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Brain computational challenges vary between behavioral states. Engaged animals react
according to incoming sensory information, while in relaxed and sleeping states
consolidation of the learned information is believed to take place. Different states
are characterized by different forms of cortical activity. We study a possible neuronal
mechanism for generating these diverse dynamics and suggest their possible functional
significance. Previous studies demonstrated that brief synchronized increase in a neural
firing [Population Spikes (PS)] can be generated in homogenous recurrent neural networks
with short-term synaptic depression (STD). Here we consider more realistic networks with
clustered architecture. We show that the level of synchronization in neural activity can
be controlled smoothly by network parameters. The network shifts from asynchronous
activity to a regime in which clusters synchronized separately, then, the synchronization
between the clusters increases gradually to fully synchronized state. We examine the
effects of different synchrony levels on the transmission of information by the network.
We find that the regime of intermediate synchronization is preferential for the flow of
information between sparsely connected areas. Based on these results, we suggest that
the regime of intermediate synchronization corresponds to engaged behavioral state of
the animal, while global synchronization is exhibited during relaxed and sleeping states.
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INTRODUCTION
Cortical activity was shown to depend critically on behavioral
state of the animal. Experiments reveal that different frequency
ranges are dominant in slow wave sleep (SWS), rapid eye move-
ment sleep (REM) and different wake states (Steriade et al., 1993;
Harris and Thiele, 2011). Various cortical states can also be seen
in recording of membrane potential in awake animals (Poulet and
Petersen, 2008; Okun et al., 2010). The influence of behavioral
states on network dynamics is observed throughout the cortex,
beginning from the primary sensory cortices (Harris and Thiele,
2011).

Recording extracellular activity from the somatosensory cor-
tex (S1) and auditory cortex of rats showed that response to
a stimulus is larger in the passive states compare to the active
state (Fanselow and Nicolelis, 1999; Castro-Alamancos, 2004;
Otazu et al., 2009). Intracellular recordings from S1 of mice
revealed larger fluctuations in the membrane potential and
larger correlations between neighboring neurons during quiet
wake state compared to whisking state, while the mean firing
rate of pyramidal neurons did not change significantly between
these states. It appears that changes in neural dynamics orig-
inate from internal regulation because sensory inputs have no
significant effect on global properties of neural dynamics at
all behavioral states (Poulet and Petersen, 2008; Gentet et al.,
2010).

There are various models for generating network activity syn-
chronization (Sturm and Konig, 2001). In a recurrent network

model with short-term synaptic depression (STD) there is a
parameter regime in which short synchronized bursts of activ-
ity [Population Spike (PS)] can emerge spontaneously at a low
frequency (Tsodyks et al., 2000; Loebel and Tsodyks, 2002). This
type of synchronized events was confirmed experimentally in the
auditory cortex (DeWeese and Zador, 2006). In this study we con-
sidered clustered networks divided into strongly interconnected
groups of neurons. This clustered architecture was inspired by
experimental studies on cortical connectivity (Song et al., 2005;
Yoshimura et al., 2005).

It was previously proposed that network synchronization can
ensure propagation of signals from one area to another in the
sparsely connected cortex (Singer, 1993); thus controlling net-
work synchronization may have an important functional role.
Transitions between different behavioral and neural states can be
accomplished by activation of different neuromodulatory systems
(Steriade et al., 1993). These systems influence all of the fore-
brain in a diffusive way (Hasselmo, 1995) and can alter network
dynamics via their effect on neurons and synaptic connections
(Steriade et al., 1993; Marder and Thirumalai, 2002; Giocomo
and Hasselmo, 2007). Synaptic depression can be regulated by
neuromodulators that change the release probability in intracor-
tical connections (Tsodyks and Markram, 1997; Wu and Saggau,
1997). Consequently, the emergence of PSs and their synchro-
nization across strongly interconnected groups can be regulated,
which results in controlling the flow of sensory information to
distinct cortical areas.
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Here we present a model which suggests a clear mechanism
to control the level of synchronization in network activity. We
show that the synchronization of noisy clustered network with
STD can be shift smoothly from asynchronous to synchronous
state by adjusting the release probability in recurrent connec-
tions. Synchronized activity can overcome the sparse connectivity
between cortical areas; as a consequence, the flow of information
from one cortical area to another can also be controlled.

METHODS
MODELING CORTICAL COLUMN
We represent a cortical column by a network of interconnected
clusters; each one is divided into two units representing highly
connected groups of excitatory and inhibitory neurons, respec-
tively. Connections between units of different clusters are weaker
then connections within clusters.

We used the rate model to describe the dynamics (Wilson and
Cowan, 1972):

τE
dEi

dt
= −Ei + (1 − τrefEi)

⎡
⎣

N∑
j

JEE
ij · Pr · xjEj

+
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⎤
⎦
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⎤
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The Ei (Ii) are the excitatory (inhibitory) rate variables for
a corresponding unit in cluster i. τE (τI) is the corresponding
time constant. N is the number of clusters in the network. τref

determines the neurons’ refractory period. Every unit receives
synaptic inputs from all other units with synaptic efficacies Jαβ

(pre-synaptic α neuron projects to post-synaptic β neuron, α; β =
E; I). eE (eI ) is the mean background input, representing inputs
from other brain areas or alternatively can represent mean rest-
ing membrane potential relative to threshold. s(t) is the external
sensory input which is taken to be zero for spontaneous activity
and otherwise as pulses with a certain duration (δs) and ampli-
tude (As) that occur as random refractory Poisson process with a
constant rate of 2

3 Hz (the minimal time interval between pulses
is 1 s). For simplicity we chose threshold —linear form of the
neuronal gain function [z]+ = max (z, 0). We further introduced
fluctuations to the input, η(t), which is a time correlated noise
with time constant τn and a standard deviation of An√

2τn
:

τn
dηi

dt
= −ηi + Anξ(t) (3)

We introduced synaptic depression in the excitatory-to-excitatory
connections following a previous modeling work (Tsodyks et al.,
1998). These synaptic connections are scaled by a factor (Pr · xj),
where xj is the average available synaptic resources in a unit j
which decreases with unit activity and recovers to one with a time

constant τd; Pr is the release probability (same for all connec-
tions) and therefore the average fraction of synaptic resources that
is utilized after each spike. The dynamics of the average available
synaptic resources is governed by the following equation:

dxi

dt
= 1 − xi

τd
− Pr · xi · Ei (4)

The parameters used in the simulations are listed in Table 1.
The synaptic efficacies were adjusted such that the mean synap-
tic input from all other clusters is A time smaller then the mean
inputs from within the cluster (see Table 1). We implemented
the transitions between behavioral states by changing Pr in the
range of 0.2–0.9. In order to keep the firing rate constant (2Hz),
the external input eE was adapted according to an empirical
relationship (Figure 2C).

MODELING READOUT POPULATION
The activity of the readout population is controlled by the follow-
ing equation:

τR
dR

dt
= −R + JR

Nn,N∑
i,j

Si,j∑
sp

δ(t − tsp) (5)

R is the firing rate variable, τR is its corresponding time constant
and JR is the synaptic efficacy of the readout synapses. tsp is the
spike time, Si,j is the number of spikes emitted by neuron i belong-
ing to a unit j. Nn is the number of excitatory neurons from each
cluster that are connected to the readout. We chose τR = 10 ms
and JR = 1/N. In order to study the effect of sparse connectivity, we
changed the number of feed-forward neurons belonging to each
unit that are connected to the readout (Nn). The spike trains of
neurons from a unit j were constructed as Poisson processes with
a rate Ej.

READOUT PERFORMANCE
We quantified the readout population performance by defining a
threshold for detecting network activity events. We adopt terms
from the receiver operating characteristic (ROC) nomenclature;
True positive (TP) is a detected event that follows a stimulus
and false positive (FP) is a spontaneous event. False negative

Table 1 | Rate model parameters.

N 20 An 0.15 s−0.5

τE 10 ms δs 50 ms

τI 10 ms As 1.5 Hz

τref 5 ms JEE 5.25

τd 400 ms JIE 2.5

τn 100 ms JEI −2.5

eI 0 JII −8

SYNAPTIC EFFICACIES IN/BETWEEN CLUSTERS

Diagonal element
A

A + 1
Jαβ

Non-Diagonal elements
Jαβ

(A + 1)(N − 1)
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(FN) refers to the situation when there was a stimulus but the
readout population activity did not cross the threshold (Dayan
and Abbott, 2001). We defined a time window for the network
response to a stimulus by computing the per-istimulus time his-
togram (PSTH) of the readout population. The response period
was taken to be the time duration after a stimulus in which the
PSTH is above the mean value before stimulus (spontaneous
activity). True negative event refers to a situation in which there
was no stimulus and the activity did not cross the threshold.
We simulated continuous activity, and consequently, almost the
entire range of the simulation can account as True negative events.
Taking these events into account in the readout performance will
mask all other events. As a result, standard ROC analysis is not
appropriate measure for our network performance. We therefore
define a true positive ration (TPR) as a measure of performance:

TPR = TP

TP + FN + FP

We quantified the ability of the network to signal the occurrence
of the stimulus by calculating the maximal TPR (TPRmax) with
respect to readout population detection threshold, for each val-
ues of Pr and Nn (we assume that a readout neuron can learn the
optimal threshold, therefore it is not an important parameter in
our examination).

SYNCHRONY MEASURE
We calculated the global synchrony in the network as a nor-
malized standard deviation of network firing rate, following a
previous work (Golomb and Hansel, 2000):

syn =
√√√√ σ2

E
1

Ne

∑Ne
i σ2

Ei

σ2
E = 〈

E(t)2〉
t − 〈E(t)〉2

t

E(t) = 1

Ne

Ne∑
i

Ei(t)

σ2
Ei

= 〈
Ei(t)2〉

t − 〈Ei(t)〉2
t

Ei corresponds to firing rate of one unit (or neuron in the
Integrate-and-Fire (I&F) network). The firing rate of a neuron
in the I&F network was calculated with sliding window of 50 ms.

This synchrony measure is between 0 and 1, with 0 for asyn-
chronous activity and 1 for fully synchronized activity.

INTEGRATE AND FIRE NETWORK
Neurons were modeled as current based leaky integrate and fire
units (Dayan and Abbott, 2001). The voltage membrane potential
evolved according to the following equation:

τm
dVi

dt
= V0 − Vi + Rin [Isyn,i + ηi(t) + Aξi(t) + Fin(t)] (6)

where τm denotes the membrane time constant of a neuron, V0 is
the neuron resting potential, Isyn is the recurrent synaptic current,

ηi(t) represents a non-specific background current (to excitatory
neurons only) which was modeled as a time correlated noise, the
same current for every neuron at the same unit [see Equation (3)]
and ξi(t) represents a non-specific background current which was
modeled as a Gaussian white noise (different noise to each neu-
ron). In the following, we incorporated the input resistance of the
neuron, Rin, into the currents, which were therefore measured in
units of voltage (millivolts). Each time the membrane potential of
a neuron reached threshold (–40 mv), a spike was emitted; then
the neuron voltage was set to threshold voltage for 3 ms.

The synaptic current, Isyn, was modeled as a summation of
post-synaptic currents (PSCs) from all the pre-synaptic neurons
connected to neuron (i). The excitatory-to-excitatory connec-
tions exhibit STD, therefore the synaptic current to an excitatory
neuron follows the equation:

dIi
syn

dt
= − Ii

syn

τI
+

∑
sp

Ne∑
j

Aij · Prj · xjδj(t − t
sp
j )

+
∑

sp

Ni∑
j

Aijδj(t − t
sp
j ) (7)

The synaptic current to an inhibitory neuron is controlled by
the following equation:

dIi
syn

dt
= − Ii

syn

τI
+

∑
sp

Ne+Ni∑
j

Aijδj(t − tsp
i

) (8)

τI is the synaptic current time constant, Ne and Ni are the
number of excitatory and inhibitory neurons, respectively (Ne =
2000, Ni = 500).

The available synaptic resources (xi) decrease with every spike
and recover with a time constant (τrec):

dxi

dt
= 1 − xi

τrec
− Prixi

∑
sp

δ(t − t
sp
i ) (9)

The membrane resting potential and the synaptic parame-
ters (τrec, Pr) were Gaussian distributed across the neurons with
mean and variance given in Table 2. As before, we implemented
the transitions between behavioral states by changing <Pr> in
the range of 0.2–0.8. The membrane resting potential of the
excitatory cells was adjusted such that the mean firing rate of
the excitatory neurons was ∼2 Hz (the mean firing rate of the
inhibitory neurons varied between 0.5 Hz and 1 Hz).

The clustered architecture were constructed by assigning dif-
ferent connection probabilities between pairs of neurons belong-
ing to the same cluster (p1) compared to different clusters (p2)
and different synaptic efficacies (the synaptic efficacies were
five time larger in the connections within cluster than between
clusters) such that the ratio between the mean synaptic inputs
from within the cluster and from other clusters is p1 × 5/[p2 ×
(N − 1)] ≈ 2 (N is the number of groups, N = 20).
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Table 2 | Parameters of the Integrate and Fire networks.

Mean Variance

Tm 20 ms —

An 10[mV
√

ms], —

τn 10 ms —

A 10 mV —

AEE 4.43 mV —

AEI –2.215 mV —

AIE 1.1 mV —

AII –6.64 mV —

Pr 0.2–0.9 Mean/10

τrec 0.4 s Mean/10

V0 (–42)–(–48) mv 1.5 mv

τI 3 ms —

P1 0.165 —

P2 0.022 —

<V0> −45.375 −45.875 −46.525 −47.2 −47.8 −48.28 −48.5 −48.8

<Pr> 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The stimulus was simulated as pulses of a constant current
(Fin = 1.5 mV, duration of 50 ms) that occur as random refrac-
tory Poisson process with a constant rate of 2

3 Hz (the minimal
time interval between pulses is 1 s).

RESULTS
Inspired by experimental studies of cortical connectivity (Song
et al., 2005; Yoshimura et al., 2005), we modeled a cortical
column as a clustered recurrent network and explored its spon-
taneous dynamics and response to sensory stimulations. The
network is composed of several clusters, each one divided into
two units representing highly connected groups of excitatory and
inhibitory neurons, respectively. Connections between units of
different clusters are weaker then connections within clusters (see
Figure 1). We used rate equations for the network dynamics such
that each unit is described by one variable representing its average
firing rate (See “Methods”). The excitatory-to-excitatory con-
nections were endowed with activity dependent STD caused by
depletion of synaptic resources. A fraction of available synaptic
resources is utilized in response to an action potential and then
recovers with the corresponding time constant (Tsodyks et al.,
1998). In biological terms, this fraction reflects synaptic release
probability (Pr). In addition to sensory input each excitatory unit
receives random time-correlated noise current. (See “Methods”
for details of the model). The ability of the network to transfer
information about the occurrence of the stimulus was explored
by quantifying the response of a readout population to changes in
network activity following stimuli.

PARTIAL SYNCHRONIZATION IN CLUSTERED NETWORKS
Previous theoretical studies have shown that including STD
synapses in a homogenous recurrent network can result in PSs
as transient network instability for a certain range of parameters
(Tsodyks et al., 2000; Loebel and Tsodyks, 2002). In our network
we add noise to the excitatory units such that the PSs are triggered

by current fluctuations (Figure 2A). Noisy homogenous networks
with STD exhibit two dynamical regimes; asynchronous activity
and global synchronous activity. During the state of asynchronous
activity the units fluctuate around their mean firing rate while
during synchronous activity spontaneous synchronized PSs can
be observed. A new, intermediate dynamical regime exists in a
clustered network for which each unit can emit PS as a result of
synaptic input fluctuation, yet there is no complete synchroniza-
tion between the units (Figure 2A). The synchronous activity can
be controlled such that the network shifts gradually from state
of asynchronous activity to a global synchronization (Figure 2B),
consequently there is a continuum range of synchronization as
was suggested experimentally (Harris and Thiele, 2011).

Transmission of synchronized changes in pre-synaptic activity
via depressing synapses strongly depends on the release probabil-
ity; in particular, post-synaptic response becomes more transient
as Pr increases (Tsodyks and Markram, 1997). We therefore con-
jectured that Pr is the natural parameter for controlling PSs
in recurrent networks. Our simulations confirm this predic-
tion (Figure 2A). Small fluctuation in external inputs cannot be
enhanced by recurrent connections with low Pr, and increasing Pr
above a certain value enables units to produce PSs. If Pr is not too
large PS in one unit cannot initiate a PS in another unit, there-
fore there is no synchronization between the clusters. Increasing
Pr further results in higher effective synaptic connections within
and between the excitatory units, and in higher amplitude of PS,
such that PS in one unit trigger PS in other units and the whole
network synchronizes (Figure 2A).

While increasing the Pr, we decrease the average external cur-
rent into the excitatory units in order to keep the firing rate
constant, thus constraining the dynamics (Figure 2C).

Varying these two parameters simultaneously is biologically
plausible. For example, acetylcholine (ACh), which is a neuro-
modulator that is involved in the regulation of transition between
behavioral states (Steriade et al., 1993), both reduces the release

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 43 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mark and Tsodyks Population spikes in cortical network

FIGURE 1 | Network Architecture. Network is composed of clusters; each
one is divided into two units representing highly connected groups of
excitatory and inhibitory neural populations. All clusters are connected to
each other; the connections within clusters are stronger than the
connections between clusters. Excitatory neurons project feed—forward
connections to a readout population (R). The input to the readout population
is a summation over spike trains. The spike train of neurons from a certain
unit was constructed as a Poisson process with the corresponding rate.

probability in cortical pyramidal cells and depolarized the mem-
brane potential (McCormick and Prince, 1986; Giocomo and
Hasselmo, 2007).

OPTIMAL DYNAMICAL STATE
It was previously suggested that synchronization of neuronal
activity is important for signal propagation in the cortex (Abeles,
1991). We examined the effect of synchronization in the form of
PS on the flow of information between two networks representing
two distinct areas in the brain. The first is the network described
in the previous section which receives the sensory stimuli and the
second is a readout population. The sensory input is taken to be
an excitatory pulse that arrives at random times (See “Methods”).
The response of the network to stimuli is shown in Figure 3.

In order to consider how the network can transmit sensory
stimuli to higher cortical areas, we added a readout population
(R) that receives spike trains from the network (Figure 1). We
modeled spike trains emitted by excitatory neurons belonging to a
certain unit by constructing Poisson process with the correspond-
ing rate. Since the connectivity between different cortical areas is
very sparse (Anderson et al., 1998; Douglas and Martin, 2007),
we assume that the number of feed-forward neurons from each

FIGURE 2 | Network dynamics across different states. (A) Spontaneous
activity of the excitatory units (N is the unit label). The synchronization in
the network increases as a result of the increase in the release probability
(Pr). Pr = 0.2: asynchronous activity, Pr = 0.5: PSs can occur within units
but they are not synchronized. Pr = 0.9: Synchronous activity, PSs occur
simultaneously in different clusters. (B) The synchronization grows
smoothly with the release probability. (C) The mean resting potential was
adapted according to Pr such that the firing rate was kept constant across
the conditions.

excitatory unit (Nn) that are connected to the readout population
is small. Activity of the readout in response to stimuli is plotted in
Figure 4.

We quantified readout performance by defining events as
peaks of readout activity that cross a threshold and calculated
the ratio (TPR) between the number of events during stimulus
(true positive events-TP) and the sum of total number of events
and FNs (See “Methods”). The TPR is a function of the thresh-
old, thus we characterize the performance by the maximum of
the TPR (TPRmax), (we assume a readout can learn the optimum
threshold, therefore, it is not a parameter of our model).

The behavior of TPRmax as a function of Pr depends on the
sparseness of the readout connections (Nn). While for larger
values of Nn the performance as a function of the release
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FIGURE 3 | Network response to pulse stimuli. Three upper panels—
response of three networks illustrated in Figure 2A to external inputs.
Lower panel—inputs are shown as red pulses. Response amplitude grows
with the release probability (Pr) but spontaneous global synchronization is
observed with high Pr.

probability TPRmax(Pr) is a monotonically decreasing function of
Pr (Figure 5), for small enough values of Nn (sparse connectivity)
this function exhibits a peak at a certain value of Pr (Figure 5)
which corresponds to the regime of intermediate synchronization
in the network.

WHAT DETERMINES THE OPTIMAL STATE?
For small Pr, the amplitude of network response to external stim-
ulus is low, (Figure 3). This implies that for each input, only a
small and highly variable fraction of neurons will emit a spike.
Because the sampling of neurons by the readout is sparse, its
response will be unreliable (within the noise level, Figure 4A).
Consequently, the number of spontaneous events in the read-
out that cross the maximal PSTH value (nsp) is high. With large
Pr values, the magnitude of networks spontaneous events (PSs)
are in the same range as the responses (Figure 3), hence, nsp

is also high, independently on the number of sampled neurons
(Figure 6). For the intermediate level of Pr the PSs synchronized
across clusters as a result of stimuli while there is no spontaneous
PSs synchronization, therefore, nsp is small. Low values of nsp

enable a good performance for an appropriately chosen thresh-
old (Figure 4). With sparse connectivity, nsp has minimal value in

FIGURE 4 | Readout response to pulse stimuli. (A) Readout response to
external inputs (network parameters as in the three networks illustrated in
Figure 2A). (B) Examples of readout PSTH, ---- Pr = 0.2, – – Pr = 0.5, and
—— Pr = 0.9. (C) Readout response amplitude grows with the release
probability (Pr). Nn = 5 in all of the panels.

the regime of local PSs (Figure 6) that corresponds to maximal
TPRmax(Figure 5).

In summary, Network and readout responses to stimuli are
growing with Pr (Figures 3, 4), but spontaneous synchronized
events occur for networks with high Pr (Figure 3), which can be
erroneously recognized by the readout as inputs (false alarms).
Hence, the fully synchronized regime is not beneficial for flow
of sensory information. In the regime of intermediate synchro-
nization, network response to stimuli is stronger than in the
asynchronous state, while there are less FP events (Figure 3).
Stronger network response results in higher probability of each
neuron to fire action potentials in response to stimuli and conse-
quently the flow of information in the sparsely connected cortex
is more reliable. This advantage disappears when the sampling
size (Nn) increases and thus the optimal Pr shifts to smaller
values.

INTEGRATE AND FIRE NETWORKS
In order to verify that the results obtained with the rate
model remain valid in a more realistic model, we simulated
networks of I&F spiking neurons (See “Methods”). The three
dynamical regimes: asynchronous dynamics, local synchroniza-
tion and global synchronization, were also observed in I&F net-
works (Figures 7A,B). The optimal regime for information flow
between sparsely connected networks is again the intermediate
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FIGURE 5 | Readout performance as a function of the release

probability. TPRmax is plotted as a function of the release probability (Pr)
separately for each number of projecting neurons from each cluster (Nn).
The optimum TPRmax depends on Nn; for Nn < 9 the maximum appears

in the regime of localized spontaneous PSs, while with higher Nn,
the maximum shifts to the regime of asynchronous activity. With dense
connectivity, the performance becomes a monotonically decreasing
function of Pr.

FIGURE 6 | Spontaneous peaks in activity. The number of spontaneous
events that cross the maximal PSTH value (nsp) as a function of the Pr.

dynamical regime (Figure 7C). Only with denser sampling, (more
than Nn = 9, approximately 10% of the network neurons), the
performance becomes a monotonically decreasing function of Pr.
The problem of sparse connectivity will be even more acute if we
consider a more realistic case of noisy readout (not shown).

DISCUSSION
We proposed a mechanism by which the synchronization of net-
work activity can be generated and regulated. As previous studies
showed, homogenous networks with STD exhibit two dynamical

regimes: asynchronous and globally synchronized activity in the
form of PS. In this study we modeled a cortical column as a
clustered recurrent network. We report that networks with clus-
tered architecture possess a new dynamical regime in which
groups of neurons (clusters) emit PSs that are not fully synchro-
nized between the groups. This regime is further divided into a
continuum of states with gradually changing levels of global syn-
chronization that can be controlled by network parameters, as was
suggested by experiments (Harris and Thiele, 2011). We showed
that reduction in release probability results in de-synchronization
of neuronal activity.

Our proposed mechanism for transition between dynamical
states may be implemented in the cortex by neuromodulators
such as ACh (Goard and Dan, 2009). ACh can regulate STD in
the cortex by its effect on the probability of neurotransmitter
release (Tsodyks and Markram, 1997), therefore controlling the
synchronization that is generated in the cortex by the mechanism
proposed in this study. Indeed, ACh is involved in the regulation
of transition between behavioral states, in particular, its secretion
increases in the cortex when the animal is in the alert state (Perry
et al., 1999; Giocomo and Hasselmo, 2007).

Previous work demonstrated variable dynamic state, with dif-
ferent synchrony levels, in recordings of cortical activity in the
urethane anesthetized rats. The data was fitted to a dynami-
cal system such that every state characterized by different set of
parameters. They showed that the synchronized cortical states can
be modeled as self-exciting system while the most desynchronized
state is better approximated with a linear dynamics (Curto et al.,
2009). Here we used biologically plausible dynamics in which cor-
tical state is regulated via the release probability that controls
the non-linearity of the dynamics; therefore shift it from non-
linear in the synchronized state to approximately linear in the
desynchronized state.
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FIGURE 7 | Integrate and Fire network exhibits the same

dynamical regimes as in the rate model. (A) Raster plot shows
spontaneous activities of excitatory neurons during three different
dynamical regimes corresponding to different values of the release
probability; asynchronous, localized synchronization, and global
synchronization. (B) Network exhibits a continuum range of
synchronization (C) The optimal regime for information transfer
depends on the connectivity to the readout population as in the rate
model, (Nn : ——— one connection for every third cluster, ---- Nn = 1 and
– – Nn = 9 connections from each cluster).

It has been suggested that synchronization of neuronal activity
is beneficial for information flow in the sparsely connected cortex
(Singer, 1993). In our model, during PSs the neurons have higher
probability to fire as a result of the synchronous activity; therefore

it may be a mechanism by which primary cortical populations
overcome their sparse connectivity to remote areas in the brain
in order to transfer further the sensory information. However,
it has some disadvantages: large activity during PS synchro-
nizes the clusters and increases the occurrence of false detections.
Depletion in the synaptic resources, as a result of synchronous
PSs, prevents column responses to an incoming stimulus that
appears in a short time interval after strong synchronous net-
work event. Our simulation results imply that the best regime for
information transfer would be when PSs occur within clusters but
there is no synchronization across clusters.

Further suggestions can be made concerning the possible role
of clustered architecture. Inspired by the patchy long distance
connection in primary sensory areas (Gilbert and Wiesel, 1989;
Amir et al., 1993) and the binding theory (Singer, 1993), we can
hypothesize that different clusters which belong to the same col-
umn, responding to the same feature such as orientation, tone
etc, are involved in the coding of complex stimuli (such as com-
bination of features) by synchronized their activity with part
of other columns clusters. Then, synchronous PSs increase the
noise correlation between the clusters which may encode dif-
ferent complex stimuli. The regime of asynchronous PSs within
groups will be also more beneficial in encoding these various fea-
tures combinations. Moreover, it may be interesting to examine
what can be the functional role of the other dynamical regimes.
For example, it has been suggested that synchronous activity is
important for plasticity (Singer, 1993; Sejnowski and Destexhe,
2000), therefore it may be interesting to examine what could
be the effect of PS generation and synchronization on memory
consolidation.

In summary, our results illustrate that the cortical networks
can exhibit very different activity regimes most suitable for a par-
ticular behavioral state. In the case of sensory processing that we
considered in this study, choosing the right regime is beneficial
for signaling the sensory inputs to higher brain areas. We believe,
however, that all the cortical circuits are capable of performing
several functions, and have to be tuned to the particular behavior
depending on the computational demands of the area. The mech-
anisms by which the brain can achieve this tuning are probably
diverse and should be a subject of further theoretical studies.
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