
COMPUTATIONAL NEUROSCIENCE
HYPOTHESIS ANDTHEORY ARTICLE

published: 28 September 2012
doi: 10.3389/fncom.2012.00073

Dynamically partitionable autoassociative networks as a
solution to the neural binding problem
Kenneth J. Hayworth*

Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA

Edited by:
Klaus R. Pawelzik, University of
Bremen, Germany

Reviewed by:
Meng Hu, Drexel University, USA
Takuma Tanaka, Tokyo Institute of
Technology, Japan

*Correspondence:
Kenneth J. Hayworth, Janelia Farm
Research Campus, Howard Hughes
Medical Institute, 19700 Helix Drive,
Ashburn, VA 20147, USA.
e-mail: hayworthk@janelia.hhmi.org

An outstanding question in theoretical neuroscience is how the brain solves the neural
binding problem. In vision, binding can be summarized as the ability to represent that cer-
tain properties belong to one object while other properties belong to a different object.
I review the binding problem in visual and other domains, and review its simplest pro-
posed solution – the anatomical binding hypothesis. This hypothesis has traditionally been
rejected as a true solution because it seems to require a type of one-to-one wiring of neu-
rons that would be impossible in a biological system (as opposed to an engineered system
like a computer). I show that this requirement for one-to-one wiring can be loosened by
carefully considering how the neural representation is actually put to use by the rest of the
brain. This leads to a solution where a symbol is represented not as a particular pattern of
neural activation but instead as a piece of a global stable attractor state. I introduce the
Dynamically Partitionable AutoAssociative Network (DPAAN) as an implementation of this
solution and show how DPANNs can be used in systems which perform perceptual binding
and in systems that implement syntax-sensitive rules. Finally I show how the core parts of
the cognitive architecture ACT-R can be neurally implemented using a DPAAN as ACT-R’s
global workspace. Because the DPAAN solution to the binding problem requires only “flat”
neural representations (as opposed to the phase encoded representation hypothesized in
neural synchrony solutions) it is directly compatible with the most well developed neural
models of learning, memory, and pattern recognition.

Keywords: binding problem, global workspace, ACT-R

INTRODUCTION
A gulf exists between our best cognitive science models of the mind
and our best neuroscience models of the brain. Cognitive models
hypothesize symbol assignments to variables, syntax-sensitive rule
applications, and sequential, goal directed behaviors orchestrated
by a central executive. Models incorporating these elements have
demonstrated great success in modeling complex human behav-
iors including problem solving and language understanding. In
contrast, neuroscience models hypothesize networks of neurons
which function as pattern recognizers, associative memory stores,
and feedback controllers. Models incorporating these elements
have demonstrated that they can successfully model simple behav-
iors while simultaneously staying true to what anatomists and elec-
trophysiologists have learned about biological neural networks.

It has proven very difficult to extend neuroscience models to
encompass the more complex tasks which the cognitive models
already easily handle. The difficulty lies in the “neural binding
problem” – the act of assigning a symbol to a variable, and the act
of applying a syntax-sensitive rule have no direct analog in cur-
rent neuroscience models. I review this neural binding problem in
detail below, showing why it really is a problem and why its most
straightforward resolution (referred to here as the “anatomical
binding hypothesis”) is unworkable in its most basic form.

Two main tactics have arisen over the years to overcome this
difficulty (for reviews, see Roskies, 1999; Hummel, 2011). The
first tactic has been an attempt to simplify cognitive models to

eliminate symbol assignments and rules. The second tactic has
been to posit significant additional complexity on top of the cur-
rent neuroscience models (e.g., by positing neural synchrony and
asynchrony among groups of neurons) which would allow them
to handle symbol assignments and rules. To date, neither of these
tactics has proved satisfactory.

This paper presents a third tactic. I show how symbol assign-
ments and syntax-sensitive rules can be implemented using only
traditionally accepted models of pattern recognition and asso-
ciative memory (i.e., without the need for precise temporal syn-
chrony). The solution presented is a novel variant on the anatom-
ical binding hypothesis, but instead of associating each symbol
with a particular pattern of neural firing (something which is not
biologically plausible for reasons discussed below) I instead asso-
ciate each symbol with a piece of a global stable attractor state.
I introduce a new neural network formalism, the Dynamically
Partitionable AutoAssociative Network (DPAAN), as an imple-
mentation of this solution. I then provide three examples of how
a DPAAN can be used to solve the neural binding problem.

REVIEW OF THE BINDING PROBLEM
Cognitive models of brain function begin by assuming that the
brain has some physical method for encoding symbols that repre-
sent features of the external world (Newell, 1990). Such symbols
come in two types – atomic and composite. Atomic symbols form
the basic vocabulary of a system and represent indivisible qualities

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 1

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00073/abstract
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00073/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KennethHayworth&UID=55193
mailto:hayworthk@janelia.hhmi.org
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

like “blue,” “red,” “circle,” “square,” “above,” “below.” Composite
symbols syntactically group atomic symbols into composite struc-
tures, for example “blue circle” or “the blue circle is above the
red square.” Cognitive modelers have always assumed that the
brain has mechanisms for encoding and manipulating such com-
posite level symbols. That is, they have assumed that the brain
has mechanisms for encoding syntax (the compositional arrange-
ment of atomic symbols), recognizing syntactic differences (e.g.,
recognizing that “circle above square” differs from “square above
circle”), and manipulating syntax. With this assumption cogni-
tive modelers have been incredibly successful at modeling a wide
range of human behaviors, and have produced general models
meant to encompass the human cognitive architecture’s core fea-
tures including skill learning, memory formation and retrieval,
and goal directed behavior (Anderson et al., 2004).

There remains much debate as to how, and even whether,
the brain’s biological neural circuits encode syntax. It is widely
agreed that atomic-level symbols are encoded as unique patterns
of activity over particular sets of neurons. For example, if a par-
ticular brain region is specialized for representing the color of an
object, then each unique color will be associated with a particu-
lar pattern of activation across the neurons in this brain region.
Let’s say there are five neurons in this color region and that we
represent their joint activation with the vector X, then the par-
ticular activation pattern that represents the color red might be
Xred
= [10001] and the activation pattern that represents blue

might be Xblue
= [01100]. Similarly we may hypothesize another

set of neurons Y specialized for representing shape, with acti-
vation patterns for representing “circle” and “square” as follows:
Ycircle

= [1100000], Ysquare
= [0000101]. To represent the com-

posite idea “red circle” the system would simply set X=Xred and
Y=Ycircle, giving the joint activation across both sets of neurons
as X; Y= [10001; 1100000].

However a difficulty arises when the system needs to represent
a composite idea that utilizes the same modality (e.g., color) twice.
There is no way to represent the idea “red circle and blue square.”
Superimposing activation patterns for red and blue give a pattern
that is neither (i.e., X=Xred

+Xblue
= [11101]), likewise for the

shape modality. (Y=Ycircle
+Ysquare

= [1100101]). And even if
this “superposition catastrophe” (von der Malsburg, 1999) could
be worked around, there is still nothing in the resulting joint rep-
resentation (X; Y= [11101; 1100101]) that distinguishes it from
“blue circle and red square.” The root of the problem is that the
above representational scheme has no way to signal that the color
red is “bound” with the shape circle and that the color blue is
bound with the shape square. This is the classic binding problem
of how to represent two visual objects simultaneously; however the
binding problem is in no way limited to visual representation. The
same issues arise in representing non-visual concepts like “John
loves Mary” vs. “Mary loves John.” To properly represent the con-
cept “John loves Mary” one needs some way to bind the atomic
symbol “John” to the “subject” slot of the sentence and to bind
the atomic symbol “Mary” to the “object” slot. If a single set of
neurons is used to represent all persons then again one runs into
the same superposition and ambiguity problems.

Perhaps the simplest proposed solution to this binding prob-
lem is to posit two independent sets of neurons for each modality.

For example, instead of having just two sets of neurons one could
instead have four sets of neurons (X1 to represent the color of
object #1, Y1 to represent the shape of object #1, X2 to repre-
sent the color of object #2, Y2 to represent the shape of object
#2). Now if one wanted to represent the concept “red circle and
blue square” one would produce the joint activation X1; Y1; X2;
Y2= [10001; 1100000; 01100; 0000101]. This appears to resolve
all of the problems discussed above, and indeed it does since this is
exactly how a computer programmer would solve such a problem.
The programmer would simply assign a variable (X 1) for the color
of object #1 and a separate variable (X 2) for the color of object #2,
and two variables (Y 1, Y 2) for the objects’ shapes. At the electrical
implementation level such variables exist each as a separate 32-bit
memory register (each register composed of a string of 32 sepa-
rate single bit storage cells) in the computer’s CPU. The analogy
is that each neuron is like one of these single bit storage cells. Any
program using these four variables is written to understand that
variables X 1 and Y 1 are referring to the same object and variables
X 2 and Y 2 are also referring to a single object distinct from the
first object.

This solution, which I will refer to as the “anatomical bind-
ing hypothesis1,” may work for computers but it has long been
rejected by theoretical neuroscientists as a model for how the brain
works. In the section “Arguments Against the Anatomical Binding
Hypothesis” below I will carefully lay out the arguments that have
been made against this anatomical binding hypothesis showing
that they do indeed rule out simplistic neural implementations.
However the body of this paper will show that these arguments
against the brain’s use of anatomical binding can be overcome
with a particular type of neural implementation (the DPAAN)
and training regime.

Before making these arguments however I will need to first
briefly review the standard theory for how a single object is
encoded by the visual system and show how this theory can be
straightforwardly extended to encode multiple objects simulta-
neously using anatomical binding. This will set the stage for a
discussion of anatomical binding’s key problem as well as my
proposed solution to this problem.

THE STANDARD MODEL OF VISUAL OBJECT REPRESENTATION
Before we sketch out a model of the visual system which uses
anatomical binding to encode two objects we need to first have
a firm grasp on our current best model of how the visual sys-
tem is thought to encode a single object. In this standard theory,
neural fields like X1 and Y1 are activated by a“feature hierarchy”of
neurons whose receptive fields cover the entire visual field (Felle-
man and Van Essen, 1991; Kobatake and Tanaka, 1994). It is now

1The term“conjunctive coding”(Hummel et al., 2004) is sometimes used to describe
a neural representation which uses one set of neurons to represent the color of object
#1 and a separate set to represent the color of object #2. As such I could refer to
this as the “conjunctive coding hypothesis.” I avoid doing this however since the
concept of conjunctive coding has gained a number of additional assumptions over
the years for how such a neural representation is interpreted by the larger neural
system, assumptions which I will not be making here. Therefore I am instead using a
more generic nomenclature “anatomical binding” which simply implies that differ-
ent sets of neurons are used, in some way, to represent the same symbol (e.g., “red”)
in different contexts.

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

well known how to create such a visual feature hierarchy. Such
networks have a long history in visual neuroscience starting with
the Neocognitron model of Fukushima (1980) which was a com-
putational implementation and extrapolation of the simple and
complex visual cortex cell models proposed by Hubel and Wiesel.
Other feature hierarchy models include VisNet (Rolls and Stringer,
2006), HMAX (Riesenhuber and Poggio, 1999), SEEMORE (Mel,
1997), and Chorus of Fragments (Edelman and Intrator, 2000).
In fact, this neural formalism is so prevalent in visual neuro-
science, and so well supported by experimental and anatomical
data, that its key elements have been called “The Standard Model”
(Riesenhuber and Poggio, 2003) of visual cortex function.

Such feature hierarchy models of the visual system provide
a neural implementation-level explanation as to how the retinal
image of an object at an arbitrary position in the visual field can be
transformed into a set of translation invariant “symbols” describ-
ing the object. Given the extensive literature already in existence on
such feature hierarchy models, I will provide only a brief overview
of such operation here.

In a feature hierarchy model, the retinal image is first locally
processed by a set of simple feature detecting cells each of which
looks for a particular target visual feature like a contrast or color-
defined edge boundary at a particular orientation. Such cells are
analogous to the V1 simple cells found by Hubel and Wiesel. Col-
lections of such simple cells which look for the same target feature
but whose receptive field locations are translated slightly relative
to each other are then fed onto another type of cell – a complex
cell-one layer higher in the feature hierarchy. These complex cells
respond if any of their inputs are active, thus providing a positive
signal if the target feature is present anywhere within their larger
receptive field. As suggested first by Fukushima (1980) this pattern
of simple (S) cells and complex (C) cells is repeated across several
levels, wherein each new S-cell layer responds to more visually
complicated target features (e.g., sharp corners) and each new C-
cell layer contains cells whose receptive fields cover a larger fraction
of the visual field. In the limit there is a final C-cell layer whose
cells respond if their target feature is present anywhere within the
retinal image, and whose feature vocabulary is such that every
visual object which we can recognize will generate a distinct and
unique pattern of activation over this final C-cell layer (Serre et al.,
2005). Some cells within this final C-cell layer will respond only
to the shape characteristics of the viewed object, and if we group
those cells together they correspond precisely to the Y1 shape neu-
rons described above. Similarly, some cells within this final C-layer
will respond only to the color (and surface texture) characteris-
tics of the viewed object, and if we group those cells together they
correspond precisely to the X1 color neurons described above.
Anatomically separated cortical regions have been identified in
the primate brain whose responses roughly correspond to such
shape and color regions (Kandel and Wurtz, 2000).

Such a model breaks down if there is more than one object in
the visual field and if there are significant background features. The
ready solution is to include a spotlight-like visual attention mech-
anism into the model wherein the features of only one part of the
retinal image are allowed to drive higher levels of the feature hier-
archy. Many neural models of such an attention mechanism have
been described in the literature and there is extensive experimental

evidence that such an attentional mechanism is built into the
primate cortex’s visual feature hierarchy (e.g., Reynolds and Des-
imone, 1999). Such an attentional mechanism not only solves the
problem of how to ensure that the activation patterns in the final
X1 and Y1 neural fields provide clear shape and color symbols
(avoiding the superposition catastrophe of corruption by over-
lapping symbols), but it also ensures that X1 and Y1 are always
encoding the color and shape of the same visual object thus avoid-
ing illusory conjunctions (Treisman, 1999). Finally, the inclusion
of this attentional mechanism provides a straightforward way for
the brain to encode the retinal position of the attended object sep-
arately from the object’s identity. This is done by a third field of
neurons (let’s call it Z1) which encodes the retinal position of the
spotlight of attention itself. Thus the triplet of neural fields (X1, Y1,
and Z1) would encode the color, shape, and position respectively
of a single visual object.

EXTENDING THE STANDARD MODEL TO SIMULTANEOUSLY REPRESENT
TWO OBJECTS BY ANATOMICAL BINDING
The above “Standard Model” of the visual system is an oversimpli-
fication of the brain’s actual functioning but it conveys the general
consensus model which has been gleaned from hundreds of exper-
iments over the years (Riesenhuber and Poggio, 2003). For our
purposes here its main structure will be assumed to be correct.
It is important to understand that there is no “binding problem”
in the above description of how the visual system represents a
single object. This model offers a perfectly reasonable explana-
tion for how the color of an object is “bound” to its shape (e.g.,
Treisman, 1999), and for how an object can be recognized in a
translation invariant manner while still having its position infor-
mation “bound” to it. Since the attentional spotlight locks on to
only one object at a time, the triplet of neural fields (X1, Y1, and
Z1) are guaranteed to describe different aspects (color, shape, and
position) of the same object.

The true “binding problem” enters when one asks how
such a system could represent two (or more) visual objects
simultaneously – something which psychophysical experiments
have demonstrated humans readily achieve (e.g., Kawahara and
Yamada, 2006). Several different theories have been put forward
in the literature for how the Standard Model could be modified to
allow such simultaneous representation of two objects. (Hayworth
et al., 2011) reviews these different proposals in depth. For a variety
of reasons covered in that paper the most straightforward modifi-
cation seems to be to posit multiple spotlights of attention which
can be independently trained on the separate objects. Although
visual attention is usually described as a single “spotlight,” there
is extensive evidence that the human visual system in fact sup-
ports multiple simultaneous spotlights of attention (McMains and
Somers, 2004; Cavanagh and Alvarez, 2005; Kawahara andYamada,
2006;Yamada and Kawahara,2007; Hayworth,2009) and including
this known fact into the Standard Model picture seems a straight-
forward route to allowing the simultaneous encoding of multiple
objects2.

2It is important to understand that the DPAAN solution presented here does not
depend on the truth of this multiple spotlights hypothesis. This multiple spotlights

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

Figure 1 depicts the key features of such a system in which two
independent feature hierarchies (labeled FH1 and FH2) are each
associated with their own spotlight of attention which I will refer to
as spotlight #1 and #2 respectively. FH1’s final C-cell layer is com-
posed of the neural fields X1 and Y1 which encode the color and
shape respectively of the object highlighted by spotlight #1, and
FH2’s final C-cell layer is composed of the neural fields X2 and Y2

which encode the color and shape respectively of the object high-
lighted by spotlight #23. The role of the vocalization unit depicted
will be discussed later.

This particular model of the visual system, termed the Multi-
ple Slots Multiple Spotlights model, is explored in more detail in
Hayworth (2009) and some experimental evidence in its favor is
presented in Hayworth et al. (2011). This extension of the Standard
Model to handle the representing of two objects simultaneously is a
concrete example of the anatomical binding hypothesis described

extension of the Standard Model of the visual system is merely being used here as
a concrete and straightforward example of how the anatomical binding hypothesis
enters into a model capable of representing multiple objects simultaneously. The
DPAAN theory can actually answer some of the main arguments made against such
a multiple spotlight model by showing how the binding issues that it raises can be
solved. Hayworth (2009) and Hayworth et al. (2011) present experimental and sim-
ulation results supporting a Multiple Slots Multiple Spotlights model of the visual
system and discuss how the classic binding problem arises in such a model.
3The figure depicts FH1 and FH2 as being completely independent (i.e., as not shar-
ing any cells except for the sharing of the same retinal input). This is unlikely to be
the case in the real brain, but this is not important to the present discussion. What
is an important assumption of this model is the independence of the two spotlights
of attention and the independence of the final sets of neurons (X1; Y1 and X2; Y2)
which encode the properties of the objects they highlight.

FIGURE 1 | Model of visual perception consisting of two feature
hierarchies (boxes labeled FH1 and FH2) each with their own spotlight
of attention. The final output layer of FH1 consists of the neural fields X1

andY1 which encode the color and shape of the object within FH1’s
spotlight of attention in a translation invariant manner. Similarly, the final
output layer of FH2 consists of the neural fields X2 andY2 which encode the
color and shape of the object within FH2’s spotlight of attention. This model
of the visual system is a straightforward extension of the Standard Model
which uses multiple spotlights and anatomical binding to encode two
objects simultaneously.

above. Even though this model seems to be capable of solving
the task of representing two objects simultaneously most theo-
retical neuroscientists would immediately dismiss it (and similar
models using anatomical binding) on the grounds that it is not
biologically plausible. In the next section I carefully lay out the
arguments that have been made against this anatomical binding
hypothesis showing that they do indeed rule out simplistic neural
implementations.

ARGUMENTS AGAINST THE ANATOMICAL BINDING HYPOTHESIS
The central argument put forward against the anatomical binding
hypothesis is as follows: The solution seems to require that there
be a one-to-one correspondence between the neurons in X1 and
the neurons in X2 in precisely the same way there is a one-to-one
correspondence between each bit of two 32-bit computer registers.
A human-designed computer is literally wired up to ensure such
a one-to-one correspondence between the bits of each memory
register, and all the computations performed on a computer (e.g.,
comparing two registers, adding the contents of two registers and
transferring the sum to a third, etc.) are only possible because of
this one-to-one correspondence between bits. Since a biological
brain is wired up by developmental processes, it is not credible
to expect such a one-to-one correspondence between particular
neurons.

This argument is usually put in slightly different terms: If the
brain did represent the colors and shapes of two objects by using
separate sets of neurons (X1; Y1) and (X2; Y2), then the pattern
representing “red” on X1 would have nothing in common with
the pattern representing “red” on X2, thus thwarting intelligent
actions which require such understanding.

In the example model of the visual system presented in the
section above, the X1 neurons represent the last layer of the FH1
feature hierarchy whose neural connectivity was presumably pro-
duced through self-organized learning (e.g., Foldiak, 1991; Wallis
et al., 1993). Similarly the X2 neurons represent the last layer of
the FH2 hierarchy. Given the vagaries of development it is unlikely
that these two separate sets of neurons would even have the same
number of cells. There is certainly no chance that one would find a
one-to-one correspondence between individual cells in each area
such that for all colors corresponding cells would always have the
same activation. What this means is that if Xred

1 = [10001] then

Xred
2 could be just about any other pattern and there is no way to

line up the neurons between Xred
1 and Xred

2 and compare them.
What is taken for granted in a human-designed computer cannot
be taken for granted in the self-wired brain.

More importantly, if the brain did represent the colors of two
objects by using two separate sets of neurons then any neural asso-
ciations that were learned for one set would not “transfer” to the
other. For example, suppose such a system encoded that the object
highlighted by spotlight #1 (call this object #1) was colored red by
activating the pattern [10001] on X1 neurons, and suppose that
there is another set of neurons voc whose job is to deliver specific
motor commands to a vocalization unit (see Figure 1). Supervised
training (e.g., by mimicking a parent’s voice when viewing a red
object as object #1) could result in a set of synaptic connections
between X1 and voc that associate the X1 pattern for red with
the voc pattern needed to pronounce the word “red” out loud.

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

Similar training would create the synapses between X1 and voc
allowing the system to vocalize the word “blue” when X1 regis-
ters [01100]. The key question is this: “Would the training that
allows the system to pronounce the color of object #1 transfer
such that the system could also pronounce the color of the object
highlighted by spotlight #2?” The answer is no. Training would
modify synapses between X1 and voc only. Since, by hypothesis,
X2 neurons were not even active during this training (and since
the pattern for “red” on X2 is different than the pattern for “red”
on X1) there is no way that the appropriate synapses could have
been modified to create the proper associations between X2 and
voc. Neuroscientists believe that these types of learned associa-
tions (via modifications of synaptic connection between two sets
of neurons) are the basis of all computation in the brain. These
associations are the only thing that gives a pattern of activation
meaning to the system, and since associations learned for X1 do
not transfer to X2, the system has no way of understanding if X1

and X2 activation patterns are representing the same or different
colors.

A summary of the above argument is that using two inde-
pendent sets of neurons to represent two objects simultaneously
does not work because it violates“role-filler independence”(Hum-
mel et al., 2004; Hummel, 2011). There are two “roles” in this
case: the color of object #1 (represented by X1 neurons) and the
color of object #2 (highlighted by spotlight #2 and represented by
X2 neurons). We would like to fill either of these roles with the
symbol “red” and have its meaning remain constant across these
roles. However if we have built up meaning-embedded associa-
tions only with the X1 neurons then the symbol’s meaning will
not be constant across the two role slots.

Arguments like these have convinced many theoretical neuro-
scientists that the way the brain solves the binding problem cannot
be to simply use multiple independent sets of neurons to repre-
sent different objects (or sentence roles, etc.). Instead it is often
assumed that there must be only one set of neurons that repre-
sents each individual modality. Representation of multiple objects
then requires a form of time-sharing among the different objects.
This is the “binding by neural synchrony” hypothesis (Hummel
and Biederman, 1992; von der Malsburg, 1995). According to that
hypothesis, to represent “red circle and blue square” only one set
(X) of color cells would be used, and only one set (Y) of shape cells,
but these groups of cells would alternate back and forth between
representing “red circle” (X; Y= [10001; 1100000]) and repre-
senting“blue square”(X;Y= [01100; 0000101]). Much theoretical,
modeling, and experimental work has been devoted to exploring
this binding by neural synchrony hypothesis with mixed results
(Roskies, 1999; Shadlen and Movshon, 1999). What is certain,
however, is that it has proved much more difficult to develop theo-
ries for encoding, manipulating, and storing such“phase encoded”
activations than it has to develop theories of how to encode,
manipulate, and store “flat” activation patterns resembling the
vector strings of ones and zeros above. For example, networks
of simple perceptrons offer a straight forward explanation for the
encoding of such flat activation vectors, and Hebbian-style weight
modification offers an explanation for how such flat activation
vectors could be stored as stable attractors in associative networks
allowing for simple models of content addressable recall.

In this paper I will show that the binding problem can be solved
in a biologically plausible manner using only flat neural vector rep-
resentations, with no need to assume precise temporal synchrony
between sets of neurons. As such, the wealth of models for how
flat activation vectors can be encoded and stored in memory will
be immediately applicable.

OUTLINE OF THE DPAAN SOLUTION
Using the visual model depicted in Figure 1 as a concrete example,
let us crystallize the above arguments against anatomical binding
and derive requirements that any such scheme must meet to avoid
these pitfalls. To review, the box FH1 represents a hierarchy of
feature extracting cells which respond to features across the entire
visual field but whose responses are such that they only respond to
the object locked onto by attentional spotlight #1. FH1’s final layer
of cells consists of the neural fields X1 and Y1 which represent the
extracted color and shape respectively of the object (#1) locked
onto by spotlight #1. The box FH2 represents a separate feature
hierarchy whose final layer consists of X2 and Y2 representing the
extracted color and shape of the object (#2) locked onto by spot-
light #2. Lastly there is a trainable association network connecting
the neural field X1 with the field voc, and we assume that this net-
work has been trained to correctly vocalize the color of the object
highlighted by spotlight #1 which is represented on the X1 neu-
rons. A separate association network connecting the neural field
X2 with voc is assumed to have not been so trained.

Now the two central arguments against this anatomical binding
scheme can be put as follows:

1. How could the larger neural system using this anatomical bind-
ing scheme determine whether object #1 and object #2 had the
same or different colors (or shapes, etc.)?

2. How could the system vocalize the color of the object repre-
sented by X2 by making use of the associations learned on a
different set of neurons (e.g., the X1-to-voc connections)?

These will be the basic requirements we must satisfy. I will
later show how satisfying these requirements can lead to a general
purpose system that has all the syntactic processing capabilities
assumed by the most advanced cognitive models.

First we should realize that if the brain was designed like a
computer the answers to these questions would be very straight-
forward. A human designer would ensure that the code for the
colors used by X1, X2, and even voc would all be identical. Thus
determining if object #1 and object #2 had the same or different
colors would simply require comparing corresponding neurons in
X1 and X2; and interfacing with the Vocalization Unit’s abilities
would merely involve transferring the contents of either X1 or X2

directly to voc. In such a human-designed system, FH1, FH2, and
the Vocalization Unit would still have to be trained to perform
their individual tasks but such training would be localized within
these individual modules.

Because the brain has no top-town designer we cannot assume
that FH1, FH2, and the Vocalization Unit use the same pattern
code for corresponding color symbols. Because of this (and the
roll-filler independence argument) “translations” between codes
must be performed via association networks (like the X1-to-voc

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

connections). When only two modules (like FH1 and the Vocal-
ization Unit) must communicate, such translation (via a trained
association network) presents no problems; in fact, such trans-
lation is traditionally simply thought of as part of the training
needed within theVocalization Unit’s network (or FH1’s). One rec-
ognizes a problem only when many modules must communicate
with each other like in the visual binding problem above.

Invoking a “world languages” analogy, we can think of X1 (i.e.,
FH1) as speaking a different “language” of neural patterns then
voc (i.e., the Vocalization Unit). In this analogy, the purpose of
the trainable neural connections between X1 and voc is to trans-
late one language into the other. Both the perceptual field X1 and
the motor field voc have internal symbols for the concept “red”
but X1 speaks, by analogy, Spanish (i.e., “rojo”) and voc speaks
French (i.e., “rouge”)4. Since they do not speak the same language
natively one must be trained to understand the other’s language.
Training the X1-to-voc synaptic connections can be analogized as
voc learning to translate X1’s language (i.e., Spanish) into its own
(i.e., French). In this “world languages” analogy X2 (i.e., FH2) also
has the semantic concept “red” but speaks yet a third language (say
German in which “red” is pronounced “rot”). To allow the Vocal-
ization Unit to vocalize what color is represented by the X2 neurons
the X2-to-voc connections must be trained as well so that voc can
translate X2’s specific neural code into its own. In operation, when
the spotlights are allowed to lock onto separate objects, the larger
system would have to be able to selective turn on or off blocks of
connections, for example turning off the X1-to-voc connections
and on the X2-to-voc connections when the goal is to vocalize the
color of the object currently being viewed by spotlight #2.

Such a system appears to solve the immediate task, but runs the
risk of violating “role-filler independence” (Hummel et al., 2004;
Hummel, 2011) if ever the training of direct connections to voc
creates a situation where voc can understand a color represented
by X1 but not X2 or vice versa. This realization brings us to the
first part of the DPAAN solution – in order to avoid violations of
role-filler independence we should make sure that the training is
synchronized such that whenever voc learns the translation for a
concept used by X1, voc should simultaneously learn the trans-
lation for the same concept used by X2. Given the Multiple Slots
Multiple Spotlights visual model depicted in Figure 1 the solution
to this is relatively simple – only perform such training of direct
connections to voc when spotlight #1 and spotlight #2 are locked
on the same object. This presents a preliminary answer to question
#2 above – there is no need to “transfer” the associations learned
on the X1-to-voc connections to the X2-to-voc connections if
these associations are always kept synchronized by simultaneous
training while looking at the same object.

This “solution” however is not very scalable in that it puts a
tremendous burden on the training of the many connections to voc
which must not only be able to vocalize the colors represented in
X1 and X2 but must also vocalize the shapes represented in Y1 and

4It is important to understand that I am using human languages here simply as an
analogy for the different neural codes used by X1, X2, and voc to communicate
with each other inside the brain. The motor field voc can also be thought of as
understanding the language it uses to vocalize to the external world but this fact has
nothing to do with the analogy presented here.

Y2 which (in the “world languages” analogy) should themselves
be considered as speaking yet different languages (e.g., Chinese
and Japanese). Further, in any realistic model of the brain, like the
one proposed in the ACT-R theory described below, there exists
many dozens of different perceptual, motor, and cognitive mod-
ules many of which must communicate symbols with each other
despite the fact that each speaks a different neural language. This
solution would suggest that each of these modules must become
a “language savant” fluent in the dozens of distinct dialects of the
other modules it must communicate with. Further, the training of
the connections between all of the modules would have to be kept
synchronized for each new vocabulary word or else there would
be violations of role-filler independence.

The DPAAN solution presented in this paper overcomes these
difficulties by positing a central DPAAN which serves as a “uni-
versal translator” between all the various modules of the brain.
The DPAAN network is a fully connected autoassociative mem-
ory having a set of stable attractor states. Each of these stable
attractor states acts as a symbol in a “universal language,” and
all the other modules’ languages are translated into this univer-
sal language facilitating between-module communications. Each
module is connected to a specific part of the global DPAAN via
the module’s own trainable association network which serves the
task of translating the module’s specific language to the universal
language of the global DPAAN or vice versa.

When a new symbol is to needed to be learned (e.g., when a
mother holds a red object in front of a baby for the first time and
says“red”) an unused stable state in the DPAAN is activated and all
the modules train their association networks based on that global
attractor state. This training associates each individual module’s
neural pattern for“red”with a specific piece of the global DPAAN’s
stable attractor state which can be thought of as the universal lan-
guage’s symbol for “red.” This is the key conceptual step of the
DPAAN formulation where a symbol is no longer thought of as
represented by a unique pattern of activation but is instead thought
of as a piece of a global stable attractor state. We will see that this
is the key to achieving roll-filler independence in an anatomical
binding framework.

In operation (as opposed to during training) the DPAAN must
serve as a “global workspace” and “global switchboard” between
modules allowing them to communicate dynamically and without
crosstalk. The DPAAN achieves this by being “dynamically parti-
tionable”. During training all of the DPAAN’s synapses are turned
on (i.e., set to their autoassociative memory weights) ensuring that
there is one global stable state for the synchronized training of
each module’s association network. But during operation, blocks
of the DPAAN’s synapses are turned off thus effectively divid-
ing the DPAAN into many independent autoassociative memory
buffers – one for each of the modules. A switchboard-like con-
nection between two modules (say A and B) is created when
the synapses projecting from buffer A of the DPAAN to buffer
B are turned back on. This turning on of a particular block of the
DPAAN’s synapses reconstitutes part of the global autoassociative
memory network driving buffer B into part of the same global
attractor state that buffer A is currently in. We will, see below that
this serves the task of simultaneously transferring and translat-
ing the symbol from module A to module B. Finally, the semantic

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

contents of different modules’buffers can be compared for equality
by calculating something like the Hopfield energy function (Hop-
field, 1982) over the synapses connecting the separate partitions of
the DPAAN – in effect asking if the patterns of activation in the two
buffers are actually different pieces of the same global stable state.

In the section “Example #1: Use of a DPAAN to Solve the
Perceptual Binding Problem” below we will see how these two
properties (the ability to transfer semantic contents between the
modules’ buffers and the ability compare the semantic contents
of two buffers for equality) are all that is needed to address the
two questions above in relation to the visual binding model. In
later sections we will, see how such a central DPAAN, acting as
a universal translator5 and switchboard between brain modules,
represents a biologically plausible hypothesis for how the brain
performs complex syntactic operations.

RESULTS
FORMAL DEFINITION OF A DYNAMICALLY PARTITIONABLE
AUTOASSOCIATIVE NETWORK
A DPAAN consists of K sets of neurons called partitions (or slots)
where in general each partition can contain a different number of
neurons N 1, N 2, . . ., NK. We will designate the activation of any
particular partition as the vector xk, where k ∈ 1, 2, . . ., K. The
entire DPANN network therefore contains N = ΣK

k=1Nk neurons
whose total activation vector will be denoted by the concatenated
vector x= [x1; x2; . . .; xK] and whose individual neural unit acti-
vations will be denoted by xi where i ∈ 1, 2, . . ., N. The DPAAN is a
fully connected autoassociative network with weights wij where wij

is the weight to postsynaptic unit i from presynaptic unit j. These
weights are trained by learning rules like Hopfield, Hebbian, etc.,
to contain several stable attractor states.

Let the network be globally trained with a total of L patterns
(i.e., L stable attractors) designated Pl where l ∈ 1, 2, . . ., L. That is,
when the network falls into stable state Pl then xi = pl

i for all i ∈ 1,
2, . . ., N. These L patterns form the basic symbol vocabulary of
the DPANN and each pattern is meant to have a unique semantic
meaning, for example P1 might mean “red” to the system, and P2

might mean “blue.” More crucially, if a particular slot xk, has an
activation that coincides with the activation that these same neu-
rons would have if the total system were in the stable attractor Pl

(call this activation on the kth slot Pl
k) then we say that that partic-

ular slot is representing the symbol l irrespective of what activation
the rest of the network has. That is, if pattern P2 means “blue,” and
the third slot has activation x3 = P2

3, then we will claim that slot 3
is representing the symbol “blue.” Also, if the fifth slot has activa-
tion x5 = P2

5 then we will claim that slot 5 is also representing the
symbol “blue” even though the vectors P2

3 and P2
5 are not math-

ematically equal nor even guaranteed to have the same number

5A reviewer has pointed out that the connections within this central DPAAN in
effect contain the multiple “language savants” described earlier. However, unlike the
separate language savants, the DPAAN, by being globally pre-trained as an autoas-
sociative memory, ensures that all translations are perfectly synchronized thereby
ensuring role-filler independence across all slots of the DPAAN. A connected mod-
ule thus needs only train its local association network to the DPAAN’s one universal
language. These concepts will become clearer when demonstrated in the example
perceptual network of the section entitled “Example #1: Use of a DPAAN to Solve
the Perceptual Binding Problem.”

of elements. This claim of semantic compatibility will be justified
below.

The DPAAN is “dynamically partitionable” by setting to zero
different subsets of weights while keeping all other synapses at the
same values they were trained at. For example, if we set to zero all
synapses that connect two neurons that are in different partitions
but leave constant all synapses that connect two neurons in the
same partition then we effectively split the original autoassocia-
tive network into K subnetworks. The key thing to note is that each
of these subnetworks is still autoassociative and (given sufficient
size) each still contains the L stable states trained within the orig-
inal network. What this means is that a DPAAN partitioned into
K separate slots can act somewhat like a set of memory buffers in
a computer, each slot can be put into any of its stable states and
remain there.

To truly make the slots in a DPAAN behave like the buffers
in a computer we would like to be able to perform two crucial
operations on them. These operations are:

1. Slot-to-slot transfer
2. Slot-to-slot equality detection

As discussed previously, these operations are trivial in a com-
puter because it is built to maintain a one-to-one correspondence
between the bits in each and every buffer. For the DPAAN the def-
inition of transfer and equality will be slightly different. We will
say that the symbol in slot 1 has been successfully transferred to
slot 2 if before the transfer slot 1 contained the activation pattern
x1 = P l

1, and after the transfer slot 2 now contains the pattern
x2 = P l

2. More generally, we will say that the DPAAN as a whole
provides semantic consistency for all slot-to-slot transfers if and
only if for all k, k ′, and l, if xk = P l

k is the activation of slot k, then

a transfer operation from slot k to slot k ′ will yield: xk ′ = P l
k ′ .

In words, a transfer from slot k to slot k ′ is successful if after the
transfer the k ′ partition is now in a part of the same global attractor
state that the k partition was in.

The DPAAN is built to ensure such semantic consistency for
all slot-to-slot transfers because it is trained as a single autoasso-
ciative network. To transfer the contents from slot 1 to slot 2 one
simply blanks the contents of slot 2 and then turns on any synapses
projecting from slot 1 neurons to slot 2 neurons (but leaves zero
all synapses projecting from slot 2 to slot 1). This turning on of
synapses between the two slots reconstitutes part of the original
autoassociative network. Turning on only the synapses projecting
from slot 1 to slot 2 is equivalent to clamping the contents of slot
1 in its current state while letting slot 2’s neurons evolve toward
a combined local minimum. The result is that the combined slots
evolve toward the closest originally stored pattern which will be a
“completion” of the pattern stored in slot 1. All slot-to-slot trans-
fers take this form. To transfer the contents of slot k to slot k ′ one
simply blanks the current contents of slot k ′ and then turns on
the synapses projecting from the neurons of slot k to the neurons
of slot k ′. After the system evolves to a combined stable state, the
between slot synapses are once again turned off but the within-slot
synapses remain on, thus storing the transferred pattern.

Slot-to-slot equality detection requires that there be a set of
neurons somewhere outside the core DPAAN which signal if the

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

contents of slot k is semantically equal to the contents of slot k ′.
That is, there should be a set of neurons eqkk

′ (one for each unique
pair of slots) which have the following activation function:

Let xk = P l
k and xk ′ = P l ′

k ′ then eqkk ′ =

{
1 if l = l ′

0 if l 6= l ′

}
There are several ways such neurons could be trained during

the initial training of the network, but the simplest is to create
neurons that are in some way sensitive to the autoassociative net-
work’s energy function calculated over the set of weights between
slot k and slot k ′. For example, if the DPAAN network was trained
with the Hopfield rule then the Hopfield energy function for the
entire network would be:

E = −
1

2

∑
i

∑
j 6=i

wij xixj

This energy function6 is guaranteed to be low for the trained

patterns Pl where l ∈ 1, 2, . . ., L. Now we can define a new energy
function that is computed only over the set of synapses projecting
from slot k to slot k ′ and vice versa (the expression could of course
be simplified since a Hopfield network has symmetric synapses):

Ekk ′ = −
∑

i ∈ slot k

 ∑
j ∈ slot k ′

wij xixj

− ∑
j ∈ slot k

(∑
i ∈ slot k ′

wij xixj

)

This expression is guaranteed to be low precisely in those cases
where slot k and slot k ′ have activations that are part of the same
original trained pattern. Thus thresholding this function can create
the set of equality detection neurons we are looking for.

eqkk ′ =

{
1 if Ekk ′ < Treshold

0 otherwise

}
It remains to be explored how such neurons could be trained

in a biologically plausible manner.

EXAMPLE #1: USE OF A DPAAN TO SOLVE THE PERCEPTUAL BINDING
PROBLEM
I will now describe a simple model that demonstrates the DPAAN’s
ability to overcome the previous objections put forward against the
anatomical binding hypothesis. Recall the two central arguments
that were put forward with reference to Figure 1:

1. How could the larger neural system determine whether object
#1 and object #2 had the same or different colors (or shapes,
etc.)?

2. How could the system vocalize the color of the object repre-
sented by one set of neurons by making use of the associations
learned on a different set of neurons?

6Note that this energy function is written in a form which assumes that neural acti-
vations take on values of +1 and−1 as opposed to the+1 and 0 values described in
the text above. This is to match what was done in the simulations described in later
sections.

To see how the DPAAN addresses both of these questions we
will redraw Figure 1 to include a DPAAN with five partitions cor-
responding to the five original sets of neurons X1, X2, Y1, Y2, and
voc (see Figure 2), but to maintain consistency with the DPAAN’s
formal definition above we will re-label the sets of neurons as X1

. . . X5; that is, X1 and X2 will serve to represent the color and shape
respectively of the object highlighted by attentional spotlight #1.
Neural sets X3 and X4 will serve to represent the color and shape
of the object highlighted by attentional spotlight #2, and X5 will be
the voc neurons which must learn how to vocalize various object
attributes.

Assume that the DPAAN’s weights are already pre-trained with
a number of stable patterns P1, P2, etc. One can think of these as
ready-made symbols which have not acquired any semantic mean-
ing yet because they have not acquired any associations with the
outside world (i.e., they have not been “grounded”). The system
using the DPAAN will learn to associate different object proper-
ties with these patterns in the following way: During the training
of the system for colors, a red circle is presented and the system
locks both spotlights onto this single object. As we will, see, it is
crucially important that during all training the system locks both
spotlights onto a single object. FH1 and FH2 process the object
and produce neural outputs (X̃ 1, X̃ 2, X̃ 3, X̃ 4) representing the
color and shape of the object. Because this is a new color, the system
chooses an unused stable pattern in the DPAAN (say P1) and locks
the network into this state. This pattern P1 will eventually come
to mean “red” to the system. Next the instructor locks a pattern
of activation into the vocalization unit’s neurons (X̃ 5) that will
result in the correct vocalization of the word “red.” Now the asso-
ciation network AN1 (connecting X̃ 1 to X1) and the association
network AN3 (connecting X̃ 3 to X3) and the association network
AN5 (connecting X5 to X̃ 5) are trained. This training of associa-
tion networks AN1 and AN3 will allow any future observation of
a red object (either by FH1 or by FH2) to be correctly associated
with the pattern P1. Also, this training of association network AN5
will allow the vocalization unit to correctly pronounce the word
“red” whenever the pattern P1 is held in the DPAAN. Because the
system is learning a color, the association networks for shape (i.e.,
AN2 and AN4) are left alone. This training procedure for the color
“red” is depicted in Figure 3.

The same training procedure is repeated with different colors.
For example, a blue object is presented and both spotlights lock
onto it producing neural representations for blue on X̃ 1 and X̃ 3,
and the instructor puts a pattern on the vocalization unit’s neu-
rons (X̃ 5) that will result in the correct vocalization of the word
“blue.” A new unused pattern (say P2) is locked into the DPAAN
and the appropriate association networks (AN1, AN3, and AN5)
are again trained. The system now has learned the symbol for
“blue.” The process is repeated for all other basic level symbols
(e.g., “square” by training association networks AN2, AN4, and
AN5 with the pattern P3 locked into the DPAAN, and “circle”
by training the association networks AN2, AN4, and AN5 with
the pattern P4 locked into the DPAAN). At the end of these four
training steps the network will have learned the following DPAAN
symbol associations: P1

=“RED,” P2
=“BLUE,” P3

=“SQUARE,”
P4
=“CIRCLE.” From here on we will refer to these four DPAAN

stable patterns as PRED, PBLUE, PSQUARE, and PCIRCLE.

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 2 | Modification of Figure 1’s vision model to incorporate a
DPAAN network. FH1’s color and shape output fields have been
relabeled as X̃ 1 and X̃ 2. Specific patterns of activity on these neural
fields are associated with the corresponding DPAAN slots X1 and X2 via
trainable association networks AN1 and AN2. Similarly, FH2’s color and

shape fields X̃ 3 and X̃ 4 are associated with the corresponding DPAAN
slots X3 and X4 via trainable association networks AN3 and AN4. Neural
field X̃ 5 drives a vocalization unit to produce audible responses. This unit
is itself driven by the contents of DPAAN slot X5 via trainable association
network AN5.

FIGURE 3 | System learning the symbol for red. Lightning bolts designate
which association networks (AN1, AN3, and AN5) are being trained during this

procedure. Note that the equality detection neurons are all on (yellow) since
the pattern stored across all partitions is a single stable state.

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

During operation the DPAAN’s synaptic weights are normally
set such that each partition (slot) acts as an independent autoas-
sociative network, and spotlight #1 and #2 are free to lock onto
different objects. Let’s say that the system locks spotlight #1 onto a
red circle and it locks spotlight #2 onto a red square. This situation
is depicted in Figure 4.

In this situation the association learned by AN1 will ensure that
slot X1’s activation is set to PRED

1 . That is, slot X1’s neurons will
fall into the activity pattern that is the subset of the PRED pattern
that covers the X1 neurons. The other slots driven by FH1 and FH2
will similarly fall into their appropriate associated patterns, notice
however that because the DPAAN weights between slots have been
set to zero there is no interference from slot-to-slot, they are each
free to fall into whatever is the closest associated pattern. In this
example, slots X1 and X3 happen to be set to different subsets
of the same original global stable state, namely PRED. This means
that the energy function calculated over the synapses between these
sets of neurons will be low, and thus the equality detection neuron
whose output is based on this energy calculation (Eq1,3) will fire
(depicted in the figure as a yellow filled circle). No other equality
detection neurons will fire in this example (depicted in the figure
as black filled circles).

This example provides an answer to our first question: “How
could the larger neural system using this anatomical binding
scheme determine whether object #1 and object #2 had the same
or different colors (or shapes, etc.)?” One can, see that the equality
detection neurons are doing just that, and will generalize cor-
rectly over all learned patterns. In the above example Eq1,3 will fire
signaling to the system that the two objects have the same color,
and Eq2,4 will not fire signaling that the two objects have different
shapes.

What about our second question:“How could the system vocal-
ize the color of the object represented by one set of neurons by

making use of the associations learned on a different set of neu-
rons?” In the above example the ability to vocalize was trained
into association network AN5 connected to slot X5. To vocal-
ize a particular perceptual attribute the system must transfer the
symbol from one of the perceptual slots (X1, X2, X3, X4) to this
motor vocalization slot (X5). Recall that such transfers are triv-
ial to perform between computer buffers which are built to have a
one-to-one correspondence between bits, but they have often been
assumed impossible to perform in a biologically wired brain. The
DPAAN handles such transfers in a novel way; instead of transfer-
ring the exact firing pattern from one set of neurons to another it
instead reestablishes (by un-zeroing blocks of synapses) the part of
the original autoassociative network that connects these two slots.
Let’s say we wanted the network to vocalize the shape of the object
in spotlight #1. The symbol for this shape is stored in slot X2 as
PCIRCLE

2 . To perform this transfer the contents of the target slot
(X5) are “blanked” and then the block of synapses that connects
the neurons in slot X2 with the neurons in slot X5 is momentarily
un-zeroed. This is depicted in Figure 5 below.

The consequence is that the neurons in slot X5 are driven
toward the stable state dictated by the pattern in slot X2. The result
being that slot X5 will be driven toward completion of the pattern
stored in X2(PCIRCLE

2)and thus will end up in a state of activa-
tion corresponding to pattern X5 = PCIRCLE

5 . This is precisely the
pattern that association network AN5 was trained on to gener-
ate the vocalization of the word “circle.” Such directed transfers
from any one of the perceptual slots (X1, X2, X3, X4) to the motor
vocalization slot will allow the system to vocalize any particular
perceptual attribute.

Simulation results
A simulation was written to demonstrate the DPAAN’s key
new features of slot-to-slot equality detection and slot-to-slot

FIGURE 4 | System representing a visual scene containing a red circle
and a red square. Notice that all between slot DPAAN weights have been
set to zero so that they can store symbols independently. Also notice that

equality detection neuron Eq1,3 is active signaling that the contents of
DPAAN slots X1 and X3 are semantically equal (both signaling the symbol
“red”).

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 5 | Diagram showing how the DPAAN’s dynamic partitions are
used to “transfer” the semantic contents of slot X2 to slot X5 (by
momentarily turning on the synapses connecting slot X2 to slot X5). This

allows the system to vocalize the shape of the object highlighted by spotlight
#1. Similar transfers allow for any other perceptual attribute of either object to
be vocalized.

transfer. Complete Matlab simulation files are provided in the
supplementary online material.

The program first defines a DPAAN comprising five slots con-
taining 100 neurons each. The DPAAN’s slots are meant to cor-
respond to the five slots depicted in Figure 2. Next the program
defines the symbol vocabulary of the DPAAN by first creating ran-
dom neural activation vectors corresponding to the symbols “red,”
“blue,” “square,” “circle.” These random neural activation vectors
are used to generate the DPANN weight matrix via the Hopfield
learning rule (Anastasio, 2010), thus creating a stable attractor for
each symbol.

Initial activation of the DPAAN is set to reflect Figure 4,
representing the state the network would achieve after percep-
tually processing a scene containing a red square and a red
circle. (The operation of the feature hierarchies FH1 and FH2
and association networks AN1–4 needed to achieve this ini-
tial state were not incorporated into this simulation since other
simulations have been published showing how this can be per-
formed, e.g., Serre et al., 2005; Hayworth, 2009). Initial acti-
vation of slot X5 neurons is set to zero. The weight matrix
of the DPAAN is masked leaving all synapses which connect
two neurons in the same slot to their Hopfield trained value,
and setting all synapses connecting neurons in separate slots to
zero except for those synapses which project from slot X1 neu-
rons to slot X5 neurons. This masking of the DPAAN’s weight
matrix directs the DPAAN to retain the current contents of
slots X1 through X4, and to transfer the contents of slot X1 to
slot X5.

Figure 6 shows a plot of the masked DPAAN weight matrix, a
time trace of the DPAAN neural activation vector, and a time trace
of the equality detection neurons’ activations throughout the sim-
ulation. At start of simulation the part of the DPANN activation
vector corresponding to slot X5 (neurons 401–500) shows zero
activation, but this changes over the course of the simulation due
to the influence of synapses projecting from X 1. The semantic con-
tents of X1 are being transferred to X5 via the influence of these
non-masked synapses projecting from X1 to X5. The activation
patterns of slots X1, X2, X3, and X4 remain constant throughout
the simulation due to the fact that the initial state of the network
corresponded to stable states of these four subnetworks. Only Eq1,3

(the equality detection neuron which compares the contents of X1

to X3) is active at the beginning of the simulation. The Eq1,3 neu-
ron is signaling that the semantic contents of slot X1 and slot X3

are the same – namely they both contain the symbol “red.” Recall
that the activation state of an equality detection neuron is based
on the Hopfield energy function calculated over the synapses con-
necting the two slots. During the course of the simulation Eq1,5

and Eq3,5 also become active reflecting that the symbol “red” has
been successfully transferred to X5. At the end of the simulation
the equality detection network correctly reflects that slots X1, X3,
and X5 all contain the same symbol.

EXAMPLE #2: MODELING SYNTAX-SENSITIVE RULE-BASED DECISIONS
USING A DPAAN
As described in the introduction, cognitive modeling has tradi-
tionally assumed not only that syntax can be represented but that

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 6 | Plot of simulation results showing the masked DPAAN
weight matrix, a time trace of the DPAAN neural activation vector, and a

time trace of the equality detection neurons’ activations throughout the
simulation. (White= active neuron, black= inactive neuron).

it can be recognized and manipulated as well. A classic example is
the following:

John loves Mary. Mary loves Sam. John is jealous of who?
A system that understands the rules of jealousy would be able

to correctly replace the “who” with “Sam.” Importantly, this sys-
tem must generalize this rule only where appropriate allowing it
to apply to all people. Below is a characterization of the jealously
rule in a format using variables:

If (X1 loves X2) and (X3 loves X4) and (X5 is jealous of X6) and
(X1=X5) and (X2=X3) and (X1 6=X4)& (X6=“who”)
Then (X4→X6)

In the above example the variables would be initialized
as follows: X1=“John,” X2=“Mary,” X3=“Mary,” X4=“Sam,”
X5=“John,” X6=“who.”This satisfies the if-clause leading to exe-
cution of the then-clause, namely the semantic contents of variable
X4 will be transferred to X6. This transfer answers the question,
signaling that John is in fact jealous of Sam.

This type of variablized and equality-conditioned rule is the
bread-and-butter of classical AI systems but it has been notori-
ously difficult to train neural systems to implement such rules
precisely because of the neural binding problem. In contrast, the
DPAAN framework has been designed specifically to make such
rule-based operations possible.

Figure 7 shows a DPAAN with a set of transfer control neurons
(T1→ 2, T1→ 3, etc.) which are used to turn on or off blocks of
synapses in the DPAAN (these neurons thus control the dynamic
partitioning of the network). Figure 7 shows a control network

receiving inputs from all of the DPAAN slots and from its equal-
ity detection neurons. This control network sends outputs to
the transfer control neurons and can itself overwrite any of the
DPAAN slots. This control network looks complicated but it is
actually only a pattern recognition network – i.e., it maps one
neural pattern to another. If the control network recognizes a
particular pattern on the DPAAN slots and the equality detec-
tion neurons then it will output its matched stored pattern to
the transfer control neurons and will possibly overwrite some of
the DPAAN slots. This control network is thus able to orches-
trate transfers between slots in the DPAAN, and this orchestration
is contingent on the equality (or non-equality) between DPAAN
slots. This is precisely what is needed to implement rule-based
decisions like the Jealousy rule above.

To see how this can solve the Jealousy problem, first assume that
the system has already been trained to have several stable states P1,
P2, etc., and that these have been associated with individual names
of people (perhaps through a perceptual association network like
the ones in the previous example). Then we can refer to these sta-
ble states as PJohn, PMary, PSam, PWho, etc. The control network
for implementing the single Jealously rule will simply check that
neurons Eq1,5 and Eq2,3 are firing, and that neuron Eq1,4 is not
firing, and that the pattern in slot X6 = PWho

6 . If this pattern is
seen then the control network should output a pattern that sim-
ply turns on the transfer control neuron T4→ 6. Figure 8A shows
the pattern recognition part of this cycle, and Figure 8B shows
the activity after the pattern is recognized. The result is that the
semantic contents of slot 4 (“Sam”) is transferred to slot 6, thus
successfully applying the Jealousy rule.

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 7 | Dynamically Partitionable AutoAssociative Network and control network for implementing syntax-sensitive rule application.

This network will correctly apply the rule no matter what sym-
bol names are in the slots, and it will not apply the rule in situations
in which the syntax is inappropriate. For example, if John loves
Mary and Mary loves John then John is not jealous at all. The
network understands this because it tests for Eq1,4= 0. Also, any
number of rules could be stored in the control network simulta-
neously. Whichever rule matches the DPAAN’s current state will
be the rule that is applied.

SIMULATION RESULTS
A simulation was written to demonstrate how a DPAAN attached
to a control network could be used to implement the Jealously
rule. Matlab simulation files are provided in the supplementary
online material.

The simulation program first defines a DPAAN comprising six
slots containing 100 neurons each. These are meant to correspond
to the six slots depicted in Figure 8 above. A symbol vocabu-
lary is created for the DPAAN by creating a set of random neural
activation vectors, one for each of the symbols “John,” “Mary,”
“Sam,” “Leela,” “Fry,” “Zap,” “Kif,” “Amy,” and “who.” These are

used to generate the weight matrix (via the Hopfield rule) for the
DPANN, thus creating a stable attractor state for each symbol.

The if-clause of any rule simply requires testing for a particular
pattern of activity across the equality detection neurons and across
the DPAAN slots. The Jealously rule in particular requires testing if
the pattern for “who” is present in X6. In the simulation a network
of “symbol detection neurons” was created based on simple per-
ceptron matching. One of these symbol detection neurons signals
if the activation pattern representing the symbol “who” is present
in slot X6. We will call this particular symbol detection neuron
SD6, “who”. The test for the Jealously rule activation then amounts
to testing if neurons Eq1,5 and Eq2,3 are firing, that neuron Eq1,4

is not firing, and that SD6, “who” is firing. If this condition is met
then the transfer control neuron T4→ 6 is activated turning on
the synapses projecting from X4 to X6. This logic is implemented
in the simulation to control the DPAAN, ensuring that the block
of synapses projecting from X4 to X6 is only activated if all the
conditions of the Jealously rule are satisfied. Figure 9 shows the
results of one simulation in which all of the conditions are met.
The program in the supplementary material includes several other
test cases verifying that the rule is activated only when appropriate.

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 8 | Dynamically Partitionable autoassociative network and control network solving the Jealously problem. (A) Pattern recognition part of the
cycle, (B) rule application part of the cycle.

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 14

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 9 | Simulation results for the Jealously problem example. (White= active neuron, black= inactive neuron).

REVIEW OF RULE-BASED OPERATION USING A DPAAN
Let’s take a moment to review how the DPAAN was used to imple-
ment this rule-based functionality in order to make clear that
any set of similar rules can be implemented in a single DPAAN
in this same manner. First a DPAAN is created having K slots.
The DPAAN’s synaptic matrix is then trained to contain L stable
attractor states, each state corresponding to one of the L symbols
comprising the DPAAN’s vocabulary. A set of equality detection
neurons is then created, one neuron for each unique pair of slots
[for a total of K (K − 1)/2 neurons]. Then a set of symbol detec-
tion neurons (simple perceptrons) is created, one neuron for each
slot+ symbol combination that the rules need to explicitly test for.
Finally a set of transfer control neurons is created, one for each
block of synapses projecting between slots [a total of K (K − 1)
transfer control neurons].

Given this architecture, any set of if-then rules of the type
described above can be implemented. Each rule is implemented
as a single linear summing, thresholded neuron receiving synapses
from specific equality detection neurons and from specific symbol
detection neurons, and sending its activation to specific transfer
control neurons. Figure 10 shows how this works, depicting a
DPAAN control network consisting of three neurons designed to
implement the three rules written algebraically in the figure.

In operation, the DPAAN’s slots are initialized with activation
patterns corresponding to any of the learned symbols of the sys-
tem. In a feed forward manner, this DPAAN activation drives the
equality detection neurons and symbol detection neurons, and
these in turn drive the rule neurons. If any of the rule neurons
exceeds its threshold then it will in turn activate one (or more)
of the transfer control neurons which will turn on a whole block
of synaptic connections in the DPAAN. At this point, simulation

of the DPAAN’s dynamics will cause the semantic contents of one
slot to be transferred to another. This full operation cycle illustrates
how such DPAAN-based rule functionality can be sensitive to syn-
tax (through the equality detection neurons which are blind to the
actual contents of the slots being compared) and can elicit syntax-
based changes (by directing transfer between slots again blind to
the actual content of the slot whose contents is transferred).

EXAMPLE #3: USING A DPAAN AS THE CORE OF A NEURAL
IMPLEMENTATION OF ACT-R
I assert that the DPAAN operation described above is a completely
general solution to the classic neural binding problem. One way
to demonstrate this is to show how the core part of the cognitive
architecture ACT-R could be implemented by a DPAAN.

ACT-R is the most advanced and experimentally well sup-
ported cognitive model of the human mind available today. The
ACT-R architecture has been used to model everything from
basic stimulus response timing, and visual search, to problem
solving, language understanding, and skill acquisition (http://act-
r.psy.cmu.edu/). It would be impossible to cover the entire ACT-R
architecture in detail here, but a basic overview is necessary in
order to understand how I am proposing that a DPAAN can be
used as an implementation of ACT-R’s global workspace.

Brief overview of ACT-R
ACT-R (Figure 11) posits that the brain is composed of several
modules. Each module is unique in how it performs its function
but all modules have a common interface to the brain’s central
Procedural module. This common interface is that each module
has a set of slots each of which can contain one symbol. A mod-
ule’s interface slots can be written to by the module itself and/or

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 15

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 10 | A DPAAN control network (consisting of three neurons) which is designed to implement the three rules shown.

by the Procedural module. The collection of all of these slots is
the “global workspace” of the ACT-R system. There is one special
module called the Declarative Memory (DM) module which is
connected to a memory store. The Procedural module will fill in
some of the slots of the DM module but leave other slots blank, and
will request that the blank slots be filled in by associative recall. As
such, each individual DM “chunk” is a list of particular symbols.

The heart of ACT-R is the Procedural module which stores a
set of “production rules” which are simply if-then rules like the
one described in the Jealously problem above. The if-clause of a
production rule may require that a particular slot is filled with a
certain symbol. It may also require that two slots contain the same
(or different) symbols. As such, the if-clause is simply a list of slot-
filler constraints and slot equality constraints. If these if-clause
conditions are met, then the production will “fire” performing the
actions specified by its then-clause. Then-clause actions come in
three forms: (1) Writing a particular symbol to one of the module’s
slots, (2) Transferring the symbol contents of one slot to another,
and (3) Requesting a DM recall. Modules in ACT-R all act concur-
rently, but the Procedural module sets up a central bottleneck in
which only one production is allowed to fire at a time.

In ACT-R theory each production matching and execution cycle
represents a single “step of cognition” (Anderson and Lebiere,
1998). Let’s look closer at the internal timing of this cycle7. First
there is a “matching phase” where the if-clauses of all productions
are matched against the current contents of all slots, checking if any
productions have their list of constraints fully met. The Procedural

7The description here is somewhat simplified relative to the actual ACT-R model,
and the nomenclature used for describing the phases has been altered to better
match the simulation below.

FIGURE 11 | Schematic representation of the ACT-R architecture.

module picks the satisfied production with the highest activation
level (an analog parameter based on use history) and performs its
actions. Next there is a “pre-DM retrieval transfer phase” in which

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 16

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

the production directs the contents of some slots to be transferred
to particular DM slots to prepare for a DM retrieval. Next there is
a “DM retrieval phase” in which the empty slots of the DM module
are filled based on recalling the memory which is the closest match.
Finally there is a “post-DM retrieval execution phase” which may
include additional slot transfers. This completes a single matching
and execution cycle (i.e., a single “step of cognition”), the result
being that some of the slot contents will have been changed. This
may cause a different production to match in the next cycle and
may cause external actions to be performed. Anderson (2007) has
estimated that a single production cycle requires approximately
50 ms in the human brain (based on fitting model parameters to
human timing performance data over a range of tasks).

A single machine language instruction run on a computer
achieves very little on its own, but when many of these instructions
are run in sequence as part of a program the result can be quite
complex. The same analogy holds for ACT-R productions. A single
production firing can achieve very little (for example, a single stim-
ulus response), but the execution of dozens of these productions
over a span of seconds has been used to model complex human
thought processes and behaviors that occur at the same time scale.

ACT-R is widely used in the cognitive psychology community
but has been mostly overlooked by the neuroscience community
because its assumptions of symbol-containing slots, slot-to-slot
transfers, and slot-to-slot equality comparisons have been seen
as incompatible with biological brain circuits. The argument has
been that ACT-R takes the “computer metaphor of the brain” too
far. What I aim to show is that the symbol-containing slots, slot-
to-slot transfers, and slot-to-slot equality comparisons assumed by
ACT-R could be carried out in a biologically plausible manner if
one assumes that all the ACT-R slots are implemented as separate
partitions in a “global workspace” DPAAN.

Implementing basic ACT-R functionality using a DPAAN
A perceptual module could be implemented much like the per-
ceptual DPAAN system depicted in Figure 2 – visual circuits (FH1
and FH2) would generate patterns that are unique for each percep-
tual attribute, and these patterns would be associated with global
DPAAN stable states via the training of association networks like
AN1, . . ., AN4. A motor module could be implemented much like
the Vocalization unit in the DPAAN system depicted in Figure 2 –
unique motor circuits would be driven by a DPAAN slot via an
association network like AN5.

We have already seen how the Procedural module could be
implemented – the Control Network depicted in Figure 7 is per-
forming the role of an ACT-R style Procedural module. Recall that
all productions in ACT-R are simply if-then rules where the if-
clause is a list of constraints that may include a symbol being in a
particular slot or an equality (or non-equality) of two slots. Such
an if-clause is really just looking for a particular pattern of neural
firing over a subset of the DPAAN’s slot neurons and its equality
detection neurons. A production’s then-clause may specify that
one of the DPAAN’s slots is overwritten with a new symbol or that
the contents of one slot is transferred to another slot. Both of these
operations can be initiated by flat activation vectors since symbol
transfers can be initiated in the DPAAN by activating particular
transfer control neurons. This means that the Procedural module’s

entire store of production rules can be thought of as consisting of
a single pattern associative network, one that associates a set of
if-clause patterns with a set of then-clause patterns. Learning a
new production would consist of training this pattern associative
network in the Procedural module with a new pair of associations.

Figure 10 should assist in making this concept of a Procedural
module as a single pattern associative network more concrete.
In that figure the control network’s three “Rule” neurons (which
we can now refer to as “production” neurons) are used to asso-
ciate particular patterns of activity on the SD and Eq. neurons at
the figure’s left side to generate particular output patterns on the
transfer control neurons on the figure’s right side.

How could ACT-R’s DM module be implemented within the
DPAAN framework? First a subset of the DPAAN’s slots would be
specifically designated to be the interface slots of the DM module.
Then a new set of synaptic connections would be created fully
connecting all neurons within the DM module slots. This new
set of synaptic connection (the DM store connections) imposes
an additional set of stable attractor states on the set of neurons
comprising the DM slots – these stable attractor states are the
declarative memories of the system. Let’s say that three DPAAN
slots (A, B, C) are designated to be the DM module slots. To retrieve
a particular memory the Procedural module would first transfer
symbols into slots A and B, and would force slot C into a blank
state. Then the Procedural module would turn on the DM store’s
synaptic connections which would drive all three slots toward the
nearest stored DM stable attractor state. This would have the effect
of filling in the contents of slot C based on the contents of A and B.

The count model
I will now demonstrate how one of the simplest ACT-R models,
the Count Model, could be implemented using a DPAAN. The
Count Model is an ACT-R model consisting of just three produc-
tions and a few DM chunks representing facts about the ordering
of numbers. This model is described in the online ACT-R tutorial
(http://act-r.psy.cmu.edu). Figure 12 shows the lisp definition file
for the model.

The Count Model is a model of what goes on in a person’s
mind when she counts from one number to another. First the
model assumes a set of DM chunks specifying that “2” comes after
“1,” that “3” comes after “2,” etc. The DM module is assumed to
have three slots: “IsA,”“first,” and “second.” The chunk stating that
“4” comes after “3” is defined in lisp as:

(d ISA count-order first 3 second 4)

This assigns the symbol “count-order” to the IsA slot, the sym-
bol “3” to the first slot, and the symbol “4” to the second slot. The
model also defines a chunk for the goal as follows:

(first-goal ISA count-from start 2 end 7)

This DM chunk is used to setup the initial conditions of the model.
The model assumes that the Goal Module has four slots: “IsA,”
“start,” “end,” and “count.” The “IsA” slot is assigned the symbol
“count-from,” its “start” slot is assigned the symbol “2,” its “end”
slot is assigned the symbol “7,” and its “count” slot is initialized to

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 17

http://act-r.psy.cmu.edu
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 12 | Complete lisp definition file for the ACT-R count model.

the symbol “nil.” This initialization of the Goal Module sets up the
goal of counting from the number 2 to 7. If successful, during the
course of running the model the symbol in the “count” slot should
display the sequence “2”. . . “3”. . . “4”. . . “5”. . . “6”. . . “7.”

There are seven slots in total, four in the Goal Module (“IsA,”
“start,”“end,”“count”), and three in the DM module (“IsA,”“first,”
“second”). The 11 symbols posited by the model are: “one,”“two,”
“three,” “four,” “five,” “six,” “seven,” “eight,” “count-from,” “count-
order,” and “nil.” In order to implement this model in neural
network form using a DPAAN we first create a DPAAN having
seven slots as depicted in Figure 13.

DPAAN slots X1, X 2, X3, X4 correspond to the Goal Module
slots, and X5, X6, X7 correspond to the DM Module slots. These are
shown with double arrowed connections to a box labeled Declar-
ative Memory. To model the symbols of the ACT-R model, the
DPAAN’s synaptic weights are trained to have 11 stable attrac-
tor states, 1 corresponding to each of the 11 symbols in the
model.

Now let’s look at the three productions defined in the Count
Model, and convert each to a rule neuron like in Figure 10. The lisp
syntax for these productions may be obscure to those unfamiliar
with ACT-R modeling so I will describe each in words:

The “start” production is designed to fire at the start of the
counting operation, setting up the modules’ contents for the task.
It is implemented by the “start” production neuron as shown in
Figure 13. Its if-clause checks that the Goal module’s IsA slot con-
tains the symbol “count-from.” This is implement by a synapse
of weight +1 tying the neuron to a symbol detection neuron
SD1,“count-from”. The if-clause also checks that the “count” slot con-
tains the symbol “nil.” This is implemented by a synapse of weight
+1 to SD4,“nil”. The threshold of the neuron is set to ≥ 2 which
means that the neuron will fire only if both of these conditions
are met. The then-clause of the “start” production directs several
actions: (1) Setting of the DM module’s IsA slot to the symbol
“count-order,” (2) Transfer of the contents of the “start” slot to
the “count” slot, (3) Transfer of the contents of the “start” slot to
the DM module’s “first” slot, and (4.) Triggering a DM retrieval.
In our DPAAN implementation these actions are triggered by the
neuron’s output being tied to the neurons Set“count-order”→5, T2→ 4,
T2→ 6, and the DM trigger neuron.

The“increment” production is designed to do the actual count-
ing. It is implemented by the “increment” production neuron.
The if-clause checks that the Goal module’s IsA slot contains
the symbol “count-from.” This is implement by a +1 synapse
tying the neuron to SD1,“count-from”. It also checks that the DM
module’s “IsA” slot contains the symbol “count-order” (checking
that a DM fact about count-order is present). This is imple-
mented by a +1 synapse from SD5,“count-order”. It also checks
that the contents of the Goal module’s “end” and “count” slots
are not equal. This is done to allow the model to stop counting
when it has reached the target number. This is implemented by
a −1 synapse from the Eq3,4 neuron. The negative weight allows
this equality detection neuron to veto the action of the “incre-
ment” production. Finally it checks if the “count” slot is equal
to the DM module’s “first” slot. This is to check if the appro-
priate count-order fact is loaded. This is implemented by a +1
synapse from Eq4,6. The threshold of the neuron is set to ≥3.
The then-clause of the “increment” production directs several
actions: (1) Transfer of the contents of the DM module’s “sec-
ond” slot to the Goal module’s “count” slot, (2) Transfer of the of
the contents of the “second” slot to the “first” slot, and (3) The
triggering of a DM retrieval. These actions are triggered by the
neuron’s output being tied to T7→ 4, T7→ 6, and the DM trigger
neuron.

The “stop” production is designed to fire when the Goal mod-
ule’s “count” slot reaches the target value held in the “end” slot.
The “stop” production is implemented by the “stop” production
neuron, receiving a +1 synapses from SD1,“count-from” and Eq3,4.
In the lisp model, the production causes the ACT-R execution to
stop. In our model the output of the “stop” production neuron is
left unwired.

Simulation results
A simulation was written for the network in Figure 13. Matlab
simulation files are provided in the supplementary online material.

The program first defines a DPAAN comprised of seven slots
containing 100 neurons each, corresponding to the seven slots in
Figure 13. As in prior simulations, a symbol vocabulary is cre-
ated for the DPAAN by creating a set of random neural activation

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 18

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 13 | Dynamically Partitionable AutoAssociative Network implementation of the ACT-R Count Model.

vectors, one for each of the model’s symbols. These are used to
generate the weight matrix of the DPANN.

Next DM vectors are created corresponding to each of the seven
“count-order” chunks. Consider the DM chunk:

(d ISA count-order first 3 second 4)

If the DM module held this chunk then the pattern of activity over
slots X 5, X6, X7 would be:

[X5; X6; X7] =
[

P ′count−order′
5 ; P ′three′

6 ; P ′four′
7

]
This vector must be stored in the DM. Here are all of the

memory vectors to store:

[X5; X6; X7] =
[

P ′count−order′
5 ; P ′one′

6 ; P ′two′
7

]
[X5; X6; X7] =

[
P ′count−order′

5 ; P ′two′
6 ; P ′three′

7

]
[X5; X6; X7] =

[
P ′count−order′

5 ; P ′three′
6 ; P ′four′

7

]
[X5; X6; X7] =

[
P ′count−order′

5 ; P ′four′
6 ; P ′five′

7

]
[X5; X6; X7] =

[
P ′count−order′

5 ; P ′five′
6 ; P ′six′

7

]

[X5; X6; X7] =
[

P ′count−order′
5 ; P ′six′

6 ; P ′seven′
7

]
[X5; X6; X7] =

[
P ′count−order′

5 ; P ′seven′
6 ; P

′eight′
7

]
As described above, these memories could potentially be stored

as an additional set of synaptic weights among the X5, X6, X7 neu-
rons. In the software simulation this DM store was instead simply
implemented by a look-up table.

Figure 14 shows the results of the simulation by plotting the
activity of all 700 DPAAN neurons over the course of the simula-
tion. Below the neural activity trace are symbolic interpretations
of the contents of the DPAAN slots at particular points in the
simulation as well as labels showing when particular production
neurons fired.

The DPAAN neurons are initialized as described above: set-
ting the Goal module’s “IsA,” “start,” and “end” slots to “count-
from,” “two,” and “seven” respectively, and setting all other slots
to “nil.” After 10 simulation steps the production neurons’ activi-
ties are evaluated. The “start” production neuron is found to have
exceeded threshold and thus directs a setting of slot X5, and the
transfers from slot X2 to X4, and from X2 to X6. The simulation
gives this transfer 40 simulated time steps to complete. Then the
DM retrieval is carried out by first setting slot X7 to blank (no
activation) for five time steps and then performing a DM retrieval

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 19

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

FIGURE 14 | Simulation results of the DPAAN implementation of the ACT-R count model. (White= active neuron, black= inactive neuron).

based on the stored memory vectors listed above. After another five
time steps the production neurons’ activities are revaluated thus
starting the match-execute cycle over again. This match-execute
cycle is repeated a total of seven times during the simulation.

Looking at the symbolic interpretations displayed below the
neural activity trace one can see that first the “start” production
fires, then the “increment” production fires five times in a row, and
finally the “stop” production fires. Looking at the Goal module’s
“count” slot one can see that it goes through the symbol sequence:
“two” . . . “three” . . . “four” . . . “five” . . . “six” . . . “seven” over
the course of the simulation. This is precisely the behavior that
the ACT-R Count Model displays when its lisp code is run in the
traditional fashion.

SUMMARY AND CONCLUSION
The concept of assigning a symbol to a variable is central to com-
puter science. Ever since the foundational work of Alan Turing,
John von Neumann, and others, the computer science commu-
nity has had a clear understanding of how such algorithmic-level
concepts can be mapped onto physical computer hardware. We

know that in a computer a symbol is physically instantiated by
a particular pattern of high and low voltage levels that can be
stored in any of the computer’s memory registers. A variable
is physically instantiated as a memory register; and to assign a
particular symbol to a variable one sets the bits of the register
to match the symbol’s unique binary pattern. At the electrical
level, this setting of bit values is accomplished by transferring
the voltages of the source register’s bits to the target register’s
bits in a one-to-one fashion via a wire bus and a set of tri-state
buffers.

The concept of assigning a symbol to a variable is also cen-
tral to cognitive science’s understanding of how the mind works
(as exemplified in the ACT-R theory). Unfortunately our neuro-
science understanding of how concepts like symbol, variable, and
assignment are mapped onto the neural circuits has been much less
precise. This is why there is a binding “problem” in neuroscience
but not in computer science. The DPAAN theory outlined above
is designed to offer a precise hypothesis for how these concepts
are mapped (in a biologically plausible manner) onto the brain’s
neural circuitry.

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 20

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

In the DPAAN theory every symbol S1, S2, . . ., SL that the
brain can token is associated with a unique stable attractor state
(designated P1, P2, . . ., PL) in a global workspace of neurons.
This global workspace (the DPAAN network) can be dynamically
partitioned into separate subnetworks (partitions) by temporarily
setting to zero all synapses connecting neurons in separate par-
titions. The resulting subnetworks each retain all of the stable
attractor states that were written into the full DPAAN’s synap-
tic matrix in the sense that the kth partition will inherit stable
attractor states P1

k , P2
k , . . . , PL

k – each one a piece of one of the
DPAAN’s attractor states.

In the DPAAN theory, a variable is physical instantiated as a
particular partition of the global DPAAN. Therefore a DPAAN
with K partitions (x1, x2, . . ., xk) is seen as implementing K vari-
ables (X 1, X 2, . . ., XK). We say that variable Xk contains symbol
Sl if the neural activation pattern in the kth partition is xk = P1

k .
The neural mechanics of assigning the symbol in variable Xk to
variable Xk’ simply consists of un-zeroing the synapses from the
k partition to the k ′ partition, thus allowing the stable attractor
dynamics of the network to drive the k ′ partition into part of the
same global attractor state that the k partition is currently in.

This is the key feature of the DPAAN formulation that makes
it biologically plausible – a symbol is not associated with a par-
ticular pattern of activation (as it would be in a human-designed
computer); instead, a DPAAN symbol is associated with a piece
of one of the full DPAAN’s attractor states. It is biologically
plausible to assume that the brain contains a set of intercon-
nected cortical areas which together act as a global associative
memory; and it is biologically plausible to assume that the brain
has control circuitry which can selectively suppress (and unsup-
press) particular blocks of synapses projecting between different
cortical regions. If the biological brain implements these fea-
tures then it can (by using this DPAAN method) implement
symbol assignments to variables while avoiding any requirement
for the type of one-to-one wiring seen in a human-designed
computer.

In the three models and simulations above I demonstrated how
the DPAAN formulation could be used to solve the neural bind-
ing problem. The first was a simple perceptual model (Figure 2)
which demonstrated how association networks can be trained to
“ground” DPAAN symbols, associating these symbols with par-
ticular features of the external world. This perceptual model also
demonstrated the basics of how a symbol in one DPAAN partition
can be assigned to another. For example, Figure 5 showed how the
symbol “CIRCLE” can be transferred from slot #2 to slot #5 of the
DPAAN, thus showing how the perceptual associations learned on
one set of neurons (slot #2) and the motor associations learned
on another set of neurons (slot #5) could both be utilized with
the same symbol (“CIRCLE”). This is a direct example of how a
DPAAN can provide “role-filler independence” (Hummel et al.,
2004; Hummel, 2011).

The second model (Figure 8) demonstrated how syntax-
sensitive rules could be implemented using a DPAAN. Key to this
was a set of equality detection neurons, each sensitive to the Hop-
field energy function calculated over the set of synapses connecting
the two slots being compared. These equality detection neurons
are essentially asking the question: “Are the activation patterns in

these two slots actually different pieces of the same global attrac-
tor state?” By framing the equality detection problem in this way,
syntax-sensitive rule neurons (like those shown in Figure 10) can
be implemented simply as pattern recognition neurons whose out-
puts drive particular transfer control neurons controlling blocks
of synapses in the DPAAN.

The third model (Figure 13) demonstrated how a DPAAN
(augmented with rule neurons and a DM module) can implement
the core symbol processing pieces of the ACT-R production sys-
tem. Although the DPAAN’s ability to accomplish this was demon-
strated with one of the simplest ACT-R model (the Count Model),
this same approach could be used to implement much more com-
plex ACT-R models composed of hundreds of production rules
and DM chunks.

This neural implementation of ACT-R’s symbol processing core
also suggests ways in which ACT-R’s analog and symbolic learning
mechanisms could be neurally implemented. For example, learn-
ing a new production in an ACT-R model would consist of training
the DPAAN rule network with a new associative pattern linking the
symbol detection and equality detection neurons with the trans-
fer control neurons. The ACT-R theory includes detailed models
of “symbolic” production learning (based on a mechanism called
production compilation), “analog” production learning (based on
adapting the relative likelihood of production firing based on use
history), and “symbolic” and “analog” DM learning (Anderson,
2007). These more complex aspects of the ACT-R architecture are
well beyond the scope of this paper, but the DPAAN implemen-
tation of ACT-R’s symbol processing core described here readily
suggests ways in which some of these more complex aspects of
ACT-R theory might be neurally implemented.

In recent years, researchers have begun to map particular ACT-
R modules onto specific cortical and subcortical brain regions
(see Anderson, 2007; Anderson et al., 2007). For example, the
fusiform gyrus is associated with ACT-R’s Visual buffer, and a
region of the perfrontal cortex is associated with the DM module’s
retrieval buffer. ACT-R’s all-important Procedural module has
been associated with the basal ganglia implying that neural circuits
within the basal ganglia are somehow routing symbolic informa-
tion between these other cortical areas (discussed in Stocco et al.,
2008). Although there is a wealth of indirect evidence that the
basal ganglia may be serving such a role, there has never been a
clear understanding of what such “routing” actually entails at the
neural level. The DPAAN theory presented here represents a clear
hypothesis as to what such “routing” actually entails. The DPAAN
theory predicts that long distance connections among these cor-
tical areas functionally combine all of these cortical regions into
a single global autoassociative network containing multiple stable
attractor states (i.e., this network of cortical buffer regions is the
brain’s global DPAAN). The role of the basal ganglia then is to
selectively turn on or off some of these long distance projections
so as to dynamically partition this global cortical network – this is
what “routing” actually entails according to the DPAAN theory.

In summary, the DPAAN theory provides a solution to the
neural binding problem requiring only“flat”neural activation vec-
tors. As such it is directly compatible with the most well developed
neural models of learning, memory, and pattern recognition. The
DPAAN theory appears biologically plausible given that it calls for

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 21

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hayworth Dynamically partitionable autoassociative networks

very few additional assumptions beyond these established neural
models – the main additional assumptions being that the brain
contains neurons which can selectively turn on or off blocks of
synaptic connections (the transfer control neurons), and that the
brain contains neurons which approximate calculating the Hop-
field energy function over a set of synapses (the equality detection
neurons). These assumptions about brain wiring can be taken as
predictions of the DPAAN theory. Most significantly, if the DPAAN

theory proves correct then it would offer an explanation for how
our most successful model of the mind (the ACT-R theory) is
physically implemented in the hardware of the brain.

ACKNOWLEDGMENTS
I would like to thank Irving Biederman, Mark Lescroart, Jiye Kim,
Xiaomin Yue, Ori Amir, and Xiaokun Xu for helpful discussions
regarding this manuscript.

REFERENCES
Anastasio, T. J. (2010). Tutorial on

Neural Systems Modeling. Sunder-
land: Sinauer.

Anderson, J. R. (2007). How Can the
Human Mind Occur in the Physical
Universe? New York: Oxford Univer-
sity Press.

Anderson, J. R., Bothell, D., Byrne, M.
D., Douglass, S., Lebiere, C., and
Qin, Y. (2004). An integrated the-
ory of the mind. Psychol. Rev. 111,
1036–1060.

Anderson, J. R., and Lebiere, C. (1998).
The Atomic Components of Thought.
Mahwah: Erlbaum.

Anderson, J. R., Qin, Y., Jung, K. J., and
Carter, C. S. (2007). Information-
processing modules and their
relative modality specificity. Cogn.
Psychol. 54, 185–217.

Cavanagh, P., and Alvarez, G. A. (2005).
Tracking multiple targets with mul-
tifocal attention. Trends Cogn. Sci.
(Regul. Ed.) 9, 349–354.

Edelman, S., and Intrator, N. (2000).
(Coarse coding of shape fragments)
+ (retinotopy) ≈ representation of
structure. Spat. Vis. 13, 255–264.

Felleman, D. J., and Van Essen, D. C.
(1991). Distributed hierarchical pro-
cessing in the primate cerebral cor-
tex. Cereb. Cortex 1, 1–47.

Foldiak, P. (1991). Learning invariance
from transformation sequences.
Neural Comput. 3, 194–200.

Fukushima, K. (1980). Neocognitron:
a self-organizing neural network
model for a mechanism of pattern
recognition unaffected by shift in
position. Biol. Cybern. 36, 193–202.

Hayworth, K. J. (2009). Explicit Encod-
ing of Spatial Relations in the Human
Visual System: Evidence from Func-
tional Neuroimaging. (Doctoral dis-
sertation). Dissertations and Theses
Database. [UMI No. 3389612]. Uni-
versity of Southern California, Los
Angeles.

Hayworth, K. J., Lescroart, M. D., and
Biederman, I. (2011). Neural encod-
ing of relative position. J. Exp. Psy-
chol. Hum. Percept. Perform. 37,
1032–1050.

Hopfield, J. J. (1982). Neural networks
and physical systems with emer-
gent collective computational abili-
ties. Proc. Natl. Acad. Sci. U.S.A. 79,
2554–2558.

Hummel, J. E. (2011). Getting symbols
out of a neural architecture. Connect.
Sci. 23, 109–118.

Hummel, J. E., and Biederman,
I. (1992). Dynamic binding
in a neural network for shape
recognition. Psychol. Rev. 99,
480–517.

Hummel, J. E., Holyoak, K. J., Green,
C., Doumas, L. A. A., Devnich, D.,
Kittur, A., and Kalar, D. J. (2004).
“A solution to the binding prob-
lem for compositional connection-
ism,” in Compositional Connection-
ism in Cognitive Science: Papers
from the AAAI Fall Symposium,
eds S. D. Levy and R. Gayler
(Menlo Park, CA: AAAI Press),
31–34.

Kandel, E. R., and Wurtz, R. H. (2000).
“Constructing the visual image,” in
Principles of Neural Science, eds E.
R. Kandel, J. H. Schwartz, and T. M.
Jessell (New York, NY: McGraw-Hill
Medical), 492–506.

Kawahara, J., and Yamada, Y. (2006).
Two noncontiguous locations can
be attended concurrently: evidence
from the attentional blink. Psychon.
Bull. Rev. 13, 594–599.

Kobatake, E., and Tanaka, K. (1994).
Neuronal selectivities to complex
object features in the ventral visual
pathway of the macaque cerebral
cortex. J. Neurophysiol. 71, 856–867.

McMains, S. A., and Somers, D. C.
(2004). Multiple spotlights of atten-
tional selection in human visual cor-
tex. Neuron 42, 677–686.

Mel, B. W. (1997). SEEMORE: com-
bining color, shape, and texture his-
togramming in a neurally inspired
approach to visual object recogni-
tion. Neural Comput. 9, 777–804.

Newell, A. (1990). Unified Theories
of Cognition. Cambridge: Harvard
University Press.

Reynolds, J. H., and Desimone, R.
(1999). The role of neural mech-
anisms of attention in solving the
binding problem. Neuron 24, 19–29.

Riesenhuber, M., and Poggio, T. (1999).
Hierarchical models of object recog-
nition in cortex. Nat. Neurosci. 2,
1019–1025.

Riesenhuber, M., and Poggio, T. (2003).
“How the visual cortex recog-
nizes objects: the tale of the stan-
dard model,” in The Visual Neuro-
sciences, eds L. M. Chalupa and J.
S. Werner (Cambridge, MA: MIT
Press), 1640–1653.

Rolls, E. T., and Stringer, S. M. (2006).
Invariant visual object recognition:
a model, with lighting invariance. J.
Physiol. Paris 100, 43–62.

Roskies, A. L. (1999). The binding prob-
lem. Neuron 24, 7–9.

Serre, T., Kouh, M., Cadieu, C.,
Knoblich, U., Kreiman, G., and Pog-
gio, T. (2005). “A theory of object
recognition: computations and cir-
cuits in the feedforward path of the
ventral stream in primate visual cor-
tex,” in CBCL Paper #259/AI Memo
#2005-036, Massachusetts Institute
of Technology, Boston.

Shadlen, M. N., and Movshon, J. A.
(1999). Synchrony unbound: a criti-
cal evaluation of the temporal bind-
ing hypothesis. Neuron 24, 67–77.

Stocco, A., Lebiere, C., and Ander-
son, J. R. (2008). Conditional Rout-
ing of Information to the Neocor-
tex: A Network Model of Basal Gan-
glia Function, Paper 91, Department
of Psychology. Available at: http://
repository.cmu.edu/psychology/91

Treisman, A. (1999). Solutions to the
binding problem: progress through
controversy and convergence. Neu-
ron 24, 105–110.

von der Malsburg, C. (1995). Binding
in models of perception and brain
function. Curr. Opin. Neurobiol. 5,
520–526.

von der Malsburg, C. (1999). The what
and why of binding: the modeler’s
perspective. Neuron 24, 95–104.

Wallis, G., Rolls, E., and Foldiak,
P. (1993). “Learning invariant
responses to the natural transfor-
mations of objects,” in Proceedings
of 1993 International Joint Confer-
ence on Neural Networks, Nagoya,
1087–1090.

Yamada, Y., and Kawahara, J. (2007).
Dividing attention between two dif-
ferent categories and locations in
rapid serial visual presentations. Per-
cept. Psychophys. 69, 1218–1229.

Conflict of Interest Statement: The
author declares that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 29 May 2012; accepted: 04 Sep-
tember 2012; published online: 28 Sep-
tember 2012.
Citation: Hayworth KJ (2012) Dynam-
ically partitionable autoassociative net-
works as a solution to the neural binding
problem. Front. Comput. Neurosci. 6:73.
doi: 10.3389/fncom.2012.00073
Copyright © 2012 Hayworth. This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion License, which permits use, distrib-
ution and reproduction in other forums,
provided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Computational Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 73 | 22

http://repository.cmu.edu/psychology/91
http://repository.cmu.edu/psychology/91
http://dx.doi.org/10.3389/fncom.2012.00073
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Dynamically partitionable autoassociative networks as a solution to the neural binding problem
	Introduction
	Review of the binding problem
	The standard model of visual object representation
	Extending the standard model to simultaneously represent two objects by anatomical binding
	Arguments against the anatomical binding hypothesis
	Outline of the DPAAN solution

	Results
	Formal definition of a Dynamically Partitionable AutoAssociative Network
	Example #1: use of a DPAAN to solve the perceptual binding problem
	Simulation results

	Example #2: modeling syntax-sensitive rule-based decisions using a DPAAN
	Simulation results
	Review of rule-based operation using a DPAAN
	Example #3: using a DPAAN as the core of a neural implementation of ACT-R
	Brief overview of ACT-R
	Implementing basic ACT-R functionality using a DPAAN
	The count model
	Simulation results

	Summary and Conclusion
	Acknowledgments
	References

