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This paper considers state-dependent dynamics that mediate perception in the brain. In
particular, it considers the formal basis of self-organized instabilities that enable perceptual
transitions during Bayes-optimal perception. The basic phenomena we consider are
perceptual transitions that lead to conscious ignition (Dehaene and Changeux, 2011) and
how they depend on dynamical instabilities that underlie chaotic itinerancy (Breakspear,
2001; Tsuda, 2001) and self-organized criticality (Beggs and Plenz, 2003; Plenz and
Thiagarajan, 2007; Shew et al., 2011). Our approach is based on a dynamical formulation
of perception as approximate Bayesian inference, in terms of variational free energy
minimization. This formulation suggests that perception has an inherent tendency to
induce dynamical instabilities (critical slowing) that enable the brain to respond sensitively
to sensory perturbations. We briefly review the dynamics of perception, in terms of
generalized Bayesian filtering and free energy minimization, present a formal conjecture
about self-organized instability and then test this conjecture, using neuronal (numerical)
simulations of perceptual categorization.
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INTRODUCTION
Perceptual categorization speaks to two key dynamical phenom-
ena: transitions from one perceptual state to another and the
dynamical mechanisms that permit this transition. In terms of
perceptual transitions, perception can be regarded as the selec-
tion of a single hypothesis from competing alternatives that
could explain sensations (Gregory, 1980). This selection necessar-
ily entails a change in the brain’s representational or perceptual
state—that may be unconscious in the sense of Helmholtz’s
unconscious inference or conscious. The implicit transition
underlies much of empirical neuroscience (for example, event
related potentials and brain activation studies) and has been
invoked to understand how sensory information “goes beyond
unconscious processing and gains access to conscious processing,
a transition characterized by the existence of a reportable sub-
jective experience” (Dehaene and Changeux, 2011). Dehaene and
Changeux review converging neurophysiological data, acquired
during conscious and unconscious processing, that speaks to
the neural signatures of conscious access: late amplification of
relevant sensory activity, long-distance cortico-cortical synchro-
nization and ignition of a large-scale prefronto-parietal network.
The notion of ignition calls on several dynamical phenomena that
characterize self-organization; such as, distributed processing in
coupled non-linear systems, phase transitions and metastability:
see also (Fisch et al., 2009). In what follows, we ask whether the
underlying dynamical mechanisms that lead to perceptual tran-
sitions and consequent ignition can be derived from basic prin-
ciples; and, if so, what does this tell us about the self-organized
brain.

ITINERANCY AND SELF-ORGANIZATION
One of the most ubiquitous (and paradoxical) dynamical features
of self-organizing and autopoietic systems (Maturana and Varela,
1980) is their predisposition to destroy their own fixed points. We
have referred to this as autovitiation to emphasise the crucial role
that self-induced instabilities play in maintaining peripatetic or
itinerant (wandering) dynamics (Friston, 2010; Friston and Ao,
2012). The importance of itinerancy has been articulated many
times in the past (Nara, 2003), particularly from the perspective
of computation and autonomy (van Leeuwen, 2008). Itinerancy
provides a link between exploration and foraging in ethology
(Ishii et al., 2002) and dynamical systems theory approaches
to the brain (Freeman, 1994) that emphasise the importance
of chaotic itinerancy (Tsuda, 2001) and self-organized critically
(Beggs and Plenz, 2003; Pasquale et al., 2008; Shew et al., 2011).
Itinerant dynamics also arise from metastability (Jirsa et al., 1994)
and underlie important phenomena like winnerless competition
(Rabinovich et al., 2008).

The vitiation of fixed points or attractors is a mechanism
that appears in several guises and has found important appli-
cations in a number of domains. For example, it is closely
related to the notion of autopoiesis and self-organization in sit-
uated (embodied) cognition (Maturana and Varela, 1980). It
is formally related to the destruction of gradients in syner-
getic treatments of intentionality (Tschacher and Haken, 2007).
Mathematically, it finds a powerful application in universal opti-
mization schemes (Tyukin et al., 2003) and, indeed, as a model of
perceptual categorization (Tyukin et al., 2009). In what follows,
we briefly review the dynamical scenarios that support itinerant
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dynamics: chaotic itinerancy, heteroclinic cycling and multi-stable
switching.

Chaotic itinerancy
Chaotic itinerancy refers to the behavior of complicated (usu-
ally coupled non-linear) systems that possess weakly attracting
sets—Milnor attractors—with basins of attraction that are very
close to each other. Their proximity destabilises the Milnor attrac-
tors to create attractor ruins, which allow the system to leave
one attractor and explore another, even in the absence of noise.
A Milnor attractor is chaotic attractor—onto which the system
settles from a set of initial conditions—with positive measure
(volume). However, another set of initial conditions (also with
positive measure) that belong to the basin of another attractor can
be infinitely close; this is called attractor riddling. Itinerant orbits
typically arise from unstable periodic orbits that reside in (are
dense within) the attractor, where the heteroclines of unstable
orbits typically connect to another attractor, or they just wander
out into state space and then back onto the attractor, giving rise to
bubbling. In other words, unstable manifolds from saddles densely
embedded in the attractors become stable manifolds and connect
different attractors. This is a classic scenario for intermittency—in
which the dynamics are characterized by long laminar (ordered)
periods as the system approaches a Milnor attractor and brief tur-
bulent phases, when it gets close to an unstable manifold. If the
number of periodic orbits is large, then this can happen indefi-
nitely, because the chaotic Milnor attractor is ergodic. Ergodicity
is an important concept and is also a key element of the free
energy principle. The term ergodic is used to describe a dynamical
system that has the same behavior averaged over time as averaged
over its states. The celebrated ergodic theorem is due to Birkhoff
(Birkhoff, 1931), and concerns the behavior of systems that have
been evolving for a long time: intuitively, an ergodic system for-
gets its initial states, such that the probability a system is found
in any state becomes—for almost every state—the proportion of
time that state is occupied. See (Breakspear, 2004) for further dis-
cussion and illustrations. See (Namikawa, 2005) for discussion
of chaotic itinerancy and power law residence times in attractor
ruins.

The notion of Milnor attractors underlies much of the techni-
cal and cognitive literature on itinerant dynamics. For example,
one can explain “a range of phenomena in biological vision, such
as mental rotation, visual search, and the presence of multiple
time scales in adaptation” using the concept of weakly attracting
sets (Tyukin et al., 2009). The common theme here is the induc-
tion of itinerancy through the destabilisation of attracting sets
or the gradients causing them (Tschacher and Haken, 2007). The
ensuing attractor ruins or relics (Gros, 2009) provide a framework
for heteroclinic orbits that are ubiquitous in electrophysiology
(Breakspear and Stam, 2005), cognition (Bressler and Tognoli,
2006) and large-scale neuronal dynamics (Werner, 2007).

Heteroclinic cycling
In heteroclinic cycling there are no attractors, not even Milnor
ones (or at least there is a large open set in state space with no
attractors)—only saddles connected one to the other by hete-
roclinic orbits. A saddle is a point (invariant set) that has both

attracting (stable) and repelling (unstable) manifolds. A het-
eroclinic cycle is a topological circle of saddles connected by
heteroclinic orbits. If a heteroclinic cycle is asymptotically stable,
the system spends longer and longer periods of time in a neigh-
borhood of successive saddles; producing a peripatetic wandering
through state space. The resulting heteroclinic cycles have been
proposed as a metaphor for neuronal dynamics that underlie cog-
nitive processing (Rabinovich et al., 2008) and exhibit important
behaviors such as winnerless competition, of the sort seen in cen-
tral pattern generators in the motor system. Heteroclinic cycles
have also been used as generative models in the perception of
sequences with deep hierarchical structure (Kiebel et al., 2009).

Multi-stability and switching
In multistability, there are typically a number of classical
attractors—stronger than Milnor attractors in the sense that their
basins of attraction not only have positive measure but are also
open sets. Open sets are just sets of points that form a neigh-
borhood: in other words, one can move a point in any direction
without leaving the set—like the interior of a ball, as opposed to
its surface. These attractors are not connected, but rather sepa-
rated by a basin boundary. However, they are weak in the sense
that the basins are shallow (but topologically simple). System
noise is then required to drive the system from attractor one to
another—this is called switching.

Noise plays an obligate role in switching; however, is not a
prerequisite for heteroclinic cycling but acts to settle the excur-
sion time around the cycle onto some characteristic time scale.
Without noise, the system will gradually slow as it gets closer
and closer (but never onto) the cycle. In chaotic itinerancy, the
role of noise is determined by the geometry of the instabilities.
Multi-stability underlies much of the work on attractor network
models of perceptual decisions and categorization; for example,
in binocular rivalry (Theodoni et al., 2011).

ITINERANCY AND CRITICAL SLOWING
All three scenarios considered above rest on a delicate balance
between dynamical stability and instability: chaotic itinerancy
requires weakly attracting sets that have unstable manifolds; het-
eroclinic cycles are based on saddles with unstable manifolds and
switching requires classical attractors with shallow basins that
can be destabilized by noise. In terms of linear stability analysis,
dynamical instability requires the principal Lyapunov exponent—
describing the local exponential divergence of flow—to be greater
than zero. Generally, when a negative principal Lyapunov expo-
nent approaches zero from below, systems approach a phase
transition and exhibit critical slowing. Lyapunov exponents are
based on a local linear approximation to flow and describe the
rate of exponential decay of small fluctuations about the flow. As
the Lyapunov exponents approach zero these fluctuations decay
more slowly. However, at some point very near the instability,
the local linearization breaks down and higher order non-linear
terms from the Taylor series expansion dominate (or at least con-
tribute). At this stage, the system’s memory goes from an expo-
nential form to a power law and the fluctuations no longer decay
exponentially but can persist, inducing correlations over large
distances and timescales. For example, in the brain, long-range
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cortico-cortical synchronization may be evident over several cen-
timetres and show slow fluctuations (Breakspear et al., 2010). This
phenomenon is probably best characterized in continuous phase
transitions in statistical physics, where it is referred to as critical-
ity. The possibility that critical regimes—in which local Lyapunov
exponents fluctuate around zero—are themselves attracting sets
leads to the notion of self-organized criticality (Bak et al., 1987).

In what follows, critical slowing is taken to mean that one or
more local Lyapunov exponents approach zero from below. Note
that critical slowing does not imply the dynamics per se are slow;
it means that unstable modes of behavior decay slowly. Indeed,
as the principal Lyapunov exponent approaches zero from below,
the system can show fast turbulent flow as in intermittency. In
what follows, we explore the notion that any self-organizing sys-
tem that maintains a homoeostatic and ergodic relationship with
its environment will tend to show critical slowing. In fact, we
will conjecture that critical slowing is mandated by the very pro-
cesses that underwrite ergodicity. In this sense, the existence of a
self-organizing (ergodic) system implies that it will exhibit critical
slowing. Put another way, self-organized critical slowing may be a
necessary attribute of open ergodic systems.

In the context of self-organized neuronal activity, we will con-
jecture that perceptual inference mandates critical slowing and
is therefore associated with phase transitions and long-range
correlations—of the sort that may correspond to the ignition
phenomena considered in (Dehaene and Changeux, 2011). So
what qualifies the brain as ergodic? Operationally, this simply
means that the probability of finding the brain in a particular
state is proportional to the number of times that state is visited.
In turn, this implies that neuronal states are revisited over suffi-
ciently long periods of time. This fundamental and general form
of homoeostasis is precisely what the free energy principle tries to
explain.

OVERVIEW
In this paper, we focus on a rather elementary form of self-
organized instability; namely the autovitiation of stable dynamics
during (Bayes-optimal) perception. In brief, if neuronal activity
represents the causes of sensory input, then it should represent
uncertainty about those causes in a way that precludes overly
confident representations. This means that neuronal responses
to stimuli should retain an optimal degree of instability that
allows them to explore alternative hypotheses about the causes
of those stimuli. To formalise this intuition, we consider neu-
ronal dynamics as performing Bayesian inference about the causes
of sensations, using a gradient descent on a (variational free
energy) bound on the surprise induced by sensory input. This
allows us to examine the stability of this descent in terms of
Lyapunov exponents and how local Lyapunov exponents should
behave. We will see that the very nature of free energy minimiza-
tion produces local Lyapunov exponents that fluctuate around
small (near zero) values. In other words, Bayes-optimal percep-
tion has an inherent tendency to promote critical slowing, which
may be necessary for perceptual transitions and consequent
categorization.

This paper comprises four sections. The first section
reviews Bayes-optimal inference in the setting of free energy

minimization to establish the basic imperatives for neuronal
activity. In the second section, we look at neuronal implementa-
tions of free energy minimization, in terms of predictive coding,
and how this relates to the anatomy and physiology of message
passing in the brain. In the third section, we consider the dynam-
ics of predictive coding in terms of generalized synchronization
and Lyapunov exponents. This section establishes a conjecture
that predictive coding will necessarily show self-organized insta-
bility. The conjecture is addressed numerically using neuronal
simulations of perceptual categorization in the final section. We
conclude with a brief discussion of self-organization, over differ-
ent scales, in relation to the optimality principles on which this
approach is based.

THE FREE ENERGY PRINCIPLE
This section establishes the nature of Bayes-optimal inference in
the context of self-organized exchanges with the world. It starts
with the basic premise that underlies free energy minimization;
namely, the imperative to minimize the dispersion of sensory
states to ensure a homoeostasis of the external and internal milieu
(Ashby, 1947). We show briefly how action and perception follow
from this imperative and highlight the central role of minimizing
free energy. This section develops the ideas in a rather compact
and formal way. Readers who prefer a nonmathematical descrip-
tion could skip to the summary and discussion of the results at
the end of this section.

NOTATION AND SET UP
We will use X : � → R for real valued random variables
and x ∈ X for particular values. A probability density will be
denoted by p(x) = Pr{X = x} using the usual conventions and its
entropy H[p(x)] by H(X). The tilde notation x̃ = (x, x′, x′′, . . .)

denotes variables in generalized coordinates of motion, using
the LaGrange notation for temporal derivatives (Friston, 2008).
Finally, E[·] denotes an expectation or average. For simplicity,
constant terms will be omitted from equalities.

In what follows, we would consider free energy minimization
in terms of active inference: Active inference rests on the tuple
(�,�, S, A, R, q, p) that comprises the following:

• A sample space � or non-empty set from which random
fluctuations or outcomes ω ∈ � are drawn.

• Hidden states � : � × A × � → R that constitute the dynam-
ics of states of the world that cause sensory states and depend
on action.

• Sensory states S : � × A × � → R that correspond to the
agent’s sensations and constitute a probabilistic mapping from
action and hidden states.

• Action A : S × R → R that corresponds to action emitted by
an agent and depends on its sensory and internal states.

• Internal states R : R × S × � → R that constitute the dynam-
ics of states of the agent that cause action and depend on
sensory states.

• Conditional density q(ψ̃) := q(ψ̃|μ̃)—an arbitrary probability
density function over hidden states ψ̃ ∈ � that is parameter-
ized by internal states μ̃ ∈ R.

• Generative density p( s̃, ψ̃|m)—a probability density function
over external (sensory and hidden) states under a generative
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model denoted by m. This model specifies the Gibbs energy of
any external states: G( s̃, ψ̃) = −In p( s̃, ψ̃|m).

We assume that the imperative for any biological system is
to minimize the dispersion of its sensory states, with respect
to action: mathematically, this dispersion corresponds to the
(Shannon) entropy of the probability density over sensory states.
Under ergodic assumptions, this entropy is equal to the long-term
time average of surprise (almost surely):

H(S) = Et[L( s̃(t))]
L = −In p( s̃(t)|m)

(1)

Surprise (or more formally surprisal or self information) L( s̃)
is defined by the generative density or model. This means that the
entropy of sensory states can be minimized through action

a(t) = arg min
a ∈ A

{L( s̃(t))} (2)

When Equation (2) is satisfied, the variation of entropy in
Equation (1) with respect to action is zero, which means sensory
entropy has been minimized (at least locally). From a statistical
perspective, surprise is called negative log evidence, which means
that minimizing surprise is the same as maximizing the Bayesian
model evidence for the agent’s generative model.

ACTION AND PERCEPTION
Action cannot minimize sensory surprise directly (Equation 2)
because this would involve an intractable marginalization over
hidden states (an impossible averaging over all hidden states to
obtain the probability density over sensory states)—so surprise
is replaced with an upper bound called variational free energy
(Feynman, 1972). This free energy is a functional of the condi-
tional density or a function of the internal states that parameterise
the conditional density. The conditional density is a key concept
in inference and is a probabilistic representation of the unknown
or hidden states. It is also referred to as the recognition density.
Unlike surprise, free energy can be quantified because it depends
only on sensory states and the internal states that parameterise the
conditional density. However, replacing surprise with free energy
means that internal states also have to minimize free energy, to
ensure it is a tight bound on surprise:

a(t) = arg min
a ∈ A

{F( s̃(t), μ̃(t))}

μ̃(t) = arg min
μ̃∈ R

{F( s̃(t), μ̃)}

F = Eq[G( s̃, ψ̃)] − H[q(ψ̃|μ̃)]
= L( s̃) + D[q(ψ̃)‖ p(ψ̃| s̃, m)] ≥ L( s̃)

(3)

This induces a dual minimization with respect to action and
the internal states. These minimizations correspond to action and
perception respectively. In brief, the need for perception is induced
by introducing free energy to finesse the evaluation of surprise;
where free energy can be evaluated by an agent fairly easily, given
a Gibbs energy or generative model. Gibbs energy is just the

surprise or improbability associated with a combination of sen-
sory and hidden states. This provides a probabilistic specification
of how sensory states are generated from hidden states. The last
equality above says that free energy is always greater than surprise
because the second (Kullback-Leibler divergence) term is non-
negative. This means that when free energy is minimized with
respect to the internal states, free energy approximates surprise
and the conditional density approximates the posterior density
over hidden states:

D[q(ψ̃)‖ p(ψ̃|s̃, m)] ≈ 0 ⇒
{

F( s̃, μ̃) ≈ L( s̃)
q(ψ̃) ≈ p(ψ̃|s̃, m)

(4)

This is known as approximate Bayesian inference, which
becomes exact when the conditional and posterior densities have
the same form (Beal, 2003). The only outstanding issue is the
form of the conditional density adopted by an agent:

THE MAXIMUM ENTROPY PRINCIPLE AND THE LAPLACE
ASSUMPTION
If we admit an encoding of the conditional density up to second
order moments, then the maximum entropy principle (Jaynes,
1957) implicit in the definition of free energy (Equation 3)
requires q(ψ̃|μ̃) = N (μ̃,�) to be Gaussian. This is because a
Gaussian density has the maximum entropy of all forms that can
be specified with two moments. Assuming a Gaussian form is
known as the Laplace assumption and enables us to express the
entropy of the conditional density in terms of its first moment
or expectation. This follows because we can minimize free energy
with respect to the conditional covariance as follows:

F = G( s̃, μ̃) + 1

2
tr(� · ∂μ̃μ̃G) − 1

2
In|�|

⇒ ∂�F = 1

2
∂μ̃μ̃G − 1

2
�

∂�F = 0 ⇒
{

� = ∂μ̃μ̃G

F = G( s̃, μ̃) + 1
2 In|∂μ̃μ̃G|

(5)

Here, the conditional precision �( s̃, μ̃) is the inverse of the
conditional covariance �( s̃, μ̃). In short, free energy is a func-
tion of the conditional expectations (internal states) and sensory
states.

SUMMARY
To recap, we started with the assumption that biological sys-
tems minimize the dispersion or entropy of sensory states to
ensure a sustainable and homoeostatic exchange with their envi-
ronment (Ashby, 1947). Clearly, this entropy cannot be measured
or changed directly. However, if agents know how their action
changes sensations (for example, if they know contracting cer-
tain muscle fibres will necessarily excite primary sensory afferents
from stretch receptors), then they can minimize the dispersion
of their sensory states by countering surprising deviations from
their predictions. Minimizing surprise through action is not as
straightforward as it might seem, because surprise per se is an
intractable quantity to estimate. This is where free energy comes
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in—to provide an upper bound that enables agents to minimize
free energy instead of surprise. However, in creating the upper
bound, the agent now has to minimize the difference between
surprise and free energy by changing its internal states. This
corresponds to perception and makes the conditional density
an approximation to the true posterior density in a Bayesian
sense (Helmholtz, 1866/1962; Gregory, 1980; Ballard et al., 1983;
Dayan et al., 1995; Friston, 2005; Yuille and Kersten, 2006). See
Figure 1 for a schematic summary. We now turn to neurobi-
ological implementations of this scheme, with a special focus
on hierarchical message passing in the brain and the associated
neuronal dynamics.

NEUROBIOLOGICAL IMPLEMENTATION OF ACTIVE
INFERENCE
In this section, we take the general principles above and consider
how they might be implemented in the brain. The equations in
this section may appear a bit complicated; however, they are based
on just three assumptions:

• The brain minimizes the free energy of sensory inputs defined
by a generative model.

• The generative model used by the brain is hierarchical, non-
linear and dynamic.

• Neuronal firing rates encode the expected state of the world,
under this model.

The first assumption is the free energy principle, which leads
to active inference in the embodied context of action. The sec-
ond assumption is motivated easily by noting that the world is
both dynamic and non-linear and that hierarchical causal struc-
ture emerges inevitably from a separation of temporal scales
(Ginzburg and Landau, 1950; Haken, 1983). The final assumption
is the Laplace assumption that, in terms of neural codes, leads to
the Laplace code, which is arguably the simplest and most flexible
of all neural codes (Friston, 2009).

Given these assumptions, one can simulate a whole variety
of neuronal processes by specifying the particular equations that
constitute the brain’s generative model. The resulting perception
and action are specified completely by the above assumptions and
can be implemented in a biologically plausible way as described
below (see Table 1 for a list of previous applications of this
scheme). In brief, these simulations use differential equations that
minimize the free energy of sensory input using a generalized
gradient descent (Friston et al., 2010).

˙̃μ(t) = Dμ̃(t) − ∂μ̃F( s̃, μ̃)

ȧ(t) = −∂aF( s̃, μ̃)
(6)

These coupled differential equations describe perception and
action respectively and just say that internal brain states and
action change in the direction that reduces free energy. The first
is known as (generalized) predictive coding and has the same

FIGURE 1 | This schematic shows the dependencies among various

quantities modelling exchanges of a self-organizing system like the

brain with the environment. It shows the states of the environment and
the system in terms of a probabilistic dependency graph, where connections
denote directed dependencies. The quantities are described within the
nodes of this graph, with exemplar forms for their dependencies on other

variables (see main text). Here, hidden and internal states are separated by
action and sensory states. Both action and internal states encoding a
conditional density minimize free energy. Note that hidden states in the real
world and the form of their dynamics are different from that assumed by
the generative model; this is why hidden states are in bold. See main text
for details.
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Table 1 | Processes and paradigms that have been modelled using

generalized filtering.

Domain Process or paradigm

Perception Perceptual categorization (bird songs) (Friston and
Kiebel, 2009a)
Novelty and omission-related responses (Friston and
Kiebel, 2009b)

Perceptual inference (speech) (Kiebel et al., 2009)

Illusions The Cornsweet illusion and Mach bands (Brown and
Friston, 2012)

Sensory
learning

Perceptual learning (mismatch negativity) (Friston and
Kiebel, 2009a,b)

Attention Attention and the Posner paradigm (Feldman and
Friston, 2010)
Attention and biased competition (Feldman and
Friston, 2010)

Motor control Retinal stabilization and oculomotor reflexes (Friston
et al., 2010)
Orienting and cued reaching (Friston et al., 2010)
Motor trajectories and place cells (Friston et al., 2011)

Sensorimotor
integration

Bayes-optimal sensorimotor integration (Friston et al.,
2010)

Visual search Saccadic eye movements (Friston et al., 2012)

Behavior Heuristics and dynamical systems theory (Friston and
Ao, 2012)
Goal-directed behavior (Friston et al., 2009)

Action observa-
tion

Action observation and mirror neurons (Friston et al.,
2011)

Action selection Affordance and sequential behavior (Friston et al.,
2012)

form as Bayesian (e.g., Kalman-Bucy) filters used in time series
analysis; see also (Rao and Ballard, 1999). The first term in
Equation (6) is a prediction based upon a matrix differential
operator D that returns the generalized motion of conditional
expectations, such that Dμ̃ = (μ′, μ′′, μ′′, . . .). The second term
is usually expressed as a mixture of prediction errors that ensures
the changes in conditional expectations are Bayes-optimal pre-
dictions about hidden states of the world. The second differential
equation says that action also minimizes free energy. The dif-
ferential equations are coupled because sensory input depends
upon action, which depends upon perception through the condi-
tional expectations. This circular dependency leads to a sampling
of sensory input that is both predicted and predictable, thereby
minimizing free energy and surprise.

To perform neuronal simulations using this generalized
descent, it is only necessary to integrate or solve Equation (6) to
simulate neuronal dynamics that encode the conditional expecta-
tions and ensuing action. Conditional expectations depend upon
the brain’s generative model of the world, which we assume has
the following (hierarchical) form

s = g(1)(x(1), v(1), u(1)) + ω(1)
v

ẋ(1) = f (1)(x(1), v(1), u(1)) + ω(1)
x

... (7)

v(i−1) = g(i)(x(i), v(i), u(i)) + ω(i)
v

ẋ(i) = f (i)(x(i), v(i), u(i)) + ω(i)
x

...

This equation is just a way of writing down a model that spec-
ifies the generative density over the sensory and hidden states,
where the hidden states � = X × V have been divided into hid-
den dynamic states and causes. Here, (g(i), f (i)) are non-linear
functions of hidden states that generate sensory inputs at the first
(lowest) level, where for notational convenience, v(0) := s.

Hidden causes V ⊂ � can be regarded as functions of hidden
dynamic states; hereafter, hidden states X ⊂ � . Random fluctu-

ations (ω
(i)
x , ω

(i)
v ) on the motion of hidden states and causes are

conditionally independent and enter each level of the hierarchy.
It is these that make the model probabilistic—they play the role
of sensory noise at the first level and induce uncertainty about
states at higher levels. The (inverse) amplitudes of these random

fluctuations are quantified by their precisions (�
(i)
x , �

(i)
v ), which

we assume to be fixed in this paper (but see conclusion). Hidden
causes link hierarchical levels, whereas hidden states link dynam-
ics over time. Hidden states and causes are abstract quantities that
the brain uses to explain or predict sensations (like the motion
of an object in the field of view). In hierarchical models of this
sort, the output of one level acts as an input to the next. This
input can produce complicated (generalized) convolutions with
deep (hierarchical) structure.

PERCEPTION AND PREDICTIVE CODING
Given the form of the generative model (Equation 7) we can now
write down the differential equations (Equation 6) describing
neuronal dynamics in terms of (precision-weighted) prediction
errors on the hidden causes and states. These errors represent the
difference between conditional expectations and predicted values,
under the generative model (using A · B := AT B and omitting
higher-order terms):

˙̃μ(i)
x = Dμ̃(i)

x + ∂ g̃(i)

∂μ̃
(i)
x

· ξ(i)
ν + ∂ f̃ (i)

∂μ̃
(i)
x

· ξ(i)
x − DTξ(i)

x

˙̃μ(i)
ν = Dμ̃(i)

ν + ∂ g̃(i)

∂μ̃
(i)
ν

· ξ(i)
v + ∂ f̃ (i)

∂μ̃
(i)
ν

T

· ξ(i)
x − ξ(i+1)

ν

ξ(i)
x = �(i)

x (Dμ̃(i)
x − f̃ (i)(μ̃(i)

x , μ̃(i)
ν ))

ξ(i)
ν = �(i)

ν (μ̃(i−1)
ν − g̃(i)(μ̃(i)

x , μ̃(i)
ν ))

(8)

Equation (8) can be derived fairly easily by computing the free
energy for the hierarchical model in Equation (7) and inserting its
gradients into Equation (6). This gives a relatively simple update
scheme, in which conditional expectations are driven by a mixture
of prediction errors, where prediction errors are defined by the
equations of the generative model.

It is difficult to overstate the generality and importance of
Equation (8): its solutions grandfather nearly every known sta-
tistical estimation scheme, under parametric assumptions about
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additive or multiplicative noise (Friston, 2008). These range from
ordinary least squares to advanced variational deconvolution
schemes. The resulting scheme is called generalized filtering or
predictive coding (Friston et al., 2010). In neural network terms,
Equation (8) says that error-units receive predictions from the
same level and the level above. Conversely, conditional expec-
tations (encoded by the activity of state units) are driven by
prediction errors from the same level and the level below. These
constitute bottom-up and lateral messages that drive conditional
expectations toward a better prediction to reduce the prediction
error in the level below. This is the essence of recurrent mes-
sage passing between hierarchical levels to optimize free energy
or suppress prediction error: see (Friston and Kiebel, 2009a) for
a more detailed discussion. In neurobiological implementations
of this scheme, the sources of bottom-up prediction errors, in
the cortex, are thought to be superficial pyramidal cells that send
forward connections to higher cortical areas. Conversely, pre-
dictions are conveyed from deep pyramidal cells, by backward
connections, to target (polysynaptically) the superficial pyra-
midal cells encoding prediction error (Mumford, 1992; Friston
and Kiebel, 2009a,b). Figure 2 provides a schematic of the pro-
posed message passing among hierarchically deployed cortical

areas. Although this paper focuses on perception, for complete-
ness we conclude this section by looking at the neurobiology of
action.

ACTION
In active inference, conditional expectations elicit behavior by
sending top-down predictions down the hierarchy that are
unpacked into proprioceptive predictions at the level of the cra-
nial nerve nuclei and spinal-cord. These engage classical reflex
arcs to suppress proprioceptive prediction errors and produce the
predicted motor trajectory

ȧ = − ∂

∂a
F = − ∂ s̃

∂a
· ξ(1)

v (9)

The reduction of action to classical reflexes follows because the
only way that action can minimize free energy is to change sensory
(proprioceptive) prediction errors by changing sensory signals;
cf., the equilibrium point formulation of motor control (Feldman
and Levin, 1995). In short, active inference can be regarded as
equipping a generalized predictive coding scheme with classical
reflex arcs: see (Friston et al., 2009, 2010) for details. The actual
movements produced clearly depend upon top-down predictions

FIGURE 2 | Schematic detailing a neuronal architecture that might

encode conditional expectations about the states of a hierarchical

model. This shows the speculative cells of origin of forward driving
connections that convey prediction error from a lower area to a higher area
and the backward connections that construct predictions (Mumford, 1992).
These predictions try to explain away prediction error in lower levels. In this
scheme, the sources of forward and backward connections are superficial

and deep pyramidal cells respectively. The equations represent a generalized
descent on free energy under the hierarchical model described in the main
text: see also (Friston, 2008). State-units are in black and error-units in red.
Here, neuronal populations are deployed hierarchically within three cortical
areas (or macro-columns). Within each area, the cells are shown in relation
to cortical layers: supra-granular (I–III) granular (IV) and infra-granular
(V–VI) layers.
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that can have a rich and complex structure, due to perceptual
optimization based on the sampling of salient exteroceptive and
interoceptive inputs.

SUMMARY
In summary, we have derived equations for the dynamics of per-
ception and action using a free energy formulation of adaptive
(Bayes-optimal) exchanges with the world and a generative model
that is both generic and biologically plausible. Intuitively, all we
have done is to apply the principle of free energy minimiza-
tion to a particular model of how sensory inputs are caused.
This model is called a generative model because it can be used
to generate sensory samples and thereby predict sensory inputs
for any given set of hidden states. By requiring hidden states to
minimize free energy, they become Bayes-optimal estimates of
hidden states in the real world—because they implicitly maximize
Bayesian model evidence. One simple scheme—that implements
this minimization—is called predictive coding and emerges when
random effects can be modelled as additive Gaussian fluctuations.
Predictive coding provides a neurobiological plausible scheme for
inferring states of the world that reduces, essentially, to mini-
mizing prediction errors; namely, the difference between what is
predicted—given the current estimates of hidden states—and the
sensory inputs actually sampled.

In what follows, we use Equations (6), (7), and (8) to treat
neuronal responses in terms of predictive coding. A technical
treatment of the material above will be found in (Friston et al.,
2010), which provides the details of the generalized descent or fil-
tering used to produce the simulations in the last section. Before
looking at these simulations, we consider the nature of gen-
eralized filtering and highlight its curious but entirely sensible
dynamical properties.

SELF-ORGANIZED INSTABILITY
This section examines self-organization in the light of minimiz-
ing free energy. These arguments do not depend in any specific
way on predictive coding or the neuronal implementation of free
energy minimization—they apply to any self-organizing system
that minimizes the entropy of the (sensory) states that drive its
internal states; either exactly by minimizing (sensory) surprise or
approximately by minimizing free energy. In what follows, we will
first look at the basic form of the dynamics implied by exposing a
self-organizing system to sensory input in terms of skew product
systems. A skew product system comprises two coupled systems,
where the states of one system influence the flow of states in the
other—in our case, hidden states in the world influence neuronal
dynamics. These coupled systems invoke the notion of (gener-
alized) synchronization as quantified by conditional Lyapunov
exponents (CLE). This is important because the dynamics of a
generalized descent on free energy have some particular impli-
cations for the CLE. These implications allow us to conjecture
that the local Lyapunov exponents will fluctuate around small
(near zero) values, which is precisely the condition for chaotic
itinerancy and critical slowing. By virtue of the fact that this crit-
ical slowing is self-organized, it represents an elementary form of
self-organized criticality; namely self-organized critical slowing.
In the next section, we will test this conjecture numerically with

simulations of perception, using the predictive coding scheme of
the previous section.

CONDITIONAL LYAPUNOV EXPONENTS AND GENERALIZED
SYNCHRONY
Conditional Lyapunov exponents are normally invoked to under-
stand synchronization between two systems that are coupled,
usually in a unidirectional manner, so that there is a drive (or
master) system and a response (or slave) system. The conditional
exponents are those of the response system, where the drive sys-
tem is treated as a source of a (chaotic) drive. Synchronization
of chaos is often understood as a behavior in which two coupled
systems exhibit identical chaotic oscillations—referred to as iden-
tical synchronization (Hunt et al., 1997; Barreto et al., 2003). The
notion of chaotic synchronization has been generalized for cou-
pled non-identical systems with unidirectional coupling or a skew
product structure (Pyragas, 1997):

˙̃
ψ = G�(ψ̃)

˙̃μ = GR(μ̃, ψ̃)

(10)

Crucially, if we ignore action, neuronal dynamics underly-

ing perception have this skew product structure, where G�(ψ̃)

corresponds to the flow of hidden states and GR = Dμ̃ −
∂μ̃F( s̃(ψ̃), μ̃) corresponds to the dynamical response. This is
important because it means one can characterize the coupling of
hidden states in the world to self-organized neuronal responses,
in terms of generalized synchronization.

Generalized synchronization occurs if there exists a map
� : � → R from the trajectories of the (random) attractor in
the driving space to the trajectories of the response space, such
that μ̃(t) = �(ψ̃(t)). Depending on the properties of the map
� : � → R, generalized synchronization can be of two types:
weak and strong. Weak synchronization is associated with a con-
tinuous C0 but non-smooth map, where the synchronization
manifold M = {(�, R) : �(�) = R} has a fractal structure and
the dimension D�×R of the attractor in the full state space � × R
is larger than the dimension of the attractor D� in the driving �

subspace—that is D�×R > D� .
Strong synchronization implies a smooth map (C1 or higher)

and arises when the response system does not inflate the global
dimension, D�×R = D� . This occurs with identical synchroniza-
tion, which is a particular case �(�) = � of strong synchro-
nization. The global and driving dimensions can be estimated
from the appropriate Lyapunov exponents λ1 ≥ λ2 ≥ · · · using
the Kaplan-Yorke conjecture (Kaplan and Yorke, 1979)

D = k +
k∑

i=1

λi

|λk+1| (11)

Here, λ1 ≥ · · · ≥ λk are the k largest exponents for which
the sum is non-negative. Strong synchronization requires the
principal Lyapunov exponent of the response system (neuronal
dynamics) to be less than the k-th Lyapunov exponent of the driv-
ing system (the world), while weak synchronization just requires
it to be less than zero.
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The Lyapunov exponents of a dynamical system characterize
the rate of separation of infinitesimally close trajectories and pro-
vide a measure of contraction or expansion of the state space
occupied. For our purposes, they can be considered the eigen-
values of the Jacobian that describes the rate of change of flow,
with respect to the states. The global Lyapunov exponents corre-
spond to the long-term time average of local Lyapunov exponents
evaluated on the attractor (the existence of this long-term average
is guaranteed by Oseledets theorem). Lyapunov exponents also
determine the stability or instability of the dynamics, where neg-
ative Lyapunov exponents guarantee Lyapunov stability (of the
sort associated with fixed point attractors). Conversely, one or
more positive Lyapunov exponents imply (local) instability and
(global) chaos. Any (negative) Lyapunov exponent can also be
interpreted as the rate of decay of the associated eigenfunction
of states, usually referred to as (Oseledets) modes. This means
as a (negative) Lyapunov exponent approaches zero from below,
perturbations of the associated mode decay more slowly. We will
return to this interpretation of Lyapunov exponents in the context
of stability later. For skew product systems, the CLE correspond
to the eigenvalues of the Jacobian ∂μ̃GR(μ̃, ψ̃) mapping small
variations in the internal states to their motion.

CRITICAL SLOWING AND CONDITIONAL LYAPUNOV EXPONENTS
This characterization of coupled dynamical systems means that
we can consider the brain as being driven by sensory fluctua-
tions from the environment. The resulting skew product system

suggests that neuronal dynamics should show weak synchro-
nization with the sensorium, which means that the maximal
(principal) conditional Lyapunov exponent should be less than
zero. However, if neuronal dynamics are generating predictions,
by modelling the causes of sensations, then these dynamics should
themselves be chaotic—because the sensations are caused by
itinerant dynamics in the world. So, how can generalized syn-
chronization support chaotic dynamics when the principal CLE
is negative?

In skew product systems of the sort above it is useful to parti-
tion the Lyapunov exponents into those pertaining to tangential
flow within the synchronization manifold and transverse flow
away from the manifold (Breakspear, 2004). In the full state space,
the tangential Lyapunov exponents can be positive such that the
motion on the synchronization manifold is chaotic, as in the driv-
ing system, while the transverse Lyapunov exponents are negative
(or close to zero) so that the response system is weakly syn-
chronized with the drive system. See Figure 3 for a schematic
illustration of tangential and transverse stability. In short, nega-
tive transverse Lyapunov exponents ensure the synchronization
manifold M ⊂ � × R is transversely stable or (equivalently) neg-
ative CLE ensure the synchronized manifold R = �(�) is stable
(Pyragas, 1997). In the present setting, this means that the senso-
rium enslaves chaotic neuronal responses. See (Breakspear, 2001)
for a treatment of chaotic itinerancy and generalized synchroniza-
tion as the basis of olfactory perception: By studying networks of
Milnor attractors (Breakspear, 2001) shows how different sensory

FIGURE 3 | Schematic representation of synchronization manifold

with weak transverse stability—adapted from (Breakspear, 2001):

A Milnor attractor (dotted line) is contained with a synchronization
manifold—here an identity mapping. Unstable saddle points such

as P are repelling in the transverse direction and create narrow
tongues of repelling regions (grey regions). Other orbits are attracted
toward the chaotic attractor contained within the synchronization
manifold.
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perturbations can evoke specific switches between various pat-
terns of activity.

Although generalized synchronization provides a compelling
metaphor for perception, it also presents a paradox: if the CLE
are negative and the synchronized manifold is stable, there is
no opportunity for neuronal dynamics (conditional expectations)
to jump to another attractor and explore alternative hypotheses.
This dialectic is also seen in system identification, where the syn-
chronization between an observed dynamical system and a model
system is used to optimize model parameters by maximizing syn-
chronization. However, if the coupling between the observations
and the model is too strong, the variation of synchronization with
respect to the parameters is too small to permit optimization. This
leads to the notion of balanced synchronization that requires the
CLE “remain negative but small in magnitude” (Abarbanel et al.,
2008). In other words, we want the synchronization between the
causes of sensory input and neuronal representations to be strong
but not too strong. Here, we resolve this general dialectic with
the conjecture that Bayes-optimal synchronization is inherently
balanced:

Conjecture
Dynamical systems that minimize variational free energy dynam-
ically show self-organized critical slowing, with local CLE
λ(t) ∈ R that fluctuate around small (near zero) values, where

λ = eig(∂μ̃GR)

GR = Dμ̃ − ∂μ̃F( s̃(�), μ̃)
(12)

Proof
From Equation (6), one can see that the Jacobian can be decom-
posed into prediction and update terms

∂μ̃GR = D − ∂μ̃μ̃F( s̃(t), μ̃(t)) (13)

The contribution of the second (update) depends upon the
curvature of the variational free energy. This will always have
negative eigenvalues, because the curvature is positive definite.
Conversely, the first (prediction) term has eigenvalues of zero.
This means, as the free energy curvature decreases the eigenvalues
of the Jacobian will get smaller (and can indeed become positive
for small but finite curvatures). This is important for two reasons;
first, because the free energy changes with time, the local CLE will
fluctuate. Second, because the system is minimizing free energy,
it is implicitly minimizing the curvature (conditional precision)
and is therefore driving some local CLE toward zero (and possi-
bly positive) values. In short, free energy minimization will tend
to produce local CLE that fluctuate at near zero values and exhibit
self-organized instability or slowing. More formally:

Let 0 ≤ γ1 ≤ γ2 ≤ · · · be the real valued positive eigenvalues
of the curvature of Gibbs energy or conditional precision. From
Equation (5), the free energy can be expressed in terms of these
Gibbs exponents

F = G + 1
2 In|∂μ̃μ̃G|

= G + 1
2

∑
i In γi

⇒ ∂F

∂γi
= 1

2γi
≥ 0 (14)

This shows that the greatest contribution (In γ1 � 0) to free
energy comes from the smallest exponent—and changes in free
energy, with respect to the Gibbs exponents, are greater for
smaller values. Therefore, all other things being equal, a gener-
alized descent on free energy will reduce small Gibbs exponents
toward zero.

So how are the Lyapunov and Gibbs exponents related? By
ignoring third and higher derivatives of Gibbs energy, we can
approximate the curvature of the free energy with the curvature
of the Gibbs energy: From Equations (5) and (13)

∂μ̃μ̃F = ∂μ̃μ̃G + ∂μ̃μ̃

1

2
In|∂μ̃μ̃G|

⇒
∂μ̃GR ≈ D − ∂μ̃μ̃G

(15)

The relationship between the Lyapunov exponents (eigenval-
ues of D − ∂μ̃μ̃G) and Gibbs exponents (eigenvalues of ∂μ̃μ̃G)
is not simple; however, if we assume that ∂μ̃μ̃G is approximately
diagonal then

λ = eig(D − ∂μ̃μ̃G) ≈ eig(−∂μ̃μ̃G) = −γ (16)

In other words, the Lyapunov exponents approximate the neg-
ative Gibbs exponents. This means that a generalized descent on
free energy will be attracted to inherently unstable minima, with
a low curvature and small local CLE. �

We could motivate the diagonal approximation of the curva-
ture above by noting diagonal forms of the conditional covariance
minimize free energy. However, off-diagonal terms are usually
quite pronounced and indicate conditional dependencies among
representations. The associated off-diagonal terms in the curva-
ture mean that λ ≈ −γ only holds for large exponents, while
small Lyapunov exponents are greater than their correspond-
ing (negative) Gibbs exponents. This means that a generalized
descent on free energy can become transiently chaotic with posi-
tive Lyapunov exponents. We will see an example of this later.

Heuristically, this self-organized instability follows from the
principle of maximum entropy (that generalises Laplace’s prin-
ciple of indifference) and reflects the intuition that, while being
faithfully responsive to sensory information, it is important to
avoid very precise and particular interpretations. From a dynam-
ical perspective, it implies an active maintenance of critically slow
(Oseledets) modes, whose CLE are close to zero. In summary,
dynamical (approximate) Bayesian inference schemes are inher-
ently self-destabilizing because they search out explanations for
data that have the largest margin of error (smallest conditional
precision). This produces instability and a critical slowing of
the implicit gradient descent. In the next section, we will use a
heuristic measure of this slowing:

C =
∑

i

exp(τ · λi) (17)

This is simply a sum of the exponential CLE that discounts
large negative values. It can be thought of, roughly, as the number
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of small CLE, where smallness is controlled by a scale parameter τ .
Alternatively, the components of the sum in Equation (17) can
be regarded as the relative amplitude of a perturbation to the
associated mode after τ units of time. In systems with a large
number of small negative CLE, these relative amplitudes will be
preserved and critical slowing will be large. For systems that show
generalized synchronization (where all the CLE are negative) the
critical slowing in Equation (17) is upper bounded by the number
of CLE.

SUMMARY
In summary, we have reviewed the central role of Lyapunov expo-
nents in characterizing dynamics; particularly in the context of
generalized (weak or strong) synchronization. This is relevant
from the point of view of neuronal dynamics, because we can
cast neuronal responses to sensory drive as a skew product sys-
tem; where generalized synchronization requires the CLE of the
neuronal system to be negative. However, generalized synchro-
nization is not a complete description of how external states
entrain the internal states of self-organizing systems: Entrainment
rests upon minimizing free energy that, we conjecture, has an
inherent instability. This instability or self-organized critical slow-
ing is due to the fact that internal states with a low free energy are
necessarily states with a low free energy curvature. Statistically,
this ensures that conditional expectations maintain a conditional
indifference or uncertainty that allows for a flexible and veridi-
cal representation of hidden states in the world. Dynamically, this
low curvature ameliorates dissipation by reducing the (dissipa-
tive) update, relative to the (conservative) prediction. In other
words, the particular dynamics associated with variational free
energy minimization may have a built-in tendency to instability.

It should be noted, that this conjecture deals only with dynam-
ical (gradient descent) minimization of free energy. One could
also argue that chaotic itinerancy may be necessary for explor-
ing different conditional expectations to select the one with the
smallest free energy. However, it is interesting to note that—
even with a deterministic gradient descent—there are reasons to
conjecture a tendency to instability. The sort of self-organized
instability is closely related to, but is distinct from, chaotic itin-
erancy and classical self-organized criticality. Chaotic itinerancy
deals with itinerant dynamics of deterministic systems that are
reciprocally coupled to each other (Tsuda, 2001). Here, we are
dealing with systems with a skew product (master-slave) struc-
ture. However, it may be that both chaotic itinerancy and critical
slowing share the same hallmark; namely, fluctuations of the local
Lyapunov exponents around small (near zero) values (Tsuda and
Fujii, 2004).

Classical self-organized criticality usually refers to the inter-
mittent behavior of skew product systems in which the drive
is constant. This contrasts with the current situation, where we
consider the driving system (the environment) to show chaotic
itinerancy. In self-organized criticality, one generally sees inter-
mittency with characteristic power laws pertaining to macro-
scopic behaviors. It would be nice to have a general theory linking
the organization of microscopic dynamics in terms of CLE to
the macroscopic phenomena studied in self-organized critical-
ity. However, work in this area is generally restricted to specific

systems. For example, (Cessac et al., 2001) discuss Lyapunov
exponents in the setting of the Zhang model of self-organized
criticality. They show that small CLE are associated with energy
transport and derive bounds on the principal negative CLE in
terms of the energy flux dissipated at the boundaries per unit
of time. Using a finite size scaling ansatz for the CLE spectrum,
they then relate the scaling exponent to quantities like avalanche
size and duration. Whether generalized filtering permits such an
analysis is an outstanding question. For the rest of this paper,
we will focus on illustrating the more limited phenomena of
self-organized critical slowing using simulations of perception.

BIRD SONG, ATTRACTORS, AND CRITICAL SLOWING
In this section, we illustrate perceptual ignition and critical slow-
ing using neuronal simulations based on the predictive coding
scheme of previous sections. Our purpose here is simply to illus-
trate self-organized instability using numerical simulations: these
simulations should be regarded as a proof of principle but should
not be taken to indicate that the emergent phenomena are uni-
versal or necessary for perceptual inference. In brief, we created
sensory stimuli corresponding to bird songs, using a Lorentz
attractor with variable control parameters (like the Raleigh num-
ber). A synthetic bird then heard the song and used a hierarchical
generative model to infer the control parameters and thereby
categorise the song. These simulations show how the stimulus
induces critical slowing in terms of changes in the CLE of the
perceptual dynamics. We then systematically changed the gener-
ative model by changing the precision of the motion on hidden
states. By repeating the simulations, we could then examine the
emergence of critical slowing (averaged over peristimulus time)
in relation to changes in variational free energy and categorization
performance. Based on the conjecture of the previous section, we
anticipated that there will be a regime in which critical slowing
was associated with minimum free energy and veridical catego-
rization. In what follows, we describe the stimuli and generative
model. We then describe perceptual categorization under opti-
mal prior beliefs about precision and finally characterize the
perceptual responses under different (suboptimal) priors.

A SYNTHETIC AVIAN BRAIN
The example used here deals with the generation and recogni-
tion of bird songs (Zeigler and Marler, 2008; Perl et al., 2011). We
imagine that bird songs are produced by two time-varying hidden
causes that modulate the frequency and amplitude of vibrations
of the syrinx of a song bird (see Figure 4). There has been an
extensive modelling effort using attractor models at the biome-
chanical level to understand the generation of birdsong (Perl et al.,
2011). Here we use the attractors at a higher level to provide
time-varying control over the resulting sonograms (Kiebel et al.,
2009). We drive the syrinx with two states of a Lorenz attractor,
one controlling the frequency (between two to five KHz) and the
other (after rectification) controlling the amplitude or volume.
The parameters of the Lorenz attractor were chosen to generate
a short sequence of chirps every second or so. These parame-

ters correspond to hidden causes (v(1)
1 , v(1)

2 ) that were changed
as a function of peristimulus time to switch the attractor into a
chaotic state and generate stimuli. Note that these hidden causes
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FIGURE 4 | This is a schematic of stimulus generation and the

generative model used for the simulations of bird song perception. In
this setup, the higher vocal centre of a song bird has been modelled with a
Lorentz attractor from which two states have been borrowed, to modulate
the amplitude and frequency of chirps by its voice box or syrinx.
Crucially, the sequence of chirps produced in this way depends upon the
shape of the attractor, which is controlled by two hidden causes. This means
that we can change the category of song by changing the two hidden causes.
This provides a way of generating songs that can be mapped to a point in a
two-dimensional perceptual space. The equations on the left describe the
production of the stimulus, where the equations of motion for the hidden
states correspond to the equations of motion with a Lorentz attractor. These
hidden causes were changed smoothly after 32 (16 ms) time bins to
transform the attractor from a fixed point attractor (silence)

to a chaotic attractor (bird song). The resulting stimulus is shown in sonogram
format with time along the x-axis and frequency over the y-axis. The
equations on the right constitute the generative model. The generative model
is equipped with hidden states at a higher (categorical) level that model the
evolution of the hidden causes that determine the attractor manifold for the
hidden (attractor) states at the first level. The function generating hidden
causes uses a softmax function of the hidden categorical states to
select one of three hidden causes. The associated categories of songs
correspond to silence, a quasiperiodic song and a chaotic song. The
amplitudes of the random fluctuations are determined by their variance or
log-precisions and are shown in the lower part of the figure. Using this setup,
we can produce some fairly realistic chirps that can be presented to a
synthetic bird to see if it can recover the hidden causes and implicitly
categorise the song.

have been written in boldface. This is to distinguish them from

the hidden causes (ν
(1)
1 , ν

(1)
2 ) inferred by the bird hearing the

stimuli.
The generative model was equipped with prior beliefs that

songs could come in one of three categories; corresponding to
three distinct pairs of values for the hidden causes. This was mod-
elled using three hidden states to model the Lorentz attractor
dynamics at the first level and three hidden states to model the
category of the song at the second level. The hidden causes linking
the hidden states at the second level to the first were a weighted
mixture of the three pairs of values corresponding to each cat-
egory of song. The bird was predisposed to infer one and only
one category by weighting the control values with a softmax func-
tion of the hidden states. This implements a winner-takes-all like
behavior and enables us to interpret the softmax function as a
probability over the three song categories (softmax probability).

This model of an avian brain may seem a bit contrived or
arbitrary; however, it was chosen as a minimal but fairly generic
model for perception. It is generic because it has all the ingredi-
ents required for perceptual categorization. First, it is hierarchical
and accommodates chaotic dynamics in the generation of sensory

input. Here, this is modelled as a Lorentz attractor that is subject
to small random fluctuations. Second, it has a form that permits
categorization of stimuli that extend over (frequency) space and
time. In other words, perception, or model inversion maps a con-
tinuous, high dimensional sensory trajectory onto a perceptual
category or point in some perceptual space. This is implemented
by associating each category with a hidden state that induces par-
ticular values of the hidden causes. Finally, there is a prior that
induces competition or winner-takes-all interactions among cat-
egorical representations, implemented using a softmax function.
This formal prior (a prior induced by the form of a genera-
tive model) simply expresses the prior belief that there is only
one cause of any sensory consequence at any time. Together, this
provides a generative model based upon highly non-linear and
chaotic dynamics that allows competing perceptual hypotheses to
explain sensory data.

STIMULUS GENERATION AND THE GENERATIVE MODEL
Figure 4 shows a schematic of stimulus generation and the gen-
erative model used for categorization. The equations on the left
describe the production of the stimulus, where the equations of
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motion for the hidden states x(1) ∈ R
3 correspond to the equa-

tions of motion with a Lorentz attractor. In all the simulations
below, the hidden causes were changed smoothly from v(1) =
(1, 0) to v(1) = (

28, 8
3

)
after 32 (16 ms) time bins. This changes

the attractor from a fixed point attractor to a chaotic attractor
and produces the stimulus onset.

The equations on the right constitute the generative model and
have the form of Equation (7). Notice that the generative model is
slightly more complicated than the process generating stimuli—
it is equipped with hidden states at a higher hierarchical level
x(2) ∈ R

3 that determine the values of the hidden causes, which
control the attractor manifold for the hidden states x(1) ∈ R

3 at
the first level. Notice that these hidden states decay uniformly
until the sum of their exponentials is equal to one. The func-
tion generating hidden causes implements a softmax mixture of
three potential values for the hidden causes v(1) ∈ R

3 encoded in
the matrix θ ∈ R

2×3. The three categories of songs correspond to

silence, a quasiperiodic song and a chaotic song. This means that
the stimulus changes from silence (the first category) to a chaotic
song (the third category). The amplitudes of the random fluctu-
ations are determined by their variance or log-precisions and are
shown in the lower part of Figure 4. Given the precise form of the
generative model and a stimulus sequence, one can now integrate
or solve Equation (8) to simulate neuronal responses encoding
conditional expectations and prediction errors.

PERCEPTUAL CATEGORIZATION
Figure 5 shows an example of perceptual categorization using
the format of Figure 2. The panel on the left shows the stim-
ulus in sonogram format, while the corresponding conditional
predictions and errors (dotted lines) are shown as functions of
time (resp. a sonogram) in the upper left (resp. right) panel.
These predictions are based on the expected hidden states at the
first level shown on the lower left. The grey areas correspond to

FIGURE 5 | This reports an example of perceptual categorization

following the format of Figure 2. The panel on the left shows the
stimulus in sonogram format, while the corresponding conditional
predictions and errors (dotted lines) are shown as functions of time (resp.
a sonogram) in the upper left (resp. right) panel. These predictions are based
on the expected hidden states at the first level shown on the lower left. The
grey areas correspond to 90% conditional confidence intervals. It can be
seen that the conditional estimate of the hidden state modulating frequency

is estimated reasonably accurately (red Line); however, the corresponding
modulation of amplitude takes a couple of chirps before it finds the
right level (blue line). This reflects changes in the conditional expectations
about hidden causes and the implicit category of the song. The correct
category is only inferred after about 80 time bins (red line in the right
panel), when expectations of the second level hidden states are
driven by ascending prediction errors to their appropriate
values.
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conditional confidence intervals of 90%. It can be seen that the
conditional estimate of the hidden state modulating frequency is
estimated reasonably accurately (red Line); however, the corre-
sponding modulation of amplitude takes a couple of chirps before
it finds the right level (blue line). This reflects changes in the
conditional expectations about hidden causes and the implicit
category of the song. The correct (third) category is only inferred
after about 80 time bins (red line in the right panel), when expec-
tations of the second level hidden states are driven by ascending
prediction errors to their appropriate values.

Figure 6 shows the same results with conditional confidence
intervals on all hidden states and causes and the implicit soft-
max probabilities based on the categorical hidden states at the
second level (lower right panel). Note the high degree of uncer-
tainty about the first hidden attractor state, which can only be
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FIGURE 6 | This shows the same results as in Figure 5 with conditional

confidence intervals on all hidden states and causes and the implicit

softmax probabilities based on the hidden states at the second level

(lower right panel). These results illustrate switching from the first
(silence) to the third (bird song) category (blue and red lines in the lower
right panels). This switch occurs after a period of exposure to the new song
and enables the stimulus to be predicted more accurately. These dynamics
can also be regarded as generalized synchronization between simulated
neuronal activity and the true hidden states generating the stimulus.

inferred on the basis of changes (generalized motion) in second
and third states that are informed directly by the frequency and
amplitude of the stimulus. These results illustrate perceptual igni-
tion of dynamics in higher levels of the hierarchical model that
show an almost categorical switch from the first to the third cat-
egory (from blue to red in the lower right panels). This ignition
occurs after a period of exposure to the new song and enables
it to be predicted more accurately. These dynamics can also be
regarded as a generalized synchronization of simulated neuronal
activity with the true hidden states generating the stimulus. So is
there any evidence for critical slowing?

PERCEPTUAL INSTABILITY AND SWITCHING
Figure 7 shows the evolution of free energy and CLE as a func-
tion of peristimulus time. The upper left panel shows a phasic
excess of free energy at the stimulus onset (first chirp or frequency
glide). This is resolved quickly by changes in conditional expec-
tations to reduce free energy to prestimulus levels. This reduction
changes the flow and Jacobian of the conditional expectations and
the local CLE as shown on the upper right. Remarkably, there
is pronounced critical slowing, as quantified by Equation (17)
(using τ = 8 time bins or 128 ms), from the period of stimulus
onset to the restoration of minimal free energy. The panels on the
right show the underlying changes in the CLE—in their raw form
(upper right panel) and their exponentials (lower right panel).
The measure of critical slowing is simply the sum of these expo-
nential CLE. It can be seen that many large negative CLE actually
decrease their values, suggesting that some subspace of the gener-
alized descent becomes more stable. However, the key change is in
the CLE with small negative values, where several move towards
zero (highlighted in red). These changes dominate the measure
of critical slowing and reflect self-organized instability following
stimulus onset—an instability that coincides exactly with the per-
ceptual switch to the correct category of stimulus (see previous
figure).

PERCEPTION AND CRITICAL SLOWING
The changes described above are over peristimulus time and
reflect local CLE. Although we will not present an analysis of
global CLE, we can average the local values over the second half of
peristimulus time during which the chaotic song is presented. To
test our conjecture that free energy minimization and perceptual
inference induce critical slowing, we repeated the above simula-
tions while manipulating the (prior beliefs about) precision of the
motion of hidden attractor states.

Bayes-optimal inference depends upon a delicate balance in
the precisions assumed for the random fluctuations at each level
of hierarchical models. These prior beliefs are encoded by the log
precisions in Equation (8). When intermediate levels are deemed
too precise, top-down empirical priors overwhelm sensory evi-
dence, resulting in illusory predictions. Furthermore, they pre-
dominate over the less precise prior beliefs at higher levels in the
hierarchy. This can lead to false inference and a failure to recog-
nise the high-level causes of sensory inputs. Conversely, when
intermediate precisions are too low, the prediction errors from
intermediate levels are insufficiently precise to change higher level
conditional expectations. This again, can lead to false perception,
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FIGURE 7 | This shows the evolution of free energy and CLE over

peristimulus time. The upper left panel shows a phasic excess of free
energy at the stimulus onset (first chirp or frequency glide). This is quickly
resolved by changes in conditional expectations to reduce free energy to
prestimulus levels. This reduction changes the Jacobian of the motion of
internal states (conditional expectations) and the local conditional Lyapunov
exponents (CLE), as shown on the upper right. The lower left panel shows a
pronounced critical slowing, as quantified by Equation (17) (using τ = 8 time

bins or 128 ms) from stimulus onset to the restoration of minimal free
energy. The panels on the right show the underlying changes in the CLE
(upper right panel) and their exponentials (lower right panel). The measure of
critical slowing is the sum of exponential CLE. It can be seen that several
CLE with small negative values move toward zero (highlighted in red). These
changes dominate the measure of critical slowing and reflect self-organized
instability following stimulus onset—an instability that coincides with the
perceptual switch to the correct stimulus category (see previous figure).

even if low-level attributes are represented more accurately. These
failures of inference are illustrated in Figure 8, using the same for-
mat as Figure 6. The left panels show the results of decreasing the
log precision on the motion of hidden states from 4 to 1, while
the right panels show the equivalent results when increasing the
log precision from 4 to 7. These simulations represent perceptual
categorization with under and over confident beliefs about the
chaotic motion of the hidden attractor states. In both instances,
there is a failure of perception of all but the frequency glide at
the onset of the song (compare the sonograms in Figure 8 with
that in Figure 6). In both cases, this is due to a failure of inference
about the hidden categorical states that would normally augment
the predictions of hidden attractor states and subsequent sensa-
tions. In the under confident condition, there is a slight deviation
of predictions about amplitude from baseline (zero) levels—but
this is not sufficiently informed by top-down empirical priors

to provide a veridical prediction. Conversely, in the over confi-
dent condition, the amplitude predictions remain impervious to
sensory input and reflect top-down prior beliefs that the bird is
listening to silence. Notice the shrinkage in conditional uncer-
tainty about the first hidden attractor state (green line) in the
upper right panels. This reflects the increase in precision of the
motion of these hidden states.

Finally, we repeated the above simulations for 64 values of
precision on the motion of hidden attractor states from a log
precision of zero (a variance of one) to a log precision of seven.
At each value, we computed the time average of free energy, the
softmax probability of the correct stimulus category and critical
slowing. In addition, we recorded the principal local CLE for each
simulation. Figure 9 shows the interrelationships among these
characterizations: the upper left panel shows the average proba-
bility of correctly identifying the song, which ranges from zero in
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FIGURE 8 | Failures of perceptual inference illustrated using the same

format as Figure 6. The left panels show the results of decreasing the log
precision on the notion of hidden states from 4 to 1; while the right panels
show the equivalent results when increasing the log precision from 4 to 7.
These simulations represent perceptual categorization with under and over
confident beliefs about the motion of hidden attractor states. In both
instances, there is a failure of perception of all but the frequency glide at the

onset of the song (compare the sonograms in Figure 8 with that in Figure 6).
In the under confident condition, there is a slight deviation of predictions
about amplitude from baseline (zero) levels—but this is not sufficiently
informed by (imprecise) top-down empirical priors to provide a veridical
prediction. Conversely, in the over confident condition, the amplitude
predictions are impervious to sensory input and reflect top-down prior beliefs
that the bird is listening in silence.

the low and high precision regime, to about 70% in the interme-
diate regime. The two vertical lines correspond to the onset and
offset of nontrivial categorization, with a softmax probability of
greater than 0.05. The variation in these average probabilities is
due to the latency of the perceptual switch to the correct song.
This can be seen in the upper right panel that shows the principal
CLE in image format as a function of peristimulus time (columns)
and precision (rows). It can be seen that the principal CLE shows
fluctuations in, and only, in the regime of veridical categorization.
Crucially, these fluctuations appear earlier when the categoriza-
tion probabilities were higher, indicating short latency perceptual
switches. Note that the principal CLE attains positive values for
short periods of time. This does not necessarily mean a loss of
generalized synchronization; provided the long-term time average

is zero or less, when evaluated over long stimulus presentation
times. Given that we are looking explicitly at stimulus responses
or transients, these positive values could be taken as evidence for
transient chaos.

The lower left panel shows the average free energy as a func-
tion of precision. As one might anticipate, this exhibits a clear
minimum around the level of precision that produces the best
perceptual categorization. The key results, from point of view
of this paper, are presented in the lower right panel. This shows
a very clear critical slowing in, and only in the regime of cor-
rect categorization. In short, these results are entirely consistent
with the conjecture that free energy minimization induces insta-
bility or critical slowing and thereby provides a more veridical
representation of hidden states in the world.
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FIGURE 9 | The upper left panel shows the average probability

(following stimulus onset) of correctly identifying a song over

64 values of precision on the motion of hidden attractor states.

The two vertical lines correspond to the onset and offset of nontrivial
categorization—a softmax probability of greater than 0.05. The variation in
these average probabilities is due to the latency of the perceptual switch to
the correct song. This can be seen in the upper right panel that shows the
principal CLE in image format as a function of peristimulus time (columns)
and precision (rows). It can be seen that the principal CLE shows fluctuations
in, and only, in the regime of veridical categorization. Crucially, these

fluctuations appear earlier when the categorization probabilities were
higher, indicating short latency perceptual switches. The lower left panel
shows the time averaged free energy as a function of precision. As one
might anticipate, this exhibits a clear minimum around the level of
precision that produces the best perceptual categorization. The lower right
panel shows a very clear critical slowing in, and only in, the regime
of correct categorization. In short, these results are consistent with the
conjecture that free energy minimization can induce instability and
thereby provide a more responsive representation of hidden states in
the world.

SUMMARY
In summary, these simulations of perceptual transitions affirm
the notion that a sensitive response to sensory perturbations from
the environment is accompanied by critical slowing of represen-
tational dynamics—of the sort that would be predicted by Bayes-
optimal perception and the implicit maximum entropy principle.
Although we have focused on perception, the imperative to min-
imize free energy, in the larger setting of active inference, may
mean that any self-organizing system that resists a dispersion of its
(sensory) states should show the same sort of critical slowing. The
perceptual categories used in this paper to illustrate perceptual
transitions were very distinct. One might imagine that the role
of critical slowing and transitions may become more important

when discriminating between more ambiguous stimuli; for exam-
ple, those used to elicit bistable perception. In future work, we
hope to look at bistable perception (binocular rivalry) and revisit
our recent work in this area, in terms of critical slowing. In these
models, the system works at the border of a Hopf bifurcation,
where noise is more efficient in provoking perceptual transitions
(Theodoni et al., 2011).

CONCLUSION
We have addressed self-organization at a number of levels. First,
we have looked at self-organization in terms of the selective
sampling of the environment to minimize surprise (free energy)
and therefore maintain a homoeostasis in the sense of Ashby
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(Ashby, 1947). Because surprise is negative log evidence in
statistics, free energy minimization can also be understood as
accumulating evidence for generative models of the world in a
Bayes-optimal fashion. Second, we have considered free energy
minimization in self-organizing systems as a dynamical pro-
cess that performs a (generalized) gradient descent. Statistically
speaking, this corresponds to a generalized (Bayesian) filtering
or deconvolution that discovers the underlying causes of sensory
states. This form of dynamics has the rather curious property
of self-destabilization; in the sense that the internal states of a
system (like the brain) will seek out regions of low free energy
that, by definition, have a low curvature and invite relatively
unstable (slow) dynamics. This form of self-organizing instability
was demonstrated using neuronal simulations of perceptual cat-
egorization and a fairly minimal, but generic generative model.
These demonstrations provided an example of Bayes-optimal
perceptual categorization that was associated with self-organized
instability or critical slowing that may be an integral part of

perceptual switching or ignition. Finally, there is an important
third level of self-organization that is implicit in the final simu-
lations: at the beginning, we established that the internal states of
a self-organizing system will minimize free energy. This includes
posterior beliefs about (estimates of) the precision of random fluctu-
ations. This means, had we allowed the precision on the motion
of hidden attractor states to minimize free energy, it would have
found the value that is in the centre of the region showing criti-
cal slowing. In other words, that if the system chose the level of
uncertainty or confidence in its prior beliefs, it would choose a
critical regime. See Figure 9. This is a nice illustration of how self-
organization can induce self-organization in subtle and recursive
fashion.
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