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Complex networks provide an excellent framework for studying the function of the human
brain activity. Yet estimating functional networks from measured signals is not trivial,
especially if the data is non-stationary and noisy as it is often the case with physiological
recordings. In this article we propose a method that uses the local rank structure of
the data to define functional links in terms of identical rank structures. The method
yields temporal sequences of networks which permits to trace the evolution of the
functional connectivity during the time course of the observation. We demonstrate the
potentials of this approach with model data as well as with experimental data from an
electrophysiological study on language processing.
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1. INTRODUCTION
Complex networks provide an excellent framework for studying
the function of the human brain on a variety of scales, from
the interaction of single neurons to the activation of large cor-
tical areas. Plenty of studies have recently shown the merit of
a graph-theoretical approach to better understand brain func-
tions (Zhou et al., 2006; Stam and Reijneveld, 2007; Bullmore
and Sporns, 2009; He and Evans, 2010; Zamora-López et al.,
2011). However, estimating functional networks from measured
signals of brain activity is far from trivial, especially if the data
is non-stationary and noisy. In the process of deriving func-
tional networks from a set of time series some critical decisions
have to be made (Figure 1). First, one has to decide which
dynamical measure to apply for estimating the functional connec-
tivity. This choice defines the nature of the dynamic interactions
considered as a functional connection. Usually this step gives
a real-valued all-to-all functional connectivity matrix between
all nodes (Figure 1B). However, measures to characterize the
network properties often require a binary connectivity matrix.
Therefore, as a second step, a threshold is usually applied to
convert the real-valued similarity matrix into a binary matrix
representing the functional graph (Figure 1C). In the absence of
standard criteria, this step is prone to arbitrary choices and to the
convenience of the users, what influences the results (van Wijk
et al., 2010).

There are several methods to estimate the similarities and/or
the causality between two or more time series, e.g., linear cor-
relation, Granger Causality (Granger, 1969), partial directed
coherence (Baccala and Sameshima, 2001), and partial phase

synchronization (Schelter et al., 2006; Nawrath et al., 2010).
Practical applications of most of the available methods require
rather long and, at best, stationary data. This is rarely the case
in (electro-)physiological studies, with the prominent exception
of resting-state data. The aim of most medical and psychological
studies is to investigate the responses of the brain to sensory stim-
uli, often triggering further cognitive processing. Consequently,
the data obtained in such studies is characterized by short and
transient non-stationarities for which most of available methods
are not suitable.

As an effort to cover this gap, we introduce a method to esti-
mate functional connectivity between time series that is suitable
for short and non-stationary datasets and is computationally effi-
cient. Moreover, it permits to study the temporal evolution of the
functional connectivity along the course of the measurements.
The method employs the concept of order patterns, which pro-
vides a symbolic representation of a real-valued time series in
terms of its local rank structure. Order patterns have been shown
to be suitable for short and non-stationary data before (Bandt and
Pompe, 2002; Schinkel et al., 2007; Staniek and Lehnertz, 2008;
Hempel et al., 2011; Martini et al., 2011). In the present formula-
tion of the method we replace the notion of similarity (Figure 1B)
by that of identity such that the method directly returns binary
connectivity matrices (Figure 1C). This avoids the need to choose
a threshold to obtain the binary functional links. Relaxation of
this constraint will permit to obtain similarity values if the user
so desires.

The remainder of the paper is organized as follows. First, we
review the concepts of symbolic dynamics and order patterns in
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FIGURE 1 | Basic procedure for estimation of networks from time series.

The pairwise similarity of all measured time series (A) is computed and
provides an association/similarity matrix (B). By applying a threshold to such

an association matrix a binary adjacency matrix Aij is estimated (C). This
adjacency matrix is then used to compute statistical properties of the
network.

the analysis of single time series. Second, we explain how to obtain
the time-evolving functional networks from multivariate time
series. And third, we show practical examples of the method. Its
accuracy is compared to that of correlation using simulated data
of coupled Lorenz oscillators. We illustrate the convenience of our
method for neurophysiological studies by applying it to charac-
terize the event-related brain potentials from a semantic priming
experiment, which is a well-known experimental paradigm in the
psychological literature.

2. ORDER PATTERNS IN TIME SERIES
The analysis of symbolic time series has repeatedly been proven
suitable for the investigation of physiological data (Kurths et al.,
1995; Lind and Marcus, 1995; beim Graben et al., 2000; Daw
et al., 2003). The general idea is to encode a given time series
of real values, e.g., a measured signal, into a time series of
symbols, where the symbols stand for a more abstract and/or
coarse-grained representation of the data. Conceptually, such
a transformation represents a partition of the phase space of
the dynamical system into a small number of regions. When
the time series changes from one symbol to another, it cor-
responds to a transition of the system from one state to
another. The resulting sequence of symbols is easier to ana-
lyze because the discretization will yield only a reduced set
of states.

In the present case we use a particular type of symbolic
representation, which captures the local order structure of a tra-
jectory by comparing whether the values of consecutive data
points increase or decrease. Given a time series {u(t)} where
t = 1, 2, . . . , T, the simplest order patterns we can define are of
dimension d = 2. The dimension denotes the number of data
points participating in the order pattern. Consider two instances
of the series, u(t) and u(t + τ), separated by a delay τ. If the sec-
ond value is higher than the first one, this pattern is encoded as 0,

and if the second value is lower, the pattern is encoded as 1:

π(t) =
{

0 : u(t) < u(t + τ)

1 : u(t) > u(t + τ)
(1)

Tied ranks, u(t) = u(t + τ), are rare in real-valued time series and
can be neglected. Encoding every point of the signal {u(t)}, a time
series of symbols {π(t)} of length (T − (d − 1)τ) is obtained.

For dimension d = 3, three instances are considered for com-
parison, namely, u(t), u(t + τ), and u(t + 2τ). In this case, and
ignoring again tied ranks, there are six different possible pat-
terns as shown in Figure 2 which are encoded according to the
permutation of the rank indices. Consider the relation u(t) <

u(t + 2τ) < u(t + τ): it is described by the order pattern π = 132
since u(t + τ) is the largest, u(t + 2τ) the second largest and u(t)
the smallest of the three values. In general, for dimension d there
are d! order patterns.

The only two parameters required are the dimension d and
the delay τ. Established algorithms for the estimation of both
are available. The dimension can be estimated using the method
of false nearest neighbors (Kennel et al., 1992) and the delay is
commonly estimated using the auto-correlation or the mutual
information function (Roulston, 1999).

The resulting time series of order patterns, {π(t)}, are rather
robust against observational noise, nonlinear amplitude distor-
tions and low-frequency trends. The reason is that order patterns
capture the dynamical behavior of a time series {u(t)} by describ-
ing its shape, regardless of the precise value of the amplitude.
Therefore, they are almost unaffected by small fluctuations of
the amplitude, e.g., caused by additive noise, and they are robust
with respect to slow variations of the original signal (Groth,
2005).

In the following, we introduce the steps to obtain functional
networks from multivariate time series using order patterns.
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π = 123 π = 132 π = 213 π = 312 π = 231 π = 321

FIGURE 2 | Sample order pattern for d = 3. If ties are neglected the number of possible patterns is d!.
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FIGURE 3 | Estimation of functional networks from multivariate time

series. Left: For the time series of each channel, its corresponding
series of order patterns is computed. Here some example order
patterns of dimension four are shown as encoded by colors. If at a

given time t, two nodes are encoded by the same pattern, then they
are considered to be functionally connected. Right: Repeating this
for all nodes, at all time-points, we obtain a temporal sequence of
adjacency matrices.

3. NETWORKS BASED ON SERIES OF ORDER PATTERNS
Given a set of N time series we can now use the concept of
order patterns to obtain a temporal sequence of networks, as
is illustrated in Figure 3. If {ui(t)} is the signal of the channel
(node) i, we first need to compute the corresponding series of
order patterns {πi(t)} for all the channels. Then, the sequence
of adjacency matrices {A(t)} is constructed using the symbolic
sequences {πi(t)}. At every time point two channels i and j are
considered as functionally connected if they are encoded by the
same symbol:

Aij(t) =
{

1 : πi(t) = πj(t)

0 : πi(t) �= πj(t)
(2)

The result is a sequences of N × N binary (unweighted) adjacency
matrices of length T − τ, the same length as the series of sym-
bols. From this sequence one can calculate network properties
over the time course of the observation. The identity criterion
in Equation (2) implies that all nodes encoded by the same
symbol are connected together and disconnected from all other
nodes, leading to networks which are segregated into different
components.

3.1. ESTIMATION OF THE PARAMETERS
The only two parameters required to compute the order patterns
can be obtained following established methods. The dimen-
sion d, is estimated by the false nearest neighbours (FNN) method
(Kennel et al., 1992). The FNN algorithm checks for the neigh-
borhoods of points which are embedded in projection manifolds.
As the dimension of the projection is increased, apparent neigh-
bors are separated until only “true” neighbors remain (Kantz and
Schreiber, 1997). In general, it is recommended to use a higher
dimension than estimated because over embedding helps coping
with non-stationarity (Hegger et al., 2000) and from now on we

will consider a modified dimension d̂ = 2d + 2. We will illustrate
this issue with an example in the following section.

The delay τ is estimated using the first minimum in mutual
information function (Cover and Thomas, 2006). Therefore, the
(auto-)mutual information function between a time series {u(t)}
and its time-lagged counterpart {u(t + τ′)} is computed for a
range of τ′s:

MI
(
u(t), u(t + τ′)

)
(3)

The delay τ′ giving rise to the first minimum of this function is
taken as the embedding delay. A relevant issue arises from the
fact that in order to compute the mutual information the data
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has to be binned into histograms. The delay estimates depend on
the number of bins used. If too few bins are used, the delay is
overestimated. The estimates of the delay converge after a suffi-
ciently high number of bins. We will show this dependency in the
example of electroencephalographic (EEG) data. In that case 100
bins are sufficient.

When multiple observations or realizations are available as it
happens in multivariate time series, the parameters d and τ have
to be computed for all the time series. There is a certain trade-
off between accuracy and generality. According to our experience
with EEG data, the variation in the estimates of the dimen-
sion and of the time delays across channels are reasonably small.
Therefore, we choose the mode of the dimension estimates for the
whole system and for the delay, we use the mean of the individual
estimates. In combination with over embedding this appears to
be a suitable compromise.

Since the order patterns span a certain time range,

�t = (d̂ − 1) τ, the timescale of the measurement has to be re-
aligned. This is done in such a way that t∗ is t + �t/2. This
effectively means that the time point t∗0 is exactly in the middle
of the window spanned by the pattern π(t0) as is commonly done
in a windowed analysis.

In the following sections we show the application of the pro-
cedure described here and revisit some of the technical issues
discussed.

4. APPLICATION OF THE ORPAN METHOD
In this section we show the application of the ORPAN method to
estimate functional connectivity in two examples. First, we apply
the procedure to simulated data from a simple model of two
Lorenz attractors. The simplicity of the model allows us to evalu-
ate the accuracy of the method to detect functional connections.
We also investigate the benefits of over embedding for this pur-
pose. Second, we apply the method to EEG data from a semantic
priming experiment. We discuss the influence of data binning for
the estimation of the embedding delay and we study the temporal
evolution of the network properties.

4.1. COUPLED LORENZ ATTRACTORS
A system of two coupled Lorenz attractors x and y is defined by
the following equations (Lorenz, 1963):

ẋ1 = 10 [(x2 − x1)] + g [y1 − x1]
ẋ2 = x1[28 − x3] − x2

ẋ3 = x1x2 − 8/3 x3

ẏ1 = 10 [y2 − y1] + g [x1 − y4]
ẏ2 = y1[28 − y3] − y2

ẏ3 = y1 y2 − 8/3 y3

(4)

were g is the strength of the coupling. The parameters are chosen
such that both attractors are in the chaotic regime. The initial con-
ditions were chosen such that x = (−1, 3, 4) and y = (−8, 8, 27)

with random perturbation in the range [−0.5, 0.5]. The equa-
tions of motion were solved using the ode45 algorithm available in

MATLAB (2010, The MathWorks, Natick, MA). The ode45 solver
implements a solver of the Runge–Kutta family and calculates the
fourth- and fifth-order accurate solutions using the Dormand–
Prince method (Dormand and Prince, 1980). The equations were
integrated with a step size of 0.001 and later down-sampled by a
factor 1/5.

To compute the functional connectivity between the two oscil-
lators we considered the evolution of their first components x1

and y1. We considered time series of length T = 1000 data points,
after discarding the first 10, 000 data points of the transient,
Figures 4A,B. The coupling strength was set either to g = 0 for
the uncoupled case or to g = 5 which ensures complete synchro-
nization.

We converted the simulated time series into sequences of
symbols {πx1(t)} and {πy1(t)} using the estimated parameters
d = 2 and τ = 30. The resulting symbolic sequences are shown
in Figures 4C,D with color-coded symbols. For all the T = 1000
time points, the presence or the absence of a functional link
between the two attractors was determined by comparing their
corresponding symbolic sequences as in Equation (2). The frac-
tion of links in the interval was counted. In the coupled case we
expect that the two sequences always match yielding a link detec-
tion rate of 1.0, because after an initial transient period the two
attractors become fully synchronized. In the uncoupled case we
expect the fraction of functional links to approach zero. As a ref-
erence, we also calculated the linear correlations between {x1(t)}
and {y1(t)} in the same time intervals and in a windowed fash-
ion, with a window of size that matched the size of the order
patterns, w = (d − 1)τ. We averaged the correlation over all win-
dows to obtain an overall detection rate. The process was repeated
for 1000 realizations. The comparative results of the link detec-
tion rates are summarized in Table 1. Finally, to investigate the
impact of over embedding, we repeated the numerical exper-

iment but using d̂ = 2d + 2 = 6 to compute the sequences of
symbols, which are shown in Figures 4C,D (lower panels) with
color-coded symbols.

We found that for the coupled case both order patterns and
correlation performed quite well. In this case, over embedding
had hardly any effect on either method. For the uncoupled case,
however, the results differed strongly. Using only the estimated
dimension (d = 2)1 the order pattern yielded a detection rate of
0.5 and the average correlation was 0.85—which in this case are

false positives. For the over embedded case (d̂ = 6), the detection
rate for order patterns decreased significantly and became negli-
gible (0.01), whereas correlations still yielded around 55% false
positives (cf. Table 1).

Summarizing, for this prototypical example we can conclude
that while correlation is suitable to detect synchronized behav-
ior, it is clearly too error-prone for the unsynchronized case. This
is reflected in the high rate of false positives in the uncoupled
case. The order patterns on the other hand performed well in the

1The actual dimension of a Lorenz system is d = 3, which is larger than the
estimate. But when applying the method to experimental data we have to
rely on estimates, which is why we used the estimated d = 2. For a reference
we also calculated the results using d = 3, (see Table A1). The results do not
change significantly.
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FIGURE 4 | Coupled Lorenz attractors. (A,B) Sample time series of the
first components x1(t) and y1(t) of two Lorenz systems. The data span
used for the analysis (gray area) starts after a transient of 10,000 data
points to ensure that the attractors are either fully synchronized
(coupled case) or desynchronized (uncoupled case). (C,D) Color-coded

order patterns of the time series above in the studied interval for the
coupled case (C) and for the uncoupled case (D). The sequences in
the upper panels were computed using order patterns of dimension
d = 2, and using an over embedded dimension d̂ = 2d + 2 = 6 for the
lower panels.

Table 1 | Summary of the detection rate (%) of functional links

between two Lorenz attractors by order patterns and by linear

correlations in the coupled and in the uncoupled cases.

Case Dimension <Detection rate>

ORPAN Correlation

Coupled
d = 2 0.99 0.99

d̂ = 6 0.95 0.99

Uncoupled
d = 2 0.50* 0.86*

d̂ = 6 0.01* 0.55*

Rates computed out of 1000 realizations. Asterisks denote the false positives in

the uncoupled case. Whereas for the coupled case both correlation and order

patterns detect synchronization, for the uncoupled case correlation returns a

high rate of false positives. Over embedding (d̂ = 6) significantly reduces false

positives in the uncoupled case.

coupled case and, when using over embedding, also in the uncou-
pled case. This shows the value of over embedding, not only to
cope with non-stationarity but also to reduce the number of false
positives.

4.2. APPLICATION TO ELECTROPHYSIOLOGICAL DATA
4.2.1. Experimental setup and data collection
Ten adult subjects (1 male, 9 female) aged 19–38 (mean 23.6; SD
5.4 years) participated in a semantic priming experiment. All were
right-handed [mean handedness index: +98 (Oldfield, 1971)]
and native speakers of German. They gave written informed con-
sent to the experiment, and received either payment or course
credits. The subjects were presented with a written noun as a
prime word that was either a synonym of the following tar-
get word (the primed condition), or an unrelated noun (the
unprimed condition). The stimulus material was taken from
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(Hohlfeld et al., 2004). In total each subject read 240 items, 120 in
each condition. Subjects had to indicate by a button press with
either the right or the left hand, whether the target word was
synonymous with the prime word or not. The response hand
assigned to synonyms and non-synonyms was changed midway
during the experiment. We previously used the same dataset
to test other methods and to report differences in functional
connectivity depending on the experimental condition (Schinkel
et al., 2011). Our previous method could not estimate time-
evolving connectivity as is the case for the method we now
introduce.

The high degree of semantic relatedness of synonymous
words as compared to the unrelated words strongly modulates
the N400 component in the event-related potential (ERP). The
N400 component is widely considered to reflect the retrieval
of semantic word information from long term memory (Kutas
and Federmeier, 2000) and its integration into the seman-
tic context provided by the prime word. If this semantic
retrieval and integration is easy, as for synonymous words, the
N400 amplitude is small, whereas it is larger (up to 5 μV)
when there is no such context as in the case of unrelated
prime words.

The EEG was recorded from 126 Ag/AgCl electrodes
(impedances ≤5 k�) at a sampling rate of 1000 Hz using
a BrainAmp DC amplifier (Brain Products GmbH, Munich,
Germany). All electrodes were initially referenced to an elec-
trode on the left mastoid (A1) and converted to average ref-
erence off-line. The EEG data was bandpass filtered from 0.1
to 30 Hz. Trials with artifacts or an incorrect response were
excluded from the analysis. One subject had to be discarded
due to excessive artifacts. In a conventional analysis of ERP, we
considered the average signal over trials and experimental con-
ditions for each channel, so for every channel in every subject
we obtained two average signals, one for the primed condi-
tion, and another for the unprimed condition, see example in
Figure 5.

4.2.2. ORPAN estimation of the embedding delay
To translate the average signals of the ERP into sequences of order
patterns, we first estimated the parameters d and τ for every chan-
nel in every subject. The dimension was estimated to be d = 3

(all estimates were either 2 or 3) and we used d̂ = 8, as indicated
above. We also noted that the estimation of the embedding delay
τ may depend on the number of bins used for the histograms
when computing the mutual information function, Equation (3).
To clarify this matter we estimated τ from the EEG data using
an increasing number of bins. We found out that, for a suffi-
cient number of bins, the estimation of τ converges as shown
in Figure 6. Consequently we chose to compute mutual informa-
tion using 100 bins, what results in an average delay of τ = 15 ms.

These parameters, d̂ = 8 and τ = 15 ms, were then used for all
subjects and for all channels.

From the series of order patterns we then computed the
functional networks following Equation (2). For each subject
we obtain two series of networks, one for the ERP data of the
primed condition and another for the ERP data of the unprimed
condition.
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FIGURE 5 | Grand average ERPs time-locked to stimulus onset at a

centro-parietal electrode (CPz). The N400 refers to the deflection elicited
by unprimed items (dashed line) in comparison to primed items (solid line).
For visualization the data was low-pass filtered at 10 Hz. The data was
previously published in Schinkel et al. (2011).
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FIGURE 6 | Embedding delay of the EEG signals as a function of the

number of bins used in the histograms to compute mutual

information. Too few bins lead to excessively large estimations of the
delay. For the current data, the estimate converged for approximately
100 bins.

4.2.3. Analysis of the functional networks
Now, graph measures can be applied to the sequences of func-
tional networks to study their temporal evolution. We apply a
few basic graph measures for illustration (Stam and Reijneveld,
2007; Steuer and Zamora-López, 2008). The density of links, ρ, is
defined as the fraction of links in a network to the total number
of possible links. If self-connections of the nodes are avoided and
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L(t) is the number of links in the functional network at time t, the
density of the network is:

ρ(t) = L(t)

N(N − 1)
, (5)

where N was the number of nodes or channels. The clustering
coefficient, C, characterizes the probability that the neighbors of
one node, are also connected with each other. It is easily under-
stood in social terms: two persons are more likely to know each
other when they have a common friend. The clustering of one
node is computed as the density of links among its neighbors.
The degree of a node i is defined as the number of neighbors it
has, ki = ∑N

j = 1 Aij. Let Ei be the number of links between the ki

neighbors of node i. Hence, the clustering coefficient of node i at
time t is:

Ci(t) = Ei(t)

ki(t) (ki(t) − 1)
. (6)

The clustering coefficient of the network is then the average of
the individual clusterings, C(t) = 〈Ci(t)〉, and it strongly depends
on the density of links. Therefore, we will show the normalized
clustering, C′(t) = C(t)/ρ(t). Indeed, the clustering of a random
network is equal to its density of links, hence, C′(t) represents the
deviation from the expected clustering by random chance.

The distance dij between two nodes in a network is the length
of the shortest path between them, say, the minimal number of
links crossed to travel from node i to node j. If there is a link
i → j, then dij = 1. If there is no other choice than going through
an intermediate node k such that i → k → j, then dij = 2, and
so on. When there exists no path connecting two nodes then
dij = ∞. Often one finds groups of nodes in a network which
are connected with each other (the graph distance between them
is finite) but have no links to any other node outside the group.
Such groups are referred to as connected components. The num-
ber and the size of the connected components indicate the degree
of segregation of the network.

In Figures 7A,B we show the temporal evolution of the link
density and the normalized clustering coefficient for the networks
in both the primed (blue) and the unprimed (red) condition
along the time course of the experimental measurements. Each
curve is the average of the values across subjects. The zero time
corresponds to the moment in which the second word was
presented. Before the stimulus presentation all graph measures
remain stable and the curves for both conditions take very similar
values, as it is expected. The first 200 ms after word presenta-
tion correspond mainly to visual processing of the stimulus and
both curves remain indistinguishable despite the variation in their
shape. Between 300 and 700 ms after stimulus presentation the
two curves undergo an epoch in which they largely deviate from
each other, only to converge again at the end of the observation.
This is precisely the time interval in which the cognitive processes
happen.

We observe that the normalized clustering anti correlates with
the density of links. Although the actual value of the clustering
does increase with increasing link density (not shown), it becomes
less significant than expected. In order to understand why this
happens, we have to focus on the fragmentation of the network.

A

B

C

D

FIGURE 7 | Temporal evolution of some network properties in the

primed condition (blue) and in the unprimed condition (red). (A)

Density of links, (B) normalized clustering coefficient, and (C) the number
of network components. All curves are the result of cross-subject
averages. Zero time represents the moment of stimulus presentation, the
second word. (D) p-value of a sliding permutation test of the
cross-subject data of the number of components in (C). It shows that the
average curves for the primed and for the unprimed condition significantly
deviate from each other at time intervals around 395 and 510 ms after
stimulus presentation. The dash-dotted and dashed lines indicate the 0.05
and 0.01 level, respectively.

As we referred previously, the identity condition in Equation (2)
implies that the resulting networks are segregated into several net-
work components. The clustering depends on the number and the
sizes of those components.

In Figure 7C we show the temporal evolution of the number
of components for both conditions. A sliding permutation test
with 2000 permutations (Good, 2005) on the component number
is included, Figure 7D. A permutation test is a non-parametric
counterpart of a classical t-test that has fewer constraints on the
distributions of the variables being tested. As it happens for the
link density and for the clustering, in the pre-stimulus interval
the curves follow each other and are statistically indistinguish-
able. The number of components is similar in both conditions
and is almost as large as the number of electrodes, meaning that
most of the nodes are functionally independent. With the begin-
ning of the visual processing, shortly after stimulus onset, the
number of components decays very fast and equally in both con-
ditions. Both networks undergo a percolation process in which
small components join together, indicating the onset of coordi-
nated processing as a consequence of the visual input. The two
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curves start to diverge after 240 ms. The curve for the primed
condition reaches a local minima at 395 ms followed by a rapid
increase. This may be interpreted as the main cognitive process-
ing finishing after 395 ms. The curve for the unprimed condition
follows a similar pattern but delayed by 200 ms. Its minimum is
more pronounced than the one of the primed condition, so more
electrodes are involved in the coordinated processing. The delay
is preceded by a short period (300–400 ms) in which the network
of the unprimed condition is largely segregated.

The most significant differences between the two conditions
happen at 395 ms and at 510 ms, with significance levels of
p < 0.01. At those time points the topology of the networks are
somewhat reversed, Figure 8. At 395 ms post-stimulus, the net-
work in the primed condition is dominated by a slightly lateral-
ized component, while the unprimed network is very segregated.
At 510 ms post-stimulus, the network in the primed condition is
almost fully segregated and the network of the unprimed condi-
tion is dominated by a large component, though it is more cen-
tralized than the dominant component in the primed condition
at 395 ms.

In terms of ERP analysis the latency differences between the
onset of peaks in the primed and in the unprimed conditions
can be explained in two ways: on the one hand it could reflect
the presence of two distinct processes that manifest at different
time points. On the other hand, it is possible that we here observe

Primed at 395 ms Unprimed at 395 ms 

Primed at 510 ms Unprimed at 510 ms 

FIGURE 8 | Distribution of connected components on the scalp at the

time points where the number of components maximally differs (395

and 510 ms post-stimulus). Electrodes belonging to the same component
have the same color. Components of size 1 are left blank. The networks
were computed from the grand average ERP using the same parameters
as above (d̂ = 8, τ = 15). The nose it toward the top.

the same cognitive process with a difference in latency. A point
that would support the latter hypothesis to be true, is that the
minimal number of components, 89 in the primed and 79 in the
unprimed condition, does not differ significantly (p > 0.05). We
are currently unable to decide which of these two explanations is
more plausible, but future research will assess this difference in
processing.

5. CONCLUSION
We have presented ORPAN, a method to estimate time-evolving
functional connectivity from measured multivariate data. The
method is based on the concept of order patterns, a symbolic
representation of time series which is independent of the scale
of the measurement and is almost unaffected by high-frequency
fluctuations, e.g., additive noise. From a technical point of view,
we can highlight several benefits of the method. First, the sym-
bolic encoding is rather robust to non-stationarities and noise,
and it is invariant with respect to a (slowly) increasing ampli-
tude transformation—such as drifts in the data—which makes it
very suitable for the analysis of electrophysiological data. Second,
compared to other methods, the number of required parame-
ters is very small, reducing the time required for searching in
the parameter space. The only two parameters required are the
embedding dimension d, which defines the length of the order
patterns, and the embedding delay τ. Both parameters can be esti-
mated using well-established algorithms. Finally, the approach is
computationally very efficient and could be easily implemented
to run in real time on dedicated systems or hardware, e.g., for
brain-computer interfaces. The analytical complexity of the algo-

rithm is O( N2

2 T) where N in the number of nodes and T is the
number of time points. The actual runtime of our (vectorized)
implementation is linear with respect to N and T. For the electro-
physiological data we used here (126 channels, 1400 time-points),
it took approximately 30 seconds to estimate d and 1.4 seconds
to estimate τ (per subject) on an off-the-shelf PC (code written
in MATLAB). Once the parameters are fixed, it takes less than
2 seconds to compute all the 1295 functional networks for one
subject in one condition.

We have discussed and illustrated by practical applications
some of the issues that users might encounter when estimating
the parameters d and τ. In an example of two coupled or uncou-
pled Lorenz attractors, our recommendation to use an embedding

dimension of d̂ = 2d + 2 proved useful to increase the accu-
racy of detecting functional links. The ORPAN method performs
far better in discarding false positive functional connections than
linear correlation.

We have illustrated the application of the method to ana-
lyze electrophysiological data using an example study of language
processing. Here we restricted our analysis to the functional con-
nectivity between the electrodes which is the simplest to obtain.
Application to reconstructed brain-electric sources could help
to better understand the interaction of cortical areas during
cognitive processing.

In a previous study using the same electrophysiological
data (Schinkel et al., 2011), we found that the formation of
network components differed across conditions over a range
of thresholds of weighted connectivity matrices. The previous
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approach had certain shortcomings: due to computational lim-
itations we were tied to using fixed, pre-defined time windows
for our analysis. Furthermore, the method used, joint recurrence
plots, had a larger number of parameters, that are not easy to esti-
mate (Schinkel et al., 2008). Now, the ORPAN method does not
only reproduce our previous observations but it allows to over-
come many of those limitations. It allows us to trace the temporal
evolution of the connectivity revealing also a difference in latency
between the two experimental conditions.

Future work will be dedicated to relax the identity condi-
tion in Equation (2) such that a sequence of weighted adja-
cency matrices can be obtained. This will require the use of
symbolic similarity measures such as the Levenshtein distance
(Levenshtein, 1966). While this may bring certain advantages,
it is likely to require application of a threshold for network

analysis. As the selection of a threshold implies some arbitrary
choices, we refrain from this. At this point, we have shown the
benefits of a straightforward and computationally efficient sym-
bolic approach to estimate functional connectivity with temporal
resolution.
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APPENDIX
COMPARISON OF THE LORENZ SYSTEM WITH d = 3

Table A1 | Summary of the detection rate analogous to Table 1 but

using the analytical dimension d = 3 and d̂ = 8.

Case Dimension <Detection rate>

ORPAN Correlation

Coupled
d = 3 0.99 1.00

d̂ = 8 0.93 1.00

Uncoupled
d = 3 0.27∗ 0.75∗

d̂ = 8 0.01∗ 0.44∗

Rates computed out of 1000 realizations. Asterisks denote the false positives in

the uncoupled case.

DEPENDENCE ON EMBEDDING DIMENSION d AND DELAY τ

We checked the dependence of results on the parameters d and
τ. Summary plots are provided at http://people.physik.hu-berlin.

de/~schinkel/supplements/frontiers.html
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