TY - JOUR AU - Knoblauch, Andreas AU - Hauser, Florian AU - Gewaltig, Marc-Oliver AU - Körner, Edgar AU - Palm, Günther PY - 2012 M3 - Original Research TI - Does Spike-Timing-Dependent Synaptic Plasticity Couple or Decouple Neurons Firing in Synchrony? JO - Frontiers in Computational Neuroscience UR - https://www.frontiersin.org/articles/10.3389/fncom.2012.00055 VL - 6 SN - 1662-5188 N2 - Spike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report an inherently decoupling influence of spike synchronization on synaptic connections of coactivated neurons. For example, bidirectional synaptic connections as found in cortical areas could be reproduced only by assuming realistic models of STDP and rate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realistic STDP models that provide a more complete characterization of conditions when STDP leads to either coupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistently couples synchronized neurons if key model parameters are matched to physiological data: First, synaptic potentiation must be significantly stronger than synaptic depression for small (positive or negative) time lags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficiently imprecise, for example, within a time window of 5–10 ms instead of 1 ms. Third, axonal propagation delays should not be much larger than dendritic delays. Under these assumptions synchronized neurons will be strongly coupled leading to a dominance of bidirectional synaptic connections even for simple STDP models and low mean firing rates at the level of spontaneous activity. ER -