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Learning to form appropriate, task-relevant working memory representations is a complex
process central to cognition. Gating models frame working memory as a collection of
past observations and use reinforcement learning (RL) to solve the problem of when
to update these observations. Investigation of how gating models relate to brain and
behavior remains, however, at an early stage. The current study sought to explore the
ability of simple RL gating models to replicate rule learning behavior in rats. Rats were
trained in a maze-based spatial learning task that required animals to make trial-by-trial
choices contingent upon their previous experience. Using an abstract version of this task,
we tested the ability of two gating algorithms, one based on the Actor-Critic and the
other on the State-Action-Reward-State-Action (SARSA) algorithm, to generate behavior
consistent with the rats’. Both models produced rule-acquisition behavior consistent with
the experimental data, though only the SARSA gating model mirrored faster learning
following rule reversal. We also found that both gating models learned multiple strategies
in solving the initial task, a property which highlights the multi-agent nature of such models
and which is of importance in considering the neural basis of individual differences in
behavior.
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1. INTRODUCTION
Working memory involves the short-term maintenance of task-
relevant information and is essential in the successful guidance
of many behaviors (for review see Baddeley, 2012). However, in
facing a new task requiring working memory, it may not initially
be clear which information needs to be maintained in mem-
ory. Gating architectures (e.g., Braver and Cohen, 1999, 2000;
Rougier et al., 2005; O’Reilly and Frank, 2006) model work-
ing memory as a collection of past observations and assume
that reinforcement learning (RL) shapes useful working mem-
ory representations by solving the problem of when to update vs.
maintain memory elements. Such models have proved capable of
solving challenging memory-based problems such as variants of
the n-back task (O’Reilly and Frank, 2006) while also displaying
learning limitations consistent with working memory limitations
found in humans (Todd et al., 2009). Zilli and Hasselmo (2008)
recently demonstrated how an RL gating model could perform
at above chance level in a range of memory-dependent tasks
from the rat experimental literature, including several maze tasks.
Investigation into the general properties of such models as well
as their ability to speak in detail to real data remains, however, at
an early stage. For example, the evidence for one RL algorithm
rather than another being implemented in the brain is mixed
(Lalonde, 2002; Roesch et al., 2007) and it is likely that different
RL methods yield distinct behaviors in gating models. The aim
of the current work was to investigate in detail the ability of gat-
ing models to match behavioral data by comparing the behavior

of two RL gating models with the learning pattern of rats in a
rule learning task. We show that both gating models produce
behavior consistent with initial rule-acquisition by the animals
but differ in their abilities to replicate faster learning following
rule reversal. Furthermore, we highlight the ability of both gating
models to converge on multiple strategies and relate this property
to multi-agent RL (MARL) systems in general.

2. MATERIALS AND METHODS
2.1. BEHAVIORAL TASK
We employed a maze task (Jones and Wilson, 2005) in which six
(adult, male Long-Evans) rats had to choose between left and
right maze arms based on the direction of an initial guided turn
(Figure 1A). Animals were initially trained to a criterion level
of performance (three sessions of at least 85% of trials correct)
under a “match turn” rule (i.e., if initially forced to turn right
or started at R2, turn right at the choice point, and vice versa;
this is the rule depicted in Figure 1A). The rule was subsequently
switched to the corresponding “non-match turn” rule (i.e., if ini-
tially forced to turn right or started at R2, turn left at the choice
point, and vice versa).

2.2. COMPUTATIONAL MODEL AND ARCHITECTURE
For modeling purposes, we created a highly schematic ver-
sion of the maze task (Figure 1B). The maze is discretized
into a number of distinct locations (boxes, Figure 1A) at
which observations from a feature set O = {left turn, right turn,
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FIGURE 1 | (A) Rule-learning maze task. The animal starts at either R1 or
R2 and is guided down the central arm at the end of which it must
choose to turn left or right. Under the rule depicted here, in order to get a
reward, the animal must choose the same direction at the choice turn as
at the guided turn (in this case, right). Subsequently (not shown), the
animal is guided back to a reward at either R1 or R2 to begin the next
trial, with the starting point selected at random from trial to trial. The five
boxes superimposed on the central arm of the maze represent an example
discretization of the maze in the abstract version of the task presented to
the learning algorithm. Modified from Jahans-Price (unpublished). (B)

Version of task presented to the learning algorithm for the case of N = 5
maze points (corresponding to the discretization in panel A). On each trial,

an initial left or right guided turn observation is followed by a fixed number
of identical “distractor” central-arm observations prior to the final
choice-turn observation. The gating architecture chooses to either update
(U) or maintain (M) its current memory content on each time step and
chooses between left (L) and right (R) turns at the choice turn. Rewards
are zero except at the choice turn where reward is either 0 or 1 depending
on whether the choice is consistent with the current rule. (C) Average
fraction of correct choices per session over all animals (±1 standard
deviation). On each experimental session, rats ran an average of 36 ± 4
trials, with equal numbers of left and right starts in each session. (D)

Mean number of sessions to reach 80% performance (+1 standard
deviation). ** indicates a significant difference at the 1% level.

central arm, choice turn} are given depending on current loca-
tion. The difficulty of the task could be altered by varying the
number of intermediate “central arm” points between the guided
and the choice turns.

Gating architectures model working memory as a collection of
memory elements where past observations may be actively main-
tained to guide ongoing behaviour. RL is assumed to play a role
in shaping useful working memory representations by solving the
problem of when to update vs. maintain memory contents. Such
models can be viewed as comprising two types of agent: one or
more gating agents, each of which has a one-to-one correspon-
dence with a memory elements, and a motor agent. The gating
agents are responsible for choosing to either update or main-
tain the current content of their respective memory elements,
while the motor agent is responsible for overt choices (e.g., direc-
tion of motion within a maze). In the current model, we focus
on the simplest case where only a single observation is permit-
ted to be stored in memory (i.e., one memory element). The
learning problem can be viewed as the simultaneous learning
of distinct motor and memory policies (i.e., state-action map-
pings) by motor and gating agents, respectively (Todd et al.,
2009). As such, gating models can be seen as a MARL systems

(Busoniu et al., 2008) in which motor and gating agents implicitly
attempt to coordinate their behavior so as to maximize reward.
These distinct agents share the same state space but map to dif-
ferent actions: motor actions, which guide physical movement
in the maze, and memory actions, which act on the memory
store. The state space is defined as the product set of possible
observations and memory contents S = O ×M, where in the
current model the set of possible memory contents is defined
as the union of a subset of observations and an “empty state”:
M = {left turn, right turn, central arm} ∪ {empty}. The “choice
turn” observation is not included in M since a trial terminates
immediately after action at the choice turn and so the agent
never enters a state in which memory contains this observation.
The additional “empty” memory state is enforced as the initial
memory state at the beginning of each trial.

RL provides a normative framework for addressing the learn-
ing problem, but leaves considerable freedom as to which specific
methods to employ. In the current work, we compare two dif-
ferent gating algorithms based on two popular RL methods:
Actor-Critic (Barto et al., 1983) and SARSA (Rummery and
Niranjan, 1994). Briefly [see Sutton and Barto (1998) for details]
both of these algorithms attempt to find optimal policies based
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on estimating values (expected returns) using temporal differ-
ence (TD) methods. SARSA estimates the values of state-action
pairs, while the Actor-Critic independently learns and represents
both the values of states (the “critic”) and a separate policy struc-
ture summarizing action preferences in each state (the “actor”).
Since both algorithms have the same overall form, we describe a
single iteration of each algorithm in parallel while highlighting
the differences. The general steps of both gating algorithms are
summarized in Table 1.

On each time step, a motor action a ∈ {go straight, turn left,
turn} is chosen by the motor agent on the basis of state-action
values QM(s, ã), where ã ranges over all possible motor actions
and s denotes the current state. Similarly, a gating action g ∈
{update, maintain} is chosen on each time step by the gating agent
on the basis of state-action values QG(s, g̃). Action selection in
both cases is according to the softmax selection rule so that the
probabilities of selecting particular actions a and g in current state
s are given by

P(s, a) = exp{QM(s, a)/T}
∑

ã
exp{QM(s, ã)/T} (1)

P(s, g) = exp{QG(s, g)/T}
∑

g̃
exp{QG(s, g̃)/T} , (2)

where the exploration or “temperature” parameter T con-
trols the degree of stochasticity in selection such that lower-
ing the T value leads increasingly to deterministic choice of
actions with higher action values whereas increasing T leads
increasingly to indifference between actions. Note that for
the motor agent, the set of possible motor actions Amotor ⊂
{go straight, turn left, turn right} was specified to reflect the
movements of the rats through the maze. Prior to reaching the
choice turn, the only available motor action is to “go straight”
along the central arm (indicated by a dash in Figure 1B) and so
the motor agent simply chooses between turning left or right at
the choice turn.

Having performed motor and gating actions, a reward r ∈
{0, 1} and next state s′ are observed. Rewards for all time steps
were zero except for correct choices made at the choice turn. As
already mentioned, both Actor-Critic and SARSA gating algo-
rithms are based on estimating state and/or state-action values

Table 1 | General steps of the gating algorithms (see text for details).

1 Choose motor action a and gating action g for current state s

according to softmax over relevant action values in QM and QG

(Equations 1, 2)

2 Observe reward r and next state s′

3 Compute TD errors (Equations 3–5)

4 Update specific eligibility traces associated with current state s and

actions a, g (Equations 6–8)

5 Update all state/state-action values (Equations 9–13)

6 Update all eligibility traces (Equations 14–16)

7 Repeat steps 1–6 until termination

via TDs. However, the TD errors computed in each case differ.
For the Actor-Critic version, there is a single TD error δ which is
computed on the basis of successive state values:

δ← r + γV(s′)− V(s), (3)

where γ is the discount rate which is always set to 1 due to
the episodic nature of the task. By contrast, the SARSA gating
algorithm computes two TD errors, δM and δG, based on the
discrepancy between successive state-action values for motor and
gating agents, respectively:

δM ← r + γQM(s′, a′)− QM(s, a) (4)

δG ← r + γQG(s′, g ′)− QG(s, g). (5)

Note that computing the TD errors for the SARSA gating algo-
rithm in Equations (4) and (5) requires that the next actions
a′ and g ′ have already been chosen [again, via Equations (1)
and (2)].

As in previous work (Zilli and Hasselmo, 2008; Todd et al.,
2009), we make use of eligibility traces (Sutton, 1988) which have
been found to be especially useful in partially-observable environ-
ments. Eligibility traces can be interpreted as memories or “tags”
for the occurrence of states or state-action pairs which allow the
values of past states/state-actions to be affected by the current TD
error. The amount that the current TD error affects the value of
a previous state/state-action depends on the current strength of
that state/state-action’s trace. How the strength of a trace decays
over time is controlled by a decay parameter 0 ≤ λ ≤ 1, where
λ = 0 yields decay to zero after a single time step and λ = 1 leads
to no decay. In the current model, all traces are initialized to zero
at the start of each trial. Following calculation of the TD error,
the various eligibility traces associated with the previous state s
and actions a, g are updated to record their recent occurrence.
For both Actor-Critic and SARSA, this involves setting

eM(s, a)← 1 (6)

eG(s, g)← 1, (7)

and for the Actor-Critic, the additional update

eV (s)← 1. (8)

The updating of traces to 1 in this manner corresponds to what
is called a “replacing trace” (Sutton and Barto, 1998). Other types
of eligibility trace can be used [e.g., an “accumulating trace,” see
Sutton and Barto (1998)], but our experimentations with differ-
ent types of trace suggest that results in the current task are not
strongly affected by choice of trace.

All states and/or state-action pairs are now updated in accor-
dance with the TD errors and eligibility trace values. Note that
due to the different TD errors computed in Equations (3–5),
updates differ for SARSA and Actor-Critic. For SARSA, the
updates are

∀s, a : QM(s, a)← QM(s, a)+ αδMeM (9)

∀s, g : QG(s, g)← QG(s, g)+ αδGeG, (10)
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where α is the learning rate, and the agent-specific TD errors
δM and δG are used to update motor and gating state-action val-
ues, respectively. By contrast, the updates for the Actor-Critic all
involve the single TD error δ:

∀s, a : QM(s, a)← QM(s, a)+ αδeM (11)

∀s, g : QG(s, g)← QG(s, g)+ αδeG, (12)

with the additional state value update

∀s : V(s)← V(s)+ αδeV . (13)

The final step of the iteration is to update the eligibility
traces of all states and/or state-action pairs by multiplying with
the eligibility trace decay λ. For both SARSA and Actor-Critic,
one updates

∀s, a : eM(s, a)← γλeM(s, a) (14)

∀s, g : eG(s, g)← γλeG(s, g), (15)

with the additional update for the Actor-Critic

∀s : eV (s)← γλeV (s). (16)

2.3. MODEL FITTING
Model parameters were fit to the pre-reversal rat data only. The
distribution over the number of sessions to criterion performance
(at least 85% of trials correct for three sessions) for the rats was
taken as the target distribution and assumed to be Gaussian (no.
sessions: 17, 19, 20, 21, 22, 25; μ̂ = 20.7, σ̂ 2 = 7.5). The model
has four free parameters: number of maze points N, learning
rate α, exploration rate T, and the eligibility trace decay λ. For a
particular setting of the parameters, a distribution over the num-
ber of sessions to criterion performance was obtained from the
sample mean and variance of 10,000 simulation runs and the
Kullback–Leibler (KL) divergence between the target distribution
and simulation distribution measured. Best-fitting model param-
eters for a given number of maze points N was obtained by mini-
mizing the KL divergence using the Nelder–Mead method (Nelder
and Mead, 1965) [for more precise details, see Bogacz and Cohen
(2004)]. The optimization procedure was carried out several
times with different initial parameter values for a given N to avoid
problems with local minima. For different values of N, the param-
eters associated with the lowest KL divergence were recorded.

3. RESULTS
3.1. BEHAVIORAL DATA
Six adult rats were trained in a rule-learning maze task (Jones and
Wilson, 2005) running an average of 36 (±4) trials per session
in which they had to choose between left and right maze arms
based on the direction of an initial guided turn (Figure 1A). The
average learning curve consists of an initial “pre-reversal” curve
(sessions 1–25), showing learning under the match-to-turn rule,
and a “post-reversal” curve (sessions 26–37), reflecting learning
under the non-match-to-turn rule (Figure 1C). Each rat took at
least 17 sessions (≈612 trials) to reach criterion performance on

the initial match rule. All rats learned more quickly in the post-
reversal phase, taking fewer sessions to reach the same level of
performance [t(5) = 8.5, p < 0.01; Figure 1D].

3.2. RULE ACQUISITION IS REPRODUCED IN GATING MODELS
Two RL gating algorithms, one based on Actor-Critic meth-
ods (Barto et al., 1983) and the other on SARSA (Rummery
and Niranjan, 1994), were given an abstract version of the rule-
learning maze task (Figure 1B) and parameters fit to a subset
of the rat behavioral data (see “Materials and Methods”). Both
gating models yielded reasonable fits to the pre-reversal data
(Figures 2A,D) though the Actor-Critic version showed learn-
ing more closely resembling that of the rats in terms of average
trend and level of variability. In both cases, quality of fit showed
a dependence on the number of central arm (“distractor”) obser-
vations N between guided and choice turns (Figures 2B,E). This
dependence on N is due to different possible rates of performance
improvement for different values of N such that small values lead
to improvements which are too fast while large values lead to
improvements that are too slow compared to the rats’ learning
(Figures 2C,F).

3.3. GATING MODELS GENERATE DIFFERENT STRATEGIES
Both Actor-Critic and SARSA gating algorithms found multiple
solutions to the pre-reversal task despite their parameters being
fixed to best-fit values (Figure 5C). In what we call a “remem-
ber both” strategy (Figure 3, left), the algorithm learns to update
and maintain memory with the initial guided turn observation,
whether left or right. This is reflected in the memory content
at the choice point gradually changing from being mostly the
“central arm” observation to being almost entirely the initial
“left turn” or “right turn” observations by the end of acquisition
(Figure 3B, left). It is also reflected by the increasing probabil-
ity over sessions of loading the initial observation into memory,
P(update|·), and the probability of maintaining that initial obser-
vation if loaded, P(maintain|·) (Figure 3C, left). As expected,
the motor agent learns to choose the left arm when the initial
“left turn” observation is present in memory, and the right arm
when the initial “right turn” observation is present in memory
(Figure 3D, left). The “remember both” strategy is also reflected
in the pattern of learned action values (Figure 4A).

By contrast, a “remember one” strategy only remembers the
initial observation for either a left or right guided turn (Figure 3,
right, and Figure 4B). Thus, the probability of memory contain-
ing the initial turn will only increase over time for one of the
initial turn directions, for example a “right turn” (Figure 3B,
right). In the specific example shown, while the probability of
loading an initial “left turn” observation increases, the probability
of maintaining such an observation in memory actually decreases
(Figure 3C, right). This strategy is viable because having the “cen-
tral arm” observation in memory at the choice point is strongly
indicative of having initially observed a left guided turn, and the
motor agent learns to respond accordingly (Figure 3D, right).

For both SARSA and Actor-Critic gating algorithms, the
“remember one” strategy was more common, occurring on
approximately 70% and 80% of simulation runs, respectively
(Figure 5D). The relative frequencies of different kinds of strategy
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FIGURE 2 | (A) Best-fit average learning curve (10,000 simulation runs)
during the pre-reversal phase for Actor-Critic gating algorithm (N = 4,
α = 0.14, T = 1.38, and λ = 0.93) compared with average animal learning
curve (±1 standard deviation). Shading indicates ±1 standard deviation for
simulations. (B) Minimum KL divergences for Actor-Critic for different
values of N (10 runs of optimization algorithm for each N). (C) Average
learning curves (10,000 simulation runs) for Actor-Critic corresponding to

best-fit parameters found for different values of N. (D) Best-fit average
learning curve (10,000 simulation runs) during the pre-reversal phase for
SARSA gating algorithm (N = 5, α = 0.31, T = 0.13, and λ = 0.03). (E)

Minimum KL divergences for SARSA for different values of N (10 runs of
optimization algorithm for each N). (F) Average learning curves (10,000
simulation runs) for SARSA corresponding to best-fit parameters found for
different values of N.

were found by running fitted models 100 times and classifying the
resultant strategy as either “remember both” or “remember one”
on the basis of the proportion of final-session trials in which the
direction of the initial guided turn was in memory at the choice
point. In particular, a threshold was used: if the proportion of left
guided trials with “left turn” in memory at the choice point was
above two-thirds, this counted as a “remember left” strategy, and
vice versa; if proportions for both “left turn” and “right turn” were
above threshold, this was counted as “remember both”; finally, if
the threshold was not reached for either “left turn” or “right turn”
trials, the classification was “other.”

3.4. ACTOR-CRITIC AND SARSA DIFFER IN MODELING TRANSFER OF
LEARNING

Unlike the rats, the Actor-Critic gating architecture did not show
positive transfer of learning with performance dropping well
below chance following reversal (Figure 5A) and the mean num-
ber of sessions required to reach criterion performance being
approximately equal for pre- and post-reversal learning phases
(Figure 5B, “AC”). In contrast, the performance of the SARSA
gating algorithm fell to chance level following rule reversal and
learning proceeded faster for the reversed rule (Figures 5A,B)
in accordance with the experimental data, though the compar-
atively shallow slope of the SARSA average learning curve over

the post-reversal period reflects a difference in individual learning
curve variability compared to the rats. In particular, a substantial
number of SARSA simulation runs take longer than 12 sessions to
reach the post-reversal criterion, the greatest number of sessions
required by the rats (Figure 5C).

Examining the course of learning during the post-reversal
phase clarifies the distinct behaviors of the two algorithms. With
SARSA, the memory policy learned during the pre-reversal phase
is maintained as the motor policy rapidly adapts (Figure 6A).
By contrast, with the Actor-Critic, the motor policy adapts on a
much slower time scale and the action values for the gating agent
are destabilized (Figure 6B). It can be seen that the action val-
ues of the Actor-Critic gating algorithm, unlike those for SARSA,
are not bounded between 0 and 1 (c.f. Bogacz and Larsen, 2011).
Thus, the amount by which the motor action values need to adapt
in order to produce a reversal is greater than if they were bounded
to the 0–1 interval. This fact is related to the absence of positive
transfer, confirmed by modifying the Actor-Critic so that action
values are bounded between 0 and 1. In this restricted version,
positive transfer is also observed (Figure 5B, “AC-R”).

4. DISCUSSION
The current study explored the ability of simple RL gating mod-
els, one based on the Actor-Critic and the other on SARSA, to
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FIGURE 3 | Examples of “remember both” (left) and “remember one”

(right) strategies learned by the Actor-Critic gating model. (A) Fraction of
trials correct per session (40 trials per session). (B) Probability over sessions of
the different possible memory contents at the choice point. Note that since,
on average, 50% of trials begin with “left turn” observations and the other
50% with “right turn” observations, the maximum proportion of a session’s
trials that either of these observations can be in memory at the choice point is
roughly 50%. The qualification “roughly” is due to our selecting of initial

observations at random rather than strictly enforcing a 50–50 within a session,
in contrast to the experimental procedure for the animals. (C) Probability over
sessions of updating or maintaining memory conditional on observing the
initial guided turn or having this feature already in memory. Probabilities
are derived directly from the action values at the end of each session.
(D) Probability over sessions of choosing to turn left at the choice point as a
function of the different possible memory contents. Again, probabilities are
derived directly from the action values at the end of each session.

Frontiers in Computational Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 87 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lloyd et al. Gating model of rule acquisition

A

B

Motor Agent Gating Agent

Observation  Memory  

 
 +  -  

 
 +  -  

  -  +  

  -  +  

Observation  Memory Q(     ) Q(     ) 

  +  -  

  -  +  

  +  -  

 
 +  -  

Observation  Memory Q(     ) Q(     ) 

  +  -  

  -  +  

  -  +  

 
 +  -  

Observation  Memory Q(Update)

Q(Update)

Q(Maintain)

Q(Maintain)

 

 
 -  +  

 
 +  -  

  -  +  

  -  +  

-

+

FIGURE 4 | Two examples of (partial) action-value tables resulting from

the pre-reversal phase of learning in the Actor-Critic gating algorithm

with best-fit parameters. For clarity, only the signs of the learned values,
positive or negative, are displayed. At the beginning of each trial, the memory
is empty (denoted by a dash). (A) “Remember both” strategy. The gating
agent (right) favors loading/updating the initial observation of right or left
guided turn as indicated by positive values for this action (first two rows,

circled). During the central arm section of the maze, maintaining the initial
observed turn in memory is favored (last two rows). (B) “Remember one”
strategy. The gating agent (right) favors loading/updating only one of the initial
observations (in this case, guided right turn; circled), remaining empty in the
other case. In both examples, the motor agent (left tables) tends to choose
(correctly) to turn left or right when the left and right guided turn observations
are in memory, respectively.
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FIGURE 5 | (A) Comparison of average learning curves for both pre- and
post-reversal phases: animals (blue), Actor-Critic (red, long dash), and
SARSA (green, short dash). Simulated learning curves are obtained by
averaging over 10,000 runs with parameters fitted only on the pre-reversal
data. (B) Mean number of sessions to reach criterion performance (80% of
trials correct in a session) pre-reversal (black) and post-reversal (white).
Error bars indicate one standard deviation. “AC” (Actor-Critic). ∗∗ indicates a
significant difference in the number of pre- and post-reversal sessions at
the 1% level. (C) Box plots showing distributions of number of sessions

required to reach post-reversal criterion. For each box, the central red mark
indicates the median, and the lower and upper edges indicate the lower
and upper quartiles (i.e., 25th and 75th percentiles), respectively. Whiskers
extend to the lowest and highest data points that fall within 1.5 IQR of the
lower and upper quartiles, respectively. Outliers marked as black dots.
(D) Percentage of strategy types learned by the Actor-Critic and SARSA
gating models. Each algorithm was run 100 times, and classification of
strategy type was on the basis of the action values on reaching criterion
for the pre-reversal phase.
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FIGURE 6 | Examples of trial-by-trial changes in action values of the memory agent (left graphs) and motor agent (right graphs) during the

post-reversal phase. (A) SARSA gating algorithm. (B) Actor-Critic gating algorithm.

replicate rule learning behavior in rats. Rats were trained in a
maze-based spatial learning task that required animals to make
trial-by-trial choices based on previous experience. Parameter-
fitting of Actor-Critic and SARSA gating algorithms to a subset
of the behavioral data produced rule-acquisition behavior consis-
tent with the experimental data for both algorithms. Surprisingly,
the SARSA gating model mirrored the faster learning of the rats
following rule reversal, an effect also generated by a modified
version of the Actor-Critic. Furthermore, both gating models
learned multiple strategies in solving the initial task, a property
which highlights the multi-agent nature of such models. In the
remainder, we discuss the implications of each of these findings
in more detail.

4.1. TASK DIFFICULTY AND THE RATE OF LEARNING
During the pre-reversal phase, animals took over 600 trials to
reach criterion performance. This apparent difficulty in learning
the task was consistent with the behavior of RL gating models
faced with the problem of simultaneously learning valid motor
and gating policies. Reproducing the rats’ pre-reversal behavior
depended on varying the number of “distractor” observations

N between the initial guided turn observation and the choice
turn in the model task. N affects the probability of maintaining
the initial observation in memory: as N increases, this proba-
bility decreases geometrically and it becomes less likely for the
initial observation to be in memory, and therefore increasingly
difficult to learn a valid policy. Increasing the number of mem-
ory elements beyond some small number does not necessarily
overcome this difficulty due to the size of the state space scaling
exponentially with the number of such elements, making value-
learning increasingly difficult (Todd et al., 2009). Although it is
not possible to categorically equate the parameter N to task or
psychological variables, the most natural interpretation of N is
as an effective baseline forgetting rate which may be reflected in
limitations of the rats’ working memory for at least some types
of information (Baird et al., 2004; Futter and Aggleton, 2006).
“Baseline” denotes that the probability of replacing an item in
working memory is determined not only by the number of mem-
ory actions required in a trial but also by the current action values
which change over time. N may also be interpretable in relation
to the difficulty of inferring which features of the task are relevant
to predicting reward (Restle, 1957). However, other factors are
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likely to have contributed to the difficulty of the task for the ani-
mals which we have not explicitly modeled here. For example, rats
have a well known natural propensity to spontaneously alternate
their choices (Lalonde, 2002) which would clearly interfere with
learning the current task.

4.2. TRANSFER OF LEARNING
Positive transfer of learning was illustrated by the animals taking
fewer trials to reach criterion performance when the original rule
was reversed. Whilst the Actor-Critic gating algorithm failed to
show positive transfer, the success of the SARSA gating algorithm
(and a modified Actor-Critic) in replicating this effect appeared
to rely on the stability of the memory policy. This memory policy
stability contrasts with the rapid adaptation of the motor policy at
the choice turn, an effect ultimately explained by differences in the
time scales of learning in relation to the structure of the maze task.
The motor actions immediately precede the binary-valued reward
of each trial, whereas most of the memory actions take place
earlier in the trial (memory actions are also taken at the choice
point but are unrelated to reward). This means that the motor
agent eligibility traces are generally larger at this point during the
task (unless there is no eligibility trace decay, i.e., λ = 1; for the
SARSA gating algorithm, the best-fit trace decay was λ = 0.03,
a very rapid decay). When the experimental rule is reversed, the
TD errors arising at the end of the trial therefore drive greatest
changes in the motor agent action values. If the motor policy
adjusts sufficiently quickly, the memory policy will be minimally
disrupted. Positive transfer therefore arises due to the different
timescales of learning of the motor and gating agents. Support for
this explanation was obtained by fitting the SARSA gating algo-
rithm to the pre-reversal data while restricting the eligibility trace
decay to be λ = 1 (i.e., no eligibility trace decay within a trial). In
this case, no positive transfer was obtained (Figure 5B, “SARSA-
R”). It should be highlighted that these different timescales arise
not because of differences in parameterization of the motor and
gating agents (the learning rate parameter was the same for both),
but as an “emergent effect” of the workings of the algorithm and
structure of the task.

We should not expect such emergent effects to be useful in
general. The basic gating architecture shares with other simple
model-free RL algorithms the serious limitation of being unable
to store multiple policies/rules since only one value function is
learned over time. This means that the same set of values are
updated continuously as tasks change, leading to maladaptive for-
getting in environments where it would clearly be advantageous
to recall previously-learned task knowledge when the same or
similar tasks arise. For example, in serial reversal learning, while
animals show increasingly rapid switching of behavior when
faced with multiple reversals of reinforcement contingencies [up
to perfect switching between rules following a single trial, e.g.,
Dufort et al. (1954)], such behavior cannot be produced by the
models considered here. Recently, Dayan (2007, 2008) has pro-
posed a uniform gating architecture which is able to instantiate
different rules depending on an associative rule-retrieval and
rule-matching process. This more flexible system raises issues of
how to match rules, when to form new rules, how to transfer
knowledge between rules, and other issues beyond the scope of

the current discussion, but Dayan’s proposals clearly provide a
promising framework for future work.

4.3. MIXED STRATEGIES: INDIVIDUAL BIASES AND MULTI-AGENT
LEARNING

Both Actor-Critic and SARSA gating algorithms learned differ-
ent viable memory strategies for learning to behave consistently
with the original task rule, with a “remember one” gating strat-
egy being more commonly learned in both cases (Figure 5C).
The prevalence of this gating strategy as a learning outcome can
partly be explained by there being two viable “remember one”
strategies and only one possible “remember both” strategy that
can solve the task. It is well known that rats can make use of
different information, such as allocentric vs. egocentric (Restle,
1957) and retrospective vs. prospective (e.g., Ferbinteanu and
Shapiro, 2003), in solving maze tasks, which we did not control
for in our experiments. However, the models’ learning of multiple
strategies suggests a further possible source of variability, namely
differences in how such information is used to guide action.
This possibility is relevant to studies of neuronal mechanisms
underlying learning in such tasks. More generally, the learning
behavior of the algorithms highlights the nature of MARL algo-
rithms (Busoniu et al., 2008). We presented the gating algorithms
as comprising multiple RL agents, implicitly attempting to coor-
dinate their actions so as to maximize reward. This multi-agent
perspective immediately brings into consideration key issues in
the MARL field such as the stability of agents’ learning dynam-
ics and the adaptation of each agent’s behavior to the changing
behavior of other agents. From this perspective, the existence of
multiple behavioral equilibria in a multi-agent system, exempli-
fied by the learning of different possible strategies in the present
case, is not unexpected. However, these issues have not been
sufficiently considered in relation to the gating framework.

5. CONCLUDING REMARKS
The development of gating models able to accurately recapitu-
late learning behaviors is an important prerequisite to using the
gating framework to provide insight into the neural structures
and mechanisms that support cognitive processing. The present
work takes steps in this direction by testing the ability of such
models to speak to behavioral data in a detailed manner. In
doing so, we highlighted non-trivial properties of gating models
such as their convergence to different solutions and differences of
behavior resulting from alternative choices of learning algorithm.
With regard to the latter, our results suggest the use of SARSA
or modified Actor-Critic in reproducing faster learning following
rule reversal in simple gating models. More generally, our results
suggest that choice of RL algorithm is an important considera-
tion in the use of gating models, making the question of which
algorithms are biologically instantiated all the more pressing. The
approach is therefore likely to prove particularly important when
applied to tasks readily combined with the monitoring of neural
network activity, including maze-based tasks in rodents of the sort
considered here.

Turning to questions of biological implementation, most mod-
els of working memory assume implementation by ensembles of
neurons able to stably maintain a pattern of activity over time

Frontiers in Computational Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 87 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lloyd et al. Gating model of rule acquisition

(e.g., Wang, 1999). In their model of working memory based on
the prefrontal cortex and basal ganglia, O’Reilly and Frank (2006)
propose a neural implementation of an Actor-Critic algorithm in
which patterns are maintained in the prefrontal cortex under the
control of the basal ganglia, where the latter (along with the mid-
brain and amygdala) learns both which prefrontal representations
are relevant (critic) and a gating policy controlling working mem-
ory updating (actor). Relating to the present study, neurons in the
hippocampus and medial prefrontal cortex of rats trained in the
current task tend to fire at higher rates in the central arm depend-
ing on the direction of the initial guided turn (Jones and Wilson,
2005). However, these neurons did not fire uniformly throughout
the central arm but rather showed preference for certain central
arm locations. Relatedly, Harvey et al. (2012) found that distinct

sequences of posterior parietal cortex neurons were triggered
depending on behavioral choice when mice were presented with
a similar memory-based task in a virtual environment. Such find-
ings suggest that working memory in maze tasks may be encoded
in sequence-based circuit dynamics rather than long duration sta-
ble states. Extending the current model to explicitly encode spatial
position will therefore be crucial to relating model behavior to
neuroscientific findings.
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