberg, 1987). Vigilance may
be increased during supervised learning by a predictive mismatch,
thereby triggering reset of categories that were acceptable under a
lower setting of vigilance, and search for a better matching cate-
gory. Grossberg and Versace (2008) proposed how the release of
ACh could increase vigilance and thereby promote search for, and
learning of, more specific, or concrete, recognition categories in
response to mismatch-inducing environmental feedback. In this
conception, mismatch-mediated activation of the nucleus basalis
of Meynert results in release of ACh, which causes a reduction of
an AHP current in layer 5 pyramidal cells and thus an increase of
cell excitability. In a similar manner, vigilance might increase in
response to a release of ACh in response to stress factors such as
shock (Zhang et al., 2004), even when bottom-up and top-down
signals have a good match based on similarity alone.

Frontiers in Computational Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 42 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Palma et al. Persistent spiking in cortical networks

Other models have considered alternative effects of ACh
modulation. Soto et al. (2006) have examined pattern trans-
formation and its modulation by ACh in a model of primary
auditory cortex (2006). They do not, however, evaluate pat-
tern storage in STM. Their model of primary auditory cortex
does consider the cholinergic modulation of sodium currents
(Cantrell and Catterall, 2001) and of synaptic strength that
effectively changes network connectivity (Gil et al., 1999; Hsieh
et al., 2000), but includes only a single AHP current. Wang
et al. (2003) have included a Na+-dependent K+ current and
a Ca2+-dependent K+ current into their model of cells in pri-
mary visual cortex to explain visual adaptation on two different
timescales.

Hasselmo et al. (1995) developed a model of how ACh may
affect STM and learning in the rat hippocampus. In their model,
ACh diminished a single AHP current and, thereby, enabled net-
work activities to exhibit STM alternatives that are not possible
at lower ACh levels. The cells in their model were not, however,
spiking neurons, and generated cell bistability, as in the model of
Miller et al. (2003). The current model uses a more detailed anal-
ysis of three AHP currents, and sigmoid signal functions instead
of threshold linear functions.

“Materials and Methods” describes the four recurrent circuits,
differential equations for the compartmental neuron model for
the spiking circuits, the physiological basis of the simulation
parameters, the AHP modeling with spike-dependence, synap-
tic modeling, estimation of cholinergic behavioral intensities,
and general analysis techniques. “Results” describes simulation
results, and provides a comparison between the circuits for exci-
tatory and inhibitory modulation, the network dynamics for
threshold translation and slope change, an evaluation of the
effect of ACh on network behavior, and finally evidence that the
parameter regimes of network dynamics are not strongly depen-
dent on the amplitude of the presented stimuli. “Discussion: The
Role of ACh in STM Storage and Vigilance Control” discusses
the significance of the work within the context of learning and
behavior.

MATERIALS AND METHODS
NETWORK CIRCUITRY
The networks considered here obey recurrent on-center off-
surround shunting dynamics that are known to be widespread
in many brain systems. The simulations compare a rate-based
network with spiking networks. The recurrent excitatory ker-
nel activates either a single cell, or cell population, or a narrow
distance-dependent Gaussianly distributed set of cells, while the
inhibitory kernel inhibits either the entire network, or a broad
Gaussianly distributed set of cells.

RATE-BASED CIRCUIT
The rate-based model uses a variant of the recurrent shunting on-
center off-surround network that was first described in Grossberg,
1973 and whose more general variants were soon after studied
by Grossberg and colleagues (e.g., Ellias and Grossberg, 1975;
Grossberg and Levine, 1975, 1976; Grossberg, 1988). We use the
first equation from Grossberg (1973) with parameters τ and D
added to scale the rate of the network dynamics and the strength

of the excitatory recurrence, respectively:

τ
dxi

dt
= −Axi + (B − xi)Df (xi) − Cxi

∑
k�=i

f (xk) + Ii (1)

The sigmoid signal function is:

f (x) = 1

1 + e−8S(x−T)
, (2)

where S and T corresponds to slope and threshold, respectively.
For a default state, T = 0.35, and S = 1.4, since this makes the
signal function similar in shape to the transfer functions for the
spiking cells. The variables in this model are mostly dimension-
less, but τ allows the model to be calibrated in milliseconds to
facilitate comparison with the spiking circuits.

SPIKING CIRCUITS
The spiking model neurons are composed of three cylindrical
compartments: somatic, proximal dendritic, and distal dendritic.
Compartment membrane equations are governed by Hodgkin–
Huxley, or conductance-based, dynamics (Hodgkin and Huxley,
1952). For pyramidal neurons, the somatic membrane poten-
tial, VS, fluctuates via spike-generating sodium and potassium
currents, leak current, three AHP currents, and a dendritic
inter-compartmental current, with the corresponding terms in
Equation (3):

CM
dVs

dt
= INa + IK + IL + IfAHP + ImAHP

+ IsAHP + dsga

4l2s
(Vp − Vs) (3)

Inhibitory interneurons obey a similar equation without AHP
currents:

CM
dVs

dt
= INa + IK + IL + dsga

4l2s
(Vp − Vs) (4)

In both Equations (3) and (4), the first three currents use the
Hodgkin–Huxley form (Hodgkin and Huxley 1952):

INa = gNam3
NahNa(ENa − V), (5)

IK = gKn4
K(EK − V), (6)

and

IL = gL(EL − V), (7)

with “shunting” terms (E − V) in each current. Table 1 lists the
complete names, units, and values for the parameters of both the
pyramidal neurons and the inhibitory interneurons. The somatic
sodium and potassium equilibrium potentials and the axial con-
ductance are similar to parameters for layer 5 cortical cells from
Grossberg and Versace (2008), but are adjusted such that the cells
do not fire at rest, yet are still responsive to stimulation. The den-
dritic parameters used, such as a high capacitance, support a form
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Table 1 | Neuron parameters.

Compartment Parameter name Variable Pyramidal cell Previous model∗ Inhibitory cell

Somatic Membrane capacitance CM 1 μF/cm² 1 μF/cm² 1 μF/cm²

Sodium conductance gNa 45 mS/cm2 45 mS/cm2 45 mS/cm2

Sodium equilibrium potential ENa 50 mV 50 mV 50 mV

Potassium conductance gK 16 mS/cm2 16 mS/cm2 16 mS/cm2

Potassium equilibrium potential EK −100 mV −100 mV −100 mV

Leak conductance gL,s 0.1 mS/cm2 0.1 mS/cm2 0.1 mS/cm2

Leak equilibrium potential EL −65 mV −65 mV −65 mV

Diameter ds 0.1 mm 0.1 mm 0.1 mm

Length ls 0.15 mm 0.15 mm 0.15 mm

Axial conductance gA 0.28 pS 0.28 pS 0.28 pS

Proximal Dendrite Membrane capacitance CM 3 μF/cm² 1 μF/cm² 2 μF/cm²

Leak conductance gL,p 0.01 mS/cm2 0.03 mS/cm2 0.03 mS/cm2

Leak equilibrium potential EL −65 mV −65 mV −65 mV

Diameter dP 0.06 mm 0.06 mm 0.06 mm

Length Lp 0.4 mm 0.4 mm 0.4 mm

Axial conductance gA 0.28 pS 0.28 pS 0.28 pS

Distal Dendrite Membrane capacitance CM 3 μF/cm² 1 μF/cm² 2 μF/cm²

Leak conductance gL,d 0.01 mS/cm2 0.03 mS/cm2 0.03 mS/cm2

Leak equilibrium potential EL −75 mV −65 mV −65 mV

Diameter dd 0.06 mm 0.06 mm 0.06 mm

Length ld 0.5 mm 0.5 mm 0.5 mm

Axial conductance gA 0.28 pS 0.28 pS 0.28 pS

∗From (Palma et al., 2011).

of intracellular memory, or persistence, even without recurrence
by maintaining recent input signal for about 20 ms. These param-
eters in the spiking neurons correspond to the decay parameter,
A in Equation (1), in rate-based networks. The dendritic capac-
itance is higher for pyramidal cells than interneurons to reflect
their size and this dendritic memory. In contrast, interneurons
spike faster and with less memory, because they have lower capac-
itance and no AHP currents. Physiological studies have demon-
strated that AHP currents in cortical inhibitory cells are negligible
(McCormick et al., 1985; Connors and Gutnick, 1990).

In pyramidal cells, the dynamics of AHP currents are a func-
tion of generated spike history, HS, and individual rise and fall
times, τr and τf , and are described further in section “Modeling
Spike-based After-hyperpolarization Currents”. Activation and
inactivation functions, including mNa, hNa and nK in Equations
(5) and (6), follow the conventional form of forward and back-
ward rates, α and β, for voltage-dependent conductances com-
monly used for spiking models (Hodgkin and Huxley, 1952;
Traub et al., 1991; Grossberg and Versace, 2008) and each change
as x in the equation:

dx

dt
= αx(1 − x) − βx, (8)

where specific expressions for α and β are:

αm = 0.32(13 − V)

e0.25(13−V) − 1
, (9)

βm = −0.28(40 − V)

e−0.2(40−V) − 1
, (10)

αh = 0.128e
(17−V)

18 , (11)

βh = 4

e0.2(40−V) + 1
, (12)

αn = 0.032(15 − V)

e0.2(15−V) − 1
, (13)

and
βn = 0.5e

(10−V)
40 (14)

Dendritic compartments are passive with leak currents, and
are divided into proximal and distal compartments. Inputs
and recurrent excitatory connections are manifested via an
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) synaptic current into the distal dendrite, while
recurrent inhibitory connections are manifested via an gamma-
aminobutyric acid (GABA) synaptic current into the proximal
dendrite. Synaptic connections are described further in “Spiking
Stimulation and Synaptic Models”. Proximal and distal dendritic
membrane potentials, Vp and Vd, of pyramidal cells follow
Equations (15) and (16), respectively:

CM
dVp

dt
= IL + dpga

4l2p
(Vs − Vp)

+ dpga

4l2p
(Vd − Vp) + IGABA (15)

Frontiers in Computational Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 42 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Palma et al. Persistent spiking in cortical networks

and

CM
dVd

dt
= IL + ddga

4l2d
(Vp − Vd)

+ IAMPA−IN + IAMPA−RE, (16)

where parameters are listed as pyramidal cells in Table 1.
Inhibitory interneurons follow similar equations to (15) and (16)
but input arrives distally from excitatory neurons alone:

CM
dVp

dt
= IL + dpga

4l2p
(Vs − Vp) + dpga

4l2p
(Vd − Vp) (17)

and

CM
dVd

dt
= IL + ddga

4l2d
(Vp − Vd) + IAMPA−EI, (18)

where parameters are listed as interneuron cells in Table 1. For
simplicity, we do not use inhibitory interneurons in the circuit
with global connectivity and distance-dependent networks.

MODELING SPIKE-DEPENDENT SIGNALS
An individual excitatory postsynaptic potential (EPSP) results
from a time-varying conductance wave after each arriving presy-
naptic (or input) spike, while an AHP current results from a
time-varying conductance wave after each postsynaptic (or out-
put) spike. Given a single spike occurring at time ts, a double
exponential function for a conductance gE describes both its onset
and decay:

gE(t, τr, τf , ts) = c(e−(t−ts)/τf − e−(t−ts)/τr ), (19)

where τr and τf are rise and fall time constants, respectively
(Destexhe et al., 1994a). For a single spike, the conductance peaks
at time tpeak:

tpeak = τrτf

τf − τf
ln

(
τr

τf

)
, (20)

with an amplitude of 1, ensured by the normalizing constant c:

c = 1(
τr
τf

)τr/(τf −τr) −
(

τr
τf

)τf /(τf −τr)
. (21)

A spike train, whether of input or output signals, defines a history,
or list, H, of spike times:

H(t) = {t1, ...tN}. (22)

Output spikes, Hs, are determined by when the presynaptic
somatic potential, Vs, crosses a detection threshold, Vth = 10 mV,
with a negative derivative.

A spike history poses the problem of conductance satura-
tion during temporal summation. Total conductance could be
unbounded, accumulating at the same rate regardless of how

many spikes occur over an interval. This approach is equiva-
lent to summing up independently double exponentials for each
spike represented by Equation (19), and shown to be efficiently
computed by a discrete algorithm that leverages z-transform
mathematics (Köhn and Wörgötter, 1998).

However, as demonstrated in Palma et al. (2011), a more realis-
tic approximation uses a mass action law, similar to other kinetic
models (Destexhe et al., 1994a,b), to introduce an intermediate
variable. This is expressed by two differential equations:

dR

dt
= (1 − R)I − R

τr
, (23)

and

dgSD

dt
=

(
τf + τr

τf

) [
2

τr
(1 − gSD)R − gSD

τf

]
(24)

For a synaptic signal, the variable R most closely portrays the
concentration of transmitter in the synaptic cleft, while the con-
ductance gSD represents postsynaptic receptor activation. The
function I denotes the input signal, a set of square waves from
the spike train, H, which equals 1/τr , if the time since the last
spike arrival, t − tn, is less than τr ms, and equals 0 otherwise.
The passive decay rate parameters, 1/τr and 1/τf , can be thought
of as the diffusion rate of the neurotransmitter and as the aver-
age dissociation rate of the neurotransmitter from the receptors,
respectively. The net conductance change following a single presy-
naptic spike resembles the double exponential wave in Equation
(19) [as shown in Figure 2 of Palma et al. (2011)]. This formal-
ism implies that the conductance does not saturate after a single
spike, but does approach a saturation level given a prolonged high
firing rate or a rapid burst of spikes. For this reason, it is preferred
to other synaptic models and is called the saturating differentials
(SD) spike-dependent signal.

MODELING SPIKE-BASED AFTER-HYPERPOLARIZATION
CURRENTS
Since fluctuations in somatic calcium concentrations strongly
match the timing of action potentials, and AHP currents are
predominantly carried by calcium-dependent potassium chan-
nels (Lancaster and Adams, 1986; Prakriya et al., 1996; Abel
et al., 2004; Lee et al., 2005), these currents are spike-dependent.
Therefore, individual AHP currents are modeled by a wave
of increased conductance following each spike and follow the
equations:

IfAHP = gfAHPgSD(t, τr,fAHP, τf ,fAHP, Hs)

(EfAHP − VS), (25)

ImAHP = gmAHPgSD(t, τr,mAHP, τf ,mAHP, Hs)

(EmAHP − VS), (26)

and

IsAHP = gsAHPgSD(t, τr,sAHP, τf ,sAHP, Hs)(EsAHP − VS). (27)
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Since each AHP current within an individual cell has a bounded
conductance based physiologically on channel density, this bound
must be enforced during summation across the spiking history.
Therefore, the spike-dependent signals in Equations (25)–(27),
take the saturating differentials form of Equations (23) and (24)
for their time course.

The parameters for the model were chosen to match measure-
ments observed in mammalian neocortex by Lee et al. (2005) and
Storm (1987); see Table 2. These basal levels were determined
by measuring the amplitude difference in somatic potential, Vs,
between simulation of individual spikes with and without each
AHP current and then changing conductances until amplitudes
approximately matched measurements from physiological stud-
ies.

This computational model of AHP currents has been shown
to closely approximate a more detailed AHP model that describes
a mixture of six channels with sensitivities to membrane volt-
age and intracellular calcium concentrations affected by calcium
channels, diffusion, and pumps (Cox et al., 1997; Palma et al.,
2011). The model captured recent findings that differences in
calcium-channel proximity account for the different time courses
of calcium-dependent AHP currents (Pineda et al., 1998).

MODELING ACETYLCHOLINE MODULATION OF AHP CURRENTS
Different intensities of cholinergic modulation that correspond
to behavioral or attentional states are demonstrated by an array
of experiments. These studies, displayed in Table 3, estimate the
concentrations and relative magnitudes of ACh release for dif-
ferent states. The majority of the studies used a microdialysis
technique to measure the concentration of neurotransmitter, a
technique known to salvage only between 5 and 20% of the orig-
inal concentration. When recovery percentages are reported, we

adjusted these estimates to compensate for this limitation by
dividing the reported concentration by the recovery percentage
to estimate the original concentration.

The novel technique of using choline-sensitive microelec-
trodes has produced data with high temporal resolution showing
rapid increases in ACh during a presented cue (Parikh et al.,
2007). To convert these results from transients above the mean
into percentage changes for comparison with other studies, we
assumed (1) that basal ACh concentrations in Parikh et al. (2007)
are close to measurements in Parikh and Sarter (2006) with the
same rat species, methodology, and lab; and (2) that the ratio of
actual ACh concentration to measured extracellular choline con-
centration is about 0.083 (340 μM/4110 μM) based on a related
study (Köppen et al., 1996). This calculation parallels that made
for microdialysis with recovery percentages. For both experimen-
tal techniques, we do not expect measurements to be precise. Nor
do we note any significant conformity between the two. Rather,
we are concerned with relative fluctuations, because the change
in ACh levels provides an estimate of the resultant change in AHP
currents and transfer functions of the target cells.

Most importantly, we estimate the impact of increasing the
cholinergic intensity on the AHP currents by examining an array
of physiological studies. The physiology has shown that these
AHP currents differ both in degree of modulation and the under-
lying mechanism of modulation. The changes in magnitude for
each AHP current following application of ACh or cholinergic
agonists are summarized quantitatively in Table 3.

Results indicate that application of ACh and muscarinic ago-
nists reduces or entirely abolishes the sAHP in a variety of
tissue types and species (Schwindt et al., 1988b; McCormick
and Williamson, 1989; Lorenzon and Foehring, 1992; Muller
et al., 1992; Pedarzani and Storm, 1996; Klink and Alonso, 1997).

Table 2 | Comparison of physiological AHP data with basal model parameters.

Current Model or tissue, species Conducta gAHP(pS) Equilb EAHP (mV) Amplitude (mV) Rise τr (ms) Fall τf(ms) References

fAHP Spiking Model 0.8 −65 6.7 0.1 2.0 n/a

Rat Hippocampus n/a −65 7 n/a 2–5 (Storm, 1987)

Human Neocortex n/a −65 n/a n/a n/a (Lorenzon and
Foehring, 1992)

Cat Sensorimotor n/a −71 10 n/a n/a (Schwindt et al.,
1988a)

mAHP Spiking Model 0.04 −97 2.7 18 164 n/a

Rat Neocortex n/a −97 5.3 18 164 (Lee et al., 2005)

Human Neocortex n/a −93 1.6 n/a 38–60 (Lorenzon and
Foehring, 1992)

Cat Sensorimotor n/a −100 n/a n/a n/a (Schwindt et al.,
1988a)

sAHP Spiking Model 0.02 −100 1.9c 225 2200 n/a

Rat Neocortex n/a −100 7.5c 225 3691 (Lee et al., 2005)

Human Neocortex n/a −87 1.8c n/a 687–999 (Lorenzon and
Foehring, 1992)

Cat Sensorimotor n/a −99 2.5c n/a n/a (Schwindt et al.,
1988a,b)

aConduct = Conductance, bEquil = Equilbrium; cAfter 10 spikes.
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Table 3 | Pharmacological modulation of AHP currents by ACh

receptor agonists.

Current % of Basal Magnitude References

Before (mV) After (mV)

fAHP 150% 6.7 10.1 (Nakajima et al., 1986;
Storm, 1989; Akins et al.,
1990; Lorenzon and
Foehring, 1992; Prakriya
et al., 1996; Bordey
et al., 2000; Kong et al.,
2005)

mAHP 80% 2.7 2.2 (Schwindt et al., 1988b;
Storm, 1989; Lorenzon
and Foehring, 1992; Klink
and Alonso, 1997;
Satake et al., 2008)

sAHP 30% 1.9 0.6 (Schwindt et al., 1988b;
Lorenzon and Foehring,
1992; Klink and Alonso,
1997; Satake et al., 2008)

Findings for the cholinergic modulation of the mAHP current are
mixed, but generally show a reduction in mAHP conductance to
about 70% by applying muscarinic agonists in human and other
mammals (Storm, 1989; Lorenzon and Foehring, 1992; Shapiro
et al., 2000; Power and Sah, 2008). The mAHP current is con-
sidered to be carried mainly by SK calcium-dependent potassium
channels, which are generally distinguished by their sensitivity to
blockade by apamin.

Experiments on the cholinergic modulation of the fAHP cur-
rent have produced more conflicting results. Cholinergic agonists
either cause fAHP increase (Bordey et al., 2000; Kong et al.,
2005), no change in fAHP (Storm, 1987; Lorenzon and Foehring,
1992), or affect fAHP depending on the membrane potential,
but probably cause increase under normal conditions (Nakajima
et al., 1986; Akins et al., 1990; Hicks and Marrion, 1998; Kong
et al., 2007). The detailed physiology of BK calcium-dependent

potassium channels, the main carriers of the fAHP, and a kinetic
model (Cox et al., 1997) has helped to explain its effect. Activation
of BK channels depends jointly on the membrane voltage and
two binding sites for calcium, one of which is also sensitive to
cadmium (Schreiber and Salkoff, 1997). These physiological find-
ings are described in further detail including underlying channel
mechanisms and compared with modeling results in Palma et al.
(2011).

Model AHP hypotheses
Our model assumes ACh-induced AHP changes and ACh intensi-
ties that generally concur with these experimental data, shown in
Table 3 and Table 4, respectively. By combining these estimates,
we arrive at five intensities of ACh modulation, labeled “Low”,
“Basal”, “Moderate”, “High” and “Very High”, with corresponding
states of different AHP conductances, also in Table 4. Simulations
were performed at these five intensities.

SPIKING STIMULATION AND SYNAPTIC MODELS
For stimulation, an input spike train is used to replicate in vivo
signaling. A synaptic model should ideally account for limited
postsynaptic receptors and neurotransmitter saturation. For an
external input to the network, the synaptic current is denoted:

IAMPA−IN = gAMPA−INgSD(t, τr,AMPA, τf ,AMPA, HI)

(EAMPA − Vd), (28)

where gAMPA-IN = 0.15pS and gSD is the saturating differentials
waveform. For recurrent excitatory synapses from cell j to cell i,
the current follows the equation:

IAMPA−RE,i = gAMPA−REwE
ij gSD(t, τr,AMPA, τf ,AMPA, Hs)

(EAMPA − Vd), (29)

where gAMPA-RE = 0.14 pS by default and parametrically changed
in Figures 4 and 5. Regardless of whether the connection is
directly between pyramidal cells or from interneurons, the cur-

Table 4 | Behavioral correspondence to cholinergic intensities.

Intensity Behavioral

State

Estimated ACh

Concentration

AHP Conductances

(% of Basal)

References

% μM gfAHP gmAHP gsAHP

Low SW Sleep 50% 0.25 75 110 135 (Williams et al., 1994; Marrosu et al., 1995;
Crouzier et al., 2006)

Basal Wake Quiet 100% 0.50 100 100 100 (Williams et al., 1994; Köppen et al., 1996;
Marrosu et al., 1995; Arnold et al., 2002;
Crouzier et al., 2006; Parikh and Sarter,
2006)

Moderate Fixed Interval, Cued
Misses

150% 0.75 125 90 65 (Marrosu et al., 1995; Arnold et al., 2002;
Parikh et al., 2007)

High Sustained Attention,
Cued Detections

200% 1.00 150 80 30 (Arnold et al., 2002; Parikh et al., 2007)

Very High n/a 250% 1.25 175 70 −5 n/a
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rent in recurrent inhibitory synapses from cell j to cell i, follows
the equation:

IGABA,i = gGABAwI
ij gSD(t, τr,GABA, τf ,GABA, Hs)

(EGABA − Vd), (30)

where gGABA = 1.6 fS (femtosiemens) by default and parametri-
cally changed in Figures 4 and 5. In the case of interneurons, each
pyramidal cell excites an immediate interneuron, which is given
the same index i to denote the same position in the network:

IAMPA−EI = gAMPA−EIgSD(t, τr,AMPA, τf ,AMPA, Hs)

(EAMPA − Vd), (31)

where is gAMPA-EI = 0.08 pS. With all circuits, the rise and fall
rates of EPSPs and IPSPs remain identical. Excitatory parameters
are derived from recordings of currents from pyramidal cells of rat
prefrontal cortex layer 2/3 (Povysheva et al., 2006). The parame-
ters for the AMPA current are EAMPA = 0 mV, and time constants
τr,AMPA = 0.76 ms and τf ,AMPA = 6.5 ms, which fall in a range
similar to other cortical experimental data; e.g., τr,AMPA = 0.9 ms
and τf ,AMPA = 3.1 ms for AMPA receptors in neocortical layer
4 pyramidal and interneuron cells of the rat visual cortex (Watt
et al., 2000) and τr,AMPA = 0.3 ms, τf ,AMPA = 2.2 ms for layer 1
neurons in rat visual cortex (Hestrin and Armstrong, 1996). The
parameters for the GABA current are EGABA = −72 mV, and time
constants τr,AMPA = 0.81 ms and τf ,AMPA = 8.7 ms. Rise and fall
rates of IPSPs are derived from physiological recordings from
Perrais and Ropert, 1999.

SPIKING CIRCUIT VARIANTS
Spiking circuit with global inhibitory connectivity
For initial simplicity of comparison to the rate-based circuit,
we examine a circuit with global inhibitory connectivity; that
is, from a given cell, equal inhibition targets all other cells and
does not use inhibitory interneurons. Inhibitory inputs to pyra-
midal cells in this circuit are received directly from spikes of other
pyramidal cells, thereby causing GABA synaptic current into the
proximal dendritic compartment of the postsynaptic neuron, as
in Equation (15). In other words, the weight wI

ij in Equation (30)
is 0 when i = j and 1 elsewhere. Excitatory recurrence is simply
self-excitatory, that is wE

ij in Equation (29) is 1 when i = j and 0
elsewhere.

Spiking circuit with interneuron-mediated inhibition
In the next circuit variant, the inhibition remains global, but
the signal is mediated indirectly through inhibitory interneurons,
which correspond to fast-spiking basket cells in mammalian neo-
cortex. Each pyramidal neuron excites an immediate interneuron
with the same parameters but a dendritic capacitance of 2 μF/cm2

instead of 3 μF/cm2 and no AHP currents (See Table 1). Each
interneuron inhibits all other cells besides the corresponding
pyramidal cell at their proximal dendritic compartment, as in
Equation (15).

Spiking circuit with distance-dependent connectivity
Finally, we examine a spiking circuit in which the strength of
recurrent signals depends on the distance between the cells. To
avoid edge effects, the architecture is a ring network; that is, it has
a loop topology whose first cell of index 1 neighbors the last cell of
index 20. Specifically, the strength of the excitatory conductance
between two cells, denoted i and j, is scaled by a Gaussian of the
distance between them, assuming they are regularly spaced:

wE
ij = e−(10−|i−j−10|)2/2σ2

E , (32)

where σE is 0.5. The strength of the inhibitory conductance
between two cells is scaled:

wI
ij = e−(10−|i−j−10|)2/2σ2

I , (33)

where σI is 10.

EVALUATION OF NETWORK DYNAMICS
For both rate-based and spiking models, networks of 20 cells were
simulated for a fixed interval of 5000 ms. From simulation start
to 1000 ms, the networks were presented with a stimulus that
is a ramp across the 20 cells (Figure 3). Using a ramp stimu-
lus is a straightforward way to evaluate order preservation; that
is, whether the network preserves in STM the rank ordering of
input sizes. In the rate-based model, the ramp consists of dimen-
sionless values up to 0.5 in steps of 0.025. In the spiking model,
the ramp consists of regular spikes at frequencies up to 200 Hz in
steps of 10 Hz (Figure 3B). Generally, we test whether changes in
the network connectivity strengths and sigmoid function param-
eters (e.g., threshold and slope) cause changes in STM dynamics
and storage across the four circuits.

Firing rate estimation
To estimate firing rate for spiking circuits, spikes in a train are
first binned into 0.5 ms intervals. The firing rate of a neuron is
then estimated by convolving with a sliding trapezoidal window
and dividing by 250 ms (the area of the window). The trapezoidal
window is flat at the center for 200 ms and then tapers linearly for
50 ms down to zero. This produces an estimate of rate, which is
quite similar to a sliding rectangular window of 250 ms. A rectan-
gular window, however, measures the firing rate only at multiples
of 4 Hz, produces sharp plots and has fluctuations at that scale
when spikes enter and exit the window. The trapezoidal window-
ing avoids this issue, produces smoother plots and enables more
precise comparison between cells than a rectangular window.

Transfer functions, hill functions and quenching threshold
Using the method from Palma et al. (2011), the transfer function
of a neuron is determined by stimulating for 2000 ms at increasing
intensities in steps of 10 Hz from 0 Hz up to 200 Hz. The output
or axonal firing rate of a neuron can then be characterized as a
function of the input or presynaptic firing rate over time. The
resulting function of input rate to output rate is generally sig-
moidal in form. To obtain the hill function of the cell, the signal
function or transfer function is divided by a linear function, that
is y = x. This approach follows the analysis of rate-based networks
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FIGURE 3 | Partial contrast-enhanced pattern sustained in short-term

memory. (A) A simulation trial consists of one second of stimulus (Stim)
presentation and four seconds to evaluate STM storage; (B) the ramp
stimulus of increasing input rates at each successive network position;
(C) raster of output spikes in a 20 cell network; (D) the transfer function,
the thick black dashed line, for the cells in this example superimposed over
the transfer function, shown in gray, that was used under normal
conditions; that is, with the AHP conductances in Table 2. The vertical thin
dotted line across the transfer function is drawn at the lowest abscissa
of the cell’s hill function; (E) output firing rates estimated by windowing the
spikes. Vertical dashed gray and dashed black lines across the activities

denote the last time of the highly distributed partially contrast-enhanced
pattern and the time when the network stabilizes on STM storage of
a much small number of activities, respectively. The vertical thin
dotted line demarks the time of stimulus offset. Note that the distributed
pattern can be maintained for over a second, which is within the duration of
many STM functions; (F) pattern storage after the input pattern ends,
evaluated 1000 ms and 4000 ms after input termination. The simulated
network is a spiking circuit with interneuron-mediated inhibition,
where the excitation and inhibition are 0.14 pS and 4 fS, and the AHP
conductances are changed, such that threshold and slope are −1.5 and −4.0,
respectively.

in Grossberg (1973) which showed that the quenching threshold
abscissa covaries with the position of the leftmost peak of the hill
function. For the spiking model, a measurement of the transfer
function or the hill function consists of a discrete set of values
from simulations. To obtain a precise estimation of abscissa of
the peak from this set, the three maximal points are fit with a
parabola.

Pattern storage, pattern maintenance, and network stability
At simulation end, we classify the activity pattern across the net-
work as one of three cases: no pattern storage, partial contrast
enhancement, or WTA, in which there can be a single winner
or multiple winners (Figure 2). Specifically, for a neuron to be
a winner, it must exceed the winning threshold (Figure 2B). The
winning threshold of a cell is 97% of the highest firing cell in the
network at 5000 ms, the end of the simulation. For a pattern to be
stored in STM, some neurons need to be “survivors.” For a neuron
to be classified as a survivor, it must exceed the survivor threshold
at 5000 ms (Figure 2B), which is defined as 20% of the high-
est firing rate in the simulation. The case of no pattern storage
occurs if there are no survivors. It is categorized as partial con-
trast enhancement, if there exist a survivor that is not a winner.

Finally, if all survivors are winners, whether there are one or many
winners (Figure 2C), the pattern storage is considered WTA.

The degree of pattern maintenance is measured by the dura-
tion after stimulus offset for which both order is preserved and
some gradient of the input pattern remains; that is, there are
non-winning survivors. The time of network stability is measured
as the earliest time step at which the network activities stabi-
lize for 20 ms (40 bins) and the activities no longer change from
their final network states at the end of the simulation (5000 ms).
Fluctuations within a margin of 3% are permitted, because the
calculation of spiking rates is itself an estimate.

Number of Active Clusters. The number of active clusters is the
number of groups of consecutive cells that are survivors. This is
evaluated at the end of the simulation (5000 ms). If no cells are
survivors, then the number of clusters is zero.

Frequency analysis
A spectral analysis is calculated by binning the spikes (0.5 ms
bins), convolving these bins with a temporal Gaussian to smooth,
and then taking the Fourier transform of the signal. The Fourier
transform window is 500 ms. The calculated frequencies are also
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averaged over the entire simulation. Delta power is defined as the
power of frequencies in the range 1–4 Hz.

All simulations were performed in MATLAB Simulink with a
0.02ms maximum variable step size using Dormand-Prince inte-
gration on four Intel Xeon quad-core processors (16 CPUs) in an
Ubuntu × 64 environment.

RESULTS
VARYING RECURRENT CONNECTIVITY
In a network with recurrent excitation and inhibition, these
opposing forces must be balanced to prevent too much or too
little network activity. If the network activity decays away after
stimulus offset, then the system will not have a stable mem-
ory of the recent input. Conversely, if the entire circuit becomes
strongly excited after a stimulus, then the activity will drown out
the pattern from the input signal. This kind of instability can be
compared with epileptic activity in models with more realistic
brain anatomies. The balancing problem is influenced by multiple
factors, including excitatory and inhibitory kernel size, synaptic
rise and fall times, and proximity to soma. We examined this
balance by simulation of recurrent networks across parametric
variations.

Figure 3 depicts an exemplar simulation. One simulation or
trial consists of testing network responses to a ramp stimulus
(Figure 3B) presented for the first 1000 ms of a 5000 ms duration
(Figure 3A). The transfer function of a neuron, altered by modu-
lation, is depicted as a black dotted line (e.g., Figure 3D), which is
compared with a transfer function without modulation, depicted
as a solid gray line. The vertical thin dotted line over the trans-
fer function is drawn at the lowest abscissa value for the peak of
the hill function. Each network simulation is then evaluated as
described in section “Evaluation of Network Dynamics”. The out-
put spikes from a network of 20 cells (as in Figure 3C) are used
to calculate the firing rates, or activities (Figure 3E) by using a
windowing function. In this example, a contrast-enhanced pat-
tern preserves the input order after the stimulus offset and is
stored as STM (Figure 3F). This network is a spiking circuit with
interneuron-mediated inhibition, where the excitation and inhi-
bition are set to 0.14 pS and 4 fS, respectively, and the parameters
threshold and slope are set to −1.5 and −4.0, respectively. The
network dynamics of all circuits are treated and displayed in this
way throughout the rest of the results.

Increasing the strength of inhibitory connections reduces the
number of active cells in the stored network pattern (Figure 4).
For a spiking circuit with global connectivity, the stored pattern
shifts from WTA with many (18) winners (Figure 4A) to WTA
with less (12) winners (Figure 4C) to a single winner (Figure 4E)
for inhibitory strengths, gGABA in Equation (30), set to 0.4 fS
(femtosiemens), 0.8 fS, and 3.2 fS, respectively, with excitation
held at 0.16 pS (Figures 4A,C,E). For the rate-based circuit, the
stored pattern similarly shifts from WTA with 15 winners to six
winners (Figures 4B,D), then to a single winner (Figure 4C) for
inhibitory strengths set to.05, 0.1, and 0.45, respectively, for the
inhibitory gain coefficient C in Equation (1); with excitation held
at 1.2 for the excitatory gain coefficient D.

The two circuits also show a corresponding trend in the dura-
tion of pattern maintenance and the time until the network is

stable. The vertical gray dashed lines in each of the network
activities plots of Figures 4A–H denote the last time step, for
which the network activities both preserve the rank order from
the stimulus and preserve a partially contrast-enhanced pattern.
The network patterns labeled as Last Pattern depict the patterns at
that time step. The vertical black dashed lines in the activity plots
of Figures 4A–H denote the time step at which each network sta-
bilizes for more than 20 ms; that is, the activities stabilize for at
least 20 ms and do not deviate through the rest of the simulation
by more than 3% from the network pattern observed at 5000 ms,
the end of the trial. The network patterns labeled as Stored State
depict this final stable pattern.

In both the spiking and rate-based circuits, network dynamics
are slower with an intermediate level of inhibition. For example,
when inhibition is set to 0.8 fS (Figure 4C), a partially contrast-
enhanced pattern is maintained for 799 ms whereas, when inhi-
bition is lower (0.4 fS, Figure 4A) or higher (3.2, Figure 4E), the
partially contrast-enhanced pattern is only maintained for 423 ms
and 167 ms, respectively. In the same network trials, the network
stabilizes at 2806 ms in the intermediate case (Figure 4C)—much
later than 1526 ms with low inhibition and 1763 ms with high
inhibition (Figures 4A,E).

While the recurrent inhibition is kept at the higher level (3.2 fS
and 0.45 for the spiking and rate-based circuits), the recurrent
excitation is now raised. Increasing the strength of excitatory
recurrence, gAMPA-RE in Equation (29), to 0.38 pS in the same
spiking circuit (Figure 4G) and to 2.0 for the excitatory gain coef-
ficient D in Equation (1) in the rate-based circuit (Figure 4H)
causes a shift from single winners back to multiple winners in the
stored pattern of the network. An initial increase in firing rate
occurs during the stimulus presentation at about 400 ms after its
onset up to 115 Hz in the spiking circuit (Figure 4A) and 0.65
in the rate-based circuit (Figure 4B). In the low inhibitory case
(Figures 4A,B), increasing the excitation does not recover this
initial transient during the stimulus (Figures 4G,H).

To understand the effects of varying recurrent inhibition and
excitation more completely, 441 simulations were run and used to
construct parametric maps of the dynamics for varying connec-
tivity strengths. Each result from a trial, as described in Figure 4,
produces several possible data points outlined in Figure 5A. The
Pattern Storage (left) column of Figure 5 evaluates the final stor-
age state of the network at the end of the trial as a function of
the recurrent strengths. The Order-preserving Pattern Persistence
(middle) column summarizes the duration of preservation of
both the rank order from the stimulus and a partially contrast-
enhanced pattern. The Time to Stability (right) column expresses
the time taken until each network stabilizes for more than 20 ms
and does not deviate from the network pattern observed at the
end of the trial. Across all four circuit variants, network dynam-
ics show a similar dependence on the strengths of recurrent
excitatory and inhibitory connections for rate-based (Figure 5B)
and the three spiking models (Figures 5B,C,D,E). All the cir-
cuits require a baseline of recurrent excitatory strength to enable
any pattern storage (Pattern Storage column of Figure 5). In
the absence of inhibition, this value is approximately the same
for all spiking circuits and increases gradually with increased
inhibition.
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FIGURE 4 | Modulating the strength of recurrent inhibition and

excitation. Increasing the strength of inhibitory recurrence reduces the
number of cells in the stored network pattern, while increasing
excitatory recurrence reverses the effect. (A,C,E) For a spiking circuit with
global connectivity, pattern storage shifts from WTA with many winners, 18 in
(A), to less winners, 12 and 1 in (C,E), for inhibitory strengths of 0.4 fS,
0.8 fS, and 3.2 fS, respectively. (B,D,F) For the rate-based circuit, pattern
storage similarly shifts from WTA with 15 winners to six winners, then to 1
winner for inhibitory strengths of 0.05, 0.1, and 0.45. Vertical dashed gray
and dashed black lines across the activities denote the time of the last

broadly distributed partially contrast-enhanced pattern and the time when the
network stabilizes on its storage state, respectively. The vertical thin dotted
line demarks the time of stimulus offset. The right plots show the (spike)
rates across the network positions at those two times, labeled the last
pattern and the stored state. (G) For the spiking circuit, by increasing
recurrent excitation to 0.38 pS, pattern storage shifts from a WTA
pattern with a single winner back up to multiple-winners (9). (H) For the
rate-based circuit, by increasing recurrent excitation to 0.45,
pattern storage shifts from a WTA with a single winner back up to three
winners.

There is a region in which a balance of excitation and inhi-
bition enables gradual network resolution in all four circuits.
An order preserving and partially contrast-enhanced pattern lasts
longer and the network reaches a stable pattern later inside this
region than outside. In the middle column of Figure 5, this region
is characterized by a long duration of pattern maintenance, made
prominent as tilted diamonds, when it exceeds 800 ms. In the
right column of Figure 5, this region corresponds with a later
time for the network to reach a stable pattern, made prominent
as larger and lighter circles as the time approaches 5000 ms. This
balance is not a simple ratio of excitation to inhibition since the
shape of this region has curvature and does not cross through
the origin. For the interneuron-mediated circuit, the dynamics
favor the persistence of partially contrast-enhanced patterns when
the excitation is high in this region, as indicated by the white
diamonds enclosed by a black line (Order-preserving Pattern
Persistence column, Figure 5D. For the same circuit, the net-
work activities stabilize after a longer duration (3000–4000 ms
after the stimulus offset). When the inhibition is high in this

region, the collection of large circles enclosed by a black line
form to demark it (Time to Stability column, Figure 5D). For
the distance-dependent circuit, the network dynamics show a
similar pattern of pattern persistence with high excitation (Order-
preserving Pattern Persistence column, Figure 5E). High inhibi-
tion again leads to a longer duration to achieve network stability
(Time to Stability column, Figure 5E). These properties are not as
clear in the rate-based circuit and the spiking circuit with global
connectivity under the parameter ranges tested.

In this region of gradual dynamics, the spiking circuits do
differ in their behavior. The circuit with global inhibitory con-
nectivity generally resolves to WTA storage of one or more
winners (left column, Figure 5C). The circuit in which inhibition
is mediated by interneurons sustains partially contrast-enhanced
patterns longer, which often stabilize as the stored pattern (left
column, Figure 5D). In the case of the distance-dependent cir-
cuit, the network can fail to maintain the activity ordering in the
input (crosses in middle column, Figure 5E). Instead, the net-
work activities in the distance-dependent circuit often split into
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FIGURE 5 | Parametric maps of connectivity strengths for various

circuits. Network dynamics following temporary input stimulation
show a similar dependence on the strengths of the recurrent excitatory and
inhibitory connections. (A) The key for parts (B–E): the left column
characterizes the type of network pattern storage at the end of the simulation
time, the size of black circles indicating the number of winners, while the size
of gray diamond indicates the number of non-winning survivors. The middle
column describes the duration of order-preserving partial contrast-enhanced

pattern persistence after the stimuli is removed. The right column
summarizes the time until the network reaches stable pattern storage.
Results for (B) the rate-based circuit, (C) the spiking circuit with global
connectivity, (D) the spiking circuit with interneuron-mediated inhibition,
and (E) the spiking circuit with distance-dependent connectivity.
Parameters for individual simulations used in Figure 4 are highlighted by
black squares. Recurrent parameters for Figures 6 and 7 are highlighted by
black hexagons.

clusters. For example, cells with high input may form a cluster of
activity and cells with a low input may form a cluster of activ-
ity, whereas the activity in the two clusters where cells receive
intermediate input may be diminished or quenched to zero. This
is discussed further in “Different Properties of Circuit Variants:
Clusters in Stm and Oscillations”.

VARYING THE TRANSFER FUNCTION
To assess the impact of cell signaling, the strengths of the recurrent
excitatory and inhibitory signals were varied. The size of the region

of gradual dynamics with low excitation and low inhibition is
narrower than the rest of the region with stronger recurrence.
In Figure 5C, for example, the region enclosed by the black line
narrowswithdecreasingrecurrencefrom0.4pSofexcitationand2fS
of inhibition to 0.15 pS of excitation and 1 fS of inhibition. A change
intheexcitatoryor inhibitory interactionstrengthhasa largereffect
on the network dynamics here than elsewhere, because a small
change moves the system outside the region of gradual dynamics
if it is narrow. The circuits were evaluated with recurrent strengths
chosen to lie within this parameter range, because we expect a
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change in the feedback signal function to have a significant effect
on network dynamics here. In the spiking circuits, the excitatory
strength, gAMPA−RE in Eq. (29), is set to 0.14 pS and the inhibitory
strength, gGABA in Eq. (30), is set equal to 1.6 fS, while in the
rate-based circuit, the excitatory parameter D in Eq. (1) is set to
0.2 and the inhibitory parameter C in Eq. (1) is set to 1, (these
parameter settings appear as hexagons in Figure 5).

For the rate-based circuit, the threshold and slope of the signal
function were manipulated directly by changing the parameters
S and T in Eq. (2). For the spiking circuits, it is known from
previous work (Palma et al., 2011) that modulation of the three
somatic AHP currents in spiking mammalian pyramidal cells can
change the slope and threshold of its transfer functions. For the
specific pyramidal model here, an increase in threshold of the
transfer function occurs with conductance changes of −0.3 pS,
+0.004 pS, and +0.0014 pS to fAHP, mAHP and sAHP, respec-
tively, that is, gfAHP, gmAHP, and gsAHP, in Eqs. (25)–(27). To
compare parametrically, we define this as a unit change in the
abstract threshold T, where T = 0 for baseline AHP conduc-
tance. For example, applying this twice (−0.6 pS to fAHP, 0.008
pS to mAHP, etc.) would correspond with T = 2. In contrast, a
steepening of the slope of the transfer function occurs with con-
ductance changes of −0.04 pS, −0.0106 pS, and +0.0012 pS to
fAHP, mAHP and sAHP, respectively. Likewise, we define this as a
unit change in the abstract slope S.

Lowering the threshold of the transfer function causes a shift
to the left in the hill function (Figures 6A,D). The lowest abscissa
value of the hill function is depicted as a thin vertical dotted
line (Figures 6A–D, left side). We expect a correlated decrease in
the quenching threshold, since the quenching threshold abscissa
covaries with the position of the leftmost peak of the hill function
(see analysis in Section 3.6). The resultant decrease in quenching
threshold allows more cells to survive the competition (see stored
states in Figures 6A,D). Decreasing the slope of the transfer func-
tion causes a widening of the peak in the hill function (the dashed
curves widen in the Hill Function column of Figures 6B,D) with-
out a significant change to the position of the peak itself (the
vertical dotted line in the Hill Function column Figures 6B,D). Of
the two dashed vertical lines in the middle column of Figure 6, the
gray lines denote the time of the last ordering-preserving partially
contrast-enhanced pattern, while the black dashed lines denote
the time at which the network reaches a stable pattern. A decrease
in slope extends the persistence of order-preserving partially
contrast-enhanced activity patterns, represented by the temporal
position of gray dashed lines in the middle column, which shift
later in Figures 6B,D compared to those in Figures 6A,C.

To understand the effect of changing the transfer function
more completely, 289 simulations were carried out and used to
construct parametric maps of these dynamics. Across all four cir-
cuit variants, the network dynamics show a similar dependence
on the threshold and slope (Figure 7). As noted for the examples
in (Figures 6A,D), the threshold of the transfer function system-
atically changes with the lowest abscissa value of the peak of the
hill function in both rate-based and spiking cells (Figure 7A). A
decrease in slope in both rate-based and spiking models increases
the width around the peak of the hill function (Figure 7B). As a
result, in all the circuits, when the threshold is high (left column

of Figure 7, right side plots), the network activities are quenched
and decay to zero. As the threshold is decreased (left column of
Figure 7, left side of plots), the network patterns tend to include
more winners.

There is a region of gradual network transitions that depends
on the shape of transfer functions (Order-preserving Pattern
Persistence and Time to Stability columns, Figure 7). This region
is important for modulation of network dynamics. The changes
in transfer function shape can cause the same range of stor-
age behaviors seen with different recurrent anatomies (Figures 5
and 7). This enables global signals from other sources, such as
cholinergic modulation, to control network activity persistence
and STM storage without manipulating excitatory and inhibitory
connectivity. We evaluate this further in Sections “Cholinergic
Modulation” and discuss the behavioral significance in Section
“Discussion: The Role of Ach in Stm Storage and Vigilance
Control”.

In the spiking circuits, the changes in transfer function are per-
formed by manipulation of the AHP conductances, which can
also have temporal effects that are not always found in the rate-
based circuit. When the transfer function slope is steep (top half
of plots in Figure 7), then the slow AHP current (sAHP) will be
quite strong. A steeper slope is caused by an increase in sAHP
from 0.2 pS up to 0.6 pS or higher. A strong sAHP also causes
adaptation, or habituation, of cell firing, and thereby also an
adaptation in the total inhibition across the network. This adapta-
tion, if strong enough, can lead to a rebound effect in cell activity,
in that, as the network inhibition weakens during the strong sAHP
onset, cells that have fired less have the opportunity to rebound in
the competition. This rebound effect can disrupt the order preser-
vation in the network, and hence pattern maintenance (denoted
as crosses at the top of plots, middle column of Figures 7D,F).
Based on physiological measurements (Table 3), we do not expect
rebounds to be the typical behavior of the system, but it does
mean that AHP modulation has a limited range before it starts to
perturb order preservation. We do not notice any rebounds from
fAHP and mAHP (which would occur at bottom left and right of
the plot in the middle column of Figure 7). The fAHP is too fast
to cause a rebound effect on the time scale of the network com-
petition, while mAHP is not changed as drastically as the sAHP
during a modulation in transfer function shape.

DIFFERENT PROPERTIES OF CIRCUIT VARIANTS: CLUSTERS IN
STM AND OSCILLATIONS
While the circuit variants share the aforementioned similarities
in dynamics, they also exhibit important differences. When the
connectivity across the network is distance-dependent, the activi-
ties of cells have a tendency to form clusters, or cell assemblies.
The manipulation of recurrent connectivity and transfer func-
tion can control the size and the number of clusters. Increasing
inhibition in a distance-dependent circuit may cause the activities
across a group of cells to be split into two clusters (Figure 8A).
It is crucial to note that the region of most gradual network
dynamics (Figure 5E, Order-preserving Pattern Persistence and
Time to Stability columns) correspond to the transition between a
larger cluster and two smaller clusters from the larger cluster split
(exemplified in Figure 8A, and mapped in Figure 8B, left side). In
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FIGURE 6 | Pattern storage depends on sigmoid transfer function shape,

changing the threshold and slope of the sigmoid transfer function by

altering the conductances of AHP currents. (A) Decreasing threshold
and (B) decreasing slope for the rate-based circuit, in parallel with
(C) decreasing threshold and (D) decreasing slope for the spiking circuit with
global connectivity. Left column shows the changes to the variables for
threshold and slope. The resultant transfer functions and hill functions are
depicted as black dashed lines over the corresponding functions under basal

conditions shown in gray—that is with the strengths of AHP currents
matching those in Table 2. Middle column depicts the activities of the
network over the 5000 ms simulation. Dashed gray and dashed black lines
across the activities denote the time of the last distributed partially
contrast-enhanced pattern and the time when the network stabilizes on its
storage state, respectively. The right plots show the rates across the
network positions at those two times, labeled the last pattern and the
stored state.

other words, the network activities stabilize more slowly when the
network pattern is close to resolving to either one or two clusters.

By manipulating the transfer function shape (Figure 8B, right
side), the pattern storage can transition from no stored activity
(top right corner), to one small cluster (upper right band), to two

small clusters (middle band), to two small clusters (lower left cor-
ner). Since the architecture is a ring network, the cell with highest
input is adjacent to the cell of lowest input. Because of this, a clus-
ter can span, or wrap around, the connection between the cell
with index 1 and the last cell with index 20.
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FIGURE 7 | Parametric maps of transfer function modulation for

various circuits. (A) The width of the hill function (HF) peak plotted as a
function of threshold and slope for rate-based and spiking model excitatory
cells; (B) the lowest abscissa value of the hill HF peak plotted as a function
of threshold and slope for rate-based and spiking model cells; (C–F) these
maps follow the same key and columns from Figure 5, but as a function of
threshold and slope of the signal or transfer function. The left column
characterizes the type of network pattern storage at the end of the

simulation time. The middle column describes the duration of partially
contrast-enhanced pattern persistence after the stimulus. The right column
summarizes the time when the network reaches stable pattern storage.
Results for (C) the rate-based circuit, (D) the spiking circuit with global
connectivity, (E) the spiking circuit with interneuron-mediated inhibition, and
(F) the spiking circuit with distance-dependent connectivity. Parameters for
individual simulations used in Figure 6 are highlighted by black
squares.

When the inhibition across the network is mediated indirectly
by inhibitory interneurons, the network dynamics often store
a partially contrast-enhanced pattern. This circuit variant also
exhibits oscillations under some parameters. Specifically, with
a high level of inhibition in the circuit, delta oscillations (that

is, oscillations between 1–4 Hz) become apparent in the activ-
ity traces (Figure 9A). Fourier analysis of the spike output, when
inhibition rises from 2.8 fS to 3.2 fS, reveals a shift from power
dominance in the high frequencies (Figure 9B, left side)—around
80 Hz in the gamma range—to power dominance in the delta

Frontiers in Computational Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 42 | 18

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Palma et al. Persistent spiking in cortical networks

FIGURE 8 | Clustering in distance-dependent circuit. (A) Network
activities with inhibition set to 2.2 fS and 1.8 fS with excitation at 0.34pS.
Dashed gray and dashed black lines denote the time of the last partially
contrast-enhanced pattern and the time when the network stabilizes on its
storage state, respectively. The right plots show the rates across the network
positions at those two times, the last pattern, and the stored stable state;

(B) the number of STM clusters in the network at steady state over
parametric changes in recurrent excitatory and inhibitory strengths (left) as
well as changes in transfer function (right). Diamonds indicate the
parameters used for (A). Since the architecture is a ring network, clusters can
span the connection between the cell with index 1 to the last cell
with index 20.

range (Figure 9B, right side). This corresponds to the physiologi-
cally observed increases in delta oscillations with increased GABA
agonists (Lancel and Faulhaber, 1996). The delta power strength-
ens with increasing excitatory recurrence, but only appears when
inhibitory strength exceeds 3 fS (Figure 9D). The time to stabil-
ity is longer (map in Figure 9C, repeated from Figure 5) in the
same parameter region that delta power is strong (Figure 9D).
This is because the oscillation in the network is greater than 3%
of the cell activity rates and the network is not considered sta-
ble until the end of the simulation (see Evaluation of Network
Dynamics).

CHOLINERGIC MODULATION
To evaluate the ability of cholinergic signals to modulate network
dynamics, we estimate the levels of ACh during different behav-
ioral states (Table 4). We also estimate the effect of the transmitter
on the three AHP currents (Table 3). and then apply this to the
evaluation of network storage (Figure 10). The excitation and
inhibition are chosen such that, at a basal level of ACh, that is
the level of ACh expected in a waking though attentionally unde-
manding state, the network rapidly resolves to a WTA pattern
with a single winning cell in response to the ramp stimulus. The
recurrent excitation and inhibition are set to 0.14pS and 2.8 fS
for the globally connected spiking circuit, to 0.14 pS and 3.8 fS
for the interneuron-mediated spiking circuit, and to 0.12pS and

3.6 fS for the distance-dependent spiking circuit. The parameters
for threshold and slope are initially held at 0.0 and 0.0 by setting
the AHP currents to the values in Table 2 for the basal level of
ACh.

The results show that increasing ACh from these starting
conditions causes a decreased threshold and increased slope
(Figure 10, Transfer Function column, moving from bottom to
top), and thereby a smaller minimal abscissa of the hill function
peak, and a lower quenching threshold. The resultant network
dynamics store more items in STM (Figure 10, Pattern Storage
column) by maintaining more items in order-preserving patterns
for longer (Figure 10, Network Dynamics column). For the spik-
ing circuit with distance-dependent connectivity, a single winner
transitions to multiple clusters as ACh increases (Figure 10, right
column of Pattern Storage). At a moderate level of ACh, the
cluster of cells, which received more input, includes more cells
(Figure 10, middle row of right column), but when ACh increases
to very high values (Figure 10, top row of right column), the two
clusters increase to be approximately the same size.

ANALOG ACTIVITY NORMALIZATION AND STM STORAGE
To address whether the qualitative dynamics of the networks
are sensitive to the intensity of stimuli, the same stimulus pat-
tern was presented to the spiking circuit with global connec-
tivity at two different magnitudes, the original ramp up to
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FIGURE 9 | Oscillations in interneuron-mediated circuit. (A) a network
oscillation of about 3.7 Hz in the Delta range (1–4 Hz) in the spike rate
activities in the interneuron-mediated spiking circuit when the recurrent
excitatory and inhibitory is strong; (B) Fourier analysis of average network

frequencies over the entire 5000 ms simulation with inhibition of 3.2 fS and
2.8 fS; (C) the time to network stability; and (D) the average Delta power as a
function of recurrent excitatory and inhibitory strengths. Diamonds denote
corresponding parameters to the frequency plots in (B).

200 Hz (Figure 11A), and a half intensity ramp up to 100 Hz
(Figure 11B). The resultant parameter maps (Network Pattern
Storage, Order-preserving Pattern Persistence, and Time to
Stability columns of Figure 11) are nearly identical for both
stimuli. We conclude that the parameter regimes of network
dynamics, at least in the range we examined, are sensitive to the
activity ordering, but normalize well enough to not be strongly
dependent on the amplitude of the presented stimuli once they
exceed the quenching threshold.

DISCUSSION: THE ROLE OF ACh IN STM STORAGE
AND VIGILANCE CONTROL
Palma et al. (2011) demonstrated how fast, medium, and
slow AHP conductances can together independently control the
threshold and slope of a sigmoidal signal function, and how
ACh can alter the sigmoidal signal threshold, rather than just
cause a change in excitability, as had previously been hypothe-
sized. Building on these findings and a mathematical analysis of
recurrent shunting on-center off-surround networks in Grossberg
(1973), this paper analyses how changes in AHP currents, ACh,
and recurrent connectivity impact the transformation of input
patterns and their STM storage by recurrent circuits. The results
show that, with an appropriate degree of recurrent excitation
and inhibition, spiking networks maintain a partially contrast-
enhanced pattern for 800 ms or longer after stimuli termina-
tion. After this intermediate period, network activities resolve
to no stored pattern, or to WTA stored patterns with one or
multiple winners. When inhibition is mediated by inhibitory
interneurons, the partial contrast-enhanced pattern may also be
stored at equilibrium. Strengthening inhibition prolongs a par-
tially contrast-enhanced pattern by slowing the transition, while
strengthening excitation causes more winners when the network

stabilizes. Changes in the shape of sigmoidal transfer functions,
determined by the collective state of AHP conductances, can
control the maintenance of a partially contrast-enhanced pat-
tern and the size of the pattern that is stored. Changes in
AHP currents due to ACh influx can cause a decrease in the
threshold and an increase in the slope of the transfer func-
tion which can lengthen the persistence of a partially contrast-
enhanced pattern, increase the number of winners, or, if connec-
tivity is distance-dependent, cause cell activities to store multiple
clusters.

These properties clarify how activation of ACh by basal fore-
brain circuits, notably nucleus basalis of Meynert, may alter the
brain’s sensitivity to predictive mismatches, and thus the vigilance
with which the learning or recognition categories is modulated
in the brain. Adaptive Resonance Theory demonstrated how low
vigilance could lead to the learning of general, or abstract, cat-
egories, whereas high vigilance could lead to the learning of
specific, or concrete, categories (Carpenter and Grossberg, 1987,
1991). When a predictive error causes a mismatch to occur, the
vigilance level is increased until the currently active category, that
caused the mismatch, is reset and a memory search is triggered
that may lead to learning of a new, and more concrete, category
that better matches the input data. Grossberg and Versace (2008)
proposed that ACh could act as a vigilance-regulating signal when
it is released in response to mismatch-mediated activation of the
nucleus basalis of Meynert. One source of the mismatch sig-
nals was proposed to be the nonspecific thalamus (Kraus et al.,
1994). The current results clarify how this can happen by demon-
strating the effects of ACh on input pattern transformation and
storage in STM.

ACh slows the speed of network transitions to stability, hence
allowing the competition between representations to increase the
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FIGURE 10 | Changing the cholinergic modulation. The left side shows the
behavioral levels of Acetylcholine, the corresponding changes in
the three AHP currents, and the resultant transfer function shapes for the
pyramidal spiking cell model. The right side depicts network dynamics at
these ACh levels and the resulting STM stored states. Dashed gray and

dashed black lines across the activities denote the time of the last
partially contrast-enhanced pattern and the time when the network
stabilizes on its storage state, respectively. The right plots show the rates
across the network positions at those two times, the last pattern and the
stored state.

persistence of input patterns before settling on a stored represen-
tation. When connectivity strengths are distance-dependent, ACh
increases can lead to more clusters. In the situation of category
mismatch, this change could effectively reopen the competition
between potential representations.

Recent behavioral and physiological data support a role for
ACh in mammalian cortex in modulating the specificity in
short-term and long-term pattern storage. While ACh is often
considered to boost plasticity simply via excitability, recent evi-
dence suggests that fluctuations in cortical ACh are not nec-
essary for simple associative learning, but are necessary for

learning mainly when there is featural overlap during per-
ceptual categorization (Chiba et al., 1995; Atri et al., 2004;
Botly and De Rosa, 2007; Hata et al., 2007; Winters et al.,
2007), consistent with the idea that it can increase vigilance
to achieve better categorical separation. Further support for
this idea comes from lesions in rats of the nucleus basalis
of Meynert which have little impact on learning rate, except
when there is a high degree of interference between the cat-
egories to be learned, that is, when categories share the same
features in a certain dimension (Botly and De Rosa, 2007,
2009). Similarly, studies in humans show that scopolamine, by
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FIGURE 11 | Processing with different stimuli strength. Parametric
maps, as in Figure 5, indicate the type of network pattern storage
at the end of the simulation time, the duration of partial contrast-enhanced
pattern persistence after the stimuli is removed, and the time

until the network reaches stable pattern storage: (A) for a ramp
stimuli of input rates up to 200 Hz (shown before); and (B) for
a ramp stimuli of half the magnitude with input rates up
to 100 Hz.

competitively binding muscarinic receptors, diminishes learn-
ing of overlapping word pairs more than non-overlapping pairs
(Atri et al., 2004). Meanwhile, associative learning studies in
rats with combinations of light and tone has shown that the
concentration of released ACh increases more during discrimi-
nation learning experiments in which an individual stimulus (A,
e.g., light) signals reward and a compound stimulus (AB, e.g.,
light + tone) signals no reward, than during elemental discrim-
ination, in which one stimulus (A, e.g., light) signals reward
and another stimulus (B, e.g., tone) signals no reward (Hata
et al., 2007). Finally, donepezil, which increases cortical ACh
by inhibiting its degradation by Acetylcholinesterase (AChE),
has been shown by fMRI to reduce the expanse of response
in V1 from a pulsating visual stimulus (Silver et al., 2008).
Taken together, these data suggest that increased ACh (and atten-
tion) refines perceptual representations by adding specificity. The
model simulations of how the transformation and STM storage
of input patterns is modulated by ACh clarify how this might
occur.

Several other studies provide further findings, perspectives and
questions. Recent studies of the effects of scopolamine on human
memory formation suggest that high levels of ACh promote
rapid encoding, whereas low levels of ACh support consolida-
tion (Rasch et al., 2006). This parallels the rapid single instance
learning and category refinement predicted in ART by mismatch
and match, respectively. Similar studies with scopolamine make
the claim that lowering ACh improves consolidation by prevent-
ing possible interference with conflicting information (Winters
et al., 2007). Inference in both cases could be interpreted as
learning of categories that are too general for the more difficult

task. At the other end of the spectrum, representation specificity
might be necessary for the detection of certain kinds of nov-
elty. For example, when search after reset in ART fails to find a
satisfactory alternative category, a new representation is rapidly
formed. Indeed, a recent object discrimination study in rats shows
that scopolamine reduces the novelty discrimination ratio (Ballaz,
2009).

Numerous data remain to be included in a complete model of
the effects of ACh on pattern processing in neocortex. Crucially,
experiments have shown that ACh release causes desynchroniza-
tion between cortical cells (Goard and Dan, 2009) in conjunction
with up-regulation of high gamma oscillations (Canolty et al.,
2006). Recent experimental results also show that both this desyn-
chronization (Pandya et al., 2005) and gamma oscillations regula-
tion (Keizer et al., 2010) may be crucial for interference learning,
as previously described. Adaptive Resonance Theory predicted
that synchronous oscillations may occur during category learn-
ing (e.g., Grossberg, 1976, 1980). Grossberg and Versace (2008)
refined this analysis to describe how gamma oscillations may
occur in a match state that supports learning, whereas slower beta
oscillations may occur in a mismatch state that triggers reset and
search for a better matching category. While we not simulated
here, these mechanics operate in conjunction with the effects
of ACh on AHP currents and could also be regulated by such
modulation.
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