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This paper investigates how a neural network model of the ventral visual pathway, VisNet,
can form separate view invariant representations of a number of objects seen rotating
together. In particular, in the current work one of the rotating objects is always partially
occluded by the other objects present during training. A key challenge for the model
is to link together the separate partial views of the occluded object into a single view
invariant representation of that object. We show how this can be achieved by Continuous
Transformation (CT) learning, which relies on spatial similarity between successive views
of each object. After training, the network had developed cells in the output layer which
had learned to respond invariantly to particular objects over most or all views, with each
cell responding to only one object. All objects, including the partially occluded object, were
individually represented by a unique subset of output cells.
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1. INTRODUCTION
It is important to understand how invariant representations
of individual objects are built in the primate visual system
even when multiple objects are present in natural scenes.
Neurophysiological research has provided substantial evidence
showing that over successive stages, the visual system develops
neurons that respond with view, size, and position (translation)
invariance to objects or faces (Desimone, 1991; Tanaka et al.,
1991; Rolls, 1992, 2000; Perrett and Oram, 1993; Rolls and Deco,
2002). For example, it has been shown that the inferior temporal
visual cortex has neurons that respond to faces and objects with
translation (Kobatake and Tanaka, 1994; Tovee et al., 1994; Ito
et al., 1998; Op De Beeck and Vogels, 2000), and view (Hasselmo
et al., 1989; Booth and Rolls, 1998) invariance.

The “biased competition hypothesis” of attention suggested
that feedback connections are necessary to build separate repre-
sentations of individual objects in a complex scene by providing
the mechanism for attentional selection (Rolls and Deco, 2002).
However, it has been shown that this separation can be achieved
without the need for an attentional mechanism using purely feed-
forward connectivity in a hierarchical neural network model of
the ventral visual pathway, VisNet (Stringer et al., 2007). The
statistical properties of the input stimuli play a crucial role,
whereby the features within individual objects occur more fre-
quently together than the features between different objects. As
such, although the role of feedback connections is an important
area for future research, they will not be implemented in the
present study.

Stringer and Rolls (2000) showed that a hierarchical neural
network model of the ventral visual pathway, VisNet, could recog-
nize objects presented against natural cluttered scenes, providing
the model had been previously trained with each object presented
individually transforming against a blank background. However,
the network failed to learn to recognize individual objects if the

objects were presented against a natural cluttered background
during training.

Recent studies by Stringer and Rolls (2008) and Stringer et al.
(2007) have shown how VisNet may cope with complex scenes
during training, and learn invariant representations of individ-
ual objects even when no single object is seen in isolation. These
modeling studies used the statistics of the natural environment
where features within an object occur together more frequently
than features between different objects. Specifically, VisNet could
learn invariant representations of individual objects if differ-
ent combinations of transforming objects were seen at different
times.

However, a further challenge is to explain how invariant repre-
sentations can be learned when the objects are partially occluded
by one another during learning. Stringer et al. (2007) proposed
that Continuous Transformation (CT) learning (Stringer et al.,
2006) combined with the statistical independence of objects pre-
sented in different combinations might allow the network to
solve this problem. Specifically, consider presenting a number
of objects to the network in different subset combinations, but
where one of the objects is always partially occluded by whichever
objects it is currently shown with. The hypothesis is that the net-
work will simultaneously form separate representations of all of
the different objects, where an invariant representation of the
partially occluded object is formed by linking together the dif-
ferent partial views through CT learning. However, Stringer et al.
(2007) provided no simulation evidence that this could work. In
this paper we demonstrate for the first time this process operating
with simulated three dimensional rotating objects. It is important
to investigate this issue because objects in the natural environ-
ment will often overlap. This task is more difficult than simply
forming separate representations of different objects because, in
order for the network to build a complete invariant representation
of the partially occluded object, the network has to link together
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the different partial views of the object as well as separate these
partial views from the other objects present.

In the simulations described below, we show how VisNet can
form separate view invariant representations of individual objects
seen rotating together, where one of the rotating objects is always
partially occluded by the other objects present during training.
The network develops cells in the output layer which have learned
to respond invariantly to particular objects over most or all views,
with each cell responding to only one object. All objects, includ-
ing the partially occluded object, are individually represented in
this way by a unique subset of output cells. This learning pro-
cess relies on the statistical independence of the objects that are
shown in different combinations, as well as an invariance learning
mechanism known as CT learning that is described next.

2. MATERIALS AND METHODS
2.1. CONTINUOUS TRANSFORMATION LEARNING
A leading computational theory of how the ventral visual pathway
in the brain may develop neurons that respond to objects with
transform (e.g., view or location) invariance is CT learning. CT
learning uses an associative (Hebbian) synaptic modification rule
(Stringer et al., 2006) that can exploit the image similarity across
successive transforms (e.g., views) of a continuously transforming
object in order to develop output neurons which respond to the
object over all transforms. Because CT learning is based on the
standard Hebbian learning rule, it is biologically plausible.

An idealized version of the CT learning process outlining the
theoretical principle is illustrated in Figure 1 and operates as fol-
lows. The network shown has an input layer where stimuli are
presented, and an output layer where transform invariant repre-
sentations develop through learning. The output layer operates
as a competitive network, where individual cells send inhibitory
projections to the other cells in this layer (not shown in Figure 1),
and thereby compete with each other. Initially, the weights of
the feedforward synaptic connections are set to random values.
Then, during learning, a stimulus is initially presented in posi-
tion 1 (shown in Figure 1A) and is represented by three active
neurons in the input layer (neurons 1, 2, and 3). Activity propa-
gates through the random feedforward connections to the output
layer, where one of the neurons, say neuron 8, wins the compe-
tition. The simultaneous activation of neurons in the input and
output layers causes the synaptic connections between them to
become strengthened according to a Hebbian learning rule

δwij = αyixj (1)

where δwij is the increment in the synaptic weight wij, yi is the fir-
ing rate of the post-synaptic neuron i, xj is the firing rate of the
pre-synaptic neuron j, and α is the learning rate. To restrict and
limit the growth of each neuron’s synaptic weight vector, wi for
the ith neuron, its length is normalized at the end of each timestep
during training as is usual in competitive learning (Hertz et al.,
1991). This is necessary to ensure that one or a few neurons do
not always win the competition. If there was no normalization
of synaptic weights during a simple Hebbian learning procedure,
just a few neurons may eventually learn to respond strongly to
nearly all of the input patterns. Neurophysiological evidence for

A
Output layer

Input layer

Stimulus position 1

Stimulus position 2

Output layer

Input layer

B

Stimulus position 3

Output layer

Input layer

C

01976 8

3 4 521

01976 8

3 4 521

01976 8

3 4 521

FIGURE 1 | An illustration of how CT learning functions in a

feed-forward one-layer network. Activation of overlapping neurons during
the transformation of the object from position to position leads to the
activation of the same neuron in the output layer. Connections are
strengthened according to a Hebbian learning rule after each presentation
of the stimulus.

synaptic weight normalization is provided by Royer and Pare
(2003).

As the stimulus moves from position 1 to position 2 (shown in
Figure 1B), it causes activation in the input layer to also move
along one neuron at a time. Therefore, when the stimulus is
in position 2, it causes neurons 2, 3, and 4 to become active.
The overlap in the input space allows two neurons in the input
layer to remain active (neurons 2 and 3) during both transfor-
mations. The activation of the same neurons in the input layer
causes the same neuron in the output layer (neuron 8) to become
active again because the connections have already been strength-
ened when the stimulus was in position 1. The simultaneous
activation of the output neuron, with input neurons 2, 3, and
the additional input neuron 4 causes their synaptic connections
to become strengthened according to the Hebbian leaning rule.
Therefore, the activation of neuron 8 will now become associated
with the activation of neurons 2, 3, and 4. As the stimulus contin-
ues to move from one position to the next, the process repeats
itself and the same neuron in the output layer remains acti-
vated. This output neuron becomes a position invariant neuron.
A more comprehensive description of CT learning and simulation
results in the context of invariant object recognition is provided
by Stringer et al. (2006) and Perry et al. (2006).

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 48 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Tromans et al. View invariant recognition: partial occlusion

2.2. LEARNED OBJECT SELECTIVITY
CT learning develops transform invariant representations that are
object-specific. That is, as long as each object is not always pre-
sented together with another particular object transforming in
lock-step during training, individual neurons typically learn to
respond to one object only (Stringer et al., 2006). Consider an
object rotating at a particular retinal location during training.
Successive views of the object are represented by the outputs of the
oriented input filters representing V1 simple cells as described in
Equation 2. CT learning utilizes Hebbian competitive learning. At
each presentation of a view of an object during training, activity is
propagated up through successive neuronal layers in the network.
Within each layer, a small subset of neurons wins the competition.

The feedforward synaptic connections from the input filters
to the first layer of neurons are modified according to a Hebbian
learning rule (Equation 1). This learning rule strengthens only the
synaptic connections from those V1 filters that are activated by
the particular visual form of the object view currently presented.
The weight vector of each of the first layer neurons gradually
shifts during learning to point in the same direction as the V1
input pattern(s) that it is learning to respond to. Since each first
layer neuron computes its activation (Equation 3) according to
the dot product of its weight vector and the current input pattern
from the V1 input layer, after training each neuron will respond
in proportion to the similarity between the current input pattern
and the input pattern(s) the neuron learned to respond to during
training. That is, each neuron will respond maximally to the input
pattern that it has learned to respond to during training, and
generalize to other input patterns depending on their similarity
(Hertz et al., 1991).

The competitive Hebbian learning rule operates in a similar
manner for the feedforward connections between all of the later
layers of the network. This ensures that a subset of neurons in
layer 1 and all successive layers learn to respond to the pattern of
visual features present in the current view of the trained object.
This means that the subset of output neurons in the higher layers
of VisNet learn to respond to the visual form of the current view
of the trained object and not its retinal location.

If output neurons simply learned to respond to retinal
location, then the feedforward connections would need to be
strengthened from all of the V1 filter inputs in a particular loca-
tion regardless of the visual form of the objects. But this cannot
occur because the Hebbian learning rule ensures that only the
synaptic connections coming from those V1 input filters actu-
ally activated by the particular visual form of the object can be
strengthened.

As described above in the Materials and Methods section on
CT learning, the Hebbian learning rule is able to learn to associate
different views of the object onto the same active output neurons
as long as the different object images presented during training
cover a space of smoothly changing views. Again, only those V1
input filters that were activated by the different object views can
become associated with the active subset of neurons in the higher
layers. So, even after many stimulus views have been presented,
the neurons in the later layers of the network cannot learn to
respond to all of the V1 filters in a particular retinal location.
Thus, after training, the output neurons become object-specific.

The output neurons will respond maximally to different views of
the particular object that has been learned.

If another different untrained object is presented in the same
retinal location as the first trained object, then there will be a
rather different pattern of V1 input filters activated. However, as
discussed above, the output of each of the neurons in the network
reflects the similarity between the input pattern in the previous
layer that it learned to respond to during training and the cur-
rently tested input pattern. This means that the neurons in the
higher layers that have been previously trained to respond to the
first object will respond to the second untrained object in pro-
portion to the degree of visual similarity between the two objects.
Therefore, due to the properties of Hebbian competitive learning,
the neurons through the higher layers of the network must learn
to respond the visual forms of objects rather than locations.

However, there is a potential conflict between the need to
develop representations that are object-specific and the need to
develop transform invariant representations within each object.
In principle, if two different objects have similar transforms, then
the CT learning mechanism may encourage output neurons to
learn to respond invariantly across both objects. This is a fun-
damental issue with CT learning, which we are continuing to
investigate. In simulation studies, we have found that increas-
ing the size of the VisNet architecture improves the ability of
the model to learn separate representations of similar faces for
example. It is also possible that combining CT learning with a
trace learning rule (Foldiak, 1991) could improve the ability of
the network to form separate invariant representations of dif-
ferent objects. Although, this has not been implemented in the
simulations reported here, which use only a standard Hebbian
learning rule.

2.3. MULTIPLE OBJECTS
How the brain can build invariant representations of individ-
ual objects even when multiple objects are present in a scene
is a very important question in natural vision. How the visual
system learns about individual objects rather than the combi-
nation of objects that make up the scene has only recently been
investigated successfully in a biologically realistic model (Stringer
et al., 2007; Stringer and Rolls, 2008). The features that make up
a given object occur together more frequently when presented
during training compared to the features that make up differ-
ent objects. Depending on how often a given object is presented
during training with another object, the frequency of how often
features between these two different objects occur together will
vary. However, the features that make up any individual object are
always presented with one another and are therefore completely
correlated.

It has been shown that a competitive network will operate use-
fully in this situation. The network will learn primarily to form
representations that reflect the high probability of co-occurrence
of features from one object and do not reflect the features of other
objects presented simultaneously during training if the object
being trained is seen much more frequently than it is presented
with any other object.

In order for a competitive network to build representations of
individual objects, there must be a statistical decoupling between
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the features that comprise each of the objects presented during
training. Providing that there are a sufficient number of objects
present during training, each object will be presented with many
other objects and therefore the features within the object will
appear together significantly more often than they are coupled
with features of any other object. It has been previously demon-
strated that this allows a competitive network to form transform
invariant representations of individual objects, rather than the
combinations of objects seen during training, by a mechanism
such as CT learning (Stringer and Rolls, 2008).

2.4. LEARNING TO RECOGNISE PARTIALLY OCCLUDED
TRANSFORMING OBJECTS

The major new problem addressed in this paper is how VisNet
can form separate view invariant representations of individual
objects seen rotating together, where one of the rotating objects
is always partially occluded by the other objects present during
training. To create view invariant representations of the occluded
object, the network will have to separate it from the occluding
objects and link together different partial views to create a rep-
resentation of the whole object. The potential solution described
by Stringer and Rolls (2008) for separating out individual objects
in a scene with multiple objects present will be used to sepa-
rate the occluded and the occluding objects. CT learning will be
used to link together the different transforms of each individual
object, including associating together the occluded and unoc-
cluded views. By training VisNet with multiple objects that par-
tially occlude one another, we show that our model of the ventral
visual stream is able to learn reliably in increasingly realistic visual
environments.

2.5. OBJECTS
Figure 2 shows the objects used to train the network. There
were N = 6 continuously rotating 3D objects on a gray back-
ground. Previous research (Stringer and Rolls, 2008) has shown
that N = 6 objects is sufficient to allow VisNet to develop

representations of individual objects when the network was
trained on object pairs. The objects were designed and created
using the 3D modeling tool Swift 3D 5.4. Ambient lighting with
a diffuse light source was added to allow different surfaces to
be shown with different intensities. Each object rotated in depth
around the vertical axis in 1◦ steps over 360◦. This step size was
chosen because past research (Stringer et al., 2006) has revealed
that it was sufficiently small for CT learning to operate. The 360
views of each object were then exported as 2D JPG images and
encapsulated as Adobe Shock Wave Files. The objects were then
aligned and organized using Adobe Flash CS4.

The stimulus set was comprized of five occluding objects
and one occluded object. During each training sequence, the
occluded object was shown rotating with one of the occlud-
ing objects. In all cases, each object would rotate about its own
vertical axis and, therefore, all axes were in parallel with one
another. The spatial arrangement of the objects is shown in
Figure 3. The occluding objects were presented in a pentagon for-
mation. The occluded object, the Jaimoid (irregular multifaceted
three dimensional object, Figure 4), was always presented in the
center of the pentagon.

Each of the occluding objects was placed at one of the five
points of the pentagon, partially overlapping the Jaimoid at the
center. The occluding objects were equidistant from the center
of the occluded object, therefore occluding it to the same extent.
The occluded object was always behind the occluding objects and
in the middle of the pentagon formation. This spatial forma-
tion was chosen because it was necessary to ensure that different
parts of the occluded object were covered by the five occluding
objects.

In our simulations the objects were rotating at the same
speeds. However, the correlations that would arise between cor-
responding view points of the objects are broken due to the fact
that objects are paired with different objects on different occa-
sions. This allows the network to form separate representations of
different objects in the output layer.

FIGURE 2 | The six objects used to train the network. The objects are
3D objects each shown from 360 different views. The effect of the ambient
lighting and single diffuse light source is illustrated. This allows different

surfaces to be shown with different intensities. Objects are split into two
groups; occluding objects are presented in the top row and the occluded
object is presented in the bottom row.
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2.6. THE VISNET MODEL
The model architecture (VisNet) implemented by Wallis et al.
(1993) and Wallis and Rolls (1997) that is used to investigate
the properties of CT learning in this paper is based on the fol-
lowing: (1) A series of hierarchical competitive networks with
local graded inhibition. (2) Convergent connections to each neu-
ron from a topologically corresponding region of the preceding
layer, leading to an increase in the receptive field size of neurons
through the visual processing areas. (3) Synaptic plasticity based
on a Hebb-like learning rule. Model simulations which incorpo-
rated these hypotheses with a modified associative learning rule
to incorporate a short term memory trace of previous neuronal
activity (Foldiak, 1991) were shown to be capable of producing
object-selective but translation and view invariant representa-
tions (Wallis and Rolls, 1997; Rolls and Milward, 2000; Rolls and
Stringer, 2001).

CT learning and trace learning are two biologically plausible
learning mechanisms that have been used to model invariance
learning in the visual system. Each may explain how neurons at
the end of the ventral visual pathway learn to respond to visual
stimuli with transform (e.g., position or view) invariance. With
CT learning (Stringer et al., 2006), a standard Hebb learning
rule is able to encourage output neurons to learn to respond
invariantly across different transforms of an object. CT learning

FIGURE 3 | The pentagon formation specifying the location of the

occluding and occluded objects. The occluded object, the Jaimoid, is
always presented in the centre of the pentagon. Each of the occluding
objects is placed at one of the five points of the pentagon, partially
overlapping the Jaimoid at the center. This ensures that the occluding
objects are equidistant from the center of the occluded object, helping to
maintain a comparable level of partial occlusion for the Jaimoid.

utilizes the spatial overlap or similarity between different trans-
forms of an object in order to produce invariant responses. In
contrast, the trace learning rule (Foldiak, 1991) incorporates a
memory trace of recent neuronal activity, which is able to exploit
the temporal continuity of the different transforms of an object
in order to produce invariant responses. The trace learning rule
assumes that in the natural visual world different transforms of
an object tend to occur close together in time. In this paper, we
will explore only the performance of the CT learning mechanism,
which relies on the simpler Hebb learning rule.

The CT learning principle in the model architecture (VisNet)
uses only spatial continuity in the input objects to drive the
Hebbian associative learning with no temporal trace. In principle,
the CT learning mechanism we describe could operate in vari-
ous forms of feedforward neural network, with different forms
of associative learning rule or different ways of implementing
competition between neurons within each layer.

The model consists of a hierarchical series of four layers of
competitive networks that are intended to model the hierarchy
of processing areas in the ventral visual stream, which include
V2, V4, the posterior inferior temporal cortex, and the ante-
rior inferior temporal cortex, as shown in Figure 5. The forward
connections to individual cells are derived from a topologically
corresponding region of the preceding layer, using a Gaussian
distribution of connection probabilities. These distributions are
defined by a radius which will contain approximately 67% of the
connections from the preceding layer. The values used are given
in Table 1.

Before the objects are presented to the network’s input layer
they are pre-processed by a set of input filters which accord with
the general tuning profiles of simple cells in V1. The filters pro-
vide a unique pattern of filter outputs for each transform of each
visual object, which is passed through to the first layer of VisNet.
The input filters used are computed by weighting the difference
of two Gaussians by a third orthogonal Gaussian according to the
following:

�xy(ρ, θ, f ) = ρ

[
e
−

(
x cos θ+y sin θ√

2/f

)2

− 1

1.6
e
−

(
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1.6
√

2/f

)2
]

e
−

(
x sin θ−y cos θ

3
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)2
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FIGURE 4 | Five example frames selected from the 360 frame

testing image sequence of the Jaimoid rotating in depth around

the vertical axis through 360◦ in 1◦ steps. The selected frames

shown are for 0◦, 72◦, 144◦ , 218◦ , and 288◦. All five of the
occluding objects were also presented to the network in the
same manner.
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et al. (1993) and Wallis and Rolls (1997). Convergence through the network is
designed to provide fourth layer neurons with information from across the

entire input retina. Right: Convergence in the visual system V1, visual cortex
area V1, TEO, posterior inferior temporal cortex; TE, inferior temporal
cortex (IT).

Table 1 | Network dimensions showing the number of connections

per neuron and the radius in the preceding layer from which 67% are

received.

Dimensions Number of connections Radius

Layer 4 32 × 32 100 12

Layer 3 32 × 32 100 9

Layer 2 32 × 32 100 6

Layer 1 32 × 32 272 6

Retina 128 × 128 × 32 − −

where f is the filter spatial frequency, θ is the filter orientation,
and ρ is the sign of the filter, i.e., ± 1. Individual filters are
tuned to spatial frequency (0.0625–0.5 cycles/pixel); orientation
(0◦–135◦ in steps of 45◦); and sign (±1). Example input filters
are shown in Figure 6. In previous studies, we have found that
four filter orientations θ is the minimal number needed to dis-
tinguish effectively between different visual objects presented to
the retina. The number of layer 1 connections to each spatial fre-
quency filter group is given in Table 2. Our model incorporates
four octaves of filter frequencies. There are more connections
from high frequency filters than low frequency filters. This enables
the high frequency filters to cover a similar region of the input
as the low frequency filters. Past neurophysiologcal research has
shown that models based on difference-of-Gaussians functions
are superior to those based on the Gabor function or the sec-
ond differential of a Gaussian. Although the DOG-based models
have more free parameters, they can account better for the vari-
ety of shapes of spatial contrast sensitivity functions observed in
cortical cells and, unlike other models, they provide a detailed
description of the organization of subregions of the receptive
field that is consistent with the physiological constraints imposed
by earlier stages in the visual pathway. (Hawken and Parker,
1987).

The activation hi of each neuron i in the network is set equal
to a linear sum of the inputs yj from afferent neurons j weighted
by the synaptic weights wij. That is,

hi =
∑

j

wijyj (3)

where yj is the firing rate of neuron j, and wij is the strength of the
synapse from neuron j to neuron i.

Within each layer, competition is graded rather than winner-
take-all, and is implemented in two stages. First, to implement
lateral inhibition, the activation h of neurons within a layer are
convolved with a spatial filter, I, where δ controls the contrast and
σ controls the width, and a and b index the distance away from
the center of the filter

Ia,b =
⎧⎨
⎩−δe

− a2+b2

σ2 if a �= 0 or b �= 0,

1 − ∑
a �=0
b�=0

Ia,b if a = 0 and b = 0.
(4)

The lateral inhibition parameters are given in Table 3.
Next, contrast enhancement is applied by means of a sigmoid

activation function

y = f sigmoid(r) = 1

1 + e−2β(r−α)
(5)

where r is the activation (or firing rate) after lateral inhibition, y
is the firing rate after contrast enhancement, and α and β are the
sigmoid threshold and slope respectively. The parameters α and β

are constant within each layer, although α is adjusted to control
the sparseness a of the firing rates. The sparseness a of the firing
within a layer can be defined, by extending the binary notion of
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FIGURE 6 | The filter sampling paradigm. Images are first filtered by a
difference of Gaussian filter of the appropriate orientation, sign, and
frequency. Each square represents the retinal image after filtering and the
circles represent the consistent retinotopic coordinates used to provide input

to a layer one cell. The orientation tuning, left to right, increases from 0◦ in
steps of 45◦, with segregated pairs of positive (P) and negative (N) filter
responses. The filters double in spatial frequency toward the reader. For
further details, see Rolls and Deco (2002).

Table 2 | Layer 1 connectivity.

Frequency 0.5 0.25 0.125 0.0625

Number of connections 201 50 13 8

The numbers of connections from each spatial frequency set of filters are

shown. The spatial frequency is in cycles per pixel.

Table 3 | Lateral inhibition parameters.

Layer 1 2 3 4

Radius, σ 1.38 2.7 4.0 6.0

Contrast, δ 1.5 1.5 1.6 1.4

the proportion of neurons that are firing, as

a =

(
N∑

i=1
yi/N

)2

N∑
i=1

y2
i /N

(6)

where yi is the firing rate of the ith neuron in the set of N neurons
(Rolls and Treves, 1990, 1998). For the simplified case of neurons
with binarized firing rates = 0/1, the sparseness is the proportion
∈ [0, 1] of neurons that are active. To set the sparseness to, say,
5% in VisNet simulations, the threshold α is set to the value of the
95th percentile point of the activations within the layer.

The parameters for the sigmoid activation function are shown
in Table 4. These fall squarely within the standard VisNet sigmoid
parameter values which have been previously optimised to pro-
vide reliable and robust performance (Stringer et al., 2006, 2007;
Stringer and Rolls, 2008).

Table 4 | Sigmoid parameters.

Layer 1 2 3 4

Percentile 95 95 88 91

Slope β 190 40 75 26

2.7. TRAINING PROCEDURE
The lateral inhibition and contrast enhancement stages of the
VisNet model aim to simulate the function of inhibitory interneu-
rons. In the brain, inhibitory interneurons effect direct compe-
tition between nearby excitatory cells within each layer of the
ventral visual pathway. The way in which contrast enhancement is
currently implemented in VisNet allows us to control the sparse-
ness of firing rates within each layer. This is a useful aspect of
the model, which allows us to explore the effects of sparseness
on network performance. Although, it should be noted that the
current contrast enhancement mechanism is not as realistic as
implementing local inhibitory neurons explicitly because it is a
global operation across each entire layer.

The occluded object, the Jaimoid, paired with each of the five
surrounding occluding objects, is presented to VisNet with both
objects rotating over 360◦ (Figure 7). Each full revolution over
360◦ of the pair is followed by the occluded object paired with
a different occluding object in a different location around the
pentagon formation. This process is repeated until the occluded
object is paired with all five occluding objects. The rotating
objects are presented as follows: cone, position 1; cube, position 2;
cylinder, position 3; star, position 4; dodecahedron, position 5;
Jaimoid, centrally, at position 6 (Figures 8 and 9).

In addition, all possible pairings of the five occluding objects
are then presented in a similar fashion rotating over 360◦. This
helped VisNet to learn separate representations of the objects by
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FIGURE 7 | Five example frames selected from the 360 frame training

image sequence of the Jaimoid and the Cone rotating through 360◦ in

1◦ steps. The selected frames shown are for 0◦, 72◦, 144◦ , 218◦, and 288◦.

The Jaimoid is also occluded by the four other occluding objects in separate
image sequences. Therefore, in total, there are five image sequences used
during training, each containing 360 frames.

FIGURE 8 | Five example frames of the Jaimoid occluded

by all five occluding objects in their five corresponding positions.

The occluding objects are arranged around the pentagon formation
so that they are equidistant from the center of the Jaimoid. The rotating

objects used during training are presented in the same locations:
cone, position 1; cube, position 2; cylinder, position 3; star,
position 4; dodecahedron, position 5; Jaimoid,
position 6.

FIGURE 9 | Five example frames of two occluding stimuli (cylinder and star) rotating together, demostrating the typical overlap between the

occluding objects.

using the statistics of the natural environment where the features
within an object occur together more frequently than features
between different objects (Stringer and Rolls, 2008). It should be
noted that adjacent pairs of occluding objects would also some-
times overlap during training, leading to one occluding object
being partially occluded by another occluding object.

At each image presentation, the activation of individual neu-
rons within a layer is calculated, then their firing rates are cal-
culated, and the feedforward synaptic weights between layers wij

are updated according to Equation 1. This process is repeated
for each layer in turn for all 4 layers of the VisNet model. One
training epoch consists of the occluded object paired with all

five occluding objects across all 360 transforms followed by all
possible pairings of the occluding objects rotating over all 360◦.

In this manner, the network is trained one layer at a time start-
ing with layer 1 and finishing with layer 4. Fifty training epochs
were used for layers 1–4. The learning rate for layers 1–4 were
0.109, 0.1, 0.1, and 0.1, respectively.

Due to high computational expense, the Jamoid was the only
object that was partially occluded by its neighbours in the simula-
tions described below. However, the underlying theory described
above predicts that similar effects would be found if the simula-
tions were repeated with more objects partially occluded by each
other during training.
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2.8. TESTING PROCEDURE
During testing, the synaptic weights within the model are fixed
and cannot be altered. Firstly, in order to test whether VisNet had
built an invariant representation of the central partially occluded
object, the occluded object was presented individually, rotating
around the vertical axis over 360◦ (Figure 4). The surrounding
five occluding objects were also presented in isolation in a similar
fashion to verify that VisNet had build invariant representations
of these objects too. The neuronal outputs of the network were
then recorded during the testing presentations of each view of
each object.

Secondly, VisNet was also tested with six novel objects rotating
over 360◦ in 1◦ steps. This test demonstrates whether Visnet has
learned to respond to the specific objects presented during train-
ing or whether VisNet has learned to respond selectively to only
the location where these objects were presented.

Finally, VisNet was also tested with the different partial views
of the occluded object as presented in Figure 10 and exempli-
fied in Figure 11. As the different object pairs rotate together
over 360◦, parts of the partially occluded object are not visible.
By testing VisNet with the partial views that were not visi-
ble during training it is possible to establish whether VisNet
is able to bind together the partially occluded views of the
occluded object into one holistic invariant representation. This

test is important because it shows that VisNet does not need
to rely on a key component of the training stimuli in order to
recognise it.

The network’s ability to recognise which object is shown dur-
ing testing is assessed using two information theoretic measures:
single and multiple cell information. Full details on the applica-
tion of these measures to VisNet are given by Stringer et al. (2006).
These measures reflect the extent to which cells respond invari-
antly to an object over a number of different views (transforms),
but respond differently to different objects. The single cell infor-
mation measure is applied to individual cells in layer 4 of the
VisNet model, and measures how much information is available
from the response of a single cell about the stimlus that was pre-
sented. The single cell information measure for each cell shows
the maximum amount of information that the cell conveys about
any one object. This is computed using the following formula
with details provided by Rolls et al. (1997) and Rolls and Milward
(2000). The object-specific information I(s, R) is the amount of
information the set of responses R has about a specific object s,
and is given by

I(s, R) =
∑
r∈R

P(r|s) log2
P(r|s)
P(r)

, (7)

FIGURE 10 | Mutual overlap: Areas of mutual overlap between the

occluding and occluded objects during one example frame of rotation.

As the two objects rotate together in lock-step, the area of mutual overlap
creates a partial view of the occluded object: (A) Shows the cone and Jaimoid;

(B) Cube and Jaimoid; (C) Cylinder and Jaimoid; (D) Star and Jaimoid; (E)

Dodecahedron and Jaimoid. Each pair is presented alongside the partial view
it creates. VisNet must learn to associate together all of the different partial
views of the occluded object to build an exclusively invariant representation.
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FIGURE 11 | Star and Jaimoid mutual overlap: Five example

frames of the star and Jaimoid as they rotate together in lock-step.

As in Figure 10, the area of mutual overlap creates a partial view

of the Jaimoid. This is shown in this specific example where the
star and Jaimoid are presented over five equally spaced viewing
angles.

where r is an individual response from the set of responses R.
However, the single cell information measure cannot give a com-
plete assessment of VisNet’s performance with respect to invariant
object recognition. If the amount of information provided by a
single cell is not sufficient to differentiate between which objects
are present during testing, the network may have failed to learn,
or a distributed representation may have formed that needs infor-
mation from a population of neurons to encode which object
is present. Furthermore, if all output cells learned to respond
to the same object then there would in fact be relatively little
information available about the set of objects S, and single cell
information measures alone would not reveal this. To address
these issues, we also calculate a multiple cell information mea-
sure, which assesses the amount of information that is available
about the whole set of objects from a population of neurons.

Procedures for calculating the multiple cell information mea-
sure are described in detail by Rolls et al. (1997) and Rolls and
Milward (2000). From a single presentation of an object, we
calculate the average amount of information obtained from the
responses of all the cells regarding which object is shown. This
is achieved through a decoding procedure that estimates which
object s′ gives rise to the particular firing rate response vector on
each trial. A probability table of the real objects s and the decoded
objects s′ is then constructed. From this probability table, the
mutual information is calculated as

I(S, S′) =
∑
s,s′

P(s, s′) log2
P(s, s′)

P(s)P(s′)
. (8)

Multiple cell information values are calculated for the subset of
cells which, according to the single cell analysis, have the most
information about which object is shown. In particular, the mul-
tiple cell information is calculated from the first five cells for each
object that had the most single cell information about that object.
This results in a population of 30 cells given that there were six
objects. Previous research (Stringer and Rolls, 2000) found this to

be a sufficiently large subset to demonstrate that invariant repre-
sentations of each object presented during testing were formed,
and that each object could be uniquely identified.

3. RESULTS
3.1. ANALYSIS OF INDIVIDUALLY ROTATING OBJECTS
After the network had been trained on pairings of the occluded
and five occluding objects, we tested whether the network had
built transform invariant representations of the objects through
a CT learning effect. By presenting the rotating objects individ-
ually (Figure 4) to the network we were able to record the cell
response properties of the neurons in the fourth layer of VisNet
for each of the objects. A large number of individual experiments
were performed across different parameters and random seeds to
ensure the consistency and validity of the results. However, the
results presented are all collected as part of the same individual
experiment.

Populations of cells that responded invariantly to the individ-
ual objects were found. These cells responded to only one object
and to no views of any of the other objects. Figures 12A,B show
the cell response plots for cell (4, 17), selected at random, as
each object is rotated through 360◦ in 1◦ steps. Figure 12A shows
the responses of the cell before training and Figure 12B shows
the cell responses after training. The six response plots of cell
(4, 17) before training show that the cell responds at random to
the six objects. After training, the cell has learned to respond to
the central occluded object, the Jaimoid, invariantly and does not
respond to any view of any of the other objects.

Figures 13A,B show the cell response plots for cell (19, 1)
before and after training, respectively. Before training, the
cell responds to the objects randomly. After training this cell
has learned to respond invariantly to all 360 views of the
Dodecahedron, which was one of the occluding objects, and
to no views of any other objects. Furthermore, although not
shown here, other output cells learned to respond in a selec-
tive and invariant manner to each of the other occluding objects.
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FIGURE 12 | The firing rate responses of cell (4, 17) in the 4th (output)

layer of VisNet to the central occluded object (Jaimoid) and the five

surrounding occluding objects as they rotated through 360◦ in 1◦ steps

before and after training. Before training, it can be seen that the cell

responds randomly to different views of different objects. After training,
it can be seen that the cell’s response pattern has changed. This cell
responds to all the views of Jaimoid, and to none of the views of
the other objects.

Thus, all of the objects were represented individually. When dif-
ferent sparseness values throughout the layers were investigated,
results were found to be robust. As the sparseness was gradually
increased, a more distributed representation began to form with
fewer exclusive cells whereby each cell began to respond to more
than one object. In this situation, object identity is still encoded
but over a population of cells.

3.2. ANALYSIS OF CELL FIRING PROPERTIES IN EARLIER LAYERS
The analyses described above were applied to the output (fourth)
layer of the network. Cells in the output layer receive informa-
tion through the feedforward synaptic connections from across
the entire input retina. However, cells in the earlier layers receive
more localized input from the retina due to the topographical
feedforward connectivity present within the model. Therefore, we
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FIGURE 13 | The firing rate responses of cell (19, 1) in the fourth (output)

layer of VisNet to the central occluded object (Jaimoid) and the five

surrounding occluding objects as they rotated through 360◦ in 1◦ steps

before and after training. Before training it can be seen that the cell

responds randomly to different views of different objects. After training it can
be seen that the cell’s response pattern has changed. This cell has become
an exclusive invariant cell for the Dodecahedron. It responds invariantly to all
360 views of the Dodecahedron and to no views of any other object.

carried out additional analyses of the cell response properties in
the earlier layers after training.

Response plots for cells that have learned to respond to the
Jaimoid are presented for each of the four layers in Figure 14. It
was found that the responses of cells in layer 3 of the network

were similar to those in the output (fourth) layer. That is, cells in
layer 3 were both object-selective (responding exclusively to their
preferred object) and highly transform (view) invariant. In layer 2
of the network, cells were object-selective but showed more mod-
est levels of transform invariance due to the limited convergence
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FIGURE 14 | Example Jaimoid response plots for all four layers.

A prototypical example cell is presented for each of the 4 layers within the
VisNet model. For each cell, its response plot is presented with respect to
the example object, the Jaimoid. It can be seen that a typical layer 3 cell is
highly transform invariant while a layer 2 cell shows more modest levels of

view invariance. Layer 1 cells demonstrate very little view invariance and
responded to a very narrow set of views. In all cases, these cells responded
exclusively to their preferred object, in this case the Jaimoid, and did not
learn to respond to any views of any of the other objects. Comparable
responses exist for all six of the objects presented during training.

of feedforward connections from the retina. Individual layer 1
cells receive projections from a very limited region of the retina.
These cells were object-selective but provided very low levels of
transform invariance. Stringer and Rolls (2008) have shown that
a one-layer network with full feedforward connectivity can learn
output representations that are object-selective and completely
transform invariant, even when trained on pairs of objects simul-
taneously. Although, these authors did not look at the case of
realistic visual objects that are partially occluding during training.

3.3. ANALYSIS OF PARTIAL VIEW RESPONSE
To better understand how the network has learned to represent
the partially occluded object, the different fragmented partial
views of the occluded object that were obscured at different times
during training were presented separately to the model during
testing for all 360 views. This is a fundamental test to ensure that
output neurones have learned to respond to the fragmented parts
of the partially occluded object. A similar but easier test would
have been to only present the two different halves of the Jaimoid
to the network for testing. By presented the smaller fragmented
views, it may shown that VisNet has successfully learned to bind

these partial views together form a complete invariant represen-
tation of the Jaimoid. This test is necessary to show that output
neurons do not just relying on a key-marker or partial view of the
Jaimoid in order to recognise it.

Figure 15 shows that neurons in the output layer of the VisNet
model were able to successfully bind together all of the different
partial views into a holistic invariant representation. Specifically,
the exact same output neurons (e.g., cell 4, 17) that responded
invariantly when presented with the complete Jaimoid (e.g.,
Figure 12) were also activated in an identical manner when pre-
sented with the various partial views. Each and every partial view
caused the same output neurons to respond invariantly as if the
whole object had been presented in its entirety.

This important novel result shows that a feedforward hierar-
chical model of the ventral visual system such as VisNet does
not need to rely on particular parts, or key-markers, of an object
in order to recognize it. Furthermore, it shows that such a bio-
logically inspired network is able to not only build invariant
representation of individual objects despite the fact that pairs of
objects were presented during training, but it also shows that such
a network can solve a far more complex problem, that is, building
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FIGURE 15 | Partial view response plots for cell 4, 17. Cell response
plots are presented after testing the network with the fragmented
partial views of the Jaimoid, as exemplified in Figure 10. It can be seen
that the example cell 4, 17 that responded invariantly to the complete view of
the Jaimoid also responds in an identical manner to the different

fragmented partial views of the Jaimoid. Cell 4, 17 has learned to bind
together these different partial views into a holistic representation and
responds equally well to all of them, thus proving that this cell does
not rely on a specific partial view or key-marker in order to recognize
the Jaimoid.

invariant representations in a multi-object environment even
when the different objects are partially occluding one another, as
is often the case in the real world.

3.4. LOCATION VERSUS OBJECT SELECTIVITY
An important question is whether the output cells learned to
respond to the visual form of the objects or merely to the reti-
nal locations. In order to minimize the possibility that the output
cells had learned to respond to the locations, the objects were
presented to the network in overlapping locations as shown in
Figure 8. Even with the objects presented in highly overlapping
locations, the output cells learned to respond to the objects them-
selves, and to no views of any of the other partially overlapping
objects.

The network was also tested with six novel objects, such as a
pyramid, rotating over 360◦ in 1◦ steps. These objects are novel
in the sense that the network was not trained with them and
was only exposed to them for testing. The novel objects were
presented in the same locations as the original occluding and
occluded objects. If the network had learnt to respond to the
individual trained objects rather than the locations, then the
responses of the output cells to the novel objects should be less
clearly tuned than to the trained objects. That is, the cells should
not respond so uniformly (invariantly) over the different views of

any particular novel object, and the cell responses should not be
selective to individual novel objects. Figures 16 and 17 show cell
response plots for cell (4, 17) and (19, 1) after testing the network
with the novel objects. To reiterate, when tested with the original
set of objects, cell (4, 17) responds invariantly to the Jaimoid, and
to none of the views of the other objects (Figure 12B). However,
when the network is tested on six novel objects presented in the
same locations as the trained set of objects, the cell responds
very poorly to small portions of view of a number of objects.
Similarly, when tested with the original set of objects, cell (19, 1)
responds invariantly to all 360 views of the Dodecahedron and to
no views of any other object (Figure 13B). When tested on the six
novel objects presented in the same locations as the trained set
of objects, the cell responds very poorly to small portions of view
of a number of objects. These results help demonstrate that the
network has learnt to respond to the trained objects in particular,
and not just to their locations.

3.5. INFORMATION ANALYSIS
Single cell information analysis was conducted to confirm
whether the network had developed cells that responded invari-
antly to their preferred object (Figure 18). The unbroken line
represents the results obtained after presenting the six original
trained objects to a network after training on the 360 views of
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FIGURE 16 | The firing rate responses of cell (4, 17) in the fourth (output)

layer of VisNet to six new objects that the network was not trained on,

as they rotated through 360◦ in 1◦ steps after training. It can be seen that
the cell’s response pattern has changed compared to its response pattern to
the six objects that the network was trained on (the occluded and the five
occluding objects; Figure 12B). Whereas when tested with the set of objects

that the network was trained on, the cell responds to at least 80% of the
views of Jaimoid, and to none of the views of the other objects. When the
network is tested on six novel objects presented in the same locations as the
trained set of objects, the cell responds very poorly to small portions of view
of a number of objects. This shows that the network has learnt to respond to
the trained objects in particular, and not just to their locations.

all possible object pairs. The dashed line represents the results
obtained after presenting six novel objects rotating in the same
positions as the six original trained objects. The dotted line rep-
resents the results after presenting the six original objects to a
random untrained network. Single cell information measures for
the fourth layer neurons ranked in order of their invariance to
the objects are shown. It can be seen that training the network
on the object pairs has lead to many of the fourth layer neurons
attaining the maximal level of single cell information of 2.58 bits
for the trained objects. These neurons have learned to respond
to all of the views of their preferred object. However, when the
network, which had been trained on the six orginal objects, was
tested with novel objects, no cells reached the maximum level of
information. This reflected the fact that the output cells of the
trained network were not able to respond to the novel objects in a
view-invariant or object-selective manner, as shown in Figures 16
and 17. These results thus further demonstrate that when the net-
work was trained on the six orginal objects, the output cells had
learned to respond selectively to the trained objects and not the
untrained objects. This in turn confirms that the network learned

to respond to the visual forms of the trained objects rather than
their retinal locations.

However, it is unclear whether all of the six objects are indi-
vidually represented by a unique subset of invariant output cells.
Indeed, it is possible that these cells are responding to the same
object and are, therefore, unable to provide information regard-
ing which object is present. To ensure that there are cells that
respond preferentially to each of the six objects multiple cell
information analysis was performed.

Figure 19 shows the multiple cell information analysis
obtained when VisNet was tested with the six individual objects
rotating through 360◦ in 1◦ steps. Multiple cell information anal-
ysis results are also plotted for six novel objects that the network
was not previously trained on. These novel objects were rotating
in the same positions as the six objects on which the network was
originally trained. Results are presented having tested the trained
network with the original set of objects (unbroken line), after test-
ing the trained network with the novel set of objects (dashed line)
and with a random untrained network (dotted line). After the
network was trained and tested with the original set of objects,
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FIGURE 17 | The firing rate responses of cell (19, 1) in the fourth (output)

layer of VisNet to six new objects that the network was not trained on,

as they rotated through 360◦ in 1◦ steps after training. It can be seen that
the cell’s response pattern has changed compared to its response pattern to
the six objects that the network was trained on (the occluded and the five
occluding objects; Figure 13B). Whereas when tested with the set of objects

that the network was trained on, the cell responds invariantly to all 360 views
of the Dodecahedron and to no views of any other object. When tested on
the six novel objects presented in the same locations as the trained set of
objects, the cell responds very poorly to small portions of view of a number
of objects. This shows that the network has learnt to respond to the trained
objects in particular and not just to their locations.

over 2.5 bits of information was reached (substantially higher
than 1.1 bits reached by the untrained network or 1.7 bits reached
by the trained network that was tested on the novel set of objects)
suggesting that the single cell information results included cells
that preferentially responded to all six objects. These plots show
that the network did not learn to respond to the locations of the
objects, and instead bound together different views of the occlud-
ing and occluded object to form object specific representations.
This was also confirmed by inspection of the cell response plots
as shown in Figures 12B and 16, as well as Figures 13B and 17.

4. DISCUSSION
An important question in natural vision is how the brain forms
invariant representations of objects that are always partially
occluded by other objects during learning. In a real world visual
environment, this will often be the case. Stringer and Rolls (2008)
have shown that a biologically plausible competitive neural net-
work (VisNet) can develop invariant representations of individual
objects when no single object is seen in isolation. In this paper
we demonstrate for the first time how such a network might
form an invariant representation of an object that is always
partially occluded by other objects. The mechanism employed for

invariance learning is CT learning. CT learning uses the spatial
continuity between the views of individual objects as they trans-
form in the real world, combined with associative learning of
feedforward connection weights.

It was found that, after training the network with a rotating
object that is always partially occluded, the network is able to form
view invariant representation of the partially occluded object. In
addition, by testing the network with the fragmented partial views
of the occluded object in isolation, it was also shown that the same
output neurons that learned to respond to the Jaimoid when pre-
sented in its entirety also responded in an identical manner to
each of the fragmented partial view sequences. This shows that the
network has learned to bind together the different partial views
of the occluded object presented during training into a holistic
invariant representation despite always seeing the Jaimoid par-
tially occluded and, therefore, never in isolation. It was also found
that view invariant representations are also formed for all five
occluding objects. This is a challenging task since the occluding
objects were always overlapping the occluded object and therefore
VisNet had to learn to separate the objects. This is the first time
such learning has been shown to happen in a biologically inspired
model of the ventral visual system.
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FIGURE 18 | Single cell information results obtained when VisNet was

tested with the occluded object and five occluding objects rotating

through 360◦ in 1◦ steps. Single cell information analysis results are also
plotted for six novel objects that the network was not previously trained on.
These novel objects were rotating in the same positions as the six objects
with which the network was originally trained. Results are presented having
tested the trained network with the original set of trained objects
(unbroken line), after testing the trained network with the novel set of
objects (dashed line), and after testing a random untrained network with
the original six objects (dotted line). The single cell information measure for
all fourth layer neurons ranked in order of their invariance to the objects is
shown. It can be seen that training the network on the object pairs has led
to many fourth layer neurons attaining the maximum level of single cell
information of 2.58 bits for these trained objects. These cells have learned
to respond selectively to individual trained objects invariantly over all views.
It can also be seen that the novel objects produce less information and no
cells reached the maximal information. The random untrained plot provides
a baseline comparison.

Despite the fact that the objects were presented in the same
location during training and testing, the network was able to form
representations of the objects’ identities instead of just learning
to respond to particular locations. During training there was sig-
nificant overlap between the objects (Figures 8 and 9), which
would have precluded VisNet from learning about each object just
because it was presented in the same location. Instead, VisNet
built separate representations of each of the individual objects.
This is confirmed by invariant cells that responded maximially to
all views of only one of the stimuli and not to any views of any
other stimuli. After training, all of the stimuli were represented
in this way. Given that the objects were highly overlapping during
training, if the network had learned to respond to location instead
of stimulus identity, then the network would not have developed
cells which responded specifically and invariantly to individual
objects, with all of the objects represented uniquely in this way.

This conclusion is also confirmed by additional results
obtained with a novel set of six objects presented during testing.
These novel objects were presented in the exact same locations
as the six original objects that were presented during training.
The output neurons that learned to respond preferentially and
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FIGURE 19 | Multiple cell information results obtained when VisNet

was tested with the occluded object and five occluding objects

rotating through 360◦ in 1◦ steps. Multiple cell information analysis
results are also plotted for six novel objects that the network was not
previously trained on. These novel objects were rotating in the same
positions as the six objects on which the network was originally trained.
Results are presented after training the network (unbroken line), after
testing the trained network with the novel set of objects (dashed line) and
with a random untrained network (dotted line). After the network was
trained, over 2.5 bits of information was reached, which was substantially
higher than 1.10 bits reached by the untrained network or 1.7 bits reached
by the trained network that was tested on the novel set of objects. This
confirmed that, after training the network, there were cells that form object
specific representations to each one of the six objects and do not respond
to the object locations.

invariantly to the original trained objects were then inspected and
an example response plot was presented. It was shown that these
output neurons did not respond in a exclusive or invariant man-
ner to any of these novel objects thus confirming that the network
had learned object selectivity. The residual firing that was present
within the response plots can be explained by the fact that after
the network has been trained, neurons will respond in propor-
tion to how similar the novel input pattern is to the previous
learned patterns. By virtue of the fact that the input spaces are not
orthogonal with respect to the input filters that they activate when
objects occupy the same input space on the retina, they will cause
an degree of activity in the network based on previous learning.
This is a fundamental property of competitive networks, which
will try to generalize to novel input patterns depending on their
similarity to the previous learned input patterns.

Most artificial computer vision systems designed by software
engineers do not seek to mimic processing exactly as it is car-
ried out in the brain. Also, the challenges addressed by artificial
computer vision systems are often more focused, for example,
on the problem of object or face recognition after training the
system with individual segmented objects or faces. For such a
task, non-biologically inspired artificial visual systems often rely
on either template matching or searching for the presence of a
subset of key features in order to recognise a partially occluded
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object (Ullmann, 1992; Ying and Castañon, 2002; Do et al., 2005).
However, as computational neuroscientists, we are interested in
the more ecological problem of understanding how the primate
visual system learns in an unsupervised manner to make sense of
complex natural visual scenes containing multiple objects. This
is a valuable long term goal, which may ultimately offer engi-
neers powerful new approaches to intelligent visual scene analysis
and object recognition. Understanding how the primate brain
learns to process visual input from scenes will involve the step-
by-step uncovering of many key neurodynamical mechanisms,
which ultimately blend and work together in the brain. In this
current paper, we have examined the problem of how the primate
visual system might develop separate transform-invariant repre-
sentations of individual objects even if these objects are always
seen partially occluding each other during unsupervised learning.
The simulations reported here have shown for the first time how
a biologically plausible model, VisNet, of the ventral visual path-
way, with a Hebbian associative synaptic learning rule, is able to
solve this particular problem.

4.1. FUTURE WORK
The results described above have shown how a biologically plausi-
ble neural network model of the ventral visual pathway, VisNet, is
able to develop object-selective and rotation-invariant represen-
tations of objects that were partially occluding each other during
training. However, more work needs to be done to explore the
limits of this mechanism.

For example, what proportion of an object needs to be visible?
Future research could investigate the exact degree to which objects
can be occluded before learning of the partially occluded object
breaks down. This avenue of research could address the effect
of occlusion by two or more objects at a time, or where there is
more than one occluded object. The results of these experiments
presented within this study suggest that the extent to which the
partially occluded object is covered could increase quite consider-
ably so long as the different parts of the occluded object have all
become visible at some point during training.

The use of simple geometric shapes is a limitation of the cur-
rent study that should be addressed as part of future research.
The choice to use simple geometric shapes was not to help VisNet
solve the task at hand. These shapes allowed for a level of control
necessary to answer the question “how” has VisNet solved this
problem. This level of control is harder to achieve with more com-
plex objects, but their use is a sensible next step to explore their
effect on the self-organization of the network. The authors believe
that the types of objects used will not have any qualitative impact
on the results presented within this paper, but this should be con-
firmed. So long as the resolution of the retina is high enough

to convey the necessary detail of the more natural objects, then
the VisNet model will make use of the same principles discussed
within this study to solve the problem.

In the simulations described above, individual objects rotated
on the same part of the retina. Perhaps a more challenging prob-
lem is the translation of objects across the retina. This would
happen naturally as an observer shifts their gaze around a visual
scene. In this case, all of the objects would be seen moving over
the entire retina. The input representations of the objects would
then fully overlap over all possible locations on the retina. Yet the
network must still form separate output representations of the
objects, which are also translation invariant. We hypothesise that
the network described in this paper should still be able to solve
this problem using similar learning principles.

Another limitation of the current study is that it explores only
one type of invariance learning mechanism, CT learning (Stringer
et al., 2006). This binds different transforms of a particular object
together by exploiting the spatial similarity that exists between
the different transforms of that object. As discussed, CT learning
relies on a simple Hebbian learning rule. It would be very interest-
ing to investigate if similar results can be achieved with a different
type of biologically plausible learning rule such as Trace learning
(Foldiak, 1991; Wallis and Rolls, 1997). This alternative learning
rule exploits temporal continuity of successive transforms of an
object in order to build a transform-invariant representation of
that object. Trace learning utilizes a memory trace of the recent
firing of the post-synaptic cell.

In natural vision, objects are not always moving with respect
to one another, nor with respect to the viewer. Sometimes objects
are simply static, and one object will occlude another and yet in
many situations we are still able to learn to recognize the partially
occluded object. A typical situation of this kind might occur when
we view some faces in a photograph, for example. The current
VisNet model would not be able to solve such a training paradigm
because it relies on the statistical decoupling of features between
different objects that can occur through independent movement
in order to tell them apart. However, our laboratory has recently
shown that this more difficult problem can be solved using spik-
ing neural network dynamics. In such a model, the times of
individual action potentials are simulated, and the synaptic plas-
ticity can be dependent on the times of the pre- and post-synaptic
spikes (Bi and Poo, 1998).
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