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Resting state networks (RSNs) show a surprisingly coherent and robust spatiotemporal
organization. Previous theoretical studies demonstrated that these patterns can be
understood as emergent on the basis of the underlying neuroanatomical connectivity
skeleton. Integrating the biologically realistic DTI/DSI-(Diffusion Tensor Imaging/Diffusion
Spectrum Imaging)based neuroanatomical connectivity into a brain model of Ising
spin dynamics, we found a system with multiple attractors, which can be studied
analytically. The multistable attractor landscape thus defines a functionally meaningful
dynamic repertoire of the brain network that is inherently present in the neuroanatomical
connectivity. We demonstrate that the more entropy of attractors exists, the richer is the
dynamical repertoire and consequently the brain network displays more capabilities of
computation. We hypothesize therefore that human brain connectivity developed a scale
free type of architecture in order to be able to store a large number of different and flexibly
accessible brain functions.
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INTRODUCTION
Perceptions, memories, emotions, and everything that makes
us human, demand the flexible integration of information rep-
resented and computed in a distributed manner. The human
brain is structured into a large number of areas, in which
information and computation are highly segregated, but then
again are functionally integrated during normal brain function.
Furthermore, human behavior entails a flexible task-dependent
interplay between different subsets of brain areas in order to
integrate them according to the corresponding goal-directed
requirements. Nevertheless, the neuronal and cortical mecha-
nisms governing the interactions and entrainment of different
specialized brain areas for reaching that integration remain poorly
understood. We contend that the functional and encoding roles of
diverse neuronal populations across areas are subject to intra- and
inter-cortical dynamics.

The main aim of this paper is to elucidate how the underly-
ing anatomical structure shapes and determines global dynamics
in a self-organizing manner. This will help us to understand the
mechanisms underlying brain functions by complementing struc-
tural and activation-based analyses with dynamics. In particular,
we expect to better comprehend the generation and interpre-
tation of global and local spatio-temporal patterns of activity
revealed at many levels of observations (fMRI, EEG, and MEG)
in humans, and under task and resting (i.e., no stimulation and
no task) conditions. An increasing number of experimental stud-
ies characterize the dynamics of spontaneous activity at rest with
a variety of methods including EEG (Creutzfeldt et al., 1966),

optical imaging (Kenet et al., 2003), single neuron recording
(Engel, 2001), and fMRI (Biswal et al., 1995; Fox and Raichle,
2007). In particular, fMRI measures local changes in magnetic
susceptibility (the blood oxygen level dependent, BOLD signal)
caused by variations in the capillary concentration of deoxy-
hemoglobin, due to blood flow and blood volume increases in
response to neuronal activation. Even at rest (i.e., in the absence
of stimuli or a task), the spontaneous (intrinsic, not task-evoked)
BOLD signal is characterized by slow oscillations (<0.1 Hz). It
was noted over a decade ago that spontaneous BOLD signal fluc-
tuations are temporally correlated (or coherent) between brain
regions of similar functionality (Biswal et al., 1995; see Fox and
Raichle, 2007 for a review). Regions showing high correlation
at rest are said to be “functionally” connected; accordingly, this
novel method of analysis of fMRI time series has been labeled
either functional connectivity-by-MRI (fcMRI) or resting state-
fMRI (rs-fMRI); finally, the ensuing networks of correlation are
said to constitute resting state networks (RSNs). These RSNs may
be functionally organized as dynamically competing systems both
at rest and during different task conditions. In a series of papers,
it has been shown that the cortical dynamics at rest can function-
ally be described as a dynamical system at a critical point; i.e.,
close to a critical point (Ghosh et al., 2008; Deco et al., 2009,
2011; Deco and Jirsa, 2012). At rest cortical areas exhibit pair-
wise synchronization following a power law scaling (Kitzbichler
et al., 2009), which is also symptomatic of a dynamic system at
the critical point. The RSNs are then multistable ghost attractors
felt at that brink of bifurcation (Deco and Jirsa, 2012; Senden
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et al., 2012). A ghost attractor is a remnant of a fixed point
that will emerge after bifurcation and manifests itself by slow-
ing trajectories in phase space rather than capturing them (Gros,
2009; Friston and Ao, 2012). This implies that the system is at
the brink of multistability but not yet multistable. Each attrac-
tor is explored but, in contrast to a multistable system, the system
does not repeatedly settle in different attractors. Multistable ghost
attractors allow for exploration of a functional repertoire with-
out immediate execution of functions. In summary, the model of
critical dynamics we have in mind can be described as follows:
at rest, the brain operates in a critical regime, characterized by
attractor ghosts or weak attractors in the Milnor sense. This leads
to chaotic itinerancy—that may be augmented by random fluctu-
ations and an exploration of multistable attractors (in the strong
or classical sense). When a stimulus is encountered (or attentional
set changes) one attractor becomes stable and is “selected” from a
repertoire of latent attractors. Our focus in on how the dynamic
repertoire (critical dynamics) is maintained at rest.

RSNs dynamics reflect the underlying anatomical connectivity
between brain areas in a network (Bullmore and Sporns, 2009;
Deco et al., 2011). Theoretical models allowed us to study the
relation between anatomical structure and RSN dynamics (Honey
et al., 2007; Ghosh et al., 2008; Deco et al., 2009). These mod-
els used realistic neuroanatomical information from the macaque
cortex provided by the CoCoMac neuroinformatics database
(Kötter, 2004), and from the human cortex provided by DTI/DSI
(Diffusion Tensor Imaging/Diffusion Spectrum Imaging) tech-
niques (Hagmann et al., 2008). In those models, the spatio-
temporally structured functional connectivity evidenced in fMRI
RSNs can hence be understood as the exploration of the brain’s
dynamic repertoire [see Ghosh et al. (2008)], which is captured
here through the latent “ghost” multi-stable attractors at the edge
of the bifurcation. Hagmann et al. (2008) demonstrated that the
cortical architecture of the brain contains hubs. We speculate
that precisely because of the existence of hubs, cortical networks
are able to reflect a large number of RSNs. In other words, the
large number of RSNs reflects the large number of “ghost” attrac-
tors structuring the noise under resting state conditions, i.e.,
the richness of the “dynamical repertoire” (Ghosh et al., 2008)
that the noise around the trivial stable spontaneous state can
explore.

Here, by using an analytically solvable Ising-Spin attractor
model, we demonstrate that the emergence of structure in the
fluctuations (and hence the dynamic repertoire) close to a crit-
ical point 1 is richer if the network connectivity is scale free (as
compared to other connection topologies including small world).
Scale free networks can achieve maximal entropy in the multi-
stable attractor region beyond that point. Additionally, we find
that pairwise correlations between spins organized on a lattice
representing human structural connectivity captures resting state
functional connectivity; thus demonstrating the strong anatomi-
cal influence in the emergence of RSNs even in a system devoid of
biologically realistic dynamics.

1We do not refer to phase transitions since on a finite lattice an Ising system
has finite degrees of freedom and the concept of phase transitions applies to
systems with infinite degrees of freedom.

METHODS
EMPIRICAL NEUROANATOMICAL AND ARTIFICIAL
CONNECTIVITY MATRICES
In this paper, we use a structural connectivity matrix composed
of neuroanatomical connections between distinct brain areas
in the human as well as a set of artificial connectivity matri-
ces. Neuroanatomical connections in five human subjects were
extracted by using DSI white matter tractography (Hagmann
et al., 2008; Honey et al., 2009). This neuroanatomical matrix
expresses the density, with which two different brain areas are
connected through white matter fiber tracts. We used a seg-
mented gray matter parcellation into 66 areas. The neuroanatom-
ical matrix was finally averaged across the five human subjects.
Figure 1A shows graphically the structure of the connectivity
matrix by encoding the strengths of the different connections in a
color map. The connectivity matrix is symmetric at the voxel level,
due to the fact that tractography cannot distinguish the direction-
ality of the fibers. Previous studies have shown that asymmetry
may only play a role regarding the emergent network dynamics if
the asymmetry is large (Knock et al., 2009; Jirsa et al., 2010). We
order the different brain areas in the neuroanatomical connec-
tivity matrix according to modules that have substantially denser
connectivity within the module than with the complementary
part of the network. Furthermore, homotopic regions in the two
cerebral hemispheres were arranged symmetrically with respect
to the center of the matrix. This reordering reveals graphically the
small-world structure of brain networks through the presentation
of clusters of varying size. In particular, the reordering of the con-
nectivity matrix (see Figure 1A) shows the presence of clusters of
nodes that are more connected inside than outside the cluster to
which they belong, confirming previous observations (Bullmore
and Sporns, 2009).

The small world architectures were generated with the classical
method of Watts and Strogatz (1998) with a value P (probability
of rewiring) of 0.25. The regular and random type of architectures
were obtained with the same algorithm but for the extreme cases
of P = 0 and P = 1, respectively. The scale free architectures were
generated with the method of Albert and Barabási (2002).

AN ANALYTICALLY SOLVABLE ISING-SPIN ATTRACTOR MODEL
We investigate the capabilities of different types of structural net-
works to sustain resting state activity by studying carefully the
characteristics of their attractor landscapes by means of a reduced
Ising-spin attractor model, which allows a thorough analytical
investigation. The model is a network of stochastic binary units
(“spins”).

Stochastic units describe the effect of thermal fluctuations in a
system of Ising spins in the presence of a field. In statistical physics
this property describes a so-called Glauber dynamics (Glauber,
1963). Each unit will be associated with one specific node (“corti-
cal brain area”) and they will be symmetrically coupled according
to the connectivity matrix associated with the neuroanatomical
network to be studied. We consider here different types of arti-
ficial structural networks, namely: regular, random, small world
and scale free; as well as a neuroanatomical connectivity matrix
obtained by DSI. Let us denote by Si the state of the spin unit of
the node i, and by Cij the connectivity matrix associated with the
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FIGURE 1 | Neuroanatomical connectivity data obtained by DSI and tractography after averaging across five human subjects (from Hagmann et al.,

2008 and Honey et al., 2009). (A) A three-dimensional reconstruction of connectivity patterns and spatial relations among cortical areas. (B) The structural
connectivity matrix.

FIGURE 2 | Theoretical investigation of the activity in a simplified

network of stochastic neural spins with Glauber dynamics: network

architecture (see text for details).

particular structure of the network. The existence of a connection
is encoded by 1 and its absence by 0, as usual (see Figure 2).

The Glauber dynamics of this network can be described by the
following equations:

{
Si = 1 with probability pi

Si = 0 with probability 1−pi
(1)

where pi

pi = g

⎛
⎝W

∑
j

CijSj−θ

⎞
⎠ (2)

and
g(X) = 1

1+e−εX
(3)

In equation 2, θ is the threshold, and W is a parameter reg-
ulating the global coupling strengths between the nodes. In our
simulations, we used: θ = 12 and W = 1. The parameter ε in
equation 3 denotes an inverse temperature. Let us further label the
global state of all units for a given configuration by a superindex α.
For symmetric connections, the Boltzmann-Gibbs distribution
giving the probability of finding the network in a specific state
Sα can be expressed analytically by

Pα = e−εHα

Z
, (4)

where Z is the partition function defined by

Z =
∑
α

e−εHα

(5)

and Hα is the energy function

Hα = 1

2
θ
∑

i

Sα
i −1

2
W

∑
i,j

Sα
i Sα

j (6)

The probability Pα gives the probability of finding the config-
uration Sα. Therefore, in order to describe the attractor landscape
of the spin network, we can characterize the existence and prob-
ability of each possible attractor (here corresponding to a specific
configuration Sα) by the entropy of the system, which can be
derived analytically, yielding:

E =
∑
α

PαlogPα =
∑

α εHαe−εHα

Z
+ log Z (7)
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For the artificial connectivity matrices we restricted the size
of the network to a maximum of 20 due to computational
restrictions in the calculation of the entropy (the sum over all
configurations increase exponentially with the size of the network
and for each network 100 instances are considered). To achieve
computational feasibility with regard to empirical structural con-
nectivity we split the connectivity matrix into a left and right
hemisphere of 33 nodes each. Furthermore, we parallelize the cal-
culation of entropy for empirical SC by distributing chunks of the
233 states across GPU processors.

We, furthermore, investigate the degree of association between
individual spins. For the artificial matrices we used mutual infor-
mation. The mutual information is an excellent measure for
pairwise association, but is usually very difficult to calculate,
because it requires the estimation of the underlying marginals and
joint probabilities. Nevertheless, in the Ising-spin system, because
the probability of each state is analytically given (Equation 3),
we can calculate the mutual information exactly. We sampled
mutual information between all pairs of nodes and over 100 ran-
dom instantiations of scale free networks containing 20 nodes
and 38 edges. For human structural connectivity we calculate
model functional connectivity by estimating pairwise correlations
of spin activity2 across all global states.

RESULTS
In a previous study (Deco and Jirsa, 2012), we have shown that
the emergence of RSNs is due to structured noise fluctuations
around the trivial equilibrium state induced by the presence of
latent “ghost” multi-stable attractors (the dynamic repertoire) at
the edge of the bifurcation. Here, we study the characteristics of
that relevant bifurcation for different types of connectivity analyt-
ically by investigating how the entropy of the Ising-spin network
evolves as a function of global coupling strength.

Figure 3 shows the entropy of the attractors 3 in an Ising-
spin network reflecting human structural connectivity. For small
values of the coupling W the architecture shows low entropy
corresponding to the existence of one unique trivial state where
all spins are 0. In the same form, for large values of the cou-
pling W the architecture shows again low entropy corresponding
now to the existence of one unique “epileptoform” state where all
the spins are 1. For intermediate values of the coupling strength
many attractors can coexist with different probabilities, so that
the entropy increases to a maximum value. The relevant region
for the resting state is at the edge of the bifurcation separating
the trivial spontaneous state (all spins 0) and the emergence of

2For each global state the activity of spins initially equal to 0 is estimated as
the hyperbolic tangent of the weighted input from active neighbors.
3In our treatment, we have interpreted the entropy of the ensemble distri-
bution over states our system can occupy as entropy over attractors. Strictly
speaking, this entropy is simply over the states that are constituted by attract-
ing sets, which are random. The generalization of the concept of an attractor
in the classical (deterministic) sense in the setting of random dynamical
systems—of the sort we are modeling—calls upon the notion of a pullback
attractor and represents a fairly well developed measure-theoretic formula-
tion of dynamical systems (see Crauel et al., 1997). We have assumed here,
heuristically, that the notions of bifurcations and multistability have their
counterparts in the random dynamical system formulation.

FIGURE 3 | Entropy of the attractors in an Ising-spin network reflecting

human structural connectivity as a function of the global coupling

strength. The rapid increase of entropy corresponds to the bifurcation.
At the brink of this region resting state networks emerge.

attractors corresponding to higher activity (i.e., 1) in some other
nodes. In other words, the region of W where the entropy starts to
increase evidences the relevant bifurcation. Indeed, at this bifur-
cation point the functional connectivity as obtained from the
pairwise correlation in the Ising-spin system closely resembles
empirical functional connectivity (Figure 4). Specifically, the cor-
relation between the pattern of pairwise correlations observed in
model and empirical FC is 0.58 for the right and 0.56 for the left
hemisphere, respectively.

Figure 5A shows the entropy of the attractors of Ising-spin
networks of artificial networks consisting of 20 nodes and 38 con-
nections as a function of the global coupling strength W. Here,
we contrast the entropy for different underlying topographical
structural connections. The maximum of the entropy obtained
for the different network architectures is different. Small world
architectures, including different level of small-worldness, from
the regular to the random, show a similar maximal value of the
entropy. In contrast, the scale free architecture shows a much
larger maximal value of the entropy suggesting that this type of
structure can sustain a much richer number of relevant attractors.
This is due to the fact that scale free topologies contain hubs, i.e.,
nodes with a larger number of connections, and therefore allow
the formation of widely distributed attractors. The higher the
entropy, the higher is the number of “ghost” attractors that effi-
ciently structure the fluctuations of the system at the edge of the
bifurcation for building the resting state and therefore the higher
will be the resulting number of RSNs.

Figure 5B shows the evolution of the maximal entropy
obtained with the different architectures as a function of the num-
ber of nodes and for a matched number of edges. The number
of attractors that a scale free network can store increases much
faster than the amount of attractors that small world type of net-
works can store. This means that scale free networks are extremely
efficient for computation.
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FIGURE 4 | Functional connectivity observed for the left and right hemisphere of empirical resting state data and spin glass model. The ordering of
cortical areas corresponds to that of the underlying neuroanatomical connectivity matrix.

The power-law distribution of pair correlations at the edge of
the bifurcation that we have shown in a previous study (Deco and
Jirsa, 2012) is also evidenced in the Ising spin system. Figure 4
shows the distribution of the pair associations as calculated with
the mutual information between two different nodes. Figure 5C
shows that only at the edge of the bifurcation, i.e., when the
entropy is maximal, the distribution of the pair associations
shows a power law. For the extreme cases of small or large cou-
pling W, the whole system is highly correlated because there is
practically only one state (all spin equal 0 or 1, respectively) and
therefore there is no variability and the mutual information is
very small, consequently the whole distribution is shifted to the
left part of the graph. Intermediate cases approach broader dis-
tributions, but a power law tail is only obtained for the coupling
corresponding to the maximum entropy value.

DISCUSSION
In this paper, we have demonstrated using analytically solv-
able Ising-model that the number of attractors in a network
model is linked to its dynamical repertoire. This link is quan-
tified by the entropy measure. The interpretation of the set
of attractors as a dynamic repertoire (see Ghosh et al., 2008)
offers exciting insights into brain function and sheds light on
the functional role of the resting state. At rest the brain net-
work seems to operate close to a critical point as illustrated here

and in previous studies (Deco and Jirsa, 2012; Senden et al.,
2012). It is, however, not possible to make a straightforward
judgment as to whether this particular system is supercritical
or subcritical. Subcriticality would imply the existence of mul-
tistable attractors which are perturbed and hence explored due
to noise. Supercriticality would imply a resting “ground” state
within which the presence of latent ghost attractors can be felt.
This is what we have observed in previous studies (Deco and
Jirsa, 2012; Senden et al., 2012). Therefore, although the exact
nature of the system remains an open and intriguing question,
we currently conceptualize the brain at rest as a supercritical
system. That is, close to the critical point, a set of multistable
“ghost” attractors is available. Assuming this set of attractors
to be functionally meaningful, the computational brain mecha-
nism to invoke a particular function involves destabilization of
the resting state and stabilization of the desired attractor state.
Since the states already exist in the dynamic repertoire of the
brain network, they do not need to be created, which suggests
the advantage of rapid computation of a specific brain func-
tion through stabilization of one of its attractors. Consequently,
the more entropy of attractors exists, the richer is the dynam-
ical repertoire and therefore the brain network displays more
capabilities of computation.

Previous studies of network models (Deco and Jirsa, 2012;
Senden et al., 2012) have found a maximum of five attractor
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FIGURE 5 | (A) Entropy of the attractors of Ising-spins networks of 20 nodes
and 38 edges as a function of the global coupling strength. Scale free
architectures are able to sustain a much richer dynamical repertoire as
evidenced by the larger maximal value of the entropy of the attractors than
the one corresponding to the small world, regular and random networks.
(B) Evolution of the maximal entropy value obtained with the different
architectures as a function of the number of nodes. The scale free network

shows a much faster increase of the maximal entropy than small world type
of networks. Importantly, the number of connections each node makes
remains unchanged implying that sparsity of the network does not influence
the results. (C) Distribution of the pair correlations for scale free networks of
20 nodes and 38 edges, and for different coupling values. At the edge of the
bifurcation, i.e., when the entropy is maximal, the distribution of the pair
correlations shows a power law.

states in the network’s repertoire. Empirical studies (such as
Damoiseaux et al., 2006) counted eight robust patterns to be
present. At this point, the precise number itself is not relevant,
but the fact that a small number of patterns is favored is interest-
ing in itself. What is it that distinguishes these network patterns
from the multitude of all possible patterns? First of all, as we
have shown here and in previous work, the whole of the network
states defines a dynamic repertoire of the brain network that is
inherently present in the neuroanatomical connectivity. Further,
empirical studies have demonstrated that there seems to be a large
overlap of the RSNs with network patterns known from task spe-
cific activations (Damoiseaux et al., 2006; Smith et al., 2009). In
combination, these two findings underscore the potential rele-
vance of the attractor states stored in the brain network for the
selection of a functional system. They leaven open, however, how
the actual functional specificity within such a system is accom-
plished. This question can and is more appropriately addressed
by systems neuroscience.

Our analyses argue that a richer dynamical repertoire arise
when the system is integrated on a scale-free network in com-
parison to a random, regular or small world network (all of
which have near uniform degree distribution). This argues that

an increased dynamical repertoire (and hence greater adaptive
range of responses) may have exerted selective pressure during
evolution toward a scale-free node arrangement. This is also evi-
dent from the betweenness centrality observed in both human
as well as scale free connectivity matrices. Specifically, the dis-
tribution of betweenness centrality significantly follows a power
law in human structural connectivity data we used in the present
study (γ = 2.81 p = 0.7, estimated using the procedure described
by Clauset et al., 20074). The same is true for scale free matrices
(Goh et al., 2001). Because it measures the traffic going through
a node, betweenness centrality is a complementary measure of
the importance of a node to the degree of connectivity of that
node. However, in empirical, spatially embedded networks, scale-
free degree distribution is limited by the impracticality of creating
nodes with connections to almost all other brain regions through
an upper bound of achievable synaptic density. Recent empirical
analyses of human tractographic data suggest that the degree dis-
tribution may be heavy tailed, but is strongly truncated and spans

4The authors use a combination of maximum-likelihood fitting methods and
goodness-of-fit tests based on likelihood ratios and the Kolmogorov–Smirnov
statistic to quantify power-law behavior in empirical data.
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less than two orders of magnitude (Zalesky et al., 2010). Hence the
two competing forces (greater range of dynamic responses versus
spatial constraints on local wiring density) may find their balance
in the emergence of an exponentially truncated power law degree
distribution.

In conclusion, we showed here that the brain network builds
its neuroanatomical connections in an approximately scale free
type of architecture, which is able to store a large number of
different and flexibly accessible brain functions. The numerous
brain functions are evidenced indirectly under resting state con-
ditions by the generation of a large diversity of networks reflecting

different ways of structured fluctuations, i.e., by the RSNs. All
these mechanisms will be studied in future works.
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