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Here we use computational modeling to gain new insights into the transformation of
inputs in hippocampal field CA1. We considered input-output transformation in CA1
principal cells of the rat hippocampus, with activity synchronized by population gamma
oscillations. Prior experiments have shown that such synchronization is especially strong
for cells within one millimeter of each other. We therefore simulated a one-millimeter patch
of CA1 with 23,500 principal cells. We used morphologically and biophysically detailed
neuronal models, each with more than 1000 compartments and thousands of synaptic
inputs. Inputs came from binary patterns of spiking neurons from field CA3 and entorhinal
cortex (EC). On average, each presynaptic pattern initiated action potentials in the same
number of CA1 principal cells in the patch. We considered pairs of similar and pairs of
distinct patterns. In all the cases CA1 strongly separated input patterns. However, CA1
cells were considerably more sensitive to small alterations in EC patterns compared to
CA3 patterns. Our results can be used for comparison of input-to-output transformations
in normal and pathological hippocampal networks.
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1. INTRODUCTION
Normal hippocampal functioning is essential for learning and
memory. Abnormalities of the hippocampus are associated with
the cognitive symptoms of schizophrenia, Alzheimer disease and
other disorders (Disterhoft et al., 2004; Walker et al., 2006;
Schobel et al., 2009). Hippocampal information processing and
its contribution to cognitive symptoms has been described using
several animal and computer models: learning and reproduc-
ing sequences of stimuli (Hasselmo et al., 2002; Gluck et al.,
2003; Cutsuridis et al., 2010), properties of place fields in
rodents (Olypher et al., 2006), generation of population rhythms,
such as gamma oscillations, associated with cognitive processes
(Neymotin et al., 2011; Volman et al., 2011), and information
transmission in the hippocampus, in particular from the hip-
pocampal field CA3 and entorhinal cortex (EC) to CA1 (Treves
and Rolls, 1994; Schultz and Rolls, 1999).

In this work, we characterized information processing in the
hippocampus somewhat differently. We have assessed how dif-
ferences between input patterns to hippocampal field CA1 are
transformed into differences between the corresponding output
patterns of CA1 spiking activity. In contrast to classical esti-
mates of information transmission as for example in Treves and
Rolls (1994), our approach does not involve characterization of
ensemble probabilities of spiking distributions in presynaptic and
postsynaptic networks.

The main goal of the present study was to quantify input-
to-output transformation performed by a set of gamma-
synchronized CA1 principal cells. This problem is important
since hippocampal field CA1 is a main output region of the
hippocampus (Amaral and Lavenex, 2006), and gamma oscilla-
tions (30–100 Hz) are characteristic for exploratory behaviors in
rodents (Bragin et al., 1995; Csicsvari et al., 2003) and cognitive
processes in monkeys (Jutras and Buffalo, 2010).

Using morphologically and biophysically detailed neuronal
models is essential for the analysis of this problem. Simplified
models do not discriminate possible differences between pat-
terns of synaptic activation. There are a number of tested realistic
models of individual CA1 neurons; see e.g., (Graham, 2001; Li
and Ascoli, 2006; Katz et al., 2009). We used one such model
from (Jarsky et al., 2005). The model had 1330 compartments
and thousands of excitatory and inhibitory synapses. We simu-
lated information processing in a set of 23,500 such models. The
size of the set is an estimate of the number of CA1 principal
cells that spike synchronously during population gamma oscil-
lations in the rat CA1 (Lubenov and Siapas, 2009; Sabolek et al.,
2009).

We studied how CA1 principal cells discriminate patterns of
spiking activity of presynaptic principal cells in the hippocampal
field CA3 and EC. CA1 receives inputs from CA3 by the Schaffer
collaterals and from EC by the perforant path (Amaral and
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Lavenex, 2006). The average level of spiking activity in the CA1
principal cells caused by input was the same for all inputs con-
sidered. Intuitively, if an input pattern makes a neuron spike then
the neuron should also spike in response to similar patterns—
otherwise, neurons would be too sensitive to noise. On the other
hand, neurons should discriminate between sufficiently different
input patterns to spike selectively. To determine discriminative
properties of the network we quantified its binary output in
response to four categories of inputs: similar and distinct activity
patterns of hippocampal field CA3 presynaptic cells, and sim-
ilar and distinct activity patterns of presynaptic cells from the
entorhinal cortex.

We found, in particular, that the CA1 network output was
more sensitive to small differences between patterns of presynap-
tic activity in EC than to small differences between patterns of
presynaptic activity in the hippocampal field CA3. CA3 and EC
input patterns that had average difference were processed by the
CA1 network similarly. Our results can be used in comparative
studies of normal and abnormal information processing in CA3,
EC, and CA1 to reveal how neuronal and network abnormalities
translate into cognitive disorders.

2. METHODS
2.1. NEURONAL MODEL
We used a model based on a reconstructed morphology of a
CA1 principal cell and known biophysical properties of such
cells. The model has been described in Jarsky et al. (2005)
and is publicly available on ModelDB (https://senselab.med.yale.
edu/modeldb/). The model neuron has 23,424 excitatory and
2465 inhibitory synapses that are distributed over the com-
partments according to location-specific densities described in
Megias et al. (2001).

Figure 1 shows locations of the excitatory and inhibitory
synapses of the model used in the study. As in Jarsky et al.
(2005) 4407 excitatory synapses located in the upper apical
dendrites were considered CA3 synapses, and 1918 excitatory
synapses located in the most distal branches of apical dendrites
and dendritic tuft were considered EC synapses. The selection of
inhibitory synapses is described in the next section on network
inputs.

A realistic morphology was essential for our study. Similar
synaptic activation patterns with the same local densities and
total numbers of activated synapses may or may not cause action
potential initiation in the model neuron depending on fine details
of input localization (Gasparini et al., 2004). Models with sim-
pler morphology cannot capture fine distinctions between input
patterns.

Besides passive membrane properties, the model has a Na+
conductance, and delayed rectifier and A-type K+ conduc-
tances. As in Jarsky et al. (2005), we considered only AMPA
and GABAa synapses. The model was provided with strong
dendritic excitability implemented by a linear increase of the
sodium conductance with distance from the soma; see details
in Jarsky et al. (2005). We used exactly the same parameters
of the model as in Jarsky et al. (2005). The model was simu-
lated using the NEURON environment (Hines and Carnevale,
1997).

FIGURE 1 | Location of excitatory and inhibitory synapses in the

neuronal model used in the study. All excitatory synapses located in
apical dendrites were considered synapses from CA3 principal cells. All
excitatory synapses located in apical tuft were considered synapses from
EC principal cells.

2.2. NETWORK INPUTS
We modeled information processing in a square millimeter patch
of CA1 during population gamma oscillations. In the model, we
used 23,500 CA1 principal cells. This is an estimate of the num-
ber of principal cells in a square millimeter patch given that
there are approximately 320,000 principal cells in 13.6 square
millimeters of the whole rat CA1 (Bernard and Wheal, 1994;
Bernard et al., 1997). We assumed that at the beginning of a
20 ms gamma period, all CA1 principal cells were in the same
state. We hypothesized that this reset was brought about by CA1
inhibitory interneurons involved in population gamma (Csicsvari
et al., 2003). We did not model connectivity between the CA1
principal cells (Orman et al., 2008) since we were only assessing
immediate (wave-front) responses that did not depend on princi-
pal cell interaction. The cells in the model represented a network
processing information in the sense that they shared some inputs.

To model excitatory inputs to CA1 principal cells we adopted
the following assumptions. First, each presynaptic cell in EC and
CA3 had at most one synaptic contact with an individual CA1
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principal cell (Li et al., 1994). Second, presynaptic cells for each
CA1 cell were chosen randomly according to a uniform dis-
tribution; the connectivity did not change over the course of
simulations (Figure 2). With regards to EC presynaptic neurons
we assumed that each of them targeted 1000 CA1 cells in the
patch (Solstad et al., 2006). Since the CA1 neuronal model has
1918 EC synapses, we got 23,500 × 1918/1,000 = 45,073 presy-
naptic EC cells. The estimated average number of postsynaptic
CA1 targets for an individual CA3 principal cells is 18,000 (Ascoli
and Atkeson, 2005). Data and modeling suggest that locations of
CA1 cells targeted by a CA3 cell are distributed non-uniformly
(Bernard and Wheal, 1994; Ropireddy and Ascoli, 2011). We
set ∼20% of CA3 projections to target the patch. Given 4407
CA3 synapses in the model, this yielded in 28,009 presynaptic
CA3 principal cells. Activity patterns of EC and CA3 presynaptic
cells were therefore represented by binary vectors of dimensions
45,073 and 28,009 respectively. Each vector component was equal
to one if the corresponding presynaptic cell spiked, and to zero
otherwise. Presynaptic activation was simultaneous.

We divided inhibitory synapses onto CA1 principal cells into
two categories. The first category of inputs provided feedback
inhibition, which reset all principal cells in the modeled patch.
We modeled these inhibitory inputs implicitly by starting all
CA1 neuron models in the same initial state to mimic the
gamma reset. The second category of inputs provided feedfor-
ward inhibition. Corresponding inhibitory inputs mostly come
from bistratified and oriens lacunosum—moleculare (OLM)
interneurons (Klausberger et al., 2003; Klausberger and Somogyi,
2008). Bistratified interneurons target basal and oblique dendrites
of principal cells, OLM interneurons target the dendritic tuft
(Figure 1). Bistratified and OLM interneurons fire several mil-
liseconds earlier than principal cells (Klausberger and Somogyi,
2008). On this basis we assumed that inhibitory synapses from
these interneurons were activated approximately simultaneously

FIGURE 2 | Connectivity in the model of the CA1 network. 23,500
principal cell models represent a one square millimeter patch of CA1. All
neuronal models are identical. However, each model has unique random
mapping between its 1918 dendritic tuft synapses and EC cells and
between its 4407 upper apical and oblique dendrite synapses and CA3
cells. Spiking EC and CA3 cells (filled circles) may or may not initiate an
action potential (filled circle) in a model CA1 principal cell within a 20 ms
time window. Thus, the CA1 network model transforms a binary vector
of a EC and CA3 input into a binary vector of CA1 activity output.

with excitatory synapses to principal cells. Synaptic con-
ductances were modeled with double-exponential functions:
τ1 = 0.2 ms, τ2 = 2.0 ms for AMPA synapses, and τ1 = 1.0 ms,
τ2 = 18.0 ms for GABAa synapses. Synaptic reversal potentials
were 0.0 mV and −75.0 mV, respectively. The model had in total
120 inhibitory synapses in upper apical and oblique dendrites,
333 in the dendritic tuft, 1447 in the basal dendrites, and 44 in
the soma. We used the following levels of activation of inhibitory
synapses: upper apical and oblique dendrites, basal dendrites, and
soma −50% , dendritic tuft −20% out of the corresponding total
numbers. The levels of activation were chosen to match the results
of simulations in Jarsky et al. (2005) (see their Figure 2).

2.3. METRIC FOR THE NETWORK INPUTS AND OUTPUTS
To quantify differences between pairs of binary patterns of presy-
naptic activity (CA1 network inputs) we used the Hamming
distance. Each input pattern produced a spiking pattern in CA1
(CA1 network output). We quantified differences between the
output patterns also using the Hamming distance. Hamming dis-
tance, HD(x, y), between two binary vectors x and y is equal to the
number of vector components that are not the same. For example,
if v0 = (0, 0, 0, 0, 0), v1 = (0, 1, 0, 1, 1), and v2 = (0, 1, 1, 1, 0)

then HD(v0, v1) = 3 and HD(v1, v2) = 2. If a CA1 cell spiked
within 20 ms after synaptic activation the corresponding compo-
nent of the output vector was set to one, otherwise the component
was set to zero.

2.4. SIMULATIONS
Simulations were performed on a 256 dual-socket/dual-core
AMD 2.6GHz-based Sun X2200 compute nodes cluster at Emory
University and 1120 Intel Xeon Quad-Core 2.33GHz-based com-
pute nodes of the Union Square (USQ) cluster at NYU. No
parallelization of computations was used. For any input, the neu-
ronal model was simulated for no longer than 20 ms (a typical
period of gamma oscillations) of the model’s time. If the somatic
membrane potential reached 10 mV (action potential threshold)
within 20 ms the simulation stopped and the input was consid-
ered as initiating an action potential. Otherwise, the input was
considered as not initiating an action potential. For simulations,
we used NEURON’s multiple order variable time step integration
method CVODE. Since we were not interested in accurate spike
waveforms it was sufficient to set the local absolute error toler-
ance equal to 10−4. On average, a simulation of one input pattern
to one neuronal model took approximately 7 s of processor time.
Analyses of simulation data were done with Matlab (Mathworks,
Inc.).

3. RESULTS
3.1. ACTIVITY LEVELS IN EC, CA3, AND CA1
We adjusted presynaptic activity to conform to the results of Brun
et al. (2002, 2008). These studies showed that CA1 place cells have
a peak firing rate of about 7 Hz with only CA3 inputs or only
EC inputs, corresponding to a ∼14% probability of action poten-
tial initiation (API) during a 20 ms gamma period. To find the
level of presynaptic activity resulting in 14% API probability in
CA1 principal cells we calculated CA1 outputs for multiple lev-
els of CA3 and EC activity (Figure 3). For each activity level we
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simulated 200 patterns. Fits with Boltzmann functions showed
that 14% activity in CA1 (3290 spiking neurons) was achieved
when 1540 (5.50% ) out of NCA3 = 28,009 or 3086 (6.85%) out
of NEC = 45,073 cells spiked in an input pattern. We simulated
only CA3 and EC activity patterns with those numbers of spiking
cells.

Under the assumption that the binary patterns that rep-
resent activity in inputs and CA1 networks within short
time windows are formed by independently spiking neu-
rons, the Hamming distances (HDs) between such patterns
have binomial distributions. Consider a pair of CA1 activity
patterns, P1

CA1 and P2
CA1. The Hamming distance between

the patterns is equal to the sum of the Hamming distances
between components, P1

CA1,k and P2
CA1,k, k = 1, · · · , NCA1, of

the patterns: HD(P1
CA1, P2

CA1) = ∑NCA1
k = 1 HD(P1

CA1,k, P2
CA1,k).

From the assumption of independent neuronal spiking it
follows that the Hamming distance between any pair of com-
ponents is an independent random variable that is equal to
one or zero. Since there are two combinations, (0, 1) and
(1, 0) with the Hamming distance equal to one, the proba-
bility that the Hamming distance between two components
is equal to one, prHDCA1 ≡ Prob{HD(P1

CA1,k, P2
CA1,k) = 1}

depends on the probability of CA1 action potential
initiation, prAPICA1 = 0.14, according to the formula
prHDCA1 = 2 × prAPICA1 × (1 − prAPICA1) ≈ 0.24. Hence,
HD(P1

CA1, P2
CA1) follows a binomial distribution with

parameters NCA1 = 23,500 and prHDCA1 = 0.24.
Accordingly, the mean value of HD(P1

CA1, P2
CA1) is equal to

NCA1 × prHDCA1 = 5640, and the standard deviation is equal
to

√
NCA1 × prHDCA1 × (1 − prHDCA1) = 65. The mean

FIGURE 3 | Probability of action potential initiation in the CA1 principal

cell modeled as a function of excitatory drive. EC inputs (gray), CA3
inputs (black). Each point is the portion of 200 random patterns of activated
synapses that initiated an action potential. Dashed horizontal line indicates
the target action potential probability of 0.14. This probability was achieved
when 5.5% of CA3 or 6.85% of EC synapses were activated (black
triangles). The bases of the gray boxes centered on the triangles show
theoretical variations of activated synapses in the input patterns (see details
in the text). The heights of the boxes show corresponding variations in the
probabilities of action potential initiation.

value implies that on average, only NCA1 × prAPICA1 −
mean [HD(P1

CA1, P2
CA1)]/2 = 3290 − 5640/2 = 470 out of 3290

spiking neurons spike in both of two randomly selected CA1
patterns. Note also that the mean Hamming distance 5640
is much closer to its maximal value 2 × 3290 = 6580, which
corresponds to the case when there is no overlap between two
patterns, than to the minimal Hamming distance, which is equal
to zero and corresponds to the case when the two patterns are
identical.

Similar analysis holds for spiking activity patterns in
CA3 and EC. Hamming distances between pairs of ran-
dom CA3 activity patterns with the probability of CA3
spiking equal to 0.055 are binomially distributed with the
parameters NCA3 = 28,009 and prHDCA3 = 2 × 0.055 × (1 −
0.055) = 0.10. The distribution has the mean 2910 and stan-
dard deviation 51. In the case of EC input patterns, the
binomial distribution has the parameters NEC = 45,073 and
prHDEC = 2 × 0.0685 × (1 − 0.0685) = 0.13. It has the mean
5750 and standard deviation 71.

3.2. DISTINCT PATTERNS OF CA3 AND EC SPIKING
A pair of spiking patterns was referred to as “distinct” if the pat-
terns had little overlap (high Hamming Distance). For each input
group, we generated 20 pairs of distinct patterns; pairwise HD =
2910 for CA3 and HD = 5750 for EC (Figure 4). On average,
the generated patterns initiated action potentials in 3316 ± 52
(mean ± standard deviation) CA1 neurons for CA3 inputs and

FIGURE 4 | Hamming distances between presynaptic activity patterns.

(A) CA3 activity patterns. (B) EC activity patterns. Vertical bars are
truncated; they reach near 1 and represent sets of pattern pairs with equal
Hamming distance. Smooth curves bordering gray areas are the normal
approximations for the binomial distributions of Hamming distances
between all pairs of CA3 (A) and EC (B) activity patterns with 1540 (CA3)
and 3086 (EC) spiking neurons. Pairs of “similar” activity patterns
had Hamming distances equal to 2% of the maximal possible values of the
Hamming distance for patterns. Pairs of “distinct” activity patterns had
Hamming distances equal to the mean values of the binomial distributions.
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3313 ± 56 CA1 neurons for EC inputs. In both cases, the mean
value of the CA1 spiking probability was close to the target value
of 0.14.

We expected that our CA1 network models would trans-
form CA3 and EC inputs differently. One factor was the known
difference in spatial summation in CA1 principal cells for
activated CA3 synapses compared to EC synapses (Kali and
Freund, 2005; Li and Ascoli, 2006). Another factor was the
difference between the variation of API probability for the
two categories of input patterns. All inputs initiated action
potentials in CA1 with the same mean probability of 0.14.
However, the number of activated CA3 synapses followed
the binomial distribution with the relative standard deviation
of σCA3/NCA3 × 100% = √

0.055 · (1 − 0.055)/4407 × 100% =
0.34% in contrast to 0.58% for the number of activated EC
synapses. The difference between deviations resulted in a notable
difference in the API probabilities (Figure 3, gray bars).

Contrary to expectation, we observed no difference in the dis-
tributions of the Hamming distances between pairs of CA1 spik-
ing activity vectors for distinct CA3 and EC inputs (Figure 5A).
The CA1 outputs had mean(HD) = 5688, std(HD) = 56 for
CA3 inputs and mean(HD) = 5696, std(HD) = 63 for EC
inputs. Those distributions were close to the distribution of the
Hamming distances between 20 pairs of random CA1 spiking
patterns with 0.14 × 23,500 = 3290 spikes in each pattern (the
histograms in light gray in Figures 5A,B). That distribution had
the average 5640 and standard deviation 65.

FIGURE 5 | Histograms of Hamming distances between pairs of CA1

output activity patterns caused by pairs of CA3 and EC presynaptic

activity patterns. (A) Pairwise output Hamming distances in response to
pairs of distinct presynaptic patterns (as defined in the text). (B) Pairwise
output Hamming distances in response to pairs of similar presynaptic
patterns (as defined in the text).

3.3. SIMILAR EC AND CA3 INPUTS
The network did transform EC and CA3 input patterns differ-
ently when the inputs in pairs were relatively similar to each other
(Figure 5B). We generated 20 pairs of CA3 input patterns with
the Hamming distance for each pair equal to 2% of its maxi-
mal value 3080. In each pair, the two patterns were different in
only 62 components. Those patterns, on average, initiated action
potentials in 3296 CA1 neurons with standard deviation equal
to 43. Similarly, we generated 20 pairs of “similar” EC input pat-
terns with the Hamming distance for each pair equal to 2% of its
maximal value 6172. Those patterns, on average, initiated action
potentials in 3307 CA1 neurons with standard deviation equal
to 52. The two categories of inputs led to pairwise CA1 output
patterns significantly closer to each other compared to randomly
selected pairs of the CA1 output patterns with 14% of spiking
neurons. Namely, for CA3 inputs, CA1 output pattern pairs had
mean(HD) = 2931, std(HD) = 50; for EC inputs, CA1 output
pairs had mean(HD) = 4315, std(HD) = 63. Similar CA3 inputs
led to much closer CA1 outputs compared to similar EC inputs.
In other words, the CA1 network model was more sensitive to
small differences in EC inputs than to small differences in CA3
inputs.

4. DISCUSSION
We studied information flow in a subnetwork of CA1 princi-
pal cells that were synchronized by gamma population rhythm.
Random input patterns had the same number of spiking presy-
naptic cells, but differed in the pattern of which presynaptic cells
spiked. The patterns produced action potentials in CA1 cells with
the same average probability. We found that the CA1 cells were
considerably more sensitive to variations in EC spiking patterns
than to variations in CA3 spiking patterns. Our results showed
that the CA1 network “orthogonalized” not only CA3 memo-
ries (Treves and Rolls, 1994) but also, and to a greater extent, EC
inputs. This orthogonalization did not require CA1 to outnumber
presynaptic networks as in Treves and Rolls (1994).

4.1. NEURONAL AND NETWORK MODELS
We used the model of a rat CA1 principal cell developed in
Jarsky et al. (2005). This model incorporated experimentally-
based biophysical properties and synaptic densities. The 1330
compartments of the model closely approximated the original
anatomically-reconstructed morphology. Although such detailed
models have been studied for over decade [e.g., (Graham, 2001; Li
and Ascoli, 2006; Katz et al., 2009)], they have not been used for
simulating networks (Brette et al., 2007). In network simulations
of a comparable scale (tens of thousands of neurons), neurons
had orders of magnitude fewer synapses and/or compartments;
see e.g., (Morgan and Soltesz, 2008).

Computer simulations of hippocampal networks usually fall
into two categories. One category is concerned with popula-
tion dynamics such as oscillations, waves, etc. (Neymotin et al.,
2011; Volman et al., 2011). The other focuses on mechanisms of
learning and memory (Hasselmo et al., 2002; Gluck et al., 2003;
Cutsuridis et al., 2010). We modeled aspects of both of these here.
We did not model plasticity but instead assumed that the model
neurons already had their memories encoded by synaptic weights.
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Similarly, we did not explicitly model oscillations, but postulated
that the the neurons were synchronized via inhibitory modulation
associated with gamma oscillations. Our model demonstrated
how CA1 principal cells could transform their inputs within one
gamma cycle.

This focus on the single gamma cycle determined the network
size and organization of its inputs in our model. Gamma oscil-
lations are highly synchronous between nearby (≤1 mm) CA1
locations (Lubenov and Siapas, 2009; Sabolek et al., 2009). We
therefore assumed that all principal cells in one square millime-
ter patch of CA1 received their synaptic inputs within a short
time window, common to all the cells in the patch, and spiked
or did not spike in response to those inputs within the same
window. We also assumed that inhibition reset all the cells in
the patch so that at the beginning of each time window they
were all in the same state. Because of those assumptions we did
not explicitly model complex inhibitory processes in CA1, lat-
eral interactions between CA1 principal cells, and spike-timing
dependent plasticity.

Alternatively, the results of our simulations can also be inter-
preted as showing how an average CA1 principal cell discrimi-
nates differences between input patterns. If considering a single
CA1 cell instead of a network, we would have to generate a
representative sample of similar and distinct patterns of synap-
tic activation for this cell. The choice of those patterns would
not be trivial given the combinatorics. The target 14% probabil-
ity of action potential initiation in the model is achieved when
either 1540 (5.5%) of 28,009 CA3 or 3086 (6.85%) of 45,073 EC
presynaptic neurons spike. The corresponding numbers of com-
binations of activated synapses are of the orders 10405 and 10206,
respectively. Out of those combinations, we would need to select
the patterns that have overlaps consistent with the connectivity
between CA3, EC, and CA1. The network approach that we used
provided a natural way of selecting appropriate patterns of synap-
tic activation, and also corresponds to population signaling in the
brain.

The results of our simulations are expected to be robust
to moderate changes in morphological, biophysical, or synaptic
properties. In a comparable study, Jarsky et al. (2005) simulated
three neuronal models, utilizing identical biophysical properties
with different morphologies. They found that the main input-
output characteristics for the three models were similar (Jarsky
et al., 2005). CA1 cells with substantially different properties
might produce quite different input-to-output transformations.
Such different transformations might, for example, occur in the
context of distinct populations of CA1 principal cells (Senior
et al., 2008; Deguchi et al., 2011; Mizuseki et al., 2011).

4.2. PATTERN DISCRIMINATION
In this study, we considered presynaptic activation patterns that
initiated action potentials at a selected probability. This is dif-
ferent from prior studies that were focused on how changes
in synaptic activation patterns changed spike probabilities in
CA1 [e.g., (Li and Ascoli, 2006)]. Given that CA1 principal
cells can process CA3 and EC inputs separately (Brun et al.,
2002, 2008; Mizuseki et al., 2009), we simulated responses of
CA1 principal cells to four categories of input patterns: similar

CA3 and EC activity patterns, and distinct CA3 and EC activity
patterns.

Our main result is the finding of a new qualitative distinc-
tion between transformation of CA3 compared with EC inputs
in CA1. Our CA1 network model separated distinct CA3 inputs
and distinct EC inputs similarly. In contrast, it enhanced contrast
between similar EC inputs far more than it enhanced contrast
between similar CA3 inputs. In other words, the CA1 network
model was more sensitive to distinctions in EC activity patterns
than to distinctions in CA3 activity patterns.

A two percent difference (relative to maximal Hamming dis-
tance) across two CA3 patterns leads to an almost 50% difference
in the two corresponding CA1 output patterns. This is consistent
with the idea of Treves and Rolls (Treves and Rolls, 1994) that CA1
orthogonalizes CA3 inputs to prevent confusion between similar
memories. Their proposition was deduced under the assumptions
that (1) CA1 preserves the information in CA3 spiking patterns
and (2) there are considerably more CA1 principal cells than
CA3 principal cell. Our simulations showed that orthogonaliza-
tion could be achieved with the number of CA1 principal cells
(23,500) less than the number of CA3 principal cells (28,009).
The simulations also showed that EC spike patterns were notably
more separated than CA3 patterns, suggesting that the CA1 sys-
tem transforms inputs to outputs differently during retrieval
compared to learning (Hasselmo et al., 2002).

A possible explanation for the difference between CA3 and
EC inputs comes from the difference in projection pattern onto
CA1 dendrites. The dendrites with CA3 synapses are generally
not as ramified as are those with EC synapses. Therefore, simi-
lar activation patterns in CA3 would have less distinct effects on
action potential initiation. Another factor could be the difference
in the connectivity between CA3 and CA1 compared to EC and
CA1 in the model. Each CA3 cell targeted 3697 CA1 principal
cells whereas each EC cell targeted only 1000 CA1 principal cells.
Because of the greater divergence factor, differences in CA3 activ-
ity patterns would be expected to be more averaged out in CA3
spike activation patterns compared to differences in EC activity
patterns. Testing of those conjectures is computationally tractable
and could be performed in future studies.

The predictions of our study regarding transformations of
CA3 and EC inputs in CA1 could be tested by simultaneous
recording of CA1 neurons and their presynaptic CA3 and EC
neurons in behaving rats (Fyhn et al., 2007; Colgin et al., 2009).
Colgin and colleagues (Colgin et al., 2009) showed that some CA1
principal cells predominantly process information from EC cells
with inputs synchronized with fast gamma (65–140 Hz). Other
CA1 principal cells predominantly process information from CA3
cells and do so in the slow gamma range (25–50 Hz). Our results
predict that provided the same (relative) difference between CA3
spike patterns and EC spike patterns the Hamming distance
between the corresponding CA1 output spike patterns will be
greater for the EC patterns. Future simulation studies should
allow us to predict the changes in the input-to-output transfor-
mation in CA1 due to altered inhibition in CA1 as might occur
in schizophrenia (Behrens and Sejnowski, 2009). Similarly, pre-
dictions could be generated regarding reduction of spine density
in animal models of Alzheimer’s disease (Perez-Cruz et al., 2011).
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The changes in the transformation of inputs-to-outputs in CA1
will predict alterations in learning and retrieval of information in
these disorders.

The results of our study relate mostly to the initial CA1
responses to inputs. These responses occur before synaptic plas-
ticity and information exchange between CA1 inhibitory and
principal cells build up. Initial hippocampal responses to stimuli
can have significant impact on behavior. For example, they may

initiate different responses to startling events (Lin et al., 2006).
Our study raises questions regarding what information prevails
in determining those responses.
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