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Short-term synaptic depression (STD) is a form of synaptic plasticity that has a large impact
on network computations. Experimental results suggest that STD is modulated by cortical
activity, decreasing with activity in the network and increasing during silent states. Here,
we explored different activity-modulation protocols in a biophysical network model for
which the model displayed less STD when the network was active than when it was silent,
in agreement with experimental results. Furthermore, we studied how trains of synaptic
potentials had lesser decay during periods of activity (UP states) than during silent periods
(DOWN states), providing new experimental predictions. We next tackled the inverse
question of what is the impact of modifying STD parameters on the emergent activity
of the network, a question difficult to answer experimentally. We found that synaptic
depression of cortical connections had a critical role to determine the regime of rhythmic
cortical activity. While low STD resulted in an emergent rhythmic activity with short UP
states and long DOWN states, increasing STD resulted in longer and more frequent UP
states interleaved with short silent periods. A still higher synaptic depression set the
network into a non-oscillatory firing regime where DOWN states no longer occurred. The
speed of propagation of UP states along the network was not found to be modulated
by STD during the oscillatory regime; it remained relatively stable over a range of values
of STD. Overall, we found that the mutual interactions between synaptic depression and
ongoing network activity are critical to determine the mechanisms that modulate cortical
emergent patterns.
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INTRODUCTION
The cortical network is permanently active. Recurrent connec-
tions within cortical microcircuits, as well as connectivity with
thalamus, hippocampus, interareal, and with other nuclei assure
a constant bombardment of synaptic activity in any cortical
state. Local cortical synaptic transmission exhibits different forms
of plasticity, one of them being short-term synaptic depression
(STD). STD can be defined as the decrease in the postsynaptic
potentials following repetitive stimulation of a synapse. This pro-
cess is directly related to the probability of release [for a review
see Zucker and Regehr (2002)], and is a property of numerous
intracortical synapses both excitatory and inhibitory (Thomson,
1997; Galaretta and Hestrin, 1998; Varela et al., 1999). STD has
been reported in the cerebral cortex in vitro (Gil et al., 1997;
Tsodyks and Markram, 1997; Varela et al., 1997; Thomson and
Bannister, 1999; Reig et al., 2006). Both thalamocortical and
intracortical synaptic connections from different areas of the cor-
tex also exhibit STD in vivo (Chung et al., 2002; Petersen et al.,
2003; Boudreau and Ferster, 2005; Reig et al., 2006; Reig and
Sanchez-Vives, 2007; Stoelzel et al., 2008), although differences
between in vivo and in vitro have also been reported (Borst,
2010).

Experimental and theoretical studies have suggested that STD
plays various critical roles in cortical information processing.
Some of these roles refer to sensory processing including visual
cross-orientation suppression (Lauritzen et al., 2001; Carandini
et al., 2002; Freeman et al., 2002), temporal characteristics
of visual responses (Chance et al., 1998), sound localization
(Cook et al., 2003), and adaptation to repetitive visual (Nelson,
1991a,b,c; Müller et al., 1999) and tactile (Chung et al., 2002)
stimuli. Rather general functions in circuits include automatic
gain control (Dayan and Abbott, 2001), network stabilization
(Varela et al., 1999), synchronization (Tsodyks et al., 2000), cen-
tral pattern generation (Manor and Nadim, 2001; Manor et al.,
2003), time computation (Loebel and Tsodyks, 2002; Grande
and Spain, 2005), response anticipation (Puccini et al., 2007) or
termination of UP states (Holcman and Tsodyks, 2006).

It has also been found experimentally that synaptic depres-
sion is lesser in vivo than in vitro, at least in some cortical areas
(Sanchez-Vives et al., 1998, 1999; Boudreau and Ferster, 2005).
Experimental results suggest that in a constantly active corti-
cal network, the ongoing activity has a modulatory impact on
STD (Reig et al., 2006), while the quantity of neurotransmit-
ter released at each synapse increases with disuse (Murthy et al.,
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2001). Thalamocortical synapses have also been found to be sub-
jected to a chronic state of depression in awake subjects due
to high levels of spontaneous firing (Swadlow and Gusev, 2001;
Castro-Alamancos and Oldford, 2002; Boudreau and Ferster,
2005; Swadlow et al., 2005). According to recent experiments
(Reig et al., 2006), the reduction on STD is proportional to the
intensity and duration of the preceding rhythmic activity. In order
to do a systematic exploration of the effect that network activity
has on STD, we used a biophysical model of the cerebral cortex
and we modulated the activity with two different protocols (vary-
ing either potassium reversal potentials or specific maximal ionic
conductances). In it, we studied the impact that different levels
(silent vs. active) and patterns of activity (UP vs. DOWN) have
on STD.

We next took advantage of the network model to tackle
the inverse question, an experiment only doable in silico and
leading to interesting predictions; namely, how does synap-
tic depression influence the emergent activity patterns and the
input/output relationships processed in the network? We quan-
titatively explored the effects that parametrical variation of STD
has on the emergent network activity patterns and their possible
underlying mechanisms.

MATERIALS AND METHODS
BIOPHYSICAL MODEL
In this paper, we aim not only to reproduce the synaptic depres-
sion observed experimentally by Reig et al. (2006), but also to
examine the impact of the oscillatory network activity on the
mechanisms of synaptic transmission and short-term plasticity
and to make predictions (currently not testable experimentally)
by exploring the effect that short-term depression at the cell level
has onto the whole network. This variety of goals conditions the
choice of the model in the sense that it has to: (1) be a validated
biologically realistic model containing biophysical elements com-
parable to those of the experiments; (2) exhibit, at the network
level, a similar activity than that of experiments; (3) generate a
robust activity under parameter variations; and, (4) include the
type of ionic currents that influence synaptic plasticity. According
to these requirements, we adapted the biophysical model used in
Compte et al. (2003), which was designed to reproduce slow oscil-
latory activity in vitro. In particular, this network model enabled
us to analyze different patterns of activity and the effect that each
of them has on the STD. We focused then our study on: (1) the
STD observed in a silent network versus an active one, (2) UP vs.
DOWN states, and finally, (3) the effect that the degree of STD
has on the network activity.

The model consists of a population of 1024 pyramidal neu-
rons (excitatory) with two compartments, one for the soma and
one for the dendrites (Pinsky and Rinzel, 1994) (each contain-
ing specific ion currents found in cortical pyramidal cells), and a
population of 256 interneurons (inhibitory) with only one com-
partment and the basic spiking currents. Both populations are
connected to form a network of 1280 neurons of the cerebral
cortex arranged on a line. The length of the network model is
assumed to be 5 mm of the visual cortex.

Assuming neurons to be electrotonically compact (point neu-
rons), each pyramidal neuron is modeled by a system of two

compartments (somatic and dendrite). The somatic compart-
ment (Vs) contains the classical spiking currents INa and IK, a
leak current IL, a fast A-type K+ current IA, a non-inactivating
slow K+ current IKS, and a Na+-dependent K+ current IKNa. The
dendrite compartment (Vd) contains a high-threshold Ca2+ cur-
rent ICa, a Ca2+-dependent K+ current IKCa, a non-inactivating
(persistent) Na+ current INaP , and an inward rectifier (acti-
vated by hyperpolarization) non-inactivating K+ current IAR. The
somatic and dendrite compartments communicate to each other
through an electrical coupling gsd = 0.175 ± 0.1 μS (randomly
varied from cell to cell). Both compartments are connected to the
network through synaptic currents Isyn,s for the somatic compart-
ment and Isyn,d for the dendrite compartment. The equations for
a pyramidal neuron are

CmAs
dVs

dt
= −As(IL + INa + IK + IA + IKS + IKNa)

−gsd(Vs − Vd) − Isyn,s, (1)

CmAd
dVd

dt
= −Ad(ICa + IKCa + INaP + IAR)

−gsd(Vd − Vs) − Isyn,d,

with membrane capacitance Cm = 1 μF/cm2 and the areas for
the somatic and dendrite compartments being As = 0.015 mm2

and Ad = 0.035 mm2, respectively.
The mono-compartmental interneurons are modeled with the

classical Hodgkin–Huxley spiking currents INa and IK, and a leak
current IL; its differential equation is given by:

CmAi
dVi

dt
= −Ai(IL + INa + IK) − Isyn,i (2)

with the total neuronal surface being Ai = 0.02 mm2.

Ion channels dynamics
All ionic channels follow the Hodgkin–Huxley formalism and are
modeled following Compte et al. (2003). The detailed ionic cur-
rents used in the model can be found in the Appendix; here we
will only describe the dynamics of activation of a voltage-gated
channel. According to the traditional notation, a gating variable x
is defined by the first-order kinetic equation

dx

dt
= φ[αx(V)(1 − x) − βx(V)x] = φ[x∞(V) − x]

τx(V)
(3)

where φ is the temperature factor (φ = 1, unless other-
wise indicated), x∞(V) = αx(V)/(αx(V) + βx(V)) and τx(V) =
1/(αx(V) + βx(V)). Each current has its own gating variables, x,
and its corresponding functions αx and βx. When the time-scale
of an activation gating variable is low enough, the model can be
simplified substituting x by its steady-state function x∞(V).

Synaptic dynamics
We assume that neurons are coupled by chemical synapses and
we neglect electrical coupling. When a presynaptic neuron “j”
fires an action potential, it releases neurotransmitters activating
both the synaptic strength variable s(t), that accounts for the
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amount of neurotransmitters, and the synaptic depression vari-
able Prel(t), which is related with the probability of releasing
a neurotransmitter. These neurotransmitters will bind with the
postsynaptic receptors, opening ionic channels and allowing for
the inflow of postsynaptic current Isyn(v) = ∑

j gsyn,jsj(t)Prel,j(t)
(v − Vsyn).

The synaptic transmission in the model is mediated by an exci-
tatory AMPA (α = 3.48, τ = 2 ms, Vsyn = 0 mV), an excitatory
NMDA (α = 0.5, τ = 100 ms, αx = 3.48, τx = 2 ms, and Vsyn =
0 mV), and an inhibitory GABAA (α = 1, τ = 10 ms, Vsyn =
−70 mV) synaptic currents. The AMPA and GABAA currents
follow the first-order kinetic equation

ds

dt
= αf (Vpre) − s

τ
, where f (Vpre)

= 1

[1 + exp (−(Vpre − 20)/2)] , (4)

being f a sigmoidal function and Vpre a value related to the presy-
naptic voltage. The NMDA transmission follows the second-order
kinetics

ds

dt
= αx(1 − s) − s

τ
, (5)

dx

dt
= αxf (Vpre) − x

τx
.

As in Compte, the Mg2+-modulation of NMDA was not included
in the model.

The rules of connectivity for excitation and inhibition among
pools of neurons/compartments are the following [see Compte
et al. (2003)]:

• There is an excitatory interaction from somatic to dendrite
compartments through AMPA and NMDA transmission (with
conductances gAMPA

EE = 5.4 nS and gNMDA
EE = 0.9 nS).

• The somatic compartment excites the interneurons through
AMPA and NMDA transmission (with conductances gAMPA

EI =
2.25 nS and gNMDA

EI = 0.5 nS) while, at the same time, assum-
ing that the activity in the soma is equivalent to axonal activity,
interneurons inhibit the somatic compartments of pyrami-
dal neurons through GABAA transmission (with conductance
gGABA

IE = 4.15 nS).
• There is inhibition among the interneuron population medi-

ated by GABAA transmission (with conductance gGABA
II =

0.165 nS).
• Dendrite compartments do not receive inhibitory inputs.

Instead, they are connected into the network through an elec-
trical coupling with the somatic compartment (gsd = 0.175 ±
0.1 μS).

The STD incorporated following a phenomenological model
(Tsodyks and Markram, 1997; Tsodyks et al., 1998; Dayan
and Abbott, 2001). The probability of a neurotransmitter

release, Prel, follows the dynamics

dPrel

dt
= P0 − Prel

τrel
, (6)

Prel(t+) �→ Prel(t)fD, if t = tk,

where tk is the last spike-time of some presynaptic neuron and fD
is the depression factor (0 ≤ fD ≤ 1). In other words, every time
a presynaptic neuron fires an action potential, the postsynaptic
synapse is depressed by a factor fD. When there is no activity
(spikes), the depression variable returns to its steady-state P0 (that
is, the synapse recovers the full probability of releasing a neuro-
transmitter) at a time-rate τrel. In our simulations fD = 0.9 and
τrel = 400 ms, unless otherwise indicated. We assume that s(t)
and Prel(t) are the same for all synapses of a given presynaptic
neuron.

Connectivity
The neurons in the network are sparsely connected to each other
and equidistantly distributed on a line according to a Gaussian
distribution [see Compte et al. (2003)] with zero mean and a stan-
dard deviation 125 μm for inhibitory connections and 250 μm
for excitatory connections. At the beginning of the simulation,
the number of presynaptic connections a neuron receives is fixed
to be 20 ± 5 (SD); there can be multiple contacts onto the same
target but no autapses are allowed.

Numerical methods
The network model was built in C/C++ code (available on
request), using a fourth-order Runge–Kutta method with a fixed
time step of 0.05 ms for the integration procedure.

NEUROPHYSIOLOGICAL EXPERIMENTAL BACKGROUND
Several studies have reported STD in the cerebral cortex in vitro
and also in vivo (see Introduction for details). In this study, we
have been inspired by a recent neurophysiological experiment
described in Reig et al. (2006) to explore the effect that network
activity has on STD. We will only focus here on the in vitro results
since those will be the reference for our computational model.

The in vitro experiments in Reig et al. (2006) were conducted
in cortical slices bathed in an ionic solution called “classical arti-
ficial cerebrospinal fluid” (“classical ACSF” in the sequel) which
maintains the slice in a silent state (no spontaneous ongoing activ-
ity is generated). To induce spontaneous rhythmic activity, the
slices were bathed in a “modified ACSF” [“in vivo-like ACSF” in
the sequel, see Reig and Sanchez-Vives (2007)] that mimics the
ionic concentrations in situ (Hansen, 1985).

The main difference between the “classical ACSF” and the
“in vivo-like ACSF” conditions is an increment of extracellular
potassium, and a decrement of extracellular calcium and mag-
nesium, see Sanchez-Vives and McCormick (2000) for the exact
values. These changes result in an increased excitability of the net-
work. For modeling purposes, we will only take into account the
increase in extracellular potassium (see Table 1).

In order to study the effect that spontaneous network activ-
ity had on STD, the authors measured the time-course variation
in the amplitude of normalized postsynaptic potentials (PSPs)
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Table 1 | Analogies between the in vitro and computational

experiments.

In vitro experiment “Classical ACSF” “In vivo-like ACSF”

KCl = 2.5 mM KCl = 3.5 mM

Computational model V pyr
K = −105 mV V pyr

K = −100 mV

V inh
K = −95 mV V inh

K = −90 mV

evoked by external stimulation at 5, 10, and 20 Hz at presynap-
tic connections. Three different experimental conditions were
compared:

1. Silent state. Slices were maintained in “classical ACSF” in
order to use it as a comparison reference for the STD in the
active state.

2. Silent (ionically modified) state. Slices were maintained in an
“in vivo-like ACSF” concentration, prior to the development of
organized rhythmic activity. These slices were used to measure
the effect that the ionic concentrations in the modified ACSF
had, per se, on the synaptic depression.

3. Oscillatory state. Slices were maintained in an “in vivo-like
ACSF” concentration in order to study the effect that spon-
taneous rhythmic network activity had on STD.

Computational experiments
We carried out three different computational protocols,
aiming at:

Protocol I. Reproducing the results obtained in previous neu-
rophysiological experiments by applying periodic stimulation.
Protocol II. Exploring the differences of STD between UP and
DOWN states by applying stimulation trains.
Protocol III. Exploring the impact of STD-modulation on the
network activity.

Protocol I consisted in reproducing the experiments described
in the previous paragraphs. In our network model, excita-
tory monosynaptic potentials were activated by applying an
external current injection Iapp during 1 ms into a presynaptic
pyramidal neuron (monosynaptic connection). The frequen-
cies of activation were designed as in the experimental study
(5, 10, and 20 Hz). The amount of external current was cali-
brated to generate a spike every time the neuron was injected.

Postsynaptic potentials (EPSPs) were measured in a postsy-
naptic (target) neuron, whose sodium currents (INa and INaP)
were blocked in order to prevent the neuron from firing spikes,
and thus allowing measurement of the amplitude of postsynaptic
potentials (target neuron). The experimental counterpart (Reig
et al., 2006) was the inclusion of QX-314, a sodium channel
blocker, in the electrode. In our simulations, the target neuron
was a specific excitatory pyramidal neuron randomly chosen at
the beginning of each simulation. It was in this neuron that all
analyses were conducted.

In Protocol II, we then used our computational model and the
set up of Protocol I to make predictions about differences between
STD in UP and DOWN states. With this aim, trains of five EPSPs

were activated during an UP or during a DOWN state at 50 Hz.
To determine whether the activation occurred during an UP or
a DOWN state, the average synaptic activity of the presynaptic
neurons (monosynaptic connections) was evaluated and thresh-
olded. An average synaptic activity over a threshold of −65 mV
was considered an UP state (55 spike trains), and a DOWN state
(165 spike trains) below a threshold of −70 mV. Intermediate val-
ues were considered as transitions between UP and DOWN states,
and were neglected from the analysis. We finally measured the
ratio between the averaged EPSPs during DOWN states and the
averaged EPSPs during UP states.

As the last experiment, Protocol III was designed to make
predictions about the impact of STD on the network dynam-
ics. Thus, we were more concerned about making measurements
related to the amount of network activity and its propagation.
In order to quantify it, we computed a discrete adaptation of
wave propagation speed: for every value of the depression factor
fD, we randomly chose one of the UP states and estimated the
time it took for every neuron to fire the first spike (every neuron
has to fire at least one spike); we took the average over differ-
ent trials and plotted it into a histogram. For the non-oscillatory
regime (low fD values), we took an arbitrary time to be the ini-
tial time, since in this regime there is no real wave propagation; in
this case, the histogram reflected phase distribution rather than
a wave front. From each histogram, we then computed two dif-
ferent indices (Idist and Iconnect) for the activity propagation. To
obtain Idist, we counted the time it took for all neurons to fire at
least one spike (tdist) from the beginning of an UP state (average
of many trials), assuming the wave traveled a distance of 5 mm,
Idist = 5/tdist. This index entails a major assumption, namely that
the neurons/spikes are ordered; although we knew this was not
true for the real wave speed, it worked fine as a comparison index
between levels of depression.

The Iconnect index is more realistic, at least from an
experimental point of view. Our network model assumes
that neurons are numbered on a straight line and that a
patch of connectivity for an excitatory (inhibitory) neuron is
0.5 mm (0.25 mm) with an average of 20 postsynaptic con-
tacts. We assumed that the distance between a neuron and
its postsynaptic neuron would be d = (connectivity patch)/20 ×
unsigned distance between neurons. At the beginning of an UP
state, we took the first 10 different neurons to fire a spike, and
we counted the time, tconn, spent by each of their postsynaptic
neurons (monosynapses assumed) to fire a spike (only forward
direction in time was allowed). Taking the average over many
trials we calculated Iconnect = d/tconn.

RESULTS
The experimental protocols stated above allowed us to explore,
first, how synaptic depression was modulated by the occurrence
of oscillatory activity in the network and its mechanistic aspects.
Next, we compared synaptic depression in different states (UP
and DOWN) of cortical activity and made some predictions in
that regard. In the third section, we explored how different levels
of STD impacted the emerging rhythmic pattern of cortical net-
work activity and analyzed the cellular and network mechanisms
underlying the influence of STD on network activity.
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Prior to proceed with the different protocols, we adjusted the
network to replicate the experimental conditions of Reig et al.
(2006). Under the parameters stated in the Appendix, in the
case of no synaptic depression [depression factor fD = 1, as in
Compte et al. (2003)], and without current injection, the net-
work is already in an active state. Average frequency in an UP
state is 10 Hz for the excitatory population and 20 Hz for the
inhibitory population. The inhibitory UP state is longer so that it
can prevent excitatory neurons from recruitment and firing new
spikes. This activity will be identified with the oscillatory state
(“in vivo-like ACSF”) of the experimental conditions (Reig et al.,
2006).

SYNAPTIC DEPRESSION MODULATION BY NETWORK ACTIVITY
In this section we compared the STD for different levels of activ-
ity (from silent to oscillatory) in a cortical network. Aiming to
prove that the ultimate mechanism for the modulation of STD
was the modulation of the activity, independently of the mecha-
nisms that generate it, we induced the levels of activity in several
ways. In this paper we only present two strategies: (1) modifying
K+ reversal potential and (2) modifying the gKNa conductance.
Monosynaptic EPSPs were induced by activating a presynap-
tic neuron at 5, 10, and 20 Hz (see Protocol I in Materials and
Methods). The depression factor was fD = 0.9 with a recovery
rate-time τrel = 400 ms.

A control EPSP was obtained for each state of the network
(see below) by stimulating a presynaptic neuron every second
(1 Hz) and determining the amplitude of this EPSP on the target
neuron. Note that no LTD (long-term synaptic depression) was
included in the model. The control EPSP was calculated as the
average over a 25 s simulation and over different trials; its ampli-
tude decreased with the activity in the network. The amplitudes
of the postsynaptic potentials (EPSPs) evoked by higher frequen-
cies of stimulation (5, 10, and 20 Hz) were then normalized to
the control EPSP value.

Modulation of network activity by changing K+ reversal potential
The changes in the ACSF composition in Sanchez-Vives and
McCormick (2000) were aimed at changing the excitability of
the network. In our model we first alter this excitability by
setting the potassium reversal potential at Vk + a and choos-
ing a in order to achieve different patterns of activity in the
network. With a = −5 mV (V

pyr
K = −105 mV, V inh

K = −95 mV),
we manage to induce a silent network (Figure 1; upper row);
with a = 0 (V

pyr
K = −100 mV, V inh

K = −90 mV) we return to
the slow oscillatory (“in vivo-like ACSF”) network with an aver-
age frequency during the UP state of 17 Hz for a network with
excitatory connections depressed and 18 Hz for a network with
excitatory and inhibitory connections depressed (Figure 1; mid-
dle row, left and right panels, respectively). To study the effect
that an oscillatory network has on STD, rhythmic activity in the
network was increased by setting a = +5 mV (V

pyr
K = −95 mV,

V inh
K = −85 mV) which is indeed more intense, having an UP

state average frequency of 23 Hz/24 Hz for a network with exci-
tatory/excitatory and inhibitory connections depressed (Figure 1;
lower row, left and right panels, respectively). From Nernst
equation, it turns out that a = −5 mV, a = 0 mV, a = 5 mV

correspond to concentrations of [K]out = 2.88 mM, [K]out =
3.5 mM and [K]out = 4.2 mM, respectively.

Network activity was exquisitely sensitive to changes in the
K+ reversal potential (Table 1 and Figure 1). Thus, a difference
of ±5 mV could bring the network from silence (−105 mV)
to 0.3 Hz UP states (−95 mV). Five mV difference (−100 mV
and −95 mV) increased both the frequency of occurrence of UP
states from 0.2 Hz to 0.3 Hz and the average firing frequency
during UP states from 17 Hz to 23 Hz, respectively (Figure 1).
This manipulation was an in computo replica of the different
activity levels achieved experimentally by changes in the ionic
concentrations of the ACSF, or by different brain states while
in vivo.

Interestingly, while including STD in excitatory neurons was
found to affect the emergent pattern of activity, the inclusion
or not of STD in inhibitory synaptic connections did not result
in obvious differences neither in the frequency of slow rhythmic
activity (compare left panels with right panels in Figures 1 and 2)
nor in the firing frequency during UP states.

Repetitive activation of monosynaptic connections resulted in
a STD, which was contingent to the level of activity in the network
(see Figure 3, panel A). Both time course and steady-state ampli-
tude of postsynaptic potentials successfully reproduced the ones
obtained experimentally.

Modulation of network activity by changing gKNa conductance
Even though the previous computational results were in agree-
ment with the experimental findings, we explored other forms
of variation of network activity levels to ensure that the ultimate
mechanism modulating STD was the activity per se.

Network activity was then modified in a more dynamic way by
changing the conductance of IKNa, gKNa (Figure 2). In the model
used here, the IKNa current is directly related with the genera-
tion and duration of the DOWN states (Compte et al., 2003).
As stated in the Appendix, gKNa was established as 1.33 mS/cm2.
When the conductance was increased (>40%), it tended to
maintain the network in the DOWN state, preventing neurons
from overcoming a threshold value and thus keeping the net-
work into a silent state (Figure 2, top panels). Decreasing gKNa

produced the opposite situation: UP states were more easily gen-
erated and DOWN states were shorter. Below a certain value
(<0.25%) the neurons fired continuously (Figure 2, bottom pan-
els). More precisely, we analyzed STD in seven (E-I to E-VII)
artificial cortical networks with different levels of excitability
(Figure 2 illustrates only four of them, the other three corre-
spond to intermediate values of gKNa presenting an intermediate
network activity, see below). We took as reference activity the
rhythmic activity observed for gKNa = 1.33 mS/cm2 (E-IV), with
a firing frequency during UP states of 17 Hz for a network with
only excitatory synaptic connections depressed, and 18 Hz for
a network with all (excitatory and inhibitory) synaptic connec-
tions depressed. Increasing the conductance values to gKNa =
1.53 mS/cm2 and gKNa = 1.63 mS/cm2 (E-III and E-II, respec-
tively), we observed a decrease in the occurrence of UP states
and in the firing frequencies during UP states to 14/14 Hz and
12/11 Hz, respectively, for a network with excitatory/all synap-
tic connections depressed. Increasing further the conductance
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FIGURE 1 | Different patterns of network activity given by different

potassium reversal potential values (V
pyr

K
= −100 + a mV, V inh

K
= −90 +

a mV). Left column, excitatory synaptic connections depressed
(fAMPA,NMDA

D = 0.9); right column, excitatory and inhibitory synaptic

connections depressed (fAMPA,NMDA,GABAA
D = 0.9). Inset figures show the last

5 s of each simulation, respectively. Red (blue) dots correspond to excitatory
(inhibitory) neurons, with their actual position in the model network. Upper row

panels represent a silent network after the transient period with
V pyr

K = −105 mV, V inh
K = −95 mV. The middle row panels represent a regular

network activity, V pyr
K = −100 mV, V inh

K = −90 mV, slow oscillation frequency
of 0.2 Hz and a firing frequency during UP states of 17 Hz (left panel) and 18 Hz
(right panel). Lower row represents a more active network as a result ofchanging
V pyr

K = −95 mV and V inh
K = −85 mV; slow oscillatory activity increases to 0.3 Hz

with a firing frequency during UP states of 23 Hz and 24 Hz (left and right panel).

(for instance, gKNa = 1.83 mS/cm2), the network became silent
(E-I). The other way around, decreasing the conductance value
to gKNa = 0.83 mS/cm2 (E-V), increased the frequency of rhyth-
mic oscillations, and the firing frequency during UP states to
21/21 Hz, respectively. When decreasing even more the conduc-
tance value to gKNa = 0.33 mS/cm2 and gKNa = 0.26 mS/cm2

(E-VI and E-VII, respectively), rhythmic oscillations disappeared
and a non-oscillatory pattern appeared with a frequency of
30/30 Hz and 32/31 Hz, respectively, for a network with exci-
tatory/all synaptic connections depressed, and for both gKNa

values. In all of these excitable networks, depression of excita-
tory synaptic potentials (AMPA and NMDA; Figure 2, left hand
panels), and of both, excitatory and inhibitory synaptic potentials

(AMPA, NMDA, and GABAA; Figure 2, right hand panels) were
compared.

As described above for the modulation of network activity
by K+ reversal potential, no significant differences in the pat-
tern of oscillatory activity were observed by including synaptic
depression in the inhibitory synaptic potentials. This is also an
illustration of the robustness of the effect of activity on synap-
tic depression. In both cases we found that synaptic depression
at the end of the repetitive synaptic stimulation is lower when
there is more activity in the network (V

pyr
K = −95 mV and V int

K =
−85 mV or gKNa > 1.33 mS/cm2), and is higher when there is
less or no activity in the network (V

pyr
K = −105 mV and V int

K =
−95 mV or gKNa < 1.33 mS/cm2). The exact quantification is
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FIGURE 2 | Different patterns of network activity given by different

Na+-dependent K+ conductances gKNa. Left column, excitatory synaptic
connections depressed (fAMPA,NMDA

D = 0.9); right column, excitatory and

inhibitory synaptic connections depressed (fAMPA,NMDA,GABAA
D = 0.9). Inset

figures show the last 5 s of each simulation, respectively. From top to
bottom, low activity to high activity with firing frequencies during UP states
for the left (right) panel of 0(0) Hz, 12(11) Hz, 17(18) Hz and 30(30) Hz,
respectively.

illustrated in Figure 3 for the presynaptic stimulation frequencies
of 5, 10, and 20 Hz; average standard errors are of 2.0% at 5 Hz,
1.5% at 10 Hz, and 0.9% at 20 Hz.

Mechanistically, it is important to note that the absolute ampli-
tude of the EPSP (average of amplitudes of the EPSPs) is smaller
while the activity in the network increases, and that this difference
is reduced as a function of the frequency of the stimulation, being
25, 15, and 1% smaller at 5, 10, and 20 Hz respectively for the
modification of the K+ reversal potential, and 59, 48, and 21%
smaller at 5, 10, and 20 Hz respectively for the modification of
gKNa conductance.

In the experimental data from Reig et al. (2006), synap-
tic depression decreased with cortical ongoing activity while it
increased whenever the cortical network was silent. This relation-
ship was true both for cortical slices [Figures 2 and 3 in Reig et al.
(2006)] and for in vivo recordings [Figures 4 and 5 in Reig et al.
(2006)]. Results from the cortical slices in vitro are more amenable
to compare with our model simulations both because they are an
isolated cortical network and because the frequencies of presy-
naptic stimulation used have been the same (5, 10, and 20 Hz).
In the model, STD also decreased with activity in the network,
both when activity was regulated by the potassium reversal levels
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FIGURE 3 | Modulation of synaptic depression by network activity.

Normalized EPSPs amplitudes evoked by regular current injection.
(A) Three different levels of activity by changing the K+ reversal potential:
silent network (red line), regular network activity (pink line), and more
active network (blue line); and, (B) seven different levels of activity by
changing the gKNa conductance from E-I (1.83 mS/cm2) to E-VII
(0.26 mS/cm2) (reference line colors at the bottom of the figure). Panels a, b,

c represent the normalized PSPs amplitudes when only excitatory synaptic
connections were depressed, and panels d, e, f when excitatory and
inhibitory connections were depressed at the stimulation frequencies of
5, 10, and 20 Hz, respectively. Lines were plotted using cubic splines. At all
the stimulation frequencies there is less STD while the network is active than
with low or none activity. Average standard error: 2.0% at 5 Hz, 1.5% at
10 Hz, and 0.9% at 20 Hz.

(Figure 3A) or by changes in the IKNa conductance. Not only in
the experiments but also in the model, repetitive stimulation of
the presynaptic input was carried out for at least 20 s and the mag-
nitude of the STD was similar. In particular, in silent slices, 20 s
of presynaptic stimulation at 5 Hz induced a PSP decay to 70%
of the control value, almost identical to the one in the model. In
the presence of activity in the network, both in the slices and in
the model, STD became negligible. For a frequency of stimulation
of 10 Hz and 20 Hz, experimental STD in silent slices decreased
synaptic potentials to 50% and 30%, respectively, virtually the
same values to the ones in the model. In the presence of rhythmic

activity, the synaptic potentials only decayed to 80% and 45%,
respectively. This “recovery” of synaptic depression was within the
range of the values reached in the model. For higher levels of net-
work activity, STD could be decreased even more, in particular
when the gKNa was reduced (Figure 3B).

From this first section, therefore, we first conclude that global
activity in the network can be robustly modulated by small
changes in ionic conductances. Second, when the network is
silent, synaptic depression is up-regulated, while the activity in
the network decreases it. This finding suggests that information
transmission in an active network is more secure and repetitive;
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and high frequency stimuli can be transmitted reliably and with-
out strong decays.

SYNAPTIC DEPRESSION IN UP VERSUS DOWN STATES
The results presented above demonstrated that ongoing activity
in the network decreases STD during spontaneous activity in the
model network, in agreement with the experimental observations
(Reig et al., 2006; Reig and Sanchez-Vives, 2007). To reinforce
these results, a natural question was to explore, in the model,
whether there was a difference between transmission during UP
and DOWN states. As explained in Protocol II (see Materials
and Methods), presynaptic action potential firing (5 spikes at
50 Hz) was induced in the model network. The interval was 1 s ±
100 ms random variation. On a target—postsynaptic (monosy-
naptic connection) neuron, randomly chosen at the beginning of
each simulation, the amplitude of the evoked EPSPs was deter-
mined both during an UP and DOWN state, and normalized to
the amplitude of the first EPSP in the train. Those trains in which
the five EPSPs did not occur totally, either in a DOWN or in an
UP state, were ignored.

All trains of EPSPs occurring during DOWN (UP) states for a
period of 30 s were averaged. Normalization with respect to the
amplitude of the first EPSP in the train (averaged for each train
and each simulation) revealed that STD was consistently larger for
trains of EPSPs occurring during DOWN states than during UP
states (Figure 4). This result holds true both for the case when
only excitatory connections are depressed (AMPA and NMDA,
Figure 4A), and when all the synaptic connections are depressed
(AMPA, NMDA, and GABAA, Figure 4B). This computational
result, obtained with average standard errors ranging from 5.1%
to 8.7%, is proposed here as a prediction for experimental results,
and has implications with respect to the information transmission
during UP versus DOWN states that will be discussed below.

An interesting result is obtained if we average the amplitude of
EPSPs across all trains and simulations, distinguishing between
UP and DOWN states. We found that the amplitude of EPSPs is
greater in DOWN states than in UP states (Figure 4C); that is, the

amplitude of EPSPs is larger during DOWN states than during
UP states. This holds true mainly for the first EPSP in the train,
since the larger depression during DOWN states leads to values of
the ratio between amplitudes close to 1 by the end of the train. As
found in the previous section, there is no difference in the ratio
of amplitudes between the fully (AMPA, NMDA, and GABAA)
depressed network and the network with only excitatory synaptic
depression (AMPA and NMDA).

IMPACT OF SYNAPTIC DEPRESSION ON THE SLOW RHYTHMIC
PATTERNS
So far we have shown that network activity has an impact on
synaptic depression, but our next goal was the reciprocal problem:
does synaptic depression have a remarkable effect on the emer-
gent activity? This finding was achieved by investigating the
patterns of emergent activity in a cortical network with differ-
ent levels of synaptic depression, see Protocol III in Materials
and Methods. STD was varied by modifying the depression factor
fD in the model (Dayan and Abbott, 2001). Increasing synap-
tic depression by decreasing the depression factor fD induced
longer UP states, while DOWN states became shorter (Figure 5).
Consistently across trials, there always exist a f ∗

D ∈ (0.75, 0.85)

where the network activity exhibits a bifurcation in which rhyth-
mic oscillations disappeared, and neurons entered into a non-
oscillatory regime for fD < f ∗

D . We segregate our analysis in these
two different regimes.

Not only the amplitude and frequency of the oscillations were
affected by changes in the factor fD, but the propagation of activ-
ity in the network was affected too. For a moderate level of
depression (fD ≥ 0.85), the number of neurons recruited grew
exponentially in time, while in the non-oscillatory regime or high
levels of depression (fD ≤ 0.75), the shape of the curve exponen-
tially decreased and the time it took for all neurons to fire at
least one spike was 4–5 times faster than in the oscillatory regime
(see last column of Figure 5). For intermediate levels of depres-
sion (0.75 ≤ fD ≤ 0.85), the effect was intermediate as well: the
histogram is U-shaped. In this parameter region, the network

FIGURE 4 | Input/Output relationships during UP versus DOWN states.

Normalized PSPs amplitude during an UP state (pink line) or during a DOWN

state (blue line). (A) Network with only excitatory neurons depressed and
(B) Network with all connections (excitatory and inhibitory) depressed.
An average of 165 trains of 5 spikes at 50 Hz during a DOWN state and
55 trains during an UP state shows that, for all the five spikes in the
train, the normalized evoked PSP amplitude is higher during an UP state

than during a DOWN state (average standard error = 5.1%(8.2%) during a
DOWN state for A and B, respectively, and 6.9%(8.7%) during an UP state
for A and B, respectively). (C) Proportion between the average of amplitudes
of the EPSPs during DOWN state compared with the average of amplitudes
of the PSPs during UP state. Blue line: network with only excitatory
synaptic depression; pink line: network with synaptic depression in all
connections.
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FIGURE 5 | Network activity modified by the amount of short-term

synaptic depression in the excitatory connections (each row

represents a different level of STD). Each row represents a level of
depression, from no depression (A) to the highest depression factor we
have tested (F). Left column represents a 20 s simulation for each
depression value; middle column, last 5 s of each of the corresponding
simulations. Last column, histogram for the me it takes for all neurons to
fire the first spike at the beginning of an UP state (randomly chosen).
Increasing synaptic depression increases the duration of the UP states
while decreasing the duration of the DOWN states. At some level of
synaptic depression, between 0.75 ≤ fD ≤ 0.85 (from row D to row E), the
network activity changes drastically from an alternating UP state / DOWN
state regime to a non-oscillatory regime. The time it takes for all neurons to
fire one spike is faster during this last regime.

undergoes the bifurcation from the rhythmic oscillations to the
non-oscillatory state.

We found that the firing rate of the network over a 20-s sim-
ulation is basically maintained in each regime (see Figure 6A),
being on average 9.6 Hz for the oscillatory regime and 11.6 Hz for
the non-oscillatory regime. As for the wave propagation speed,
during the oscillatory regime the propagation is basically con-
stant (see Figure 6C). In order to draw conclusions, we analyzed
the variation of the wave speed. For a network with this com-
plexity, the standard way to compute the wave propagation speed
becomes difficult to apply; thus we approached this problem with
two different indices (Idist and Iconnect) that provide information
about the real wave speed.

Despite the non-existence of propagation in an UP state
during the non-oscillatory regime, the two propagation indices

are still computable, and we used them to detect bifurca-
tion values. During the oscillatory regime, the wave propaga-
tion speed is maintained until it reaches the bifurcation where
the calculated indices show a drastic increase in the propa-
gation of the wave (Figure 6C). Although it is not shown in
the figure, during the non-oscillatory regime our indices exhib-
ited a wave propagation speed between three and four times
faster than in the oscillatory regime. It is worth noting that
the wave propagation speed is faster when the network has all
connections depressed (Figure 6C; pink line) than when only
excitatory connections are depressed (Figure 6C; blue line). As
mentioned above, it is interesting to observe that the rate and
wave propagation speed present basically no changes during the
oscillatory regime; the change happens only after the so-called
bifurcation.

In order to perform a numerical study of the bifurcation
between fD = 0.85 and fD = 0.75, we took fD as our bifurca-
tion parameter, and ran many simulations of the network activity
between these values. We found that the network activity changes
drastically from an oscillatory regime to a non-oscillatory regime
between fD = 0.77 and fD = 0.76 (see Figure 6D). Due to the
randomness of some of the model parameters, the bifurcation
point changes across simulations. For values of fD higher than
the bifurcation value, we can eventually observe how the strips
in the raster plots (UP states) start to coalesce before they fuse in
a “single strip” of activity after the bifurcation, see for instance
Figures 5 and 6D. We have also checked that, even with a fixed
connectivity, there are still slight variations of the bifurcation
point, due to other random effects (such as initial conditions, for
instance).

Figure 5 also shows that UP states become longer as synap-
tic depression increases until they collapse into a non-oscillatory
regime at around fD = 0.76. The rate and wave propagation speed
also support this last statement since they also change drasti-
cally between 0.76 ≤ fD ≤ 0.77 (Figures 6A and C). Interestingly,
as Figure 6A shows, while fD decreases (depression increases),
the total firing rate remains practically constant. At the same
time, we see that intra-UP-state rates decrease as depression
increases (Figure 6B). A plausible explanation for this is that
synaptic depression reduces the probability of release of neuro-
transmitters resulting in a decrease of the intra-UP-state rate;
on the other hand, the currents responsible for the termination
of the UP states (like IKNa and IKCa currents) increase/decrease
more slowly as synaptic depression gets stronger and so, they
contribute to lengthen the UP state interval (Figure 7). The
two effects counterbalance to give this apparently constant total
rate.

CELLULAR MECHANISMS UNDERLYING CHANGES IN NETWORK
DYNAMICS WITH STD
So far we have described how the increase or decrease of STD
has an impact on the network oscillatory dynamics, which can
go from a non-oscillatory state (for high values of STD) to an
oscillatory state of progressively shorter UP states (for low values
of STD). These changes in oscillatory dynamics emerge from the
combination of mechanisms integrated in the neurons and their
functional connectivity. In order to explore in detail some of these
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FIGURE 6 | Firing rate and propagation of UP states in the model

network. (A) Rate of wave propagation in the network is basically maintained
during the UP/DOWN states regime; this rate is increased when the network
activity changes into a continuous firing regime. We found no difference
between a network with only excitatory connections depressed (blue line)
and a network with both excitatory and inhibitory connections depressed
(pink line). The arrow marks the transition point from the oscillatory regime to
the continuous firing regime. (B) Intra-up-state rate (y-axis) for each
depression factor (x-axis). (C) Both indices (Idist, middle panel, and Iconnect ,

bottom panel at the left) show that for values of the depression factor
(x-axis) greater than fD = 0.75, the wave propagation speed (y-axis) is
more or less maintained at the same level, after which the network passes
through some kind of bifurcation and starts increasing its wave propagation
speed. Since there are no waves during non-oscillatory regime, the index
values are no longer useful. (D) Raster plots for two depression factors
(middle and bottom panels at the right): at fD = 0.77 the network activity
presents UP and DOWN states while at fD = 0.76 the network is at a
non-oscillatory regime.

underlying mechanisms, we studied the behavior of the ionic
currents in excitatory and inhibitory neurons during network
activity.

The activity of ionic currents was extracted from excita-
tory and inhibitory neurons during different dynamic states of
the simulated cortical network (Figure 8). Special attention was
paid to K+ currents (sodium-dependent and calcium-dependent
potassium currents), since they are critical for the termination
of UP states (Compte et al., 2003). Figure 8 illustrates from left
to right the main findings regarding the behavior of these K+
currents in three different network states: high, medium and
low values of synaptic depression. In Figure 8, we display the
results for fD values of 0.75, 0.90, and 1, although intermediate
values were as well checked. Higher values of synaptic depres-
sion (as for fD = 0.75) decreased the strength of recurrence and
thus prevented neurons from reaching high values of firing rates

(Figures 8B,C, left panels). Under these conditions the activity of
the network is non-oscillatory (Figure 8A). When the activation
of the K+ currents is explored (Figures 8D,E, left panels), it is
observed that K+ currents are recruited with each action poten-
tial, although the low firing rates prevent from any accumulation
of these adaptation mechanisms. Weak adaptation mechanisms
then allow the network to maintain a continuous firing without
the occurrence of silent periods or DOWN states.

If synaptic depression is slightly lowered to an fD of 0.90 (mid-
dle column in Figure 8), then the network achieves, through its
synaptic connectivity, higher firing rates, both in excitatory and in
inhibitory neurons (Figures 8B,C, middle panels). These higher
firing rates are enough to induce an accumulation in the acti-
vation of K+ currents which consequently silence the network,
inducing the generation of DOWN states and thus the oscillatory
state (Figures 8D,E, middle panels).
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FIGURE 7 | Currents responsible for the duration of an UP state. (A) IKNa

current and (B) IKCa current, for four different values of the depression factor
fD (figure shows the case where only excitatory synaptic connections are

depressed). IKNa current increases slower while IKCa decreases slower during
burst as a function of the level of synaptic depression, which tends to
lengthen the duration of UP states.

When synaptic depression is eliminated (Figure 8, right pan-
els), the phenomenon observed for medium levels of depression
becomes more intense: firing rates in excitatory and inhibitory
neurons increase, the accumulation of K+ currents is more
prominent and is reached earlier, thus generating shorter UP
states and longer DOWN states. A similar evolution has been
observed experimentally and in a model when inhibition is pro-
gressively removed, thus inducing a progressive increase in the
firing rates of excitatory neurons (Sanchez-Vives et al., 2010).

DISCUSSION
The impact of synaptic activity, a widespread mechanism in cor-
tical emergent activity and, reciprocally, the effect of network
spontaneous activity on synaptic depression were the focus of
this study. We explored in a cortical model (Compte et al., 2003)
the interactions between STD and spontaneous activity orga-
nized in slow rhythmic patterns, reminiscent of those that occur
during slow wave sleep (Steriade et al., 1993). A mutual interac-
tion was found between synaptic depression and network activity,
such that network activity down-regulates synaptic depression,
and synaptic depression modulates the patterns of emergent net-
work activity. The first test (Protocol I) carried out in the model
was inspired by previous experimental results (Reig et al., 2006),
where changes in cortical synaptic depression were quantified
against ongoing activity. However, testing in the context of the
model has now allowed us (1) to find out the extent of the
reproducibility of the experimental results in the model and to
carry out a detailed quantification of the effects of activity on

synaptic depression, (2) to generalize the effect of different forms
of activity over synaptic depression, (3) to estimate the effects on
excitatory and inhibitory transmission, as well as the impact of
excitatory vs. inhibitory depression on the network, and (4) to
determine the effects that parametric changes in STD have on
global network emergent activity, modifications difficult to attain
experimentally.

ACTIVITY MODULATION OF EXCITATORY AND INHIBITORY
SYNAPTIC DEPRESSION
In order to regulate the activity in the artificial cortical network
and to explore the consequences on synaptic depression, two
different strategies were used: (1) modification of V+

K reversal
potential, and (2) modification of the sodium-activated K+ con-
ductance, gKNa, a critical mechanism in Compte et al. (2003) for
the termination of UP states. The objective here was not to explore
the impact that these changes had on UP states, but to control
the global amount of activity, and to analyze the resulting effects
on STD. As described experimentally (Reig et al., 2006), STD in
the model decreased with the level of activity in the network.
The amplitude of EPSPs was lower for higher levels of activity in
the network, since they were pre-depressed by the ongoing activ-
ity. Repetitive synaptic stimulation induced decay in the EPSPs
amplitude that eventually reached a plateau (Figures 3A and B).
This plateau had a different value depending on the amount of
activity in the network, being lower for a silent or low activity
network than in an active one. Similar results have been observed
both experimentally by Reig et al. (2006) and in a model (Tsodyks
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A

B

C

D

E

FIGURE 8 | Currents’ dissection during UP states. For three significant
depression levels: (A) raster plot during the first 10 seconds; (B) sum of currents
of an excitatory cell (only somatic compartment shown, in red) and an inhibitory

cell (in blue) during an UP state; (C) zoom of (B) in a 500 ms-window; (D,E)

sodium-activated and calcium-activated adaptation K+-currents, IKNa and IKCa

respectively, in a chosen excitatory cell during an UP state.

and Markram, 1997). A chronic state of depression of thalam-
ocortical synapses in vivo has also been argued (Swadlow and
Gusev, 2001; Castro-Alamancos and Oldford, 2002; Boudreau
and Ferster, 2005; Swadlow et al., 2005).

We did not find differences in the network modulation of STD
between a network with only depressing excitatory connections

and one where both excitatory and inhibitory connections were
depressed (Figures 3 and 4). This might be due to the total ratio
between the number of excitatory and inhibitory connections in
our network model (	4). Experimentally, depression of IPSPs is
weaker than that of EPSPs (Galaretta and Hestrin, 1998; Varela
et al., 1999; Chelaru and Dragoi, 2008).
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Our results suggest that the activity in the network sets the
synapses in a different steady-state thus displaying less depression,
and transmitting information with lesser or no decay.

SYNAPTIC TRANSMISSION AND SHORT TERM DEPRESSION
DURING UP VERSUS DOWN STATES
The input–output relationship of the network was compared
across UP and DOWN states (Protocol II). In our model, synap-
tic depression was larger during DOWN states than during UP
states (Figure 4). Lesser depression during UP states with respect
to DOWN states has been described experimentally (Crochet
et al., 2005; Reig and Sanchez-Vives, 2007) but only for pair-
pulse stimulation and not for longer stimulation series. Longer
series of stimulation of thalamocortical connections at similar
frequencies were described to induce an augmentation rather
than a depression in cortex in vivo (Steriade et al., 1998), although
not taking into account UP and DOWN states. Our computa-
tional results, showing lesser synaptic depression in UP than in
DOWN states, should be therefore considered an experimental
prediction. The tendency to change the network state (to start or
finish an UP state) with repetitive electrical stimulation (Petersen,
2002; Haider et al., 2006; Reig and Sanchez-Vives, 2007) posits
though a problem to obtain series of circa 5 stimuli occurring
only during DOWN states or UP states. Nevertheless, a differ-
ent degree of synaptic depression during UP and DOWN states
is coherent both with the model results presented here, as well
as with experimental results showing that STD in a silent net-
work is larger than in an active one (Crochet et al., 2006; Reig
et al., 2006; Reig and Sanchez-Vives, 2007). Even at different time
scale and with a global amount of activity, a DOWN state repre-
sents a silent state of the network, and an UP state, an activated
network.

On the other hand, the amplitude of an EPSP evoked by a
single action potential was in the model larger at DOWN states
with respect to UP states (Figure 4C), as found experimentally
(Crochet et al., 2005). The relative amplitude of PSPs in UP ver-
sus DOWN states has been a matter of controversy. Responses
evoked by the same stimulus have been found to be of lesser
amplitude in UP than in DOWN states in certain cortical areas
(e.g., barrel cortex) and stimulation conditions (Petersen, 2002;
Sachdev et al., 2004; Crochet et al., 2005, 2006; Hasenstaub et al.,
2007). A reason argued for this lesser amplitude is the prox-
imity to the reversal potential of glutamate receptor channels
at depolarized values, a mechanism that was responsible also
for the result in the model. On the other hand, experimen-
tal results have also reported an increased output/input during
UP states to a stimulus induced either naturally or electrically
(Azouz and Gray, 1999; Haider et al., 2007; Reig and Sanchez-
Vives, 2007), the higher excitability and responsiveness of the
network during UP states being a main argument supporting
these results.

Other contributing factors are neuromodulators released dur-
ing states of arousal, like acetylcholine, which down-regulate
synaptic depression (Gil et al., 1997). A lesser depression in UP
states and in active networks implies a higher reliability in infor-
mation transmission during alert states. Furthermore, increased
noise during activated states contributes to the responsiveness,

signal detection, and timing accuracy of the input/output (Ho
and Destexhe, 2000; Wolfart et al., 2005; Marti et al., 2008).

THE EFFECT OF SYNAPTIC DEPRESSION ON THE NETWORK
EMERGENT ACTIVITY
Recurrent activity in the network supports the organization of
spontaneous activity into UP and DOWN states (Steriade et al.,
1993). The liaison between synaptic and intrinsic membrane
properties determines the specific emerging activity patterns;
however, the exact mechanisms controlling the different param-
eters of the oscillations remain elusive. One factor proposed in
several models as a critical element to regulate the emergent activ-
ity or as a mechanism to end UP states is synaptic depression
(Bazhenov et al., 2002; Hill and Tononi, 2005; Holcman and
Tsodyks, 2006).

Our model allowed us to test the effect on the UP and
DOWN states of a gradual increase in STD (Protocol III). This
model reproduces slow oscillatory activity generated by the cortex
in vitro (Sanchez-Vives and McCormick, 2000) without synap-
tic depression. Here, we introduced STD in the excitatory or
in both, excitatory and inhibitory, connections. Against intuitive
predictions of network behavior, a gradual increase in STD
(decreasing fD) resulted in a progressive elongation of the UP
states, and a shortening of the DOWN states. The progression
led from a slow oscillatory (<1 Hz) to a non-oscillatory regime
(	10 Hz) after crossing a threshold in which UP states started
to merge (see Figure 5). In this intermediate state, most of the
neurons fired in a regular way, but some of the neurons were
yet engaged in oscillatory sequences. This state of threshold is, to
some extent, similar to the one observed by Holcman and Tsodyks
(2006) in a mean field model. During these states of bifurca-
tion, not only UP states started to merge, but there was a drastic
change in the network’s dynamics, including the time to the first
spike (Figure 5), the UP states firing rate (Figure 6A), and the
propagation in the network (Figure 6C).

A decaying strength in the recurrent connectivity during UP
states, due to depression, slightly decreased the resulting firing
frequency in the network. This slight decay in the firing rate
was enough though to induce a slower accumulation of the IKNa

current, and a slower decrement of the IKCa current (Figure 7),
which in this model were critical to control the duration of
UP states and to maintain DOWN states (Compte et al., 2003).
Progressively, longer UP and shorter DOWN states resulted in
UP states merging into continuous depolarization. Interestingly,
while STD increased and the network was still in an oscillatory
regime, the rate and speed of propagation showed no mod-
ification, providing that the excitatory–inhibitory balance was
not modified. This result contrasts with the case described in
Bressloff (1999) of an infinite number of globally connected in-
phase integrate and fire neurons, in which the rate decreases with
depression. However, many features of our model can account
for this difference: local connectivity, finite size of the network,
presence of inhibitory neurons, different distribution of phases,
etc. Links with the study of Mejias et al. (2010) of a rate model
with noisy dynamical synapses are also worth mentioning. In
Mejias et al. (2010), it is shown that long stays in the up state
would occur more frequently for high values of fD. Since we use a
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detailed biophysical network with no noise added to the dynami-
cal synapses, differences have to be carefully interpreted but the
fact that we get longer stays in the up state when decreasing
fD may indicate that either the noise in the dynamical synapses
or the detailed channel dynamics in our model could explain
these differences. As we understand, our model itself serves as a
mechanistic explanation of how using plausible neurobiological
assumptions, network activity, and depression levels can inter-
play, but the complexity of the model still provides too many
possible explanations. A deeper study of the interplay of net-
work mechanisms was made by dissecting the behavior of ionic
currents in excitatory and inhibitory cells during the different net-
work states, see Figure 8. This exploration revealed more detailed
cellular and network mechanisms contributing to the lengthen-
ing of UP states and shortening of DOWN states when synaptic
depression was increased. Decreasing synaptic depression resulted
in higher firing rates of both excitatory and inhibitory neurons.
This increase in firing rates results in a more efficient recruit-
ment of sodium-dependent (Figure 8D) and calcium-dependent
(Figure 8E) potassium currents, thus preventing neurons from
firing and contributing to the further shortening of the UP states.
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APPENDIX
IONIC CURRENTS AND PARAMETER VALUES
Ionic currents for somatic and dendrite compartments were
taken from Compte et al. (2003). The sodium current, INa =
gNa m3∞ h (v − VNa), has a rapid activation variable replaced by its
steady-state m∞ = αm/(αm + βm) with αm = 0.1 (v + 33)/[1 −
exp(−(v + 33)/10)] and βm = 4 exp(−(v + 53.7)/12), and an
inactivation variable defined from αh = 0.07 exp(−(v + 50)/10)

and βh = 1/[1 + exp(−(v + 20)/10)]; the maximal conductance
is gNa = 50 mS/cm2. The delayed rectifier, IK = gKn4(v − VK),
has an inactivation kinetics driven by αn = 0.01 (v + 34)/[1 −
exp (−(v + 34)/10)] and βn = 0.125 exp[−(v + 44)/25], with
a maximal conductance gK = 10.5 mS/cm2. The leakage cur-
rent, IL = gL(v − VL), has a maximal conductance gL = 0.0667 ±
0.0067 mS/cm2 and is a passive channel. The fast A-type
K+ channel, IA = gA m3∞ h∞ (v − VK), has a rapid activation
variable replaced by its steady-state m∞ = 1/[1 − exp(−(v +
50)/20)] and its inactivation variable by h∞ = 1/[1 + exp((v +
80)/6)] with τh = 15 ms; it has a maximal conductance of gA =
1 mS/cm2. The non-inactivating K+ channel, IKS = gKS m∞ (v −
VK), has an activation controlled by m∞ = 1/[1 + exp(−(v +
34)/6.5)] with τm = 8/[exp(−(v + 55)/30) + exp((v + 55)/30)]
with a conductance gKS = 0.576 mS/cm2.

The persistent sodium channel, INaP = gNaP m3∞ (v − VNa),
has a conductance gNaP = 0.0686 mS/cm2, and activates accord-
ing to m∞ = 1/[1 + exp(−(v + 55.7)/7.7)]. The inwardly rec-
tifying K+ channel, IAR = gAR h∞ (v − VK), has a conductance
gAR = 0.0257 mS/cm2, and activates instantaneously according
to h∞ = 1/[1 + exp((v + 75)/4)].

The high-threshold Ca2+-channel, ICa = gCa m2∞ (v − VCa),
has a conductance gCa = 0.43 mS/cm2, and activates instanta-
neously at very depolarized voltages according to m∞ = 1/[1 +
exp(−(v + 20)/9)]. The Ca2+-dependent K+ channel, IKCa =
gKCa[Ca2+]/([Ca2+] + KD)(v − VK), where KD = 30 μM and
gKCa = 0.57 mS/cm2, activates instantaneously in the presence
of intracellular calcium [Ca2+] (Wang, 1998), which follows the
first-order kinetics

d[Ca2+]
dt

= −αCaAdICa − [Ca2+]
τCa

,

with αCa = 0.005 μM/(nA ms) and τCa = 150 ms.

The Na2+-dependent K+ channel, IKNa = gKNaw([Na+])(v −
VK) depends on the intracellular sodium concentration through
w([Na+]) = 0.37/[1 + (38.7/[Na+])3.5] and the following
dynamics for the concentration:

d[Na+]
dt

= −αNa(AsINa + AdINaP)

−Rpump

{
[Na+]3

([Na+]3 + 153)
− [Na+]3

eq

([Na+]3
eq + 153)

}
,

with αNa = 0.01 mM/(nA ms), Rpump = 0.018 mM/ms and
[Na+]eq = 9.5 mM.

Reversal leakage potential is VL = −60.95 mV, sodium rever-
sal potential, VNa = 55 mV, potassium reversal potential, VK =
−100 mV and calcium reversal potential, VCa = 120 mV.

As for the interneurons, the sodium current,
INa = gNa m3 h (v − VNa), has an activation variable con-
trolled by αm = 0.5(v + 35)/[1 − exp(−(v + 35)/10)] and
βm = 20 exp(−(v + 60)/18), and an inactivation gating
variable controlled by αh = 0.35 exp(−(v + 58)/20) and
βh = 5/[1 + exp(−(v + 28)/10)]; it has a maximal conductance
of gNa = 35 mS/cm2. The delayed rectifier, IK = gK n4 (v − VK),
has a conductance gK = 9 mS/cm2, and activates according
to αn = 0.05 (v + 34)/[1 − exp(−(v + 34)/10)] and βn =
0.625 exp(−(v + 44)/80). The leakage current, IL = gL(v − VL),
has a maximal conductance gL = 0.1025 ± 0.0025 mS/cm2

and is a passive channel. Finally, leakage reversal potential is
VL = −63.8 mV, sodium reversal potential, VNa = 55 mV, and
potassium reversal potential, VK = −90 mV.
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