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We analyze the effects of extrinsic noise on traveling pulses in a neural field model
of direction selectivity. The model consists of a one-dimensional scalar neural field
with an asymmetric weight distribution consisting of an offset Mexican hat function.
We first show how, in the absence of any noise, the system supports spontaneously
propagating traveling pulses that can lock to externally moving stimuli. Using a
separation of time-scales and perturbation methods previously developed for stochastic
reaction-diffusion equations, we then show how extrinsic noise in the activity variables
leads to a diffusive-like displacement (wandering) of the wave from its uniformly translating
position at long time-scales, and fluctuations in the wave profile around its instantaneous
position at short time-scales. In the case of freely propagating pulses, the wandering is
characterized by pure Brownian motion, whereas in the case of stimulus-locked pulses, it
is given by an Ornstein–Uhlenbeck process. This establishes that stimulus-locked pulses
are more robust to noise.
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INTRODUCTION
Continuum neural field models represent the large-scale dynam-
ics of spatially structured networks of neurons in terms of non-
linear integro-differential equations, whose associated integral
kernels represent the spatial distribution of neuronal synaptic
connections (Wilson and Cowan, 1972, 1973; Amari, 1977). As
in the case of non-linear partial differential equation (PDE)
models of diffusively coupled excitable systems (Keener, 1981;
Kuramoto, 1984), non-local neural fields can exhibit a diverse
range of spatiotemporal dynamics, including solitary traveling
fronts and pulses, stationary pulses, and spatially localized oscil-
lations (breathers), spiral waves, and Turing-like patterns. See,
for example, the reviews Ermentrout (1998), Coombes (2005),
and Bressloff (2012). In recent years, neural fields have been used
to model a wide range of neurobiological phenomena, includ-
ing wave propagation in cortical slices (Pinto and Ermentrout,
2001; Richardson et al., 2005) and in vivo (Huang et al., 2004),
geometric visual hallucinations (Ermentrout and Cowan, 1979;
Bressloff et al., 2001), EEG rhythms (Nunez, 1995; Robinson
et al., 2001; Liley et al., 2002; Steyn-Ross et al., 2003), orien-
tation tuning in primary visual cortex (V1) (Ben-Yishai et al.,
1995; Somers et al., 1995), short term working memory (Camperi
and Wang, 1998; Laing and Chow, 2002), control of head direc-
tion (Zhang, 1996), direction selectivity (Xie and Giese, 2002),
motion perception (Giese, 1999), and binocular rivalry waves
(Bressloff and Webber, 2012a). One particularly useful feature of
neural fields is that analytical techniques for solving these integro-
differential equations can be adapted from previous studies of
non-linear PDEs. These include regular and singular perturbation
methods, weakly non-linear analysis and pattern formation, sym-
metric bifurcation theory, Evans functions and wave stability, and

homogenization theory (Bressloff, 2012). In particular, we have
recently shown how perturbation methods for studying fluctuat-
ing fronts in reaction-diffusion PDEs (Schimansky-Geier et al.,
1983; de Pasquale et al., 1992; Armero et al., 1998; Sagues et al.,
2007) can be extended to the problem of front propagation in
stochastic neural fields (Bressloff and Webber, 2012b), and have
used this to investigate the effects of noise on binocular rivalry
waves (Webber and Bressloff, submitted). Such methods exploit
a separation of time-scales in which there is a diffusive-like dis-
placement (wandering) of the front from its uniformly translating
position at long time-scales, and fluctuations in the front profile
around its instantaneous position at short time-scales.

In this paper, we extend our theory of wave propagation in
stochastic neural fields to the case of a neural field that supports
traveling pulses rather than fronts. A typical mechanism for gen-
erating traveling pulses in an excitatory network is to include
some form of slow adaptation, such as spike frequency adapta-
tion (Pinto and Ermentrout, 2001; Coombes and Owen, 2005)
or synaptic depression (Kilpatrick and Bressloff, 2010a,b), which
suppresses the trailing edge of the wave. One of the motivations
for considering excitatory neural fields is that traveling pulses
are observed in in vitro cortical slices that have been disinhib-
ited. Here we consider an alternative mechanism for generating
pulses, based on asymmetric excitatory/inhibitory synaptic con-
nections. Such a network architecture supports freely propagating
pulses without any adaptation, and has been proposed as a sim-
ple recurrent mechanism for generating direction selectivity in
a network driven by moving stimuli (Mineiro and Zipser, 1998;
Xie and Giese, 2002). Most classical models for the direction
selectivity of cortical neurons are based on feedforward mecha-
nisms, namely, the linear or non-linear spatiotemporal filtering
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of afferent thalamo-cortical inputs (Reichardt, 1961; Adelson and
Bergen, 1985; Koch and Poggio, 1985; van Santen and Sperling,
1985). Some of these models also involve a combination of lagged
(time-delayed) and non-lagged inputs (Saul and Humphrey,
1990; Baker and Bair, 2012). However, there is now considerable
experimental data demonstrating that the response of cortical
cells is strongly influenced by intracortical circuitry. This has
motivated a number of modeling studies that show how direction
selectivity can be reproduced by recurrent neural network mod-
els with asymmetric lateral excitatory or inhibitory connections
and non-direction-selective inputs (Suarez et al., 1995; Maex and
Urban, 1996; Mineiro and Zipser, 1998; Xie and Giese, 2002).
In this paper, we base our investigation of stochastic traveling
pulses on the particular version introduced by Xie and Giese
(2002).

The main results of the paper are as follows. We first analyze
freely propagating pulses and stimulus-locked pulses in the deter-
ministic case, expanding the analysis of Xie and Giese (2002).
In particular, we construct a stability diagram showing the exis-
tence and stability of stimulus-locked pulses as a function of
stimulus velocity and amplitude. We then turn to a correspond-
ing stochastic version of the model. We show how extrinsic
noise in the activity variable leads to a diffusive-like displace-
ment (wandering) of the wave from its uniformly translating
position at long time-scales, and fluctuations in the wave pro-
file around its instantaneous position at short time-scales. In
the case of freely propagating pulses, the wandering is char-
acterized by pure Brownian motion, whereas in the case of
stimulus-locked pulses, it is given by an Ornstein–Uhlenbeck
process. This establishes that stimulus-locked pulses are more
robust to noise. One major difference between pulses and fronts
is that, in principle, noise could significantly affect both the
location (center-of-mass) and width of the pulse. We find that
fluctuations in the width can be neglected in the case of freely
propagating pulses, whereas the saturation of the mean-square
displacement of the center-of-mass of the pulse for stimulus-
locked pulses means that fluctuations in pulse width can no
longer be ignored.

MATERIALS AND METHODS
NEURAL FIELD MODEL OF DIRECTION SELECTIVITY
In this paper we consider a scalar neural field equation of the form

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x − x′)F(u(x′, t))dx′ + h(x, t)

(1)

Here u(x, t) is a measure of activity (current or voltage) within
a local population of excitatory and inhibitory neurons at posi-
tion x ∈ R and time t, τ is a membrane time constant (of order
10 msec), w(x) denotes the spatial distribution of synaptic con-
nections between local populations, F(u) is a non-linear firing
rate function and h(x, t) is an external input. (We fix the time-
scale by setting τ = 1). F is usually taken to be a sigmoid function

F(u) = 1

1 + e−γ(u−κ)
(2)

with gain γ and threshold κ. In the high-gain limit γ → ∞, this
reduces to the Heaviside function

F(u) → H(u − κ) =
{

1 if u > κ

0 if u ≤ κ.
(3)

The function w(x − x′) represents the distribution of synap-
tic weights from the local population at x′ to the population
at x. Usually, w is taken to be a symmetric or even function
such that w(x) = w(−x). A common choice for the weight dis-
tribution is a “Mexican hat” function, with a center excitatory
region surrounded by flanking inhibitory regions. As originally
shown by Amari (1977), symmetric Mexican hat functions tend
to support stationary activity “bumps.” Following Xie and Giese
(2002), however, we will use an asymmetric Mexican hat function
whose maximum is offset by an amount x0, that is w(x − x0) =
w(−[x − x0]); the resulting neural field then supports freely prop-
agating pulses that depend on the degree of offset. Note that such
a choice should be contrasted with a symmetric function w with
peaks offset from zero see e.g., (Hutt and Atay, 2005). In the case
of exponential functions, w takes the form (see Figure 1)

w(x) = aee−σe|x−x0| − aie
−σi|x−x0|, (4)

where ae > ai and σe > σi. Setting x0 = 0 recovers the standard
Mexican hat function. Note that one could equally use other
functions such as a difference-of-Gaussians without changing the
main results of the paper; the advantage of exponentials is that
one can carry out explicit calculations.

Finally, the external input h(x, t) consists of two components:

h(x, t) = I(x − vt) + √
εg(u(x, t))ξ(x, t). (5)

Here I(x − vt) represents an external pulse-like stimulus moving
with constant speed v and amplitude I0, whereas the second term
represents an extrinsic, multiplicative noise source. In particu-
lar, ξ(x, t) is a Gaussian process with zero mean and two-point
correlations

〈η(x, t)η(x′, t′)〉 = 2C(|x − x′|/λ)δ(t − t′). (6)
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FIGURE 1 | Plot of weight distribution for various values of the shift x0.

Here ae = 5, ai = 1, σe = 0.42, and σi = 0.1.
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Thus the noise is white in time and colored in space with corre-
lation length λ. Formally speaking, η(x, t)dt = dW(x, t) where
dW(x, t) is a corresponding Wiener process.The amplitude of
the noise is determined by the parameter ε, and the function
g(u) incorporates any activity-dependence. Note that (Xie and
Giese, 2002) only considered the deterministic case (ε = 0). They
showed how the deterministic neural field supports freely propa-
gating pulses of fixed speed c when I0 = 0. This then provides a
mechanism for direction selectivity, since these pulses can lock to
a moving stimulus of speed v provided that |c − v| is sufficiently
small; the range of locking depends on the amplitude I0. In this
paper, we develop a more systematic analysis of stimulus-locking
in the absence of noise, and then investigate the effects of noise on
both freely propagating and stimulus-locked pulses.

RESULTS
DETERMINSTIC NEURAL FIELD
We begin by analyzing traveling pulse solutions of the neural field
Equation (1) in the absence of noise (ε = 0). Following the origi-
nal formulation of Amari (1977), we investigate the existence and
stability of traveling pulses by setting the firing rate function to be
the Heaviside (Equation 3).

Freely propagating pulses
For the moment, suppose that there are no external inputs so
that h(x, t) = 0 in Equation (1). A traveling pulse of velocity c is
then defined according to u(x, t) = U(ξ), with ξ = x − ct a trav-
eling wave coordinate such that limξ→±∞ U(ξ) = 0. Moreover,
the wave profile is restricted to be super threshold in a con-
nected interval of width d. Since the neural field is equivariant
with respect to uniform translations (in the absence of external
stimuli), we choose the two threshold crossing points to be

U(0) = κ, U(d) = κ. (7)

Thus, U(ξ) > κ for 0 < ξ < d, U(ξ) < κ for ξ < 0, and ξ > d. It
turns out the wave travels in the same direction as the offset so we
restrict ourselves to the case x0 > 0 and c > 0. Substituting the
traveling pulse solution into Equation (1) gives

−c
∂U(ξ)

∂ξ
= −U(ξ) +

∫ d

0
w(ξ − ξ′)dξ′ (8)

Multiplying both sides by e−ξ/c and integrating gives the follow-
ing equation for the wave solution:

U(ξ) = eξ/c

c

∫ ∞

ξ

W(ξ′)e−ξ′/c dξ′, (9)

where

W(ξ) ≡
∫ ξ

ξ−d
w(x) dx.

It is convenient to express the weight function in piecewise form
as follows:

w(x) =
{

aee−σe(x−x0) − aie−σi(x−x0) ≡ w1(x), if x ≥ x0

aeeσe(x−x0) − aieσi(x−x0) ≡ w2(x), if x ≤ x0
(10)

We then obtain a piecewise expression for W(ξ) of the form

W(ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W3(ξ) ≡ ∫ ξ

ξ−dw2(x) dx, if ξ ≤ x0

W2(ξ) ≡ ∫ x0
ξ−dw2(x) dx

+ ∫ ξ

x0
w1(x) dx, if x0 ≤ ξ ≤ x0 + d

W1(ξ) ≡ ∫ ξ

ξ−dw1(x) dx, if ξ ≥ x0 + d

(11)

We then have

U(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
c eξ/c(M3(ξ) + M1(x0 + d)

+M2(x0)), if ξ ≤ x0
1
c eξ/c (M2(ξ) + M1(x0 + d)) , if x0 ≤ ξ ≤ x0 + d
1
c eξ/cM1(ξ), if ξ ≥ x0 + d

.

where

Mn(ξ) =
∫ ξn

ξ

Wn(ξ
′)e−ξ′/cdξ′ (12)

with ξ1 = ∞, ξ2 = x0 + d and ξ3 = x0.
Having obtained the piecewise wave profile U(ξ), the thresh-

old conditions (Equation 7) can now be used to determine the
pulse speed c and width d; the resulting transcendental equa-
tions have to be solved numerically. Figure 2 shows solutions
for the pulse speed and width as functions of the threshold. It
turns out that the solution with slower speed (and larger width)
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FIGURE 2 | (A) Plots of pulse speed c and (B) pulse width d as a function
of the threshold κ. Weight parameters are as in Figure 1 with offset x0 = 3.
Stable (unstable) branches are indicated by black (gray) curves.
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is stable (see below). This differs from traveling pulse solutions
found in adaptive neural fields, where the faster wave (with larger
width) tends to be stable (Pinto and Ermentrout, 2001; Kilpatrick
and Bressloff, 2010a). Figure 3A shows a typical pulse waveform
and Figure 3B shows a numerical simulation of the neural field
Equation (1) using the wave solution as the initial condition. The
pulse propagates at the predicted speed without changing shape
significantly. This occurs because the parameters were chosen to
make the pulse solution linearly stable.

Stability
In order to determine the linear stability of a traveling pulse solu-
tion U(ξ) in the moving frame, we linearize Equation (1) with
h(x, t) = 0 by setting

U(ξ, t) = U(ξ) + ϕ(ξ, t),

and Taylor expanding to first order in ϕ. This gives

∂ϕ(ξ, t)

∂t
= c

∂ϕ(ξ, t)

∂ξ
− ϕ(ξ, t) +

∫ ∞

−∞
w(ξ − y)

× F′(U(y))ϕ(y, t) dy. (13)
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FIGURE 3 | (A) Plot of traveling wave profile U(ξ) obtained analytically.
Same parameters as Figure 2 for threshold κ = 4. (B) Spacetime plot of a
traveling pulse using the profile of (A) as the initial condition. High (low)
activity indicated by light (gray).

In the case of the Heaviside rate function (Equation 3), we have

F′(U(ξ)) = δ(ξ)

|U ′(0)| + δ(ξ − d)

|U ′(d)| . (14)

Moreover, differentiating Equation (9) with respect to ξ shows
that

U ′(ξ) = 1

c
(U(ξ) − W(ξ)).

Substituting the previous two results into Equation (13) gives

∂ϕ(ξ, t)

∂t
= Lϕ(ξ, t) (15)

≡ c
∂ϕ(ξ, t)

∂ξ
− ϕ(ξ, t) + cϕ(0, t)

|κ − W(0)|w(ξ)

+ cϕ(d, t)

|κ − W(d)|w(ξ − d).

where κ is the threshold. Looking for solutions of the form

ϕ(ξ, t) = eλtϕ(ξ). (16)

then leads to the spectral problem

Lϕ(ξ, t) = λϕ(ξ, t). (17)

We take the linear operator L to act on a Banach space B
of continuous, bounded functions ψ(ξ) that are defined for ξ ∈
R, and that decay exponentially as ξ → ±∞. Let σ(L) denote
the spectrum of the linear operator L, and define the associ-
ated resolvent operator according to Rλ ≡ (L − λI)−1, where I
is the identity operator. The spectrum can be defined as those
values of λ for which Tλ ≡ L − λI is not bijective. The spec-
trum is composed of three disjoint sets, the point or discrete
spectrum, the residual spectrum, and the continuous spectrum.
The point spectrum is defined as the values of λ (eigenvalues)
for which the resolvent does not exist. The residual spectrum
are the spectral values for which the resolvent exists but is not
defined on a dense subset of B. The continuous spectrum are
the spectral values for which the resolvent exists and is densely
defined but is unbounded (Kreyszig, 1978). Given these defi-
nitions, the traveling pulse is said to be linearly stable if (1)
Re(λ) < 0 for all λ ∈ σ(L),λ �= 0 and (2) the zero eigenvalue
is simple. The existence of a zero eigenvalue with correspond-
ing eigenfunction ϕ(ξ, t) = U ′(ξ) reflects translation invariance,
and immediately follows from differentiating (Equation 9) with
respect to ξ.

We first consider the discrete spectrum by solving the eigen-
value equation

dψ(ξ)

dξ
− λ + 1

c
ψ(ξ) + K0ψ(0)w(ξ) + Kdψ(d)w(ξ − d) = 0,

where we have introduced the constants

K0 = 1

|κ − W(0)| and Kd = 1

|κ − W(d)| .
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Multiplying both sides by e−(λ+1)ξ/c and integrating gives

ψ(ξ) = K0ψ(0)

∫ ∞

ξ

w(y)e(λ+1)(ξ−y)/c dy

+ Kdψ(d)

∫ ∞

ξ−d
w(y)e(λ+1)(ξ−d−y)/c dy,

which can be rewritten in the more compact form

ψ(ξ) = K0ψ(0)(w × Pλ)(ξ) + Kdψ(d)(w × Pλ)(ξ − d) (18)

with

(w × Pλ)(ξ) =
∫ ∞

−∞
w(y)Pλ(ξ − y) dy, Pλ(ξ) = H(−ξ)e(λ+1)ξ/c

(19)
The eigenvalues are now determined by imposing self-consistency
at ξ = 0 and ξ = d. Setting ξ = 0 and ξ = d in Equation (18)
leads to the vector equation⎡⎣ K0(w × Pλ)(0) − 1 Kd(w × Pλ)(−d)

K0(w × Pλ)(d) Kd(w × Pλ)(0) − 1

⎤⎦[
ψ(0)

ψ(d)

]
= 0

(20)

This has a non-trivial solution if and only if the determinant of
the matrix is zero. The determinant expressed as a function of λ,
E(λ), is a complex analytic function known as the Evans function:

E(λ) = [K0(w × Pλ)(0) − 1] [Kd(w × Pλ)(0) − 1] (21)

−K0Kd(w × Pλ)(d)(w × Pλ)(−d).

Thus, the zeros of the Evans function determine the discrete spec-
trum of the linear operator formed by linearizing the neural field
equation about the pulse solution. Evans functions were orig-
inally introduced within the context of the stability of solitary
pulses in diffusive Hodgkin–Huxley type equations describing
action potential propagation in nerve axons (Evans, 1975). Since
then the Evans function construction has been extended to a
wide range of PDEs, see the review (Sandstede, 2002). It has
also recently been applied to neural field equations (Zhang, 2003;
Coombes and Owen, 2004; Rubin, 2004; Folias and Bressloff,
2005; Pinto et al., 2005; Sandstede, 2007) and more general non-
local problems (Kapitula et al., 2004). An example plot of the real
and imaginary parts of E(λ) = 0 on the complex plane is shown
in Figure 4. It can be seen that there is a zero eigenvalue and
one negative real eigenvalue, indicating that the corresponding
traveling pulse is linearly stable.

To find the essential spectrum, which is the union of the resid-
ual and continuous spectra, we will derive an explicit expression
for the resolvent Rλ. We start by writing an inhomogeneous
equation of the form Tλψ(ξ) = h(ξ), where h(ξ) represents a
general function from the Banach space B. This can be manip-
ulated as before to give

ψ(ξ) = −(h × Pλ)(ξ) + K0ψ(0)(w × Pλ)(ξ) (22)

+ Kdψ(d)(w × Pλ)(ξ − d)
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FIGURE 4 | Graphs of the zero sets of the real (dark curves) and

imaginary (light curves) parts of the Evans function determining the

stability of a freely propagating pulse; intersection points (filled

circles) indicate eigenvalues. The line Im λ = −1 indicates the essential
spectrum. Same parameter values as Figure 3.

By evaluating at ξ = 0 and ξ = d as before, we arrive at the fol-
lowing vector equation, which differs from (Equation 20) only on
the right-hand side:⎡⎣ K0(w × Pλ)(0) − 1 Kd(w × Pλ)(−d)

K0(w × Pλ)(d) Kd(w × Pλ)(0) − 1

⎤⎦ [
ψ(0)

ψ(d)

]

=
[

(h × Pλ)(0)

(h × Pλ)(d)

]
.

Since we are looking for spectral values outside the discrete spec-
trum, the determinant of the matrix satisfies E(λ) �= 0. Therefore,
multiplying both sides by the inverse matrix yields expressions for
ψ(0) and ψ(d) in terms of h:

ψ(0) = S0h

E(λ)
, ψ(d) = Sdh

E(λ)

where

S0h = (Kd(w × Pλ)(0) − 1) (h × Pλ)(0)

−Kd(w × Pλ)(−d)(h× Pλ)(d)

and

Sdh = −K0(w × Pλ)(d)(h× Pλ)(0)

+ (K0(w × Pλ)(0) − 1) (h × Pλ)(d).

Substituting into Equation (22) gives the following expression for
the resolvent operator, of the form Rλh = ϕ:

−(h × Pλ)(ξ) + K0S0h

E(λ)
(w × Pλ)(ξ)

+KdSdh

E(λ)
(w × Pλ)(ξ − d) = ψ(ξ) (23)
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The resolvent is well-defined for all h in B, so the residual spec-
trum of L is empty. To find the continuous spectrum, we Fourier
transform Equation (23):

−ĥ(k)P̂λ(k) + K0S0h

ε(λ)
ŵ(k)P̂λ(k) (24)

+KdSdh

ε(λ)
ŵ(k)P̂λ(k)e−2πidk = ψ̂(k)

It follows that the resolvent operator is unbounded when P̂λ is
unbounded. Equation (19) implies that

P̂λ(k) =
∫ ∞

−∞
Pλ(ξ)e2πikξ dξ = 1

λ + 1

c
+ 2πik

. (25)

Hence, P̂λ is unbounded for λ = −1 − 2πikc so that the con-
tinuous spectrum of L is a vertical line in the complex plane at
Re(λ) = −1. Since Re(λ) < 0, the continuous spectrum will not
make any pulse solution of our model unstable.

Stimulus-locked pulses
Now suppose that the neural field is driven by a moving external
pulse stimulus of speed v so that Equation (1) becomes

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w

(
x − y

)
H

(
u

(
y, t

) − κ
)

dy

+ I(x − vt). (26)

In order to study the existence of stimulus-locked pulses, we
will define a “stimulus coordinate” ξ = x − vt and look for pulse
solutions that move at the same speed as the stimulus, that is,
u(x, t) = U(ξ) with

−v
∂U(ξ)

∂ξ
= −U(ξ) +

∫ ∞

−∞
w(ξ − y)H(U(y) − κ) dy + I(ξ).

(27)
For concreteness, the stimulus will be represented by a rectangular
wave of amplitude I0 and width d, defined formally as

I(ξ) =
{

I0, if 0 ≤ ξ ≤ d

0, if ξ < 0 or ξ > d.

Since translation invariance no longer holds, it is necessary to
determine both threshold crossing points, which we denote by
ξ = d1 and ξ = d2. Proceeding in a similar fashion to the case
of freely propagating pulses, we find that

U(ξ) = eξ/v

v

∫ z0

ξ

e−y/vW(y) dy + eξ/v

v

∫ z0

ξ

e−y/vI(y) dy,

where z0 = ∞ if v > 0, z0 = −∞ if v < 0, and

W(ξ) ≡
∫ ξ−d1

ξ−d2

w(x) dx.

The latter can be expressed in the piecewise form

W(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W3(ξ) ≡ ∫ ξ−d1

ξ−d2
w2(x) dx, if ξ ≤ x0 + d1

W2(ξ) ≡ ∫ x0
ξ−d2

w2(x) dx

+ ∫ ξ−d1
x0

w1(x) dx, if x0 + d1 ≤ ξ ≤ x0 + d2

W1(ξ) = ∫ ξ−d1
ξ−d2

w1(x) dx, if ξ ≥ x0 + d2

(28)

where w1 and w2 are defined as in Equation (10). After evaluating
the integrals along similar lines to section “Neural Field Model of
Direction Selectivity,” we obtain the following expressions for the
pulse solution, defined independently for positive and negative
stimulus directions:
v > 0 :

U(ξ) =

⎧⎪⎨⎪⎩
U3(ξ), if ξ ≤ x0 + d1

U2(ξ), if x0 + d1 ≤ ξ ≤ x0 + d2,

U1(ξ), if ξ ≥ x0 + d2,

with

U3(ξ) = 1

v
eξ/v (M3(ξ) + M1(x0 + d2) + M2(x0 + d1)) + Z(ξ)

U2(ξ) = 1

v
eξ/v (M2(ξ) + M1(x0 + d2)) + Z(ξ)

U1(ξ) = 1

v
eξ/vM1(ξ) + Z(ξ),

Mn(ξ) =
∫ ξn

ξ

Wn(ξ
′)e−ξ′/vdξ′

for ξ1 = ∞, ξ2 = x0 + d2, ξ3 = x0 + d1, and

Z(ξ) =

⎧⎪⎨⎪⎩
(
eξ/v − e(ξ−d)/v

)
I0, if ξ < 0(

1 − e(ξ−d)/v
)

I0, if 0 ≤ ξ ≤ d.

0, if ξ > d

v < 0 :

U(ξ) =

⎧⎪⎨⎪⎩
U3(ξ), if ξ ≤ x0 + d1

U2(ξ), if x0 + d1 ≤ ξ ≤ x0 + d2,

U1(ξ), if ξ ≥ x0 + d2

with

U3(ξ) = −1

v
eξ/vN3(ξ) + Z(ξ)

U2(ξ) = −1

v
eξ/v (N2(ξ) + N3(x0 + d1)) + Z(ξ)

U1(ξ) = −1

v
eξ/v (N1(ξ) + N2(x0 + d1) + N3(x0 + d1)) + Z(ξ)

Nn(ξ) =
∫ ξ

ξn

Wn(ξ
′)e−ξ′/vdξ′
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for ξ3 = −∞, ξ2 = x0 + d1, ξ1 = x0 + d2, and

Z(ξ) =

⎧⎪⎨⎪⎩
0, if ξ < 0(
1 − eξ/v

)
I0, if 0 ≤ ξ ≤ d.(

e(ξ−d)/v − eξ/v
)

I0, if ξ > d

The threshold crossing points (d1 and d2) are determined in
the same way the pulse speed and width were determined in
the no-stimulus case, which is by numerically solving a system
of two transcendental equations. The first equation is given by
U3(d1) = κ. The second equation is U3(d2) = κ if d2 < x0 + d1,
else it is given by U2(d2) = κ. Figure 5 shows a plot of d1 (black
curves) and d2 (gray curves) vs. the threshold κ. It can be seen that
for a certain range of thresholds there exists more than one sta-
ble/unstable pair of pulses. Figure 6 shows the linear stability and
the number of solutions for different combinations of stimulus
speed (v) and strength (I0). The offset x0 = 3 and the correspond-
ing spontaneous wave speed is c = 4. (Note that for smaller offsets
x0 and thus smaller wave speeds c, one finds stimulus-locked
waves for negative values of v). The stability of solutions in the
presence of a stimulus is determined in much the same way as
without a stimulus. We again define u(x, t) = U(ξ) + ϕ(ξ, t) and
look at the behavior of the perturbations described by ϕ(ξ, t).
Substituting into Equation (26), the stimulus term drops out
when we perform the linearization, so that

∂ϕ(ξ, t)

∂t
= v

∂ϕ(ξ, t)

∂ξ
− ϕ(ξ, t) +

∫ ∞

−∞
w(ξ − y)

× F′(U(y))ϕ(y, t) dy.

Setting ϕ(ξ, t) = eλtϕ ultimately yields the spectral problem

λϕ(ξ) ≡ Lϕ(ξ) (29)

= v
∂ϕ(ξ, t)

∂ξ
− ϕ(ξ, t)
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FIGURE 5 | Plot of leading threshold crossing position d2 (gray curves)

and trailing threshold crossing position d1 (black curves) of

stimulus-locked pulses as a function of threshold κ. There exists at
most one stable pulse (indicated by arrows) and up to three unstable
pulses. Weight parameters as in Figure 2 and κ = 4. Stimulus parameters
are d = 5, I0 = 5, and v = 5.

+ |v|ϕ(d1)

|κ − W(d1) − I(d1)|w(ξ − d1)

+ |v|ϕ(d2)

|κ − W(d2) − I(d2)|w(ξ − d2).

The corresponding Evans function is now

E(λ) = [K1(w × Pλ)(0) − 1] [K2(w × Pλ)(0) − 1] (30)

−K1K2(w × Pλ)(d2 − d1)(w × Pλ)(d1 − d2),

where

Kn = sgn(v)

|κ − W(dn) − I(dn)| , n = 1, 2,

and

Pλ(ξ) = H(−sgn(v)ξ)e(λ+1)ξ/v.

It is easy to establish as before that the residual spectrum is empty
and that the continuous spectrum consists of a vertical line in the
complex plane at Re(λ) = −1. So the stability is again determined
only by the discrete spectrum, which consists of the zeros of the
Evans function. Figure 7A shows an example of a numerical sim-
ulation of a stable stimulus-locked pulse solution of Equation (26)
with the analytical pulse solution U(x) as an initial condition.
Figure 7B shows the same simulation except with the zero initial
condition u(x, 0) = 0. It can be seen from Figure 7C that both
initial conditions converge to the same pulse profile.

STOCHASTIC NEURAL FIELD
Several recent studies have considered stochastic versions of neu-
ral field equations that are based on a corresponding Langevin

0
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20
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I0 

v
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FIGURE 6 | Stability diagram for stimulus-locked pulses in

(v, I0)-parameter space. Weight parameters as in Figure 2, κ = 4, and
d = 5. Emerging from the stable pulse solution when I0 = 0 is a tongue
consisting of a stable/unstable pair of pulses (light gray). Similarly, emerging
from the unstable solution when I0 = 0 is a tongue consisting of two
unstable pulses (medium gray). As I0 increases within a tongue an unstable
pulse can disappear due to the development of multiple super-threshold
regions (indicated by solid curves). All solutions coexist when tongues
overlap (dark gray).
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Weight parameters as in Figure 2 and κ = 4. Stimulus parameters are
d = 5, I0 = 8, and v = 3.

equation formulation (Brackley and Turner, 2007; Hutt et al.,
2008; Faugeras et al., 2009; Bressloff and Webber, 2012b).
Motivated by these examples, we consider the following Langevin
equation (or stochastic PDE) for the stochastic activity variable
U(x, t), which is a rewriting of Equation (1) with h(x, t) given by
Equation (5) for I0 = 0 and ε > 0:

dU(x, t) =
[
−U(x, t) +

∫ ∞

−∞
w(x − y)F(U(y, t))dy

]
dt

+ ε1/2g(U(x, t))dW(x, t), (31)

where dW(x, t) is an independent Wiener process with zero mean
and correlation given by

〈dW(x, t)dW(x′, t′)〉 = 2C(|x − x′|/λ)δ(t − t′)dtdt′. (32)

Here λ is the spatial correlation length of the noise such that
C(x/λ) → δ(x) in the limit λ → 0, and ε determines the strength
of the noise, which is assumed to be weak. For the sake of gener-
ality, we take the noise to be multiplicative rather than additive;
however, the main results of the paper hold for both. Following
standard formulations of Langevin equations (Gardiner, 2009),
the multiplicative noise term is taken to be of Stratonovich form
in the case of extrinsic noise. Note, however, that an alternative
formulation of stochastic neural field theory has been developed
in terms of a neural master equation (Buice and Cowan, 2007;
Bressloff, 2009, 2010; Buice et al., 2010), in which the underly-
ing deterministic equations are recovered in the thermodynamic
limit N → ∞, where N is a measure of the system size of each
local population. In the case of large but finite N, a Kramers-
Moyal expansion of the master equation yields a Langevin neural

field equation with multiplicative noise of the Ito form Bressloff
(2009, 2010). Multiplicative noise in the Stratonovich sense
causes a shift in the speed and width of the pulse. This hap-
pens because 〈g(U)dW〉 �= 0, even though 〈dW〉 = 0. We can
use Novikov’s theorem (Novikov, 1965) to calculate the former
average:

ε1/2〈g(U)dW〉 = εC(0)〈g ′(U)g(U)〉dt.

The average can also be calculated by Fourier transforming
Equation (31) and taking averages using the corresponding
Fokker–Planck equation (Armero et al., 1998; Bressloff and
Webber, 2012b). In the limit that λ approaches 0, we set C(0) →
1/�x, where �x is a lattice cut-off that can be identified with the
spatial discretization step size in numerical simulations (Bressloff
and Webber, 2012b). Following Ref. Armero et al. (1998), we
rewrite Equation (31) so the fluctuating term has zero mean:

dU(x, t) =
[

h(U(x, t)) +
∫ ∞

−∞
w(x − y)F(U(y, t))dy

]
dt

+ ε1/2dR(U, x, t), (33)

where
h(U) = −U + εC(0)g ′(U)g(U) (34)

and

dR(U, x, t) = g(U)dW(x, t) − ε1/2C(0)g ′(U)g(U)dt. (35)

The stochastic process R has zero mean and correlation

〈dR(U, x, t)dR(U, x′, t′)〉 (36)

= 〈g(U(x, t))dW(x, t)g(U(x′, t′))dW(x′, t′)〉 + O(ε1/2).

Separation of time-scales
The effects of additive or multiplicative extrinsic noise on
traveling waves can be analyzed using multiple time-scale
methods originally developed for reaction-diffusion equations
(Schimansky-Geier et al., 1983; de Pasquale et al., 1992; Armero
et al., 1998; Sagues et al., 2007), which were recently extended
to neural field equations in Ref. Bressloff and Webber (2012b).
The main idea is to assume that the fluctuating term generates
two distinct phenomena that occur on different time-scales: a
diffusive-like displacement of the traveling wave from its uni-
formly translating position at long time-scales, and fluctuations
in the wave profile around its instantaneous position at short
time-scales. It is important to point out that, in contrast to travel-
ing front solutions of scalar neural field equations (Bressloff and
Webber, 2012b), we are now considering traveling pulse solu-
tions. Thus in addition to the center-of-mass of the traveling
pulse wave, which moves with speed c in the absence of noise,
there is an additional degree of freedom corresponding to the
“width” of the pulse. (In the case of a Heaviside rate function,
the width � is determined by the threshold crossing points).
For simplicity, we assume that the width of the wave is only
weakly affected by the noise; this is consistent with what is found
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numerically. We now express the solution U of Equation (33) as
a combination of a fixed wave profile U0 that is displaced by an
amount �(t) from its uniformly translating position ξ = x − cεt,
where cε is a noise-dependent speed, and a time-dependent
fluctuation � in the wave shape about its instantaneous
position:

U(x, t) = U0(ξ − �(t)) + ε1/2�(ξ − �(t), t). (37)

The wave profile U0 and associated wave speed/width cε, �ε are
obtained by solving the modified deterministic equation

−cε
dU0(ξ)

dξ
− h(U0(ξ)) =

∫ ∞

∞
w(ξ − ξ′)F(U0(ξ

′))dξ′. (38)

The results depend on ε due to the ε-dependence of h.
Equation (38) is chosen so that that to leading order, the stochas-
tic variable �(t) undergoes unbiased Brownian motion with a
diffusion coefficient D(ε) = O(ε) (see below). The next step is to
substitute the decomposition Equation (37) into (33) and expand
to first order in O(ε1/2):

−[cε + �̇]U ′
0(ξ�)dt + ε1/2 [

d�(ξ�, t) − [cε + �̇]�′(ξ�, t)dt
]

= h(U0(ξ�))dt + ε1/2h′(U0(ξ�))�(ξ�, t)dt

+
∫ ∞

−∞
w(ξ − ξ′)F(U0(ξ

′
�))dξ′dt

+ ε1/2
∫ ∞

−∞
w(ξ − ξ′)F′(U0(ξ

′
�))�(ξ′

�, t)dξ′dt

+ ε1/2dR(U0(ξ�), ξ, t) + O(ε).

where we have set ξ� = ξ − �(t) and ξ′
� = ξ′ − �(t). We now

use Equation (38) for U0, after shifting ξ → ξ − �(t), to elim-
inate terms and then divide through by

√
ε. This gives the

inhomogeneous equation to O(ε1/2)

d�(ξ�, t) − L̂�(ξ�, t)dt = ε− 1
2 U ′

0(ξ�)d�(t)

+ dR(U0(ξ�), ξ, t) (39)

where the non-self-adjoint linear operator

L̂A(ξ) ≡ cε
dA(ξ)

dξ
+ h′(U0(ξ))A(ξ)

+
∫ ∞

−∞
w(ξ − ξ′)F′(U0(ξ

′))A(ξ′)dξ′ (40)

is defined for all functions A(ξ) in L2(R). Note that for all terms
in Equation (40) to be of the same order we have taken �(t) =
O(ε1/2). It then follows that U0(ξ − �(t)) = U0(ξ) + O(ε1/2)

etc., and Equation (39) reduces to

d�(ξ, t) − L̂�(ξ, t)dt = ε− 1
2 U ′

0(ξ)d�(t) + dRu(U0(ξ), ξ, t)
(41)

If U0(ξ) were a traveling front solution of a neural field model
with a symmetric, excitatory weight distribution w, then it could

be proven that the operator L̂ has a 1D null space spanned by
U ′

0(ξ) (Ermentrout and McLeod, 1993). We will assume that such
a result carries over to traveling pulse solutions of a neural field
with w given by an asymmetric Mexican hat function; the fact
that U ′

0(ξ) belongs to the null space follows immediately from
differentiating Equation (38) with respect to ξ. We then have the
solvability condition for the existence of a non-trivial bounded
solution of Equation (41), namely, that the inhomogeneous part
is orthogonal to all elements of the null space of the adjoint
operator L̂∗. The latter is defined with respect to the inner product∫ ∞

−∞
B(ξ)̂LA(ξ) dξ =

∫ ∞

−∞
[̂
L∗B(ξ)

]
A(ξ) dξ.

Integrating by parts and using (Equation 14) leads to

L̂∗B(ξ) = −cε
dB(ξ)

dξ
+ h′(U0(ξ))B(ξ)

+ F′(U0(ξ))

∫ ∞

−∞
w(ξ′ − ξ)B(ξ′)dξ′. (42)

We will assume that the null space of the adjoint operator L̂∗ is
also one-dimensional and is spanned by some yet to be deter-
mined function V(ξ). (In the case of a Heaviside firing function,
we will determine the null space explicitly). Hence, we can write
the solvability condition as∫ ∞

−∞
V(ξ)

[
U ′

0(ξ)d�(t) + ε1/2dR(U0(ξ), ξ, t)
]

dξ = 0.

which leads directly to the stochastic differential equation

d�(t) = −ε1/2

∫ ∞
−∞V(ξ)dR(U0, ξ, t) dξ∫ ∞

−∞V(ξ)U ′
0(ξ)dξ

.

Using the lowest order approximations dR(U0, ξ, t) =
g(U0(ξ))dW(ξ, t), we deduce that [for �(0) = 0]

〈�(t)〉 = 0, 〈�(t)2〉 = 2D(ε)t, (43)

where D(ε) is the effective diffusivity

D(ε) = ε

∫ ∞
−∞V2(ξ)g(U0(ξ))

2 dξ[∫ ∞
−∞V(ξ)U ′

0(ξ) dξ
]2

. (44)

Explicit results for Heaviside rate function
In order to illustrate the above analysis, we consider a particular
example where the mean speed cε and diffusion coefficient D(ε)

can be calculated explicitly. That is, set g(U) = g0U for the multi-
plicative noise term and take F(U) = H(u − κ). (The constant g0

has units of
√

length/time). Note that the choice for g(U) can be
interpreted physiologically in terms of an effective modification
in the membrane time constant of neurons due to stochastic
background synaptic activity (Bernander et al., 1991; Rapp et al.,
1992; Bressloff, 1994). The deterministic Equation (38) for U0
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then reduces to

−dU0(ξ)

dξ
+ �(ε)U0(ξ) = 1

cε

∫ ∞

∞
w(ξ − ξ′)H(U0(ξ

′) − κ)dξ′,
(45)

where �(ε) = (1 − εC(0)g2
0)/cε. Hence,

U(ξ) = e�ξ

cε

∫ ∞

ξ

W(ξ′)e−�ξ′
dξ′. (46)

The deterministic pulse profile can be evaluated along identical
lines to section “Neural Field Model of Direction Selectivity.” In
order to calculate the diffusion coefficient, it is first necessary
to determine the null vector V(ε) of the adjoint linear oper-
ator L̂∗. Substituting F(U) = H(U − κ) and g(U) = g0U into
Equation (42) shows that

dV(ξ)

dξ
+ �(ε)V(ξ) = δ(ξ)

c|U ′
0(0)|

∫ ∞

−∞
w(z)V(z)dz (47)

+ δ(ξ − �)

c|U ′
0(�)|

∫ ∞

−∞
w(z − �)V(z)dz.

Proceeding along similar lines to Bressloff (2001) and Kilpatrick
et al. (2008), we make the ansatz that

V(ξ) = AH(ξ)e−�ξ + BH(ξ − �)e−�(ξ−�). (48)

Substituting into Equation (47) shows that

A = 1

|U ′
0(0)| [Ab(0) + Bb(�)], B = 1

|U ′
0(�)| [Ab(−�)+ Bb(0)]

where

b(z) ≡ 1

c

∫ ∞

z
e−�(ξ′−z)w(ξ′) dξ′. (49)

Differentiating Equation (46) shows that U ′(ξ) = b(ξ)−b(ξ − �),
so that we obtain the vector equation⎡⎢⎢⎢⎣

b(0)

b(0) − b(−�)
− 1

b(�)

b(0) − b(−�)

b(−�)

b(0) − b(�)

b(0)

b(0) − b(�)
− 1

⎤⎥⎥⎥⎦
[

A
B

]
= 0

The matrix has rank 1, confirming that the linear operator L̂∗ has
a 1D null-space. The latter is spanned by the function

V(ξ) = b(�)H(ξ)e−�ξ − b(−�)H(ξ − �)e−�(ξ−�). (50)

In Figure 8 we show the temporal evolution of a freely propa-
gating stochastic traveling pulse, which is obtained by numerically
solving the Langevin Equation (31) for F(U) = H(U − κ),
g(U) = U and the asymmetric difference-of-exponentials
(Equation 4). Note that the location of the stochastic wave
appears to coincide with the underlying mean solution. However,
over longer time-scales the wandering of the pulse about its
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FIGURE 8 | Numerical simulation of freely propagating pulse solution

of the stochastic neural field Equation (31) for a Heaviside rate

function F (U) = H(U−κ) with κ = 4, and weight function (Equation 4)

with ae = 5, ai = 1, σe = 0.42, σi = 0.1, and x0 = 3. The multiplicative
noise is taken to be g(U) = U, the noise strength is ε = 0.005, and
C(0) = 10. The wave profile is shown at successive times (A) t = 0 (B)

t = 12 (C) t = 18, and (D) t = 24, with the initial profile at t = 0 given by
equation U0. In numerical simulations we take the discrete space and time
steps �x = 0.1, �t = 0.01. The deterministic part U0 of the stochastic
wave is shown by the black curves.
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(black) edges of pulse as a function of time t averaged over N = 4096 trials.
(B) Corresponding plots of the variance σ2

X (t). Same parameter values as
Figure 8.

mean position would be seen. In Figure 9 we plot the mean
position X(t) and variance σ2

X(t) of the leading and trailing edges
of the pulse as a function of t. It can be seen that they all vary
linearly with t, consistent with the assumption that there is a
diffusive-like displacement of the center-of-mass of the pulse
from its uniformly translating position at long time-scales. The
slopes of these curves then determine the effective wave speed and
diffusion coefficient according to X(t) ∼ cεt and σ2

X(t) ∼ 2D(ε)t.
Both the leading and trailing edges exhibit the same speeds
and diffusivities (after a transient phase). The transients are
caused by fluctuations in the mean width of the pulse which
can be neglected for large t, where the difference in the size of
fluctuations of the leading and trailing edges can be neglected.

In order to find the mean location of the leading or trailing
edge of the pulse as a function of time, we numerically carry out

Frontiers in Computational Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 90 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bressloff and Wilkerson Stochastic pulses in neural fields

a large number of level set position measurements. That is, we
determine the positions Xa(t) such that U(Xa(t), t) = a, for var-
ious level set values a and then define the mean location to be
X(t) = E[Xa(t)], where the expectation is first taken with respect
to the sampled values a and then averaged over N trials. The
corresponding variance is given by σ2

X(t) = E[(Xa(t) − X̄(t))2].
In order to compare the numerical results with our theoreti-
cal analysis, we assume that Xa(t) = �(t) + cεt + Xa(0) for each
a on either the leading or trailing edge. It then follows that
X̄(t) = cεt + Xa(0) and σ2

X(t) = 〈�(t)2〉. In Figure 10 we plot the
numerically estimated diffusion coefficient for various values of
the threshold κ and compare these to the corresponding theo-
retical curves obtained using the above analysis. It can be seen
that there is excellent agreement with our theoretical predictions.
Finally, note that we can also use the level set data to estimate fluc-
tuations in the width of the pulse. Suppose that Xd(t) and Yd(t)
denote the threshold crossing points of the leading and trailing
edges of the pulse at time t. Then the stochastic width of the pulse
can be defined according to D(t) = Xd(t) − Yd(t). We find that
after a transient phase, 〈D(t)2〉 − 〈D(t)〉2 � σ2

X(t).

Stimulus-locked pulses
We now add a stimulus term I to the stochastic neural field
Equation (33), that is

dU(x, t) =
[

h(U(x, t)) +
∫ ∞

−∞
w(x − y)F(U(y, t)) dy

]
dt

+ I(x − vt)dt + ε1/2dR(U, x, t), (51)

where the stimulus is again a rectangular wave of amplitude I0

and width d, moving with speed v. Here h and dR are defined by
Equations (34) and (35). The stochastic activity variable is now
decomposed according to Equation (37), with ξ = x − vt, and the
modified deterministic equation

−v
dU0

dξ
− h(U0(ξ)) − I(ξ) =

∫ ∞

∞
w(ξ − ξ′)F(U0(ξ

′)) dξ′.

(52)
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0.01

0.016

0.022

2.5 3 3.5 4 4.5 5

D

κ

FIGURE 10 | Plot of diffusion coefficient D(ε) as a function of threshold

κ. Numerical results (“+” for leading edge,“X” for trailing edge) are
obtained by averaging over N = 4096 trials starting from the initial condition
given by U0. Corresponding theoretical predictions (solid curves) for D(ε)

are based on Equation (44). Other parameters as in Figure 8.

Through a similar process as in the previous section, we expand
to O(ε1/2) to obtain the inhomogeneous equation

d�(ξ, t) − L̂�(ξ, t)dt = −ε−1/2 [
U ′

0(ξ) − I′(ξ)
]

d�(t)

−dR(U0(ξ), ξ, t) + O(ε1/2), (53)

where L̂ is defined as in Equation (40) but with cε → v. The
solvability condition is now∫ ∞

−∞
V(ξ)

[
U ′

0(ξ)d�(t) + I′(ξ)d�(t) (54)

+ε1/2dR(U0(ξ), ξ, t)
]

dξ = 0.

This can be manipulated to give, to leading order, the Ornstein–
Uhlenbeck equation (Gardiner, 2009):

d�(t) + A�(t)dt = dŴ(t), (55)

where

A =
∫ ∞
−∞V(ξ)I′(ξ)dξ∫ ∞
−∞V(ξ)U ′

0(ξ)dξ
,

and

dŴ(t) = −ε1/2g0

∫ ∞
−∞V(ξ)U0(ξ)dW(ξ, t) dξ∫ ∞

−∞V(ξ)U ′
0(ξ)dξ

.

Solving the stochastic differential equation in Equation (55)
and taking averages shows that 〈�(t)〉 = �(0)e−At and

〈�(t)2〉 − 〈�(t)〉2 ≈ D(ε)

A

[
1 − e−2At] , (56)

where D(ε) is given by Equation (44) except for a modified null
vector V(ξ). Thus the variance of �(t) approaches D(ε)/A in the
large t limit.

As in the case of freely propagating pulses, we can explic-
itly solve for V(ε) and thus calculate the diffusion coefficient
D(ε) when F(U) = H(U − κ) and g(U) = U . Since the steps
are similar to the previous case, we simply present our results
here. In Figure 11 we show the temporal evolution of a single
stimulus-locked front, which is obtained by numerically solving
the Langevin Equation (51) for F(U) = H(U − κ), g(U) = U
and the weight distribution (Equation 4). The external input is
taken to be a square pulse of amplitude I0 = 5, width d = 5,
and speed v = 5. Next we determine the mean X(t) and variance
σ2

X(t) of the position of the leading and trailing edges by averag-
ing over level sets along identical lines to the freely-propagating
case. The results are shown in Figure 12. It can be seen that,
as predicted by the analysis, X(t) varies linearly with t with a
slope equal to the stimulus speed v = 5. Moreover, the vari-
ance σ2

X(t) approaches a constant value as t → ∞ for both the
trailing and leading edges. Thus, we find that stimulus-locked
pulses are much more robust to noise than freely propagating
pulses, since the variance of the mean position of the leading and
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FIGURE 11 | Numerical simulation showing the propagation of a

stimulus-locked pulse solution of the stochastic neural field

Equation (51). The external input is taken to be a square pulse with
amplitude I0 = 5, width d = 5, and speed v = 5. All other parameters
are as in Figure 8. The wave profile is shown at successive times (A)

t = 0 (B) t = 6 (C) t = 12, and (D) t = 24, with the initial profile at t = 0
given by the solution U0. In numerical simulations we take the discrete
space and time steps �x = 0.1,�t = 0.01.

trailing edges saturate as t → ∞. Consequently, stimulus lock-
ing persists in the presence of noise over most of the parameter
range for which stimulus locking is predicted to occur. However,
the trailing edge has an asymptotic variance that is at least an
order of magnitude larger than the leading edge, which implies
that fluctuations in the width of the pulse can no longer be
neglected.

DISCUSSION
In this paper we have explored the effects of extrinsic noise on
propagating pulses in a one-dimensional scalar neural field with
asymmetric weights. Such a network has previously been pro-
posed as a continuum model of direction selectivity. We have
shown that the effects of noise on the wandering of the mean front
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FIGURE 12 | (A) Plot of mean position X (t) of leading (blue) and
trailing (black) edges of stimulus-locked pulse as a function of time t
averaged over N = 1000 trials. (B,C) Corresponding plots of the
variance σ2

X (t) of the leading and trailing edges. Same parameter
values as Figure 11.

position depends on properties of the underlying deterministic
pulse. In the case of a freely propagating pulse, we find diffusive
wandering with the mean square displacement growing linearly
with time t. Moreover, in the large time limit, fluctuations in the
width of the pulse can be neglected. On the other hand, if the
pulse is locked to a moving pulse-like stimulus, then the wander-
ing is described by an Ornstein–Uhlenbeck process and the mean
square displacement saturates in the long time limit. However,
we find that fluctuations in the pulse width can no longer be
ignored.

In summary, this paper further illustrates how methods devel-
oped for studying wave propagation in stochastic PDEs can be
adapted to study wave propagation in stochastic neural fields. As
we have previously found for fronts, stimulus-locked waves are
more robust to noise, which is a desirable property of a network
performing some form of stimulus-processing such as direction
selectivity.

REFERENCES
Adelson, E. H., and Bergen, J. R. (1985).

Spatiotemporal energy models for
the perception of motion. J. Opt.
Soc. Am. 2, 284–299.

Amari, S. (1977). Dynamics of pat-
tern formation in lateral inhibition
type neural fields. Biol. Cybern. 27,
77–87.

Armero, J., Casademunt, J., Ramirez-
Piscina, L., and Sancho, J. M.
(1998). Ballistic and diffusive
corrections to front propagation
in the presence of multiplica-
tive noise. Phys. Rev. E 58,
5494–5500.

Baker, P. M., and Bair, W. (2012).
Inter-neuronal correlation
distinguishes mechanisms of
direction selectivity in cortical
circuit models. J. Neurosci. 32,
8800–8816.

Ben-Yishai, R., Bar-Or, R. L., and
Sompolinsky, H. (1995). Theory of
orientation tuning in visual cor-
tex. Proc. Natl. Acad. Sci. U.S.A. 92,
3844–3848.

Bernander, O., Douglas, R. J., Martin,
K. A. C., and Koch, C. (1991).
Synaptic background activity
influences spatiotemporal inte-
gration in single pyramidal cells.

Proc. Natl. Acad. Sci. U.S.A. 88,
11569–11573.

Brackley, C. A., and Turner, M. S.
(2007). Random fluctuations of the
firing rate function in a continuum
neural field model. Phys. Rev. E 75,
041913.

Bressloff, P. C. (1994). A green’s
function approach to analysing
the effects of random synaptic
background activity in a model
neural network. J. Phys. A 27,
4097–4113.

Bressloff, P. C. (2001). Traveling
fronts and wave propagation
failure in an inhomogeneous

neural network. Physica D 155,
83–100.

Bressloff, P. C. (2009). Stochastic neu-
ral field theory and the system-size
expansion. SIAM J. Appl. Math 70,
1488–1521.

Bressloff, P. C. (2010). Metastable
states and quasicycles in a stochastic
Wilson-Cowan model of neuronal
population dynamics. Phys. Rev. E
85, 051903.

Bressloff, P. C. (2012). Spatiotemporal
dynamics of continuum neural
fields. J. Phys. A 45, 033001.

Bressloff, P. C., Cowan, J. D.,
Golubitsky, M., Thomas, P. J.,

Frontiers in Computational Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 90 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bressloff and Wilkerson Stochastic pulses in neural fields

and Wiener, M. (2001). Geometric
visual hallucinations, Euclidean
symmetry and the functional
architecture of striate cortex.
Phil. Trans. R. Soc. Lond. B 356,
299–330.

Bressloff, P. C., and Webber, M. A.
(2012a). Neural field model of
binocular rivalry waves. J. Comput.
Neurosci. 32, 233–252.

Bressloff, P. C., and Webber, M. A.
(2012b). Front propagation
in stochastic neural fields.
SIAM J. Appl. Dyn. Syst. 11,
708–740.

Buice, M., and Cowan, J. D. (2007).
Field-theoretic approach to fluctu-
ation effects in neural networks.
Phys. Rev. E 75, 051919.

Buice, M., Cowan, J. D., and Chow,
C. C. (2010). Systematic fluctuation
expansion for neural network activ-
ity equations. Neural Comput. 22,
377–426.

Camperi, M., and Wang, X.-J. (1998).
A model of visuospatial short-
term memory in prefrontal cor-
tex: recurrent network and cellular
bistability. J. Comput. Neurosci. 5,
383–405.

Coombes, S. (2005). Waves, bumps and
patterns in neural field theories.
Biol. Cybern. 93, 91–108.

Coombes, S., and Owen, M. R.
(2004). Evans functions for
integral neural field equations
with Heaviside firing rate func-
tion. SIAM J. Appl. Dyn. Syst. 4,
574–600.

Coombes, S., and Owen, M. R. (2005).
Bumps, breathers, and waves in
a neural network with spike fre-
quency adaptation. Phys. Rev. Lett.
94, 148102.

de Pasquale, F., Gorecki, J., and
Poielawski., J. (1992). On the
stochastic correlations in a ran-
domly perturbed chemical front. J.
Phys. A 25, 433.

Ermentrout, G. B. (1998). Neural net-
works as spatio-temporal pattern-
forming systems. Rep. Prog. Phys. 61,
353–430.

Ermentrout, G. B., and Cowan, J.
(1979). A mathematical theory of
visual hallucination patterns. Bio.
Cybern. 34, 137–150.

Ermentrout, G. B., and McLeod, J. B.
(1993). Existence and uniqueness of
travelling waves for a neural net-
work. Proc. R. Soc. Edinburgh A 123,
461–478.

Evans, J. (1975). Nerve axon equa-
tions iv: the stable and unstable
impulse. Indiana Univ. Math. J. 24,
1169–1190.

Faugeras, O., Touboul, J., and Cessac, B.
(2009). A constructive mean–field

analysis of multi–population
neural networks with random
synaptic weights and stochastic
inputs. Front. Compt. Neurosci.
3:1. doi: 10.3389/neuro.10.001.
2009

Folias, S. E., and Bressloff, P. C.
(2005). Stimulus–locked traveling
pulses and breathers in an excitatory
neural network. SIAM J. Appl. Math.
65, 2067–2092.

Gardiner, C. W. (2009). Handbook of
Stochastic Methods, 4th Edn. Berlin:
Springer.

Giese, M. A. (1999). Neural Field
Theory for Motion Perception.
Dordrecht: Kluwer Academic
Publishers.

Huang, X., Troy, W. C., Yang, Q., Ma,
H., Laing, C. R., Schiff, S. J., et al.
(2004). Spiral waves in disinhibited
mammalian neocortex. J. Neurosci.
24, 9897–9902.

Hutt, A., and Atay, F. (2005). Analysis
of nonlocal neural fields for both
general and gamma-distributed
connectivities. Physica D 203,
30–54.

Hutt, A., Longtin, A., and Schimansky-
Geier, L. (2008). Additive
noise-induces turing transitions
in spatial systems with application
to neural fields and the swift-
hohenberg equation. Physica D 237,
755–773.

Kapitula, T., Kutz, N., and Sandstede, B.
(2004). The Evans function for non-
local equations. Indiana Univ. Math.
J. 53, 1095–1126.

Keener, J. P. (1981). Waves in excitable
media. SIAM J. Appl. Math. 39,
528–548.

Kilpatrick, Z. P., and Bressloff, P. C.
(2010a). Effects of synaptic depres-
sion and adaptation on spatiotem-
poral dynamics of an excitatory
neuronal network. Physica D 239,
547–560.

Kilpatrick, Z. P., and Bressloff, P. C.
(2010b). Spatially structured
oscillations in a two-dimensional
neuronal network with synaptic
depression. J. Comput. Neurosci. 28,
193–209.

Kilpatrick, Z. P., Folias, S. E., and
Bressloff, P. C. (2008). Traveling
pulses and wave propagation
failure in inhomogeneous neural
media. SIAM J. Appl. Dyn. Syst. 7,
161–185.

Koch, C., and Poggio, T. (1985).
“Orientation selectivity in the visual
cortex?” in Models of the Visual
Cortex, eds D. Rose and V. G.
Dobson (New York, NY: Wiley),
408–419.

Kreyszig, E. (1978). Introductory
Functional Analysis with

Applications. New York, NY:
Wiley.

Kuramoto, Y. (1984). Chemical
Oscillations, Waves and Turbulence.
New York, NY: Springer-Verlag.

Laing, C. R., and Chow, C. C. (2002).
A spiking neuron model for binoc-
ular rivalry. J. Comput. Neurosci. 12,
39–53.

Liley, D. J. T., Cadusch, P. J., and
Dafilis, M. P. (2002). A spatially
continuous mean field theory of
electrocortical activity. Network 13,
67–113.

Maex, R., and Urban, G. A. (1996).
Model circuit of spiking neurons
generating directional selectivity in
simple cells. J. Neurophysiol. 75,
1515–1545.

Mineiro, P., and Zipser, D. (1998).
Analysis of direction selectivity
arising from recurrent cortical
interactions. Neural Comput. 10,
353–371.

Novikov, E. A. (1965). Functionals and
the random-force method in tur-
bulence theory. Sov. Phys. JETP 20,
1290.

Nunez, P. I. (1995). Neocortical
Dynamics and Human EEG
Rhythms. New York, NY: Oxford
University Press.

Pinto, D., and Ermentrout, G. B.
(2001). Spatially structured activ-
ity in synaptically coupled neuronal
networks: I. Traveling fronts and
pulses. SIAM J. Appl. Math 62,
206–225.

Pinto, D., Jackson, R. K., and Wayne,
C. E. (2005). Existence and sta-
bility of traveling pulses in a
continuous neuronal network.
SIAM J. Appl. Dyn. Syst. 4,
954–984.

Rapp, M., Yarom, Y., and Segev, I.
(1992). The impact of parallel
fiber background activity on the
cable properties of cerebellar
purkinje cells. Neural Comput. 4,
518–533.

Reichardt, W. (1961). “Autocorrelation,
a principle for the evaluation of
sensory information by the cen-
tral nervous system,” in Sensory
Communication, ed A. Rosenblith
(Cambridge, MA: MIT Press),
303–317.

Richardson, K. A., Schiff, S. J., and
Gluckman, B. J. (2005). Control
of traveling waves in the mam-
malian cortex. Phys. Rev. Lett. 94,
028103.

Robinson, P. A., Rennie, C. J., Wright,
J. J., Bahramali, H., Gordon, E.,
and Rowe, D. I. (2001). Prediction
of electroencephalographic spectra
from neurophysiology. Phys. Rev.
E 63, 021903.

Rubin, J. E. (2004). A nonlocal
eigenvalue problem for the
stability of a traveling wave
in a neuronal medium.
Discrete Contin. Dyn. Syst. 10,
925–940.

Sagues, F., Sancho, J. M., and Garcia-
Ojalvo, J. (2007). Spatiotemporal
order out of noise. Rev. Mod. Phys.
79, 829–882.

Sandstede, B. (2002). “Stability of
travelling waves,” in Handbook
of Dynamical Systems, Vol.
2, ed B. Fiedler (Amsterdam:
North-Holland), 983–1055.

Sandstede, B. (2007). Evans func-
tions and nonlinear stability
of traveling waves in neu-
ronal network models. Int. J.
Bifurcation Chaos Appl. Sci. Eng. 17,
2693–2704.

Saul, A. B., and Humphrey, A. L.
(1990). Spatial and temporal
response properties of lagged and
nonlagged cellscells in cat lateral
geniculate nucleus. J. Neurophysiol.
64, 206–224.

Schimansky-Geier, L., Mikhailov,
A. S., and Ebeling., W. (1983).
Effects of fluctuations on plane
front propagation in bistable
nonequilibrium systems. Ann. Phys.
40, 277.

Somers, D. C., Nelson, S., and
Sur, M. (1995). An emergent
model of orientation selec-
tivity in cat visual cortical
simple cells. J. Neurosci. 15,
5448–5465.

Steyn-Ross, M. L., Steyn-Ross, D. A.,
Sleigh, J. W., and Whiting, D. R.
(2003). Theoretical predictions
for spatial covariance of the elec-
troencephalographic signal during
the anesthetic-induced phase
transition: increased correlation
length and emergence of spatial
self-organization. Phys. Rev. E 68,
021902.

Suarez, H., Koch, C., and Douglas,
R. J. (1995). Modeling direction
selectivity of simple cells in stri-
ate visual cortex using the canon-
ical microcircuit. J. Neurosci. 15,
6700–6719.

van Santen, J. P., and Sperling, G.
(1985). Elaborated reichardt detec-
tors. J. Opt. Soc. Am. A 256,
300–320.

Wilson, H. R., and Cowan, J. D. (1972).
Excitatory and inhibitory interac-
tions in localized populations of
model neurons. Biophys. J. 12,
1–23.

Wilson, H. R., and Cowan, J. D.
(1973). A mathematical theory
of the functional dynam-
ics of cortical and thalamic

Frontiers in Computational Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 90 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bressloff and Wilkerson Stochastic pulses in neural fields

nervous tissue. Kybernetik 13,
55–80.

Xie, X., and Giese, M. A. (2002).
Nonlinear dynamics of
direction-selective recurrent neural
media. Phys. Rev. E 65, 051904.

Zhang, K. (1996). Representation of
spatial orientation by the intrinsic
dynamics of the head-direction cell
ensemble: a theory. J. Neurosci. 16,
2112–2126.

Zhang, L. (2003). On the stability
of traveling wave solutions in
synaptically coupled neuronal
networks. Diff. Integral Equat. 16,
513–536.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence
of any commercial or financial

relationships that could be con-
strued as a potential conflict of
interest.

Received: 24 September 2012; accepted:
10 October 2012; published online: 29
October 2012.
Citation: Bressloff PC and Wilkerson J
(2012) Traveling pulses in a stochastic
neural field model of direction selectivity.

Front. Comput. Neurosci. 6:90. doi:
10.3389/fncom.2012.00090
Copyright © 2012 Bressloff and
Wilkerson. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

Frontiers in Computational Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 90 | 14

http://dx.doi.org/10.3389/fncom.2012.00090
http://dx.doi.org/10.3389/fncom.2012.00090
http://dx.doi.org/10.3389/fncom.2012.00090
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Traveling pulses in a stochastic neural field model of direction selectivity
	Introduction
	Materials and Methods
	Neural Field Model of Direction Selectivity

	Results
	Determinstic Neural Field
	Freely propagating pulses
	Stability
	Stimulus-locked pulses

	Stochastic Neural Field
	Separation of time-scales
	Explicit results for Heaviside rate function
	Stimulus-locked pulses


	Discussion
	References


