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Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous
bursts whose size distribution follows a power-law. Recent theoretical models have
replicated power-law avalanches by assuming the presence of functionally feedforward
connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches
are generated by a feedforward chain of activation that persists despite being
embedded in a larger, massively recurrent circuit. However, it is unclear to what extent
networks of living neurons that exhibit power-law avalanches rely on FFCs. Here,
we employed a computational approach to reconstruct the functional connectivity of
cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether
pharmacologically induced alterations in avalanche dynamics are accompanied by changes
in FFCs. This approach begins by extracting a functional network of directed links between
pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a
first step, we examined the ability of this approach to extract FFCs from simulated spiking
neurons. The strength of FFCs obtained in strictly feedforward networks diminished
monotonically as links were gradually rewired at random. Next, we estimated the FFCs of
spontaneously active cortical neuron cultures in the presence of either a control medium,
a GABAA receptor antagonist (PTX), or an AMPA receptor antagonist combined with
an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these
cultures was modulated by this pharmacology, with a shallower power-law under PTX
(due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX
(due to avalanches recruiting fewer neurons) relative to control cultures. The strength of
FFCs increased in networks after application of PTX, consistent with an amplification
of feedforward activity during avalanches. Conversely, FFCs decreased after application
of APV/DNQX, consistent with fading feedforward activation. The observed alterations
in FFCs provide experimental support for recent theoretical work linking power-law
avalanches to the feedforward organization of functional connections in local neuronal
circuits.
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INTRODUCTION
Spontaneous activity accounts for a significant proportion of the
brain’s energy consumption (Raichle, 2006) and serves impor-
tant roles both in the development of neural circuits (Blankenship
and Feller, 2010) and in the modulation of neuronal responses
to external stimuli (Arieli et al., 1996). A hallmark of sponta-
neous activity is its high degree of spatial and temporal orga-
nization. In a broad spectrum of circuits, spontaneous activity
alternates between periods of relative quiescence interleaved with
short bursts of activity that recruit a spatially delimited popula-
tion of neurons. In one regime of activity, these bursts follow a
power-law distribution, in which bursts recruiting a small num-
ber of neurons occur markedly more often than larger bursts
(Beggs and Plenz, 2003). This characteristic distribution of bursts,
termed a neuronal avalanche, has been reported in several sys-
tems, including dissociated hippocampal cultures (Tang et al.,

2008), somatosensory cortical slices (Gireesh and Plenz, 2008),
and in vivo (Petermann et al., 2009). A power-law distribution
of avalanches is indicative of neural dynamics with no charac-
teristic scale and is conjectured to form an optimal state for
information processing, computation, and learning (Shew et al.,
2011).

Despite the role of neuronal avalanches in information pro-
cessing, their origins remain unclear. One theoretical account of
avalanches is based on a branching process, whereby groups of
neurons activate each other in a feedforward manner (Figure 1)
(Haldeman and Beggs, 2005). This account distinguishes between
three classes of avalanches, with either fading activity across lay-
ers (Figure 1A), sustained activity across layers (Figure 1B), or
amplifying activity across layers (Figure 1C). These three classes
of avalanches lead to distinct distributions of avalanche sizes that
capture experimentally derived distributions (Figure 1D).
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FIGURE 1 | Illustration of the critical branching model producing

neuronal avalanches. Schematic neurons (circles) connected by synapses
(gray and black links). Neurons activated during an avalanche are shown in
color. Black links show functional feedforward connections that represent
the directed influence of one neuron on another. (A) A fading avalanche,
where fewer and fewer neurons become activated across functional layers.
(B) A sustained avalanche, where a comparable number of neurons are
activated across layers. (C) An amplifying avalanche, where increasingly
more neurons become activated across layers. (D) Theoretical distribution
of avalanche sizes for fading (red), sustained (green), and amplifying (blue)
avalanches.

In apparent contradiction with a feedforward branching
model, both experimental (Beggs and Plenz, 2003) and theoreti-
cal (Pajevic and Plenz, 2009; Benayoun et al., 2010; Rubinov et al.,
2011) work show that power-law avalanches can arise in massively
recurrent networks. To account for this result, a “functional feed-
forward hypothesis” has been proposed (Benayoun et al., 2010).
Accordingly, the functional connectivity of a network (i.e., its pat-
tern of neuronal interactions) possesses a prominent feedforward
drive even in the midst of strong recurrent projections.

The possibility of functionally feedforward connections
(FFCs) being expressed by a recurrent network has been raised
by different theoretical accounts (Goldman, 2009; Murphy and
Miller, 2009). Yet, it is unclear whether living systems rely on
FFCs to generate neuronal avalanches. To address this question,
we monitored spontaneous activity from cultured cortical neu-
rons plated on multielectrode arrays (MEAs) (Marom and Shahaf,
2002; Beggs and Plenz, 2003; Wagenaar et al., 2006). We phar-
macologically altered the distribution of neuronal avalanches and
computed the effect on the strength of FFCs by using a method of
Schur decomposition. If the feedforward hypothesis of avalanches
holds, alterations in the distribution of avalanche sizes should
be accompanied by systematic changes to the strength of FFCs,
providing empirical support for a theory-grounded link between
functional connectivity and avalanche dynamics.

MATERIALS AND METHODS
CULTURED CORTICAL NEURONS ON MICROELECTRODE ARRAYS
Culturing and plating of primary cortical neurons was performed
as previously described (Tauskela et al., 2008). Briefly, cell cul-
tures were recorded using 60 electrodes placed in an 8 × 8 array,
with electrodes absent at the corners (ALA Scientific, Germany)
(Figure 2A). Dissociated primary cortical neurons were prepared
from 18 day prenatal Sprague Dawley rats (Charles River, St.
Constant, QC, Canada). Cells were filtered through 40 μm cell
strainer and were plated on poly-ethylinimine-coated MEAs at
1.5 million cells per ml of medium in an MEA. Plating medium
consisted of MEM supplemented to 25 mM glucose, 10% fetal
calf serum, 10% horse serum and 1% penicillin in streptomycin.

MEAs were maintained in a humidified incubator at 37◦C and
a 5% carbon dioxide/95% air atmosphere, and osmolality was
strictly controlled. To control the growth of glia, a mitotic
inhibitor (15 μg/ml of 5-fluoro-2′-deoxyuridine and 35 μg/ml of
uridine) was added to each culture at 4 days in vitro (DIV). A
50% media change was performed once a week with MEM con-
taining 10% horse serum. Each culture subjected to recording was
inspected to ensure that neurons exhibited a dense, homogenous
monolayer with <5% death. All recordings were performed at
14–19 DIV, an age for which cultures have sufficiently matured
to produce maximal firing rates and number of active channels
(Novellino and Zaldivar, 2010).

PHARMACOLOGY
Agents were added directly to the medium of cultures. Control
(no drug) recordings were performed within 1 h of drug appli-
cation. Two separate drug conditions were studied in different
cultures: (1) GABAA receptor antagonist picrotoxin (PTX); and
(2) NMDA receptor antagonist (2R)-amino-5-phsphonovaleric
acid (APV) combined with AMPA receptor antagonist 6,7-
dinitroquinoxaline-2,3-dione (DNQX). Drugs were prepared
from stock solution. Final bath concentrations were 5 μM PTX,
2 μM DNQX, and 20 μM APV. A wash-in of 10 min preceded all
drug recordings.

SPONTANEOUS ACTIVITY
Recordings were performed using Multi Channel System (MCS,
Reutlingen, Germany) MC Rack software for microelectrode
arrays (Musick, 2008). MEAs were mounted on the recording
platform and capped with a sterile vented tissue culture lid to
maintain sterility. Prior to each recording, MEAs were given a
20-min incubation period on the platform to equilibrate within
an incubator maintained at 37◦C with 5% carbon dioxide. Each
recording was carried out for 20 min duration. Recording param-
eters were as follows: 1100.0 amplifier gain, input voltage range
of −2048 to +2048 mV and a sampling frequency of 5000 Hz.
Low frequency signals were removed using a high pass filter with
a cut-off frequency of 200 Hz.

SPIKE SORTING
Online extracellular spike detection was performed using MCS
software. Spikes were detected online using a 3 standard deviation
(s.d.) threshold above mean using MC_RACK. The resulting spike
data from MCS were stored for offline spike sorting, performed
with Plexon software (version 3.0, Plexon Inc., Texas USA). Spike
data were analyzed using custom software in Matlab software
(Mathworks Inc., Natick, MA). Paired t-tests were employed to
compare mean spike rates and mean coefficients of variation (CV,
standard deviation of spike trains over mean rate) across exper-
imental conditions. These tests were performed after pooling
all neurons within each condition (control, APV/DNQX, PTX).
Neurons whose firing rate was ±5 s.d. above or below the mean
of all neurons within a condition were excluded from statistical
analysis.

NEURONAL AVALANCHES
We identified avalanches by using non-overlapping time bins of
a fixed size. This time bin was set by default to 10 ms (we also
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FIGURE 2 | Cortical cultures plated on multielectrode arrays. (A) Culture
of cortical neurons plated on multielectrode array (only a subset of array
shown). (B) Examples of spike rasters with bath application of APV/DNQX or
PTX as well as control recordings with no drug. (C) Mean firing rate (upper
panel) and coefficient of variation (lower panel) of spontaneous activity across

experimental conditions. Vertical bars are SEM. ∗ = p < 0.001, paired sample
t-test. (D) Top: distribution of pairwise cross-correlations obtained for all pairs
of neurons in the no drug, APV-DNQX, and PTX conditions. Bottom:
cross-correlations obtained for windows of different sizes (10 ms, 100 ms,
1,000 ms) using all pairs of neurons from the no drug condition.

examined variations in the length of the time bin, see “Results”).
This duration was chosen to reflect the timescale over which
coordinated activity likely affects the response of downstream
neurons (Cohen and Kohn, 2011); alternative methods could also
be explored (Shimazaki and Shinomoto, 2007). An avalanche is
defined as a series of consecutive bins where all bins have at least
one spike. In addition, an avalanche must be preceded and fol-
lowed by at least one time bin without spikes. The size of an
avalanche is defined as the total number of neurons activated
from the start to finish of the avalanche. Aside from avalanche
sizes, other aspects of multi-electrode recordings can follow a
power-law; we refer readers to other work for in-depth analyses
(Beggs and Plenz, 2003; Gireesh and Plenz, 2008; Petermann et al.,
2009).

In order to determine the goodness-of-fit of a power-law
distribution to avalanches sizes, we employed a maximum like-
lihood approach (Newman, 2005; Touboul and Destexhe, 2010).
Distributions that follow a power-law function can be described
as follows:

p (x) = Cx−α, (1)

where p(x) is the probability of observing an avalanche of a given
size x (the number of active neurons), α is a scaling exponent
that defines the slope of the power-law distribution, and C is a
constant term.

The maximum likelihood estimate of α, denoted α̂, is provided
by (assuming a continuous underlying power-law distribution for
simplicity):

α̂ = 1 + n

[
n∑

i = 1

log
xi

xmin

]−1

, (2)

where i = 1 . . . n are the observed values of x. Depending on the
nature of the data, it may sometimes be necessary to set xmin to

a particular range of distribution; however, by visual inspection
we did not find a particular justification for excluding parts of
the distribution, so we set xmin to the minimum value of the
avalanche size distributions.

Statistical error in the estimation of α is given by:

error = α̂ − 1√
n

. (3)

CONTIGUITY INDEX
To estimate whether avalanches propagated in a wave-like manner
across the MEAs, we computed a contiguity index corresponding
to the fraction of spikes that are preceded by spikes on one or
more nearest-neighbor neuron (i.e., neurons either from the same
electrode or immediately adjacent on the array). More formally,
we denote the status of a neuron i at time t as si (t) = 1 if a spike is
emitted, and si (t) = 0 otherwise. We index the set of neighboring
neurons as m = 1, . . . , M. For each given spike (si(t) = 1), we
compute:

hi(t) =
{

1,
∑
m

sm(t − 1) > 0

0, otherwise,
(4)

and obtain the contiguity index of neuron i as follows:

Contiguity index (i) = 100 ×
∑

t
hi (t)∑

t
si (t)

. (5)

If activity propagated in a strict wave, nearly 100% of all activ-
ity would arise from nearest neighbors; by comparison, neuronal
avalanches typically show a contiguity index of less than 30%
(Beggs and Plenz, 2003).
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CRITICAL BRANCHING
We sought to quantify the propagation of activity in neuronal
avalanches. Using an established procedure, we computed the
branching parameter σ, defined as the average number of neu-
rons that are activated as descendants when one ancestor neuron
is activated (Beggs and Plenz, 2003). In recordings of sponta-
neous activity, the branching parameter σ corresponds to the
average number of neurons activated in a given time bin (during
an avalanche), given a single neuron being activated in the pre-
ceding time bin. The average value of σ for an entire recording is
given by:

σ =
nmax∑
d = 0

d × p(d), (6)

where p(d) is the probability of observing d descendants, nmax is
the maximal number of active neurons, and d is the number of
neuron descendants. These descendants are computed as:

d = round

(
nd

na

)
, (7)

where na is the number of neuron ancestors observed in the first
time bin, nd is the number of active neurons in the second time
bin of an avalanche, and round is a rounding operator to the
nearest integer. We estimated p(d) (the probability of observing
d descendants) as follows:

p (d) =
∑

avalanches

(
n∑

a | d

n∑
a

)(
nmax − 1

nmax − na

)
, (8)

where n∑
a | d

is the total number of spikes in all avalanches when

nd descendants were observed and n∑
a

is the total number of
ancestors observed in all avalanches.

PAIRWISE CROSS-CORRELATIONS
We calculated the cross-correlation between all pairs of neurons.
We began by downsampling the timeseries of activity for each
neuron by dividing the total recording time into non-overlapping
windows of fixed duration. A default duration of 10 ms was
employed, consistent with the timescale over which correlated
activity likely affects the response of downstream neurons (Cohen
and Kohn, 2011). For each neuron, we then represented every
window by a single value of 0 (no spike emitted) or 1 (at least
one spike emitted). Once the activity of all neurons was down-
sampled in this way, we computed the cross-correlation between
a given pair of neurons as follows:

CCij = E
{[

i − E (i)
] [

j − E
(
j
)]}

√
E
{[

i − E (i)
]2}

E
{[

j − E
(
j
)]2} , (9)

where i and j are the time-series of two neurons having means
E {i} and E

{
j
}

, respectively.

DIRECTED FUNCTIONAL CONNECTIVITY
We constructed a graph of functional connectivity between all
pairs of spontaneously active neurons on the array. In a subse-
quent step (described below) this graph will serve as a basis for
estimating the strength of FFCs amongst neurons. There are two
requirements for generating this graph: (1) it must be weighted
(connections must have continuous values); and (2) it must be
directed (connections between pairs of neurons must point in a
particular direction of influence from one electrode to another
and may not be symmetrical).

Several measures fulfill the above criteria, including Granger
causality (Cadotte et al., 2008), Bayesian approaches (Pajevic and
Plenz, 2009), and partial directed coherence (Gourevitch et al.,
2006). We settled on the use of transfer entropy (TE), recently
shown to be useful in reconstructing the functional architec-
ture of a network from its ongoing dynamics (Gourevitch and
Eggermont, 2007; Vicente et al., 2011). TE quantifies the amount
of information in a neuron found in the past history of another
neuron. It can be used to probe asymmetries in neural relations
(i.e., neuron A influencing B, but B not influencing A) (Schreiber,
2000). These asymmetries allow the evaluation of both feedback
and feedforward contributions to network activity.

The amount of TE from neuron j to neuron i (measured in
bits) is given by:

TEj→i =
∑

p
(
it+1, it , jt

)
log2

p
(
it+1|it , jt

)
p (it+1|it) , (10)

where it denotes the status of neuron i at time t, and could
be either 1 or 0, indicating a spike or no spike, respectively,
and p denotes the empirical probability of having the sta-
tus denoted in parentheses. First, p

(
it+1, it , jt

)
denotes the

joint probability of an event involving
{

it+1 = 1, it = 1, jt = 1
}

,
obtained empirically as the count of all such events divided by
the total length of the recording in ms. Second, p

(
it+1|it, jt

)
denotes a conditional probability, obtained by summing all events
involving

{
it+1 = 1, it = 1, jt = 1

}
, and dividing by the sum of

events involving
{

it+1 = 0, it = 1, jt = 1
}

and events involving{
it+1 = 1, it = 1, jt = 1

}
. Finally, p (it+1|it) is obtained by sum-

ming all events involving {it+1 = 1, it = 1} and dividing by the
sum of events involving {it+1 = 0, it = 1} and events involving
{it+1 = 1, it = 1}. The sum in Equation 10 is taken over all com-
binations of it+1, it , and jt . Details of the implementation of the
algorithm are beyond the scope of this paper and can be found
elsewhere along with free software (Ito et al., 2011). Taken as a
whole, Equation 10 describes how the future activity of a neuron
is influenced by its own past history, thereby making TE mostly
(although not completely) independent of firing rates of both
neurons i and j considered.

Because of potential errors in the estimation of TE, we per-
formed a bootstrap reshuffling of spike times. This bootstrapping
was performed for each neuron independently across its entire
recording time. The activity of a given neuron was converted to a
binary vector of “1” and “0” denoting the presence and absence of
spikes respectively. This vector was randomly shuffled by taking
each spike and the inter-spike interval immediately following it,
and moving it to a different location on the vector. This method of
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shuffling preserves the distributions of both spike rates and inter-
spikes intervals. The shuffling procedure was repeated 100 times,

and a value of TE for shuffled data
(

TE
bootstrap
j→i

)
was obtained by

averaging the values of TE obtained across all repeats of the shuf-

fling procedure. The final value of TE from neuron j to i
(

TEfinal
j→i

)
was obtained by subtracting the value of TE obtained from shuf-

fled data
(

TE
bootstrap
j→i

)
from the value of TE obtained from the

original data
(

TEdata
j→i

)
, and normalizing by the entropy rate (Hi)

(the conditional entropy of neuron i conditional on its past):

TEfinal
j→i =

TEdata
j→i − TE

bootstrap
j→i

Hi
, (11)

where the entropy rate is given by:

Hi = −
∑

p (it+1, it) log2 p (it+1|it) . (12)

To account for estimation errors in computing TE, we analytically
derived the variance of TE (Equation 10) as follows:

Vj→i = 1

T

∑
p
(
it+1, it , jt

) (
1 − p

(
it+1, it, jt

))

×
[

log2

(
p
(
it+1|it, jt

)
p (it+1|it)

)
− TEj→i

]2

, (13)

where T is the temporal precision employed for calculating TE
(set by default to 2 ms; time-lags between 1–3 ms did not sub-
stantially alter results).

In order to generate a graph of functional connectivity, we
computed TE values (Equation 11) and the variance of TEdata

j→i
(Equation 13) for all pairs of neurons in a given recording. Then,
we eliminated (by setting to zero) all connections where TEdata

j→i

was less than 3 s.d. above TE
bootstrap
j→i , as well as all negative val-

ues of TEfinal
j→i . The final graph could be expressed as an N×

N matrix W (where N is the number of neurons) of directed
and weighted functional connections where all entries are either
positive or zero.

FUNCTIONALLY FEEDFORWARD CONNECTIVITY
Once the above-defined graph of functional connectivity was
obtained, the strength of FFCs was estimated. These connections
reflect the degree to which the activation of groups of neurons
follows a feedforward chain (Figure 1). We estimated FFCs by
performing a Schur decomposition of the functional connectivity
matrix W (defined above) (Goldman, 2009; Murphy and Miller,
2009). The Schur decomposition extracts orthogonal eigenvectors
of the W matrix of functional connectivity, revealing eigenmodes
that send both feedback and feedforward projections amongst
themselves. This method offers an advantage over traditional
eigenvalue decomposition, as the latter can estimate recurrent
modes but not feedforward modes of activity.

For a given matrix W of functional connectivity, we obtained
the following decomposition:

W = UMU−1, (14)

where U is a unitary matrix with orthogonal columns, and M
is an upper triangular matrix. To quantify the strength of FFCs
(denoted f M), we computed the sum of absolute squares of the
off-diagonal elements of M, and normalized by the sum of abso-
lute squares of all the elements of M (Murphy and Miller, 2009):

f M =
(

Tr
(
MM†)−

∑
α

∣∣βM
α

∣∣2) /Tr
(
MM†) , (15)

where M† is the conjugate transpose of M, Tr is the trace, and βM
α

are the eigenvalues of M. In Equation 15, f M is interpreted as the
proportion of ongoing dynamics that are driven by FFCs. This
value is complementary to the proportion of functionally recur-
rent connections, such that the sum of feedforward and recurrent
connections adds up to 1.0. While the Schur decomposition of
a matrix M is not unique, the absolute squares of all elements
of M are unitary invariant. The eigenvalues of M are also unitary
invariant. The estimation of FFCs relies strictly upon Equation 15,
which is unitary invariant and therefore does not depend upon
the solution obtained by a given Schur decomposition. Statistical
comparisons of FFCs between experimental conditions (no drug,
APV/DNQX, and PTX) were carried out with a paired sample
t-test after pooling all neurons within each condition and exclud-
ing values of FFC that were ±5 s.d. above or below the mean of
FFCs within a condition.

POISSON MODEL
We tested the ability of Schur decomposition to estimate the
strength of FFCs in a synthetic dataset of spikes generated from
a population of Poisson neurons. The firing rate of these neurons
could be modulated by interactions with neighboring neurons.
Neuronal interactions were controlled by an N × N matrix P of
transition probabilities (i.e., the probability that a spike in one
neuron at time t will generate a spike in another neuron at time
t + 1), where N is the total number of neurons in the population.
The matrix P hence defined all directed influences of a given neu-
ron on another neuron. For simplification, these values remained
fixed over time.

The probability of a neuron spiking at a given time-step t was
influenced by both the Poisson process and the transition matrix
P (Roxin et al., 2008). The probability p̂i that a neuron i will
become active at a given time-step t is:

p̂i = vi − (1 − viτr)
∑

j vjpij

1 − viτr
, (16)

where τr is a refractory period and pij are elements of the P transi-
tion matrix. We simulated spiking activity at a resolution of 1 kHz,
and set v = 0.0001 to yield an approximate Poisson firing rate of
0.1 Hz for all N = 100 neurons. The actual firing rate of neurons
could be higher than that value depending on the P transition
matrix.
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RESULTS
FUNCTIONALLY FEEDFORWARD CONNECTIONS IN SIMULATED DATA
Our first step was to examine whether Schur decomposition
can estimate the strength of FFCs in a simulated network of
Poisson spiking neurons. In these simulations, we manipulated
the matrix P of transition probabilities by gradually shifting from
a strictly feedforward network to a highly recurrent/random net-
work, and using Schur decomposition to estimate the proportion
of dynamics that are driven by FFCs.

We began with a feedforward network representing transition
probabilities that are strictly feedforward (Figure 3A, top; only
a subset of the N = 100 neurons are shown for ease of visu-
alization). In this network, the presence of a link between two
neurons indicates a transition probability of pij = 1.0, while the
absence of a link indicates pij = 0.0. We generated 5 min of activ-
ity with this strictly feedforward model, and stored all spikes over
time. We then computed a graph of directed functional con-
nectivity based on TE (Equation 11), and performed a Schur
decomposition to estimate the strength of feedforward connec-
tivity (FFC) (Equations 14, 15). We found a striking similarity
between the P matrix and the matrix of functional connectiv-
ity obtained by TE (Figure 3B), showing that TE captured the
statistics of interactions amongst pairs of neurons in the model.

We performed 100 independent runs of the feedforward model
and obtained a mean FFC proportion of 0.58 (s.d. 0.04). We
compared this value to different versions of the model where tran-
sition probabilities were gradually rewired by choosing a link at
random and changing its receiving neuron (Figure 3A, middle

and bottom graphs; see Figure 3C for examples of rasters). The
proportion of dynamics driven by FFCs diminished gradually
as networks shifted from a feedforward to recurrent connec-
tivity (Figure 3D). Schur decomposition was thus sensitive to
transition probabilities in the dynamics of the Poisson model,
and provided a monotonically decreasing relation between the
degree of rewiring and the proportion of feedforward drive, with
a strictly feedforward network yielding the strongest feedfor-
ward drive. These simulations provide a proof-of-principle that
Schur decomposition can distinguish neural dynamics on the
basis of FFCs.

Next, we examined the robustness of FFCs to the precision
of spikes in a strictly feedforward network. We generated 5 min
of spiking activity from a network of 100 Poisson neurons with
strictly feedforward transition probabilities (Figure 3A, top). We
randomly disrupted the temporal precision of spikes using a
method of spike jitter and computed the effect on the strength
of FFCs. The spike jitter method involves randomly moving
spikes of individual neurons to different positions in time. A
pre-determined window of �t ms is set such that spikes can
be shuffled by a maximum value of �t ms either forwards or
backwards in time. In different simulations, we tested different
magnitudes of spike jitter, from minimal jitter (where spikes were
randomly shifted by 1 ms at most from their original position in
time) to maximal jitter (where spikes were shifted by up to 10 ms).
Spike jitter decreased the mean FFCs, while maintaining mean
spike rates constant (Figure 3E). Hence, the strength of FFCs can
be influenced not only by the proportion of FFCs in the model

FIGURE 3 | Estimation of functionally feedforward connectivity in a

Poisson model. (A) Simulated feedforward network of spiking neurons
(yellow nodes) connected by synapses (black arrows). A strictly feedforward
network (top panel) is gradually rewired (middle and bottom panel), resulting
in progressively more recurrent projections. (B) Matrix of transition
probabilities (P ), transfer entropy (TE), and Schur decomposition (M) for a
strictly feedforward network (e.g., panel “A,” top panel). (C) Examples of
spike rasters generated with a Poisson model with either 100% (top panel),

50% (middle panel), or 10% (bottom panel) feedforward transition
probabilities. (D) The mean proportion of functionally feedforward
connectivity (FFC) diminishes gradually as the number of randomly rewired
links increases. Inset: spike rates decrease as the percentage of rewired links
increases. (E) In a strictly feedforward network, the mean FFC diminishes as
the magnitude of spike jittering increases. Inset: spike jittering has no effect
on mean spike rates. (D–E) Solid black line: mean values taken from 100
independent runs of the Poisson model. Gray area: SEM.
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(Figure 3C), but also by spike precision in the propagation of
feedforward activity. Furthermore, these results show that FFCs
can be modulated independently of firing rates (Figure 3E, inset).
Next, we turn to experimental data in order to relate the dynamics
of neuronal avalanches to the strength of functionally feedforward
networks.

NEURONAL AVALANCHES IN CORTICAL NETWORKS
We recorded spontaneous activity from cortical cultures and
extracted neuronal avalanches of spiking activity (see “Materials
and Methods”). Three conditions were compared: (1) no-drug
controls (N = 6); (2) AMPA receptor antagonist combined with
NMDA receptor antagonist (APV/DNQX) (N = 5); and (3)
GABAA receptor antagonist (PTX) (N = 5). Spontaneous activity
in control recordings was characterized by bursts of synchronized
activity interspersed by periods of relative quiescence (Figure 2B,
middle panel). Bath application of APV/DNQX abolished syn-
chronized activity (Figure 2B, top panel), while PTX increased
its occurrence (Figure 2B, bottom panel). APV/DNQX cultures
had a lower spike rates and a higher CV than controls. PTX cul-
tures yielded the opposite effect, with higher firing rates and lower
CVs (Figure 2C). Pairwise cross-correlations (see “Materials and
Methods”) were lower for APV/DNQX cultures compared to con-
trols (Wilcoxon rank-sum test, P < 0.00015) and comparatively
higher for PTX cultures (P < 0.021) (Figure 2D, top). All dis-
tributions had a nonzero mean consistent with in vitro activity
(Beggs and Plenz, 2003). Increasing the window employed for
cross-correlations from 10 to 100 ms did not substantially alter
the resulting distribution; however, further increasing the window
to 1,000 ms yielded a broad and diffuse distribution (Figure 2D,
bottom).

We extracted neuronal avalanches from all recordings (see
“Materials and Methods”; Figure 4A shows a representative
avalanche). Over all cultures, the total number of avalanches
obtained was 41,544 (no drug), 4224 (APV/DNQX), and 34,632
(PTX). We employed a contiguity index to verify that avalanches
did not propagate in a strictly wave-like manner (Beggs and Plenz,
2003) (see “Materials and Methods”). In controls, an average
23.64% (s.d. 18.61) of spikes were preceded by a spike on at least
one nearest-neighbor electrode. Similar values were obtained for
PTX (28.57%, s.d. 21.59) and APV/DNQX (17.29%, s.d. 9.77)
cultures. Hence avalanches did not activate a substantial pro-
portion of nearest neighbors on the array, suggesting that the
propagation of avalanches did not proceed in a wave-like manner.

Next, we examined whether avalanches led to the reactivation
of precise spike patterns. Here, a spike pattern is defined as the
subset of neurons (i.e., at least two neurons) that fire within a
given timeframe. We counted the percentage of timeframes where
a spike pattern was reactivated at a later time during the same
avalanche. Reactivated spike patterns accounted for less than 1%
percent of activity in all conditions (controls, 0.44%; PTX, 0.7%;
APV/DNQX, 0.12%). Thus, neuronal avalanches were character-
ized predominantly by a feedforward progression through a series
of individual spike patterns rather than a recurrent loop that
reactivates a given subset of patterns.

Distributions of avalanche sizes (number of active neu-
rons) in all three conditions (Figure 4B) were fitted with a

FIGURE 4 | Distributions of neuronal avalanches modulated by

pharmacology. (A) Example of an avalanche obtained from a control
culture. Each frame corresponds to 10 ms of activity. Black lines correspond
to the presence of at least one spike in each of the 64 channels of the array
(configured in a 8 × 8 spatial arrangement). (B) Average distribution of
avalanche size for cultures with either no drug treatment, APV/DNQX, or
PTX. (C) Estimation of the slope of best-fitting power-law

(
α̂
)

for
distributions in panel “A,” obtained with maximum likelihood (see
“Materials and Methods”). Numbers above each bar indicate log likelihood
values. Vertical bars are statistical errors (Equation 3). (D) Distributions of
avalanche sizes (as in panel A) with different bin sizes (window of time used
for the computation of avalanches). Bin sizes: black = 1 ms; blue = 2 ms;
red = 4 ms; green = 8 ms; cyan = 16 ms.

power-law using maximum likelihood estimation (see “Materials
and Methods”) (Figure 4C). Neuronal avalanches in controls
followed a power-law distribution with a slope of α = −1.55 (sta-
tistical error: 0.02), a characteristic of dynamics that are poised
between completely randomized and completely synchronized
activity (Beggs and Plenz, 2003). Avalanches in PTX recordings
were characterized by a double peak, due to a prominence of
avalanches recruiting a large proportion of neurons on the array.
These avalanches were fitted with a slope of α = −1.47 (statisti-
cal error: 0.04), higher than that of controls. Finally, avalanches
in APV/DNQX followed a power-law with a slope of α = −1.63
(statistical error: 0.01), lower than that of controls and typical
of dynamics with highly synchronized activity. Distributions of
avalanche sizes were not markedly altered in analyses where we
modified the size of time bins (Figure 4D), showing robustness
of results to changes in that parameter.

FUNCTIONAL NETWORKS OF CORTICAL NETWORKS
Next, we sought to determine the extent to which the different
distributions of neuronal avalanches described above were related
to the strength of FFCs. We began by constructing a network of
functional connectivity for each array using TE (see “Materials
and Methods”) (Figure 5A). This network quantifies the amount
of information (in bits) transmitted from one given neuron to
another. For illustration purposes, we registered a graph of TE
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FIGURE 5 | Directed functional network obtained with transfer entropy.

(A) Matrix of functional connectivity obtained with transfer entropy (see
“Materials and Methods”). (B) Positive values of transfer entropy from the
matrix in panel “A” are converted to directed links (black arrows) between
electrodes of the multielectrode arrays. For illustration purposes, we
represent only a single neuron per channel of the array. (C) Relation between

transfer entropy and physical distance between electrodes on the array. Each
dot represents the mean TE obtained for a particular physical distance on the
array (averaged across all arrays and pairs of neurons). Dashed line:
best-fitting linear regression. Vertical bars: SEM. (D) Relation between
temporal delay between spikes and values of transfer entropy. Shows mean
TE obtained for particular delays (Equation 10). Shaded area: SEM.

across all pairs of neurons to a 2D spatial array reflecting the rel-
ative position of electrodes with which each neuron is recorded
(Figure 5B). This graph presents a highly recurrent network of
functional connections, from which it is difficult to determine the
contribution of FFCs without further analysis. The amount of TE
between pairs of neurons was related to their spatial distance on
the array (Figure 5C) and was strongest for short temporal delays
between spikes (Figure 5D).

FUNCTIONALLY FEEDFORWARD CONNECTIONS IN CORTICAL
NETWORKS
We analyzed the strength of FFCs using a Schur decomposition
of the TE matrix W obtained for all pairs of neurons on a given
array (see “Materials and Methods”). The Schur decomposition
W = UMU−1 yields an upper triangular matrix M from which
we estimated the strength of functionally FFCs. Examples of M
matrices are shown in Figure 6A, along with the mean strength
of FFCs across all arrays (Figure 6B). The strength of FFCs for
control recordings was significantly higher than for APV/DNQX
recordings [t(782) = 12.24, p < 0.0001] and significantly lower
than for PTX recordings [t(773) = 14.65, p < 0.0001]. These
results show that the strength of FFCs is modulated by pharma-
cology. Taken together with distributions of neuronal avalanches
(Figures 4B–C), results suggest that APV/DNQX leads to fading
avalanches accompanied by a reduction in the strength of FFCs
when compared to controls. On the other hand, PTX leads to
amplifying avalanches accompanied by an increase in the strength
of FFCs. Hence the distribution of avalanches and the strength of
FFCs were concomitantly modulated by pharmacology.

FIGURE 6 | Schur decomposition of functional networks. (A) Examples
of M matrices obtained from Schur decomposition (see “Materials and
Methods”), providing an estimate of the strength of functionally
feedforward connectivity. For clarity, only the upper triangular elements are
shown. (B) Mean proportion of functionally feedforward connectivity (FFC)
obtained from Equation 15. ∗p < 0.0001 (paired sample t-test). Inset: mean
critical branching parameter. Dashed line: σ = 1.

We compared the above results with the mean branching
parameter of controls and pharmacologically treated networks
(see “Materials and Methods”). No-drug networks attained a
mean branching parameter near 1.0, indicative of sustained
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avalanche dynamics (Beggs and Plenz, 2003). APV/DNQX and
PTX networks attained higher and lower values, respectively
(Figure 6B, inset). The branching parameter provides corrobo-
rative evidence that the strength of FFCs is altered by pharmacol-
ogy, with fading avalanches under APV/DNQX and amplifying
avalanches under PTX.

ROBUSTNESS TO NOISE AND LENGTH OF RECORDINGS
In order to assess whether our estimation of functional networks
was sensitive to the duration of recordings, we took sponta-
neous activity from control recordings and computed TE across
all pairs of neurons for time windows of 3, 6, 9, 12, 15, and
18 min (Figure 7). We then computed the mean squared error
in TE between values obtained for each time window and val-
ues obtained for the total recording length (20 min). The error
decreased monotonically as we increased the length of the time
window from 3 to 18 min (Figure 7A). In addition, the overall
appearance of TE between all pairs of neurons was largely similar
between shorter and longer time windows (Figure 7B). Based on
these results, we would not expect that lengthening our record-
ing windows beyond 20 min would lead to drastic changes in TE.
However, we caution that the presence of non-stationarities on a
long time-scale may play a role (Sasaki et al., 2007); this is beyond
the scope of our current work.

In a final series of analyses, we examined the robustness of
Schur decomposition when adding noise to the functional con-
nectivity obtained by TE. Starting from functional networks of
the control condition, we gradually added functional connec-
tions at random (values of 0.5 bits). As random connections
were added, the mean strength of FFCs decreased gradually.
Approximately 20% of random connections were required to
decrease the mean strength of FCCs by half. Adding random
connections made the network gradually more recurrent, and it

FIGURE 7 | Robustness of transfer entropy to the size of the recording

period. (A) Mean square error (MSE) between values of transfer entropy
obtained for consecutive windows of 3, 6, . . . , 18 min. (B) Example of
transfer entropy obtained over all pairs of neurons during a single recording.
Similar matrices are generated with recording periods of 3, 12, and 18 min.

is thus expected that the strength of FFCs should decrease accord-
ingly. We performed the same analysis with functional networks
treated with APV/DNQX and PTX. The mean strength of FFCs
for drug-treated networks gradually converged toward the mean
of control networks as random connected were added. Yet, with
20% of randomly added connections it was still possible to dis-
tinguish between the three experimental conditions based on the
strength of their FFCs (Figures 8A–B).

DISCUSSION
While cortical neurons are part of a highly recurrent network,
strong feedback excitation is typically balanced by strong feed-
back inhibition (van Vreeswijk and Sompolinsky, 1998; Higley
and Contreras, 2006). While the functional consequences of
this balanced regime remain to be elucidated, recent theoreti-
cal work suggests that it may facilitate the emergence of patterns
of activity that evolve over time in a functionally feedforward
manner (Murphy and Miller, 2009). Here, we developed a novel
method to estimate the proportion of neuronal activity in a
multi-neuron recording that is driven by a functionally feedfor-
ward network. This method constructs a functional network of
weighted and asymmetrical interactions between all pairs of neu-
rons in a given data set (Gourevitch and Eggermont, 2007; Vicente
et al., 2011), followed by extraction of feedforward and feed-
back modes of activity through Schur decomposition (Goldman,
2009).

We first tested the method on artificial data generated from
a Poisson model where firing rate was influenced by neighbor-
ing neurons. These highly simplified phenomenological networks
allowed examination of feedforward information propagation in
both strictly feedforward and highly recurrent circuitry. Estimates
of FFC diminished monotonically in simulations that gradually
increased the proportion of recurrent connections, showing an
ability to track the strength of FFCs on the basis of spiking activ-
ity. Simulations were also sensitive to the precision of activity
propagation, with random perturbations in the spike timing of
feedforward propagation leading to a lower estimate of FFCs.

Next, we applied the method of FFC estimation to multielec-
trode recordings of spontaneous activity in cortical cultures. In
these cultures, activity is characterized by avalanches whose size
distribution follows a power-law consistent with sustained activa-
tion (Beggs and Plenz, 2003). These avalanches were altered phar-
macologically to yield either fading avalanches (APV/DNQX) or
amplifying avalanches (PTX) (Shew et al., 2011). We computed
the strength of FFCs in control and drug-treated cultures and
showed that, compared to control cultures, APV/DNQX-treated
cultures had significantly lower FFCs. In PTX-treated cultures, on
the other hand, the strength of FFCs was significantly higher than
that of control cultures.

The above results can be understood in terms of functional
feedforward activation (Figures 1A–C). Accordingly, the feed-
forward propagation of activity under APV/DNQX fades more
rapidly than in controls, leading to a shift in the distribution of
avalanche sizes (Figure 1D). Conversely, in PTX-treated cultures,
the feedforward propagation of activity amplifies over time, mov-
ing the distribution of avalanche sizes in the opposite direction.
Importantly, this functionally feedforward account describes the
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FIGURE 8 | Estimation of functionally feedforward strength is

robust to partial randomization of transfer entropy. (A) Gradual
decline in mean strength of functionally feedforward connections
(FFCs) as random entries (values of 0.5 bits) are added to a matrix of

transfer entropy. Shaded area is SEM. (B) Illustration of a transfer
entropy matrix where random entries are gradually added. The % of
random entries (over all possible entries in the matrix) is shown above
each panel.

propagation of activity in a network, and not its pattern of struc-
tural connections. Even highly recurrent networks, despite their
feedback connections, can—depending on their configuration—
propagate activity in a feedforward manner (Goldman, 2009).

We propose that FFCs underlie the propensity of recurrent
cortical circuits to propagate activity in a chain-like feedfor-
ward manner. Neuronal avalanches, despite arising from highly
recurrent circuits both in vivo (Petermann et al., 2009) and
in vitro (Gireesh and Plenz, 2008), show hallmark features of
feedforward activation. In previous work, under no circum-
stances was an electrode immediately (or even 4 timeframes
later) reactivated during avalanche activity (Beggs and Plenz,
2003). Further, our own results show that less than 1% of spike
patterns generated during avalanches were repeats of a pattern
activated previously during the same avalanche. These results
show that avalanche dynamics are characterized by a forward pro-
gression through a series of non-repeating patterns, as opposed
to a recurring leitmotif of activity that cycles through a fixed
repertoire.

There are several advantages of functionally feedforward net-
works compared to their recurrent counterpart. Low feedback
in functionally feedforward networks prevents runaway excita-
tion. Furthermore, functionally feedforward networks are opti-
mal at sustaining memory traces of inputs (Ganguli et al., 2008),
and respond with a longer timecourse than recurrent networks
(Murphy and Miller, 2009), thus allowing for a greater diversity
of responses (Goldman, 2009).

Our proposal of a relationship between FFC and neuronal
avalanches is supported by a body of theoretical work. One
account based on a branching model captures avalanche dis-
tributions by assuming a feedforward chain of propagation
(Beggs and Plenz, 2003). In this model, sustained activation
is produced when neurons activated at one given time-step
activate a similar number of neurons at the subsequent step
during an avalanche. In another model, a power-law distribu-
tion of avalanches is produced by a functionally feedforward
architecture that activates groups of neurons in a defined order

despite being embedded in a highly recurrent circuitry (Benayoun
et al., 2010). In the latter model, simulations of fully con-
nected as well as sparsely connected networks can both produce
avalanche distributions that follow a power-law—a determin-
ing factor being the strength of FFC. Finally, simulations of a
reduced model show that recurrent networks can behave as “feed-
forward networks in disguise” provided that they are derived
from the Schur modes of a feedforward network (Goldman,
2009).

Recent theoretical work proposes that neuronal avalanches can
emerge from simulated networks with balanced excitation and
inhibition (Poil et al., 2012). Such a link between balanced activ-
ity and neuronal avalanches is consistent with experimental work
where pharmacological disruption in the ratio of excitation and
inhibition alters the power-law distribution of avalanches (Shew
et al., 2011). Other work, however, seems inconsistent with a
link between balanced activity and neuronal avalanches. In a bal-
anced regime, cross-correlations between pairs of neurons are
near zero (Ecker et al., 2010; Renart et al., 2010), which is incom-
patible with in vitro neuronal avalanches where correlations are
in the 0–0.2 range (Beggs and Plenz, 2003). Near-zero correla-
tions depend on the nature of the preparation, the anatomical
region considered, the firing rate of neurons, and the spike sorting
method employed (Cohen and Kohn, 2011). These considerations
leave open the question of how balanced activity could relate to
avalanches.

Our proposed approach to estimate FFCs offers an interesting
perspective for relating FFCs to the strength of cross-correlations
between pairs of neurons. A potential relation between FFCs
and cross-correlations is suggested by our findings relating APV-
DNQX to a downward shift in the distribution of correlations
(Figure 2D). This shift leaves largely unaltered the tail of the dis-
tribution. PTX treatment, on the other hand, leads to an upward
shift as well as a broadening in the distribution of correlations.
These findings offer only a preliminary step in relating FFCs to
cross-correlations, a challenging question that we leave for future
empirical and theoretical work.

Frontiers in Computational Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 86 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Vincent et al. Feedforward networks of spiking neurons

While our analyses of cortical activity highlight a system-
atic relation between FFCs and dynamics, our conclusions are
limited by some factors. Recordings from finite tissue do not
allow us to grasp the full extent of activation propagation
beyond a few orders of magnitude. In addition, the method
by which we evaluate FFCs from experimental data contains
several steps where estimation error can be introduced (spike
sorting, directed networks, Schur decomposition) and would
benefit from a more streamlined approach. Finally, experiments
do not allow us to selectively manipulate the strength of FFCs
and examine their impact on neuronal activity. To address
this issue, biophysically detailed simulations of neuronal cir-
cuits could investigate how pharmacological treatment alters
the balance of feedforward and feedback excitation in recur-
rent circuits. Moving in that direction, some models show a
link between synaptic strengths and avalanche dynamics (Levina
et al., 2007; Rubinov et al., 2011). It remains unclear, however,
how different rules for synaptic plasticity (e.g., spike timing-
dependent plasticity, STDP) can reshape a circuit and generate
patterns of neural dynamics consistent with a functionally feed-
forward network. While some work suggests that STDP leads

to the natural emergence of feedforward patterns in recurrent
networks (Jun and Jin, 2007; Liu and Buonomano, 2009; Fiete
et al., 2010), other work shows conflicting results (Kunkel et al.,
2011).

In conclusion, our work highlights a systematic rela-
tion between functionally feedforward networks and neuronal
avalanche. Despite limitations imposed by the proposed method
and the nature of the recordings, our results provide empirical
support for a functionally feedforward hypothesis of avalanche
dynamics as a basis for neuronal avalanches. Accordingly, highly
recurrent cortical circuits can propagate activity in a strictly feed-
forward manner, thus showing that a given cortical circuit may
support a broad range of behaviors and respond in a flexible
manner to computational demands.
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