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StrategieS of Learning invariance
In a supervised setting, cues to object invariance may be provided 
externally (e.g., Bart and Hegdé, 2012). In unsupervised settings, 
finding cues to invariance is more challenging. One type of cues 
arises from the fact that even when an object changes in appear-
ance, the change is generally smooth. Thus, over short, selected 
stretches of space and/or time, the changes in object appearance 
tend to be rather small, so that the visual system can, in principle, 
infer that the same object is changing its appearance. A theoretical 
approach for exploiting this contiguity is given by the continuous 
transformation (CT) learning (Stringer et al., 2006). A related cue 
arises from the fact that objects often stay in view for extended 
periods of time; two observations at nearby time points are there-
fore likely to correspond to the same object. An approach that 
exploits this temporal contiguity is given by the trace learning 
rule (Földiák, 1991).

Many articles in this issue describe models that exploit one or 
more of these rules to learn object invariance. The VisNet model 
can incorporate one or both of these strategies, depending on the 
particular implementation. The article by Rolls (2012) describes 
the various capabilities of VisNet. The article by Tromans et al. 
(2012) highlights the capability of VisNet to learn with clutter 
and occlusion. VisNet, like most neural network models, uses 
rate coding, in which the firing rate of a neuron determines the 
information coded by that neuron. The firing rate of a neuron is 
usually specified as a scalar, without the neuron having to actu-
ally fire spikes. The article by Evans and Stringer (2012) imple-
ments VisNet in which individual neurons actually fire spikes, 
and detail the merits of this implementation. The model by Isik 
et al. (2012) describes a different model, HMAX (also see Serre 
et al., 2007), that simulates many invariance properties in the 
primate visual system.

It is worth noting that, while it is generally thought that object 
invariance is represented by neurons in the higher levels of the 
visual pathway, such as the inferotemporal cortex, neurons in the 
lower levels, such as the primary visual cortex or V1, can also play 
key roles in implementing various aspects of invariance. The article 
by Vidal-Naquet and Gepshtein (2012) shows that populations of 
V1 complex cells, but not individual complex cells, can compute 
information about stereoscopic disparity in a spatially invariant 
fashion.

Invariant object recognition refers to recognizing an object regard-
less of irrelevant image variations, such as variations in viewpoint, 
lighting, retinal size, background, etc. The perceptual result of 
invariance, where the perception of a given object property is 
unaffected by irrelevant image variations, is often referred to as 
perceptual constancy (Kofka, 1935; Walsh and Kulikowski, 2010).

Mechanisms of invariant object recognition have, to a sig-
nificant extent, remained unclear. This is both because experi-
mental and computational studies have so far largely focused 
on understanding object recognition without these variations, 
and because the underlying computational problems are pro-
foundly difficult.

The 10 articles in this Research Topic Issue focus on some of the 
key computational issues in invariant object recognition. There is 
no pretending that the articles cover all key areas of current research 
exhaustively or seamlessly. For instance, none of the articles in this 
issue address size invariance (Kilpatrick and Ittelson, 1953) or color 
constancy (Foster, 2011). Nonetheless, the articles collectively paint 
a useful pointillist picture of current research on computational 
principles of invariance.

StrategieS of repreSenting invariance
Several articles address various strategies of exploiting or rep-
resenting the information in the visual image to achieve object 
invariance. Chuang et al. (2012) show, using psychophysical 
experiments, that non-rigid motion provides a cue to the invari-
ance of dynamic objects. Groen et al. (2012) show that low-level 
image statistics can cue the extent to which natural textures are 
invariant across samples. Using electroencephalography (EEG), 
they also show that the differences in edge statistics predict the 
differences in the evoked neural responses to individual images. 
Using psychophysical experiments, Bart and Hegdé (2012)1 show 
that human subjects can use small informative fragments of an 
image to recognize an object regardless of variations in illumina-
tion. A more radical idea is proposed by Edelman and Shahbazi 
(2012), who argue that representing objects by their similarity 
to a set of prototypes can explain many properties of the visual 
system, including invariance.
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Some important caveatS
It is important to emphasize a few caveats about the implications 
of these articles for future research. First, at the perceptual level, 
object invariance neither is perfect nor needs to be (Bülthoff and 
Edelman, 1992; DiCarlo and Cox, 2007). Thus, the underlying neural 
mechanisms need not deliver perfect invariance. Second, not all 
types of invariance are equal. Some types of invariance may be more 
important or useful to the visual system than others, depending 
on the behavioral context (see Milivojevic, 2012). Third, the visual 
system does not necessarily have to rely on prolonged supervised 
learning to learn invariance. It is possible that the system is able to 
either learn or, alternatively, infer invariance on the fly, and without 
any feedback (see Rolls, 2012). Fourth, top-down factors, such as 
the behavioral context, play an important role in object invariance 
and lack thereof. This is not fully addressed by the articles in this 
issue, which mostly focus on bottom-up processing of invariance 
information. Finally, for practical reasons, current research tends to 
deal with invariance along the various individual stimulus param-
eters (e.g., viewpoint, illumination, etc.) separately from each other. 
But in actuality, the visual system may combine invariance across 
multiple visual parameters, and indeed multiple sensory modalities.
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