
ORIGINAL RESEARCH ARTICLE
published: 02 January 2013

doi: 10.3389/fncom.2012.00097

Learned graphical models for probabilistic planning
provide a new class of movement primitives
Elmar A. Rückert1*, Gerhard Neumann1, Marc Toussaint2 and Wolfgang Maass1

1 Institute for Theoretical Computer Science, Graz University of Technology, Austria
2 Department of Computer Science, Freie Universität Berlin, Germany

Edited by:

Andrea D’Avella, IRCCS Fondazione
Santa Lucia, Italy

Reviewed by:

Cees Van Leeuwen, Katholieke
Universiteit Leuven, Belgium
Andrey Olypher, Emory University,
USA
Petar Kormushev, Italian Institute of
Technology, Italy

*Correspondence:

Elmar A. Rückert, Institute for
Theoretical Computer Science,
Graz University of Technology,
Inffeldgasse 16b/1,
8010 Graz, Austria.
e-mail: rueckert@igi.tugraz.at

Biological movement generation combines three interesting aspects: its modular
organization in movement primitives (MPs), its characteristics of stochastic optimality
under perturbations, and its efficiency in terms of learning. A common approach to
motor skill learning is to endow the primitives with dynamical systems. Here, the
parameters of the primitive indirectly define the shape of a reference trajectory. We
propose an alternative MP representation based on probabilistic inference in learned
graphical models with new and interesting properties that complies with salient features
of biological movement control. Instead of endowing the primitives with dynamical
systems, we propose to endow MPs with an intrinsic probabilistic planning system,
integrating the power of stochastic optimal control (SOC) methods within a MP. The
parameterization of the primitive is a graphical model that represents the dynamics
and intrinsic cost function such that inference in this graphical model yields the control
policy. We parameterize the intrinsic cost function using task-relevant features, such as
the importance of passing through certain via-points. The system dynamics as well as
intrinsic cost function parameters are learned in a reinforcement learning (RL) setting.
We evaluate our approach on a complex 4-link balancing task. Our experiments show
that our movement representation facilitates learning significantly and leads to better
generalization to new task settings without re-learning.

Keywords: movement primitives, motor planning, reinforcement learning, optimal control, graphical models

1. INTRODUCTION
Efficient motor skill learning in redundant stochastic systems is
of fundamental interest for both, understanding biological motor
systems as well as applications in robotics.

Let us first discuss three aspects of human and animal move-
ment generation the combination of which is the motivation for
our approach: (1) its modular organization in terms of movement
primitives, (2) its variability and behavior under perturbations,
and (3) the efficiency in learning such movement strategies.

First, concerning the movement primitives (MPs) in biolog-
ical motor systems, the musculoskeletal apparatus is a high-
dimensional redundant stochastic system and has many more
degrees-of-freedom (DoF) than needed to perform a specific
action (Bernstein, 1967). A classical hypothesis is that such redun-
dancy is resolved by a combination of only a small number of
functional units, namely MPs (d’Avella et al., 2003; Bizzi et al.,
2008; d’Avella and Pai, 2010). In other terms, MPs can be under-
stood as compact parameterizations of elementary movements
which allows for an efficient abstraction of the high-dimensional
continuous action spaces. This abstraction has been shown to
facilitate learning of complex movement skills (d’Avella et al.,
2003; Schaal et al., 2003; Neumann et al., 2009).

A second important aspect about biological movement are
the characteristics of motor variability under perturbations or
stochasticity. If humans perform the same task several times,

the resulting movement trajectories vary considerably. Stochastic
optimal control (SOC), besides its high relevance in engineering
problems, has proven itself as an excellent computational the-
ory of this effect (Todorov and Jordan, 2002; Trommershauser
et al., 2005). An implication of SOC, the minimum intervention
principle, states that we should only intervene in the system if
it is necessary to fulfill the given task. If the task constraints are
not violated it is inefficient to suppress the inherent noise in the
stochastic system. The fact that biological movements account for
such principles suggests that SOC principles are involved on the
lowest level of movement generation.

These biological perspectives suggest that the third aspect, effi-
cient motor skill learning, is facilitated by this combination of
MPs with low level SOC principles. While existing MP meth-
ods have demonstated efficient learning of complex movement
skills (d’Avella et al., 2003; Schaal et al., 2003; Neumann et al.,
2009) they lack an integration of SOC principles within MPs.
Instead, in current approaches the parameters of the MP com-
pactly determine the shape of the desired trajectory either directly
or indirectly. This trajectory is then followed by feedback control
laws. An example for an indirect trajectory parameterization are
the widely used Dynamic Movement Primitives (DMPs) (Schaal
et al., 2003), which use parameterized dynamical systems to deter-
mine a movement trajectory. The idea of DMPs to endowing
MPs with an intrinsic dynamical system has several benefits: they

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00097/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ElmarR�ckert&UID=55784
http://community.frontiersin.org/people/GerhardNeumann/73574
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MarcToussaint&UID=73563
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=WolfgangMaass&UID=10884
mailto:rueckert@igi.tugraz.at
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

provide a linear policy parameterization which can be used for
imitation learning and policy search (Kober and Peters, 2011).
The complexity of the trajectory can be scaled by the number
of parameters (Schaal et al., 2003) and one can adapt meta-
parameters of the movement such as the movement speed or
the goal state of the movement (Pastor et al., 2009; Kober et al.,
2010). Further, the dynamical system of a DMP is to some degree
also reactive to perturbations by adapting the time progression of
the canonical system depending on joint errors and thereby de-
or accelerating the movement execution as needed (Ijspeert and
Schaal, 2003; Schaal et al., 2003). However, the trajectory shape
itself is fixed and non-reactive to the environment.

In our approach we aim to go beyond MPs that parameter-
ize a fixed reference trajectory and instead truly integrate SOC
principles within the MP. The general idea is to endow MPs with
an intrinsic probabilistic planning system instead of an intrinsic
dynamical system. Such a Planning Movement Primitive (PMP)
can react to the environment by optimizing the trajectory for
the specific current situation. The intrinsic probabilistic plan-
ning system is described as a graphical model that represents the
SOC problem (Kappen et al., 2009; Toussaint, 2009). Training
such a MP therefore amounts to learning a graphical model
such that inference in the learned graphical model will generate
an appropriate policy. This has several implications. First, this
approach implies a different level of generalization compared to a
dynamical system that generates a fixed (temporally flexible) ref-
erence trajectory. For instance, if the end effector target changes
between training and testing phase, an intrinsic planning system
will generalize to a new target without retraining. A system that
directly encodes a trajectory would either have to be retrained or
use heuristics to be adapted (Pastor et al., 2009). Second, this
approach truly integrates SOC principles within the MP. The
resulting policy follows the minimum intervention principle and
is compliant compared to a feedback controller that aims to follow
a reference trajectory.

As with DMPs, a PMP is trained in a standard RL setting.
Instead of parameterizing the shape of the trajectory directly, a
PMP has parameters that determine the intrinsic cost function of
the intrinsic SOC system. While the reward function (typically)
gives a single scalar reward for a whole movement, the learned
intrinsic cost function is in the standard SOC form and defines
task and control costs for every time-step of the movement. In
other terms, training a PMP means to learn from a sparse reward
signal an intrinsic cost function such that the SOC system will,
with high probability, generate rewarded movements. Parallel to
this learning of an intrinsic cost function, a PMP also exploits the
data to learn an approximate model of the system dynamics. This
approximate dynamics model is used by the intrinsic SOC system.
Therefore, PMP learning combines model-based and model-free
RL: it learns a model of the system dynamics while at the same
time training PMP parameters based on the reward signal. It does
not learn an approximate model of the reward function itself.
We can exploit supervised learning methods such as Vijayakumar
et al. (2005) and Nguyen-Tuong et al. (2008a,b) for learning the
system dynamics and at the same time use policy search meth-
ods to adapt the PMP parameters that determine the intrinsic
cost function. This two-fold learning strategy has the promising

property of fully exploiting the data by also estimating the system
dynamics instead of only adapting policy parameters.

As mentioned above, our approach is to represent the intrinsic
SOC system as a graphical model, building on the recent work
on Approximate Inference Control (AICO), (Toussaint, 2009).
AICO generates the movement by performing inference in the
graphical model that is defined by the system dynamics and the
intrinsic cost function. Since we learn both from experience, all
conditional probability distributions of this graphical model are
learned in the RL setting. The output of the planner is a linear
feedback controller for each time slice.

Our experiments show that by the use of task-relevant features,
we can significantly facilitate learning and generalization of com-
plex movement skills. Moreover, due to the intrinsic SOC planner,
our MP representation implements the principles of optimal con-
trol, which allows to learn solutions of high quality which are not
representable with traditional trajectory-based methods.

In the following section we review in more detail related pre-
vious work and the background on which our methods build.
Section 3 then introduces the proposed PMP. In section 4 we
evaluate the system on a one-dimensional via-point task and
a complex dynamic humanoid balancing task and compare to
DMPs. We conclude with a discussion in section 5.

2. RELATED WORK AND BACKGROUND
We review here the related work based on parameterized move-
ment policies, policy search methods and SOC.

2.1. PARAMETERIZED MOVEMENT POLICIES
MPs are a parametric description of elementary movements
(d’Avella et al., 2003; Schaal et al., 2003; Neumann et al., 2009).
We will denote the parameter vector of a MP by θ and the pos-
sibly stochastic policy of the primitive as π(u|x, t; θ), where u is
the applied action and x denotes the state. The key idea of the
term “primitive” is that several of these elementary movements
can be combined not only sequentially but also simultaneously
in time. However, in this paper, we want to concentrate on the
parameterization of a single MP. Thus we only learn a single ele-
mentary movement. Using several MPs simultaneously is part of
future work for our approach as well as for existing approaches
such as Schaal et al. (2003) and Neumann et al. (2009).

Many types of MPs can be found in the literature. The cur-
rently most widely used movement representation for robot
control are the DMPs (Schaal et al., 2003). DMPs evaluate param-
eterized dynamical systems to generate trajectories. The dynami-
cal system is constructed such that the system is stable. In order
to do so, a linear dynamical system is used which is modulated by
a learnable non-linear function f . A great advantage of the DMP
approach is that the function f depends linearly on the parameters
θ of the MP: f (s) = �(s)Tθ, where s is the time or phase variable.
As a result, imitation learning for DMPs is straightforward, as
this can simply be done by performing a linear regression (Schaal
et al., 2003). Furthermore, it also allows the use of many well-
established RL methods such as policy gradient methods (Peters
and Schaal, 2008) or Policy Improvements by Path Integrals PI2

(Theodorou et al., 2010). The complexity of the trajectory can
be scaled by the number of features used for modeling f . We can

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

also adapt meta-parameters of the movement such as the move-
ment speed or the goal state of the movement (Pastor et al., 2009;
Kober et al., 2010). However, as the features �(s) are fixed, the
ability of the approach to extract task-relevant features is lim-
ited. Yet, the change of the desired trajectory due to the change of
the meta-parameters is based on heuristics and does not consider
task-relevant constraints. While the dynamical system of a DMP is
to some degree reactive to the environment—namely by adapting
the time progression of the canonical system depending on joint
errors and thereby de- or accelerating the movement execution as
needed (Ijspeert and Schaal, 2003; Schaal et al., 2003)—the tra-
jectory shape itself is fixed and non-reactive to the environment.
As the DMPs are the most common movement representation,
we will use it as a baseline in our experiments. A more detailed
discussion of the DMP approach can be found in the Appendix.

Another type of movement representation was introduced in
Neumann et al. (2009) by the movement template framework.
Movement templates are temporally extended, parameterized
actions, such as sigmoidal torque, velocity or joint position pro-
files, which can be sequenced in time. This approach uses a more
complex parameterization as the DMPs. For example, it also
incorporates the duration of different phases, like an acceleration
or deceleration phase. The division of a movement into single
phases allows the use of RL methods to learn how to sequence
these primitives. However, as the approach still directly specifies
the shape of the trajectory, defining complex movements for high-
dimensional systems is still complicated, which has restricted the
use of movement templates to rather simple applications.

An interesting movement representation arizing from analysis
of biological data are muscle synergies (d’Avella et al., 2003; Bizzi
et al., 2008). They have been used to provide a compact represen-
tation of electromyographic muscle activation patterns. The key
idea of this approach is that muscle activation patterns are linear
sums of simpler, elemental patterns, called muscle synergies. Each
muscle synergy can be shifted in time and scaled with a linear fac-
tor to construct the whole activation pattern. While the synergy
approach has promising properties such as the linear superpo-
sition and the ability to share synergies between tasks, except for
some smaller applications (Chhabra and Jacobs, 2006), these MPs
have only been used for data analysis, and not for robot control.

All the so far presented MPs are inherently local approaches.
The specified trajectory and hence the resulting policy are only
valid for a local (typically small) neighborhood of our initial state.
If we are in a new situation, it is likely that we need to re-estimate
the parameters of the MP. The generation of the reference trajec-
tory for these approaches is often an offline process and does not
incorporate knowledge of the system dynamics, proprioceptive or
other sensory feedback. Because the reference trajectory itself is
usually created without any knowledge of the system model, the
desired trajectory might not be applicable, and thus, the real tra-
jectory of the robot might differ considerably from the specified
trajectory.

There are only few movement representations which can also
be used globally, i.e., for many different initial states of the sys-
tems. One such methods is the Stable Estimator of Dynamical
Systems (Khansari-Zadeh and Billard, 2011) approach. However,
this method has so far only been applied to imitation learning,

using the approach for learning or improving new movement
skills is not straight forward. We will therefore restrict our dis-
cussion to local movement representations.

Our PMP approach is, similar as the DMPs, a local approach.
In a different situation, different abstract goals and features might
be necessary to achieve a given task. However, as we extract
task-relevant features and use them as parameters, the same
parameters can be used in different situations as long as the task-
relevant features do not change. As we will show, the valid region
where the local MPs can still be applied is much larger for the
given control tasks in comparison to trajectory-based methods.

2.2. POLICY SEARCH FOR MOVEMENT PRIMITIVES
Let x denote the state and u the control vector. A trajectory τ

is defined as sequence of state control pairs, τ = 〈x1:T, u1:T−1〉,
where T is the length of the trajectory. Each trajectory has asso-
ciated costs C(τ) (denoted as extrinsic cost), which can be an
arbitrary function of the trajectory. It can, but need not be com-
posed of the sum of intermediate costs during the trajectory. For
example, it could be based on the minimum distance to a given
point throughout the trajectory. We want to find a MP’s parame-
ter vector θ∗ = argminθJ(θ) which minimizes the expected costs
J(θ) = E [C(τ)|θ]. We assume that we can evaluate the expected
costs J(θ) for a given parameter vector θ by performing roll-outs
on the real system.

In order to find θ∗ we can apply policy search methods. Here
a huge variety of possible methods exists. Policy search meth-
ods can be coarsely divided into step-based exploration and
episode-based exploration approaches. Step-based exploration
approaches such as Peters and Schaal (2008), Kober and Peters
(2011), and Theodorou et al. (2010) apply an exploration noise
to the action of the agent at each time-step of the episode.
Subsequently, the policy is updated such that the (noisy) trajecto-
ries with higher reward are more likely to be repeated. In order to
do this update, step-based exploration techniques strictly rely on a
policy which is linear in its parameters. This is true for the DMPs
(Schaal et al., 2003). Currently, the most common policy search
methods are step-based approaches, including the REINFORCE
(Williams, 1992), the episodic Natural Actor Critic (Peters and
Schaal, 2008), the PoWER (Kober and Peters, 2011), or the PI2

(Theodorou et al., 2010) algorithm. This also explains partially
the popularity of the DMP approach for motor skill learning
because DMPs are, from those introduced above, the only rep-
resentation which can be used for these step-based exploration
methods (apart from very simple ones like linear controllers).

However, recent research has also intensified on episode-based
exploration techniques that make no assumptions on a specific
form of a policy (Hansen et al., 2003; Wierstra et al., 2008; Sehnke
et al., 2010). These methods directly perturb the policy param-
eters θ and then estimate the performance of the perturbed θ

parameters by performing roll-outs on the real system. During
the episode no additional exploration is applied (i.e., a determin-
istic policy is used). The policy parameters are then updated in
the estimated direction of increasing performance. Thus, these
exploring methods do not depend on a specific form of param-
eterization of the policy. In addition, they allow the use of
second order stochastic search methods that estimate correlations

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

between policy parameters (Hansen et al., 2003; Wierstra et al.,
2008; Heidrich-Meisner and Igel, 2009b). This ability to apply
correlated exploration in parameter-space is often beneficial in
comparison to the uncorrelated exploration techniques applied
by all step-based exploration methods, as we will demonstrate in
the experimental section.

2.3. STOCHASTIC OPTIMAL CONTROL AND PROBABILISTIC
INFERENCE FOR PLANNING

SOC methods such as Todorov and Li (2005), Kappen (2007),
and Toussaint (2009) have been shown to be powerful methods
for movement planning in high-dimensional robotic systems. The
incremental Linear Quadratic Gaussian (iLQG) (Todorov and Li,
2005) algorithm is one of the most commonly used SOC algo-
rithms. It uses Taylor expansions of the system dynamics and cost
function to convert the non-linear control problem in a Linear
dynamics, Quadratic costs and Gaussian noise system (LQG). The
algorithm is iterative—the Taylor expansions are recalculated at
the newly estimated optimal trajectory for the LQG system.

In Toussaint (2009), the SOC problem has been reformulated
as inference problem in a graphical model, resulting in the AICO
algorithm. The graphical model is given by a simple dynamic
Bayesian network with states xt , actions ut and task variables
g[i] (representing the costs) as nodes, see Figure 1. The dynamic
Bayesian network is fully specified by conditional distributions
encoded by the cost function and by the state transition model.
If beliefs in the graphical model are approximated as Gaussian
the resulting algorithm is very similar to iLQG. Gaussian message
passing iteratively re-approximates local costs and transitions as
LQG around the current mode of the belief within a time slice.
A difference to iLQG is that AICO uses forward messages instead
of a forward roll-out to determine the point of local LQG approx-
imation and can iterate belief re-approximation with in a time
slice until convergence, which may lead to faster overall conver-
gence. For a more detailed discussion of the AICO algorithm with
Gaussian message passing see section 3.5.

FIGURE 1 | Planning Movement Primitives are endowed with an

intrinsic planning system, which performs inference in a learned

graphical model. States are denoted by xt , controls by ut , and the time
horizon is fixed to T time-steps. In this example the graphical model is used
to infer the movement by conditioning on two abstract goals g[1] and g[2],
which are specified in the learned intrinsic cost function L(τ; θ).

Local planners have the advantage that they can be applied
to high-dimensional dynamical systems, but the disadvantage of
requiring a suitable initialization. Global planning (Kuffner and
LaValle, 2000) on the other hand does not require an initial solu-
tion, however, they have much higher computational demands.
Our motivation for using only a local planner as component of a
PMP is related to the learning of an intrinsic cost function.

Existing planning approaches for robotics typically use hand-
crafted intrinsic cost functions and the dynamic model is either
analytically given or learned from data (Mitrovic et al., 2010).
PMPs use RL to train an intrinsic cost function for planning
instead of trying to learn a model of the extrinsic reward directly.
The reason is that a local planner often fails to directly solve real-
istically complex tasks by optimizing directly the extrinsic cost
functions. From this perspective, PMPs learn to translate complex
tasks to a simpler intrinsic cost function that can efficiently be
optimized by a local planner. This learning is done by trial-and-
error in the RL setting: the PMP essentially learns from experience
which intrinsic cost function the local planner can cope with
and uses it to generate good trajectories. Thereby, the RL of the
intrinsic cost function can compensate the limitedness of the local
planner.

3. MATERIALS AND METHODS
In this section we introduce the proposed PMPs, in particular the
parameterization of the intrinsic cost function. The overall sys-
tem will combine three components: (1) a regression method for
learning the system dynamics, (2) a policy search method for find-
ing the PMP parameters, and (3) a SOC planner for generating
movements with the learned model and PMP parameters.

3.1. PROBLEM DEFINITION
We consider an unknown dynamical system of the form

xt+1 = fDyn(ut, xt) + εt, (1)

with state variable xt , controls ut and Gaussian noise εt ∼
N (0, σ). The agent has to realize a control policy π : xt �→ ut ,
which in our case will be a linear feedback controller for each
time slice. The problem is to find a policy that minimizes the
expected costs of a finite-horizon episodic task. That is, we assume
there exists a cost function C(τ), where τ = (x1:T, u1:T−1) is a
roll-out of the agent controlling the system. We do not assume
that the cost function C(τ) is analytically known or can be writ-
ten as sum over individual costs for each time-step, i.e., C(τ) =∑

t ht(xt, ut). This would imply an enormous credit assignment
problem with separate costs at each time-step. Thus more gen-
erally, we only get a single scalar reward C(τ) for the whole
trajectory. The problem is to find argminπ〈C(τ)〉π.

The system dynamics fDyn as well as the cost function C(τ) are
analytically unknown. Concerning the system dynamics we can
estimate an approximate model of the systems dynamics from a
set of roll-outs—as standard in model-based RL. However, con-
cerning costs, we only receive the single scalar cost C(τ) after a
roll-out indicating the quality or success of a movement. Note
that C(τ) is a function of the whole trajectory, not only of the
final state. Learning C from data would be an enormous task,

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

more complex than learning an immediate reward function xt �→
rt as in standard model-based RL where rt denotes the reward
at time t.

Generally, approaches to learn C(τ) directly in a form useful
for applying SOC methods seems an overly complex task and vio-
lates the maxim “never try to solve a problem more complex than
the original.” Therefore, our approach will not try to learn C(τ)

from data but to employ RL to learn some intrinsic cost function
that can efficiently be optimized by SOC methods and generates
control policies that, by empiricism, minimizes C(τ).

3.2. PARAMETERIZATION OF PMP’S INTRINSIC COST FUNCTION
In PMPs the parameters θ encode task-relevant abstract goals or
features of the movement, which specify an intrinsic cost function

L(τ; θ) :=
T∑

t=0

l(xt, ut, t; θ) + cp(xt, ut), (2)

where l denotes the intermediate intrinsic cost function for
every time-step and cp(xt , ut) is used to represent basic known
task constraints, such as torque or joint limits. We will assume
that such basic task constraints are part of our prior knowl-
edge, thus cp is given and not included in our parameterization.
For the description of PMPs we will neglect the constraints
cp for simplicity. We will use a via-point representation for
the intermediate intrinsic cost function l(xt , ut, t; θ). Therefore,
parameter learning corresponds to extracting goals which are
required to achieve a given task, such as passing through a
via-point at a given time. As pointed out in the previous sec-
tion, L(τ; θ) is not meant to approximate C(τ). It provides a
feasible cost function that empirically generates policies that
minimize C(τ).

There are many ways to parameterize the intermediate intrin-
sic cost function l. In this paper we choose a simple via-point
approach. However, in an ongoing study we additionally imple-
mented a desired energy state of a pendulum on a cart, which
simplifies the learning problem. The movement is decomposed in
N shorter phases with duration d[i], i = 1, .., N. In each phase the
cost function is assumed to be quadratic in the state and control
vectors. In the ith phase (t < d[1] for i = 1 and

∑i−1
j=1 d[i] < t ≤

∑i
j=1 d[i] for i > 1) we assume the intrinsic cost has the form:

l(xt , ut, t; θ) = (xt − g[i])T R[i](xt − g[i]) + uT
t H[i]ut . (3)

It is parameterized by the via-point g[i] in state space; by the
precision vector r[i] which determines R[i] = diag(exp r[i]) and
therefore how steep the potential is along each state dimension;
and by the parameters h[i] which determine H[i] = diag(exp h[i])
and therefore the control costs along each control dimension. We
represent the importance factors r[i] and h[i] both in log space as
we are only interested in the relationship of these factors. At the
end of each phase (at the via-point), we multiply the quadratic
state costs by the factor 1/�t where �t is the time-step used for
planning. This ensures that at the end of the phase the via-point is
reached, while during the phase the movement is less constraint.

With this representation, the parameters θ of our PMPs are given
by

θ = [d[1], g[1], r[1], h[1] ... d[N], g[N], r[N], h[N]]. (4)

Cost functions of this type are commonly used—and hand-
crafted—in control problems. They allow to specify a via-point,
but also to determine whether only certain dimensions of the state
need to be controlled to the via-point, and how this trades off with
control cost. Instead of hand-designing such cost functions, our
method will use a policy search method to learn these parameters
of the intrinsic cost function. As for the DMPs we will assume
that the desired final state at time index T is known, and thus g[N]
is fixed and not included in the parameters. Furthermore, since
we consider finite-horizon episodic tasks the duration of the last
phase is also fixed: d[N] = T − ∑N−1

i=1 d[i]. Still, the algorithm can

choose the importance factors r[N] and h[N] of the final phase.

3.3. DYNAMIC MODEL LEARNING
PMPs are endowed with an intrinsic planning system. For plan-
ning we need to learn a model of the system dynamics fDyn in
Equation (1). The planning algorithm can not interact with the
real environment, it solely has to rely on the learned model. Only
after the planning algorithm is finished, the resulting policy is
executed on the real system and new data points 〈[xt, ut], ẋt〉 are
collected for learning the model.

Many types of function approximators can be applied in this
context (Vijayakumar et al., 2005; Nguyen-Tuong et al., 2008a,b).
We use the lazy learning technique Locally Weighted Regression
(LWR) (Atkeson et al., 1997) as it is a very simple and effective
approach. LWR is a memory-based, non-parametric approach,
which fits a local linear model to the locally-weighted set of data
points. For our experiments, the size of the data set was limited
to 105 points implemented as a first-in-first-out queue buffer,
because the computational demands of LWR drastically increase
with the size of the data set. In particular we used a Gaussian
kernel as distance function with the bandwidth parameters hφ =
0.25 for joint angles, hφ̇ = 0.5 for velocities, and hu = 0 for con-

trols 1. For more details we refer to Chapter 4 in Atkeson et al.
(1997).

3.4. POLICY SEARCH FOR PMP’S INTRINSIC COST FUNCTION
Model learning takes place simultaneously to learning the param-
eters θ of the MP. In general this could lead to some instability.
However, while the distribution P(xt) depends on the policy and
the data for model learning is certainly non-stationary, the con-
ditional distribution P(xt+1|ut, xt) is stationary. A local learning
scheme as LWR behaves rather robust under such type of non-
stationarity of the input distribution only. On the other hand,
from the perspective of θ optimization, the resulting policies
may change and lead to different payoffs C(τ) even for the same
parameters θ due to the adaption of the learned system dynamics.

1The bandwidth parameter for controls is set to zero as the matrizes A and
B in the linearized model, i.e., ẋ = A(x)x + B(x)u are independent on the
controls u.

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

Since the resulting control policies of our PMPs depend non-
linearly on the parameters θ, step-based exploration techniques
can not be used in our setup. Hence, we will use the second order
stochastic search method CMA (Covariance Matrix Adaptation,
Hansen et al. 2003) which makes no assumptions on the parame-
terization of the MP.

We employ the second order stochastic search method CMA
to optimize the parameters θ w.r.t. C(τ). The parameter space
is approximated using a multivariate Gaussian distribution.
Roughly, CMA is an iterative procedure that, from the current
Gaussian distribution, generates a number of samples, evaluates
the samples, computes second order statistics of those samples
that reduced C(τ), and uses these to update the Gaussian search
distribution. In each iteration, all parameter samples θ use the
same learned dynamic model to evaluate C(τ). Further, CMA
includes an implicit forgetting in its update of the Gaussian dis-
tribution and therefore behaves robust under the non-stationarity
introduced by adaptation of the system dynamics model.

We will compare our PMP approach to both, DMPs learned
with CMA policy search and DMPs learned with the state of the
art step-based method PI2 (Theodorou et al., 2010). However, we
focus in this work on the characteristics of the movement rep-
resentation and place less emphasis on a specific policy search
method.

Note that even if the learned model is only a rough approxima-
tion of the true dynamics, the policy search for parameters of the
intrinsic cost function can compensate for an imprecise dynam-
ics model: the policy search approach finds parameters θ of the
intrinsic cost function such that—even with a mediocre model—
the resulting controller will lead to low extrinsic costs in the real
system.

3.5. PROBABILISTIC PLANNING ALGORITHM
We use the probabilistic planning method AICO (Toussaint,
2009) as intrinsic planning algorithm. It offers the interpreta-
tion that a MP can be represented as graphical model and the
movement itself is generated by inference in this graphical model.

The graphical model is fully determined by the learned system
dynamics and the learned intrinsic cost function, see Figure 1. In
order to transform the minimization of L(τ; θ) into an inference
problem, for each time-step an individual binary random variable
zt is introduced. This random variable indicates a reward event.
Its probability is given by

P(zt = 1|xt , ut, t) ∝ exp(−l(xt, ut, t; θ)),

where l(xt, ut, t; θ) denotes the cost function for time-step t
defined in Equation (3). AICO now assumes that a reward event
zt = 1 is observed at every time-step. Given that evidence, AICO
calculates the posterior distribution P(x1:T, u1:T−1|z1:T = 1) over
trajectories.

We will use the simplest version of AICO (Toussaint, 2009),
where an extended Kalman smoothing approach is used to esti-
mate the posterior distribution P(x1:T, u1:T−1|z1:T = 1). The
extended Kalman smoothing approach uses Taylor expansions to
linearize the system and subsequently uses Gaussian messages for

belief propagation in a graphical model. Gaussian message pass-
ing iteratively re-approximates local costs and transitions as a
LQG around the current mode of the belief within a time slice.
For more details we refer to Toussaint (2009).

AICO is only a local optimization method and we have to pro-
vide an initial solution which is used for the first linearization.
We will use the direct path (or the straight line) to the via-points
g[i] in Equation (3) as initial solution. Before learning the via-
points g[i] with i = 1..N − 1 are set to the initial state x1. The
final via-point is fixed and set to the desired final state g[N] = xT .

AICO provides us with a linear feedback controller for each
time slice of the form

ut = Otxt + ot , (5)

where Ot is the inferred feedback control gain matrix and ot

denotes the linear feedback controller term. This feedback control
law is used as policy of the MP and is evaluated on a simulated or
a real robot.

The original formulation of the AICO method (Toussaint,
2009) does not consider torque limits, which are important for
many robotic experiments as well for the dynamic balancing
experiments we consider in this paper. Therefore we extended
the algorithm. This extension yields not only a modified form of
the immediate cost function but also results in different update
equations for the messages and finally different equations of
the optimal feedback controller. A complete derivation of the
extension including the resulting messages and the correspond-
ing feedback controller is given in Rückert and Neumann (2012).
Also the algorithm is listed in that work.

On overview of the interactions between policy search of the
PMP’s intrinsic cost function and the planning process using
AICO is sketched in Figure 2. The learning framework is orga-
nized the following: given the parameters θ from the policy
search method CMA, AICO is initialized with an initial solu-
tion which is the direct path to the via-points. AICO is then
used to optimize the parameterized intrinsic cost function L(τ; θ)

to estimate a linear feedback controller for each time-step, see
Equation (5). The feedback controller is subsequently executed
on the simulated or the real robot and the extrinsic cost C(τ) is
evaluated. Based on this evidence CMA will update its distribu-
tion over the policy search space and computes a new parameter
vector. Simultaneously we collect samples of the system dynam-
ics 〈[xt , ut], ẋt〉 while executing the MP. These samples are used
to improve our learned dynamics model, which is used for
planning.

4. RESULTS
We start our evaluation of the proposed PMP approach on a
one-dimensional via-point task to illustrate basic characteristics.
In order to demonstrate our approach on a more challenging
dynamic robot task we choose a complex 4-link humanoid bal-
ancing task. At the end of this section we discuss an important
issue: the computational time of PMPs for simulated and real
world tasks.

In our experiments, we focus on investigating the optimal-
ity of the solution, the robustness to noise for learning, and the

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

FIGURE 2 | We decompose motor skill learning into two different

learning problems. At the highest level we learn parameters θ of an intrinsic
cost function L(τ; θ) using policy search (model-free RL). Given parameters θ

the probabilistic planner at the lower level uses the intrinsic cost function
L(τ; θ) and the learned dynamics model to estimate a linear feedback
controller for each time-step (model-based RL). The feedback controller is

subsequently executed on the simulated or the real robot and the extrinsic
cost C(τ) is evaluated. Based on this evidence the policy search method
computes a new parameter vector. Simultaneously we collect samples of the
system dynamics 〈[xt , ut], ẋt 〉 while executing the movement primitive.
These samples are used to improve our learned dynamics model which is
used for planning.

generalizability to different initial or final states. For the 4-link
task we additionally demonstrate how model learning influences
the learning performance.

For a comparison we take the commonly used DMPs as a
baseline where we use the newest version of the DMPs (Pastor
et al., 2009) as discussed in detail in Appendix A. As described
above we use 2nd order stochastic search to learn the PMP
and DMP parameters. In order to compare to a more com-
monly used policy search algorithm we additionally test the
PI2 algorithm (Theodorou et al., 2010) for learning the DMP
parameters. For all experiments we empirically evaluate the opti-
mal settings of the algorithms (such as the exploration rate
of CMA and PI2, the number of centers for the DMPs, or
the number of via-points for the PMPs), which are listed in
Appendix B.

4.1. ONE-DIMENSIONAL VIA-POINT TASK
In this task the agent has to control a one-dimensional point mass
of 1 kg. The state at time t is denoted by xt = [φt , φ̇t]T and we
directly control the acceleration ut . The time horizon was limited
to T = 50 time-steps, which corresponds to a simulation time of
0.5 s with a time-step of �t = 10 ms. Starting at x1 = [0, 0]T the
agent has to pass through a given via-point gv = −0.2 at tv = 30.
The velocity of the point mass at the via-point is not specified and
can have any value. The final target gT was set to 1. The movement

is shown in Figure 3. For this task we define the extrinsic cost
function:

C(τ) = 104(φ̇2
T + 10(gT − φT)2) + 105(gv − φt30)

2

+ 5 · 10−3
T∑

t=1

u2
t .

The first two terms punish deviations from the target gT and the
via-point gv, where φt30 denotes the first dimension of the state
xt = [φt , φ̇t]T at time index 30. The target should be reached with
zero velocity at T = 50. The last term punishes high energy con-
sumption where ut denotes the applied acceleration. The control
action is noisy, we always add a Gaussian noise term with a stan-
dard deviation of σ = 20 to the control action. As this is a very
simple task, we use it just to show different characteristics of the
DMPs (using 10 Gaussians for that representation was optimal)
and PMPs (apparently 2 via-points are sufficient for this task).

A quite similar task has been used in Todorov and Jordan
(2002) to study human movement control. The experiments
showed that humans were able to reach the given via-points with
high accuracy, however, in between the via-points, the trial-to-
trial variability was rather high. This is a well-known concept
from optimal control, called the minimum intervention principle,

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

FIGURE 3 | This figure illustrates the best available policies for the

DMPs and the PMPs for the via-point task. From left-to-right shown are
the point mass trajectories, the variance of these trajectories, the velocity
of the point mass, and the applied accelerations. The agent has to pass
the via-point at tv = 0.3 s and deal with the stochasticity of the system
(Gaussian control noise with a variance of 202). The plots show 100
trajectories reproduced with the optimal parameters for the DMPs (A) and

100 trajectories with the (hand-crafted) optimal parameters for PMPs (B).
The PMP approach is able to reduce the variance of the movement if it is
relevant for the task, while the DMPs can only suppress the noise in the
system throughout the trajectory in order to get an acceptable score. This
advantage is also reflected by the average costs over 1000 trajectories.
The DMP solution achieved cost values of 1286 ± 556 whereas the PMP
result was 1173 ± 596.

showing also that human movement control follows basic rules of
optimal control.

4.1.1. Optimality of the solutions
We first estimate the quality of the best available policy with the
DMP and the PMP approach. We therefore use the PMPs with
two via-points and set the parameters θ per hand. As we are using
a linear system model and a simple extrinsic cost function, the
PMP parameters can be directly obtained by looking at the extrin-
sic costs. As the PMPs use the AICO algorithm, which always
produces optimal policies for LQG systems, the PMP solution
is the optimal solution. We subsequently use the mean trajec-
tory returned by AICO and use imitation learning to fit the DMP
parameters. We also optimized the feedback controllers used for
the DMPs 2. In Figure 3 we plotted 100 roll-outs of the DMP
and PMP approach using this optimal policies. The second col-
umn illustrates the trial-to-trial variability of the trajectories.
The optimal solution has minimum variance at the via-point
and the target. As expected this solution is reproduced with the

2The control gains, i.e., the two scalars kpos and kvel of the linear feedback
controller in Equation (7) in the Appendix are learned using a 2nd order
stochastic search method.

PMP approach, because the parameters of the PMPs are able
to reflect the importance of passing through the via-point. The
DMPs could not adapt the variance during the movement because
the used (optimized) feedback controller uses constant controller
gains. As we can see, the variance of the DMP trajectory is simply
increasing with time.

Comparing the optimal solutions we find that PMPs, in con-
trast to DMPs, can naturally deal with the inherent noise in
the system. This is also reflected by the average cost values over
1000 trajectories, 1286 ± 556 for the DMPs and 1173 ± 596 for
the PMPs. The ± symbol always denotes the standard deviation.
PMPs perform significantly better than DMPs (t-test: p < 10−3).

4.1.2. Robustness to noise for learning
This advantage would not be very useful if we were not able to
learn the optimal PMP parameters from experience. Next we test
using CMA policy search to learn the parameters for the DMPs
and the PMPs. In addition, in order to compare to a more com-
monly used policy search method, we also compare to the PI2

approach (Theodorou et al., 2010) which we could only evaluate
for the DMP approach. We evaluated the learning performance in
the case of no control noise, Figure 4A, and in the case of control
noise σ = 20, Figure 4B performing 15 runs.

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

FIGURE 4 | This figure illustrates the learning performance of the two

movement representations, DMPs and PMPs, for the one-dimensional

via-point task. Illustrated are mean values and standard deviations over 15
runs after CMA policy search. In addition, we also compare to the PI2

approach (Theodorou et al., 2010) which we could only evaluate for the DMP
approach. Without noise the final costs of the two representations are similar
if CMA policy search is used (A). In the second example (B) we use

zero-mean Gaussian noise with σ = 20 for the controls. In this setup we
needed to average each performance evaluation for CMA over 20 roll-outs.
For both setups the PMPs could considerably outperform the DMPs in terms
of learning speed. For the noisy setup the PMPs could additionally produce
policies of much higher quality as they can adapt the variance of the
trajectories to the task constraints. PI2 could not find as good solutions as
the CMA policy search approach in both setups.

Without control noise the quality of the learned policy found
by 2nd order search is similar for the DMPs (657.5 ± 0.18) and
the PMPs (639.6 ± 0.01). PI2 could not find as good solutions
as the stochastic search approach. The reason for this is that PI2

could not find the very large weight values which are needed for
the last few centers of the DMPs in order to have exactly zero
velocity at the final state (note that the weights of the DMPs
are multiplied by the phase variable s which almost vanishes in
the end of the movement and therefore these weight values have
to be very high). Because CMA policy search uses second order
information, such large parameter values are easily found. This
comparison clearly shows that using 2nd order search for pol-
icy search is justified. If we compare the learning speed in terms
of required episodes or roll-outs between DMPs and PMPs, we
find an advantage for PMPs which could be learned an order of
magnitude faster than the DMPs.

The second experiment (with control noise of σ = 20) was
considerably harder to learn. Here, we needed to average each per-
formance evaluation over 20 roll-outs. The use of more sophis-
ticated extensions of CMA (Heidrich-Meisner and Igel, 2009a)

which can deal with noisy performance evaluations and hence
improve the learning speed of CMA policy search in the noisy
setup is part of future work. In Figure 4B we find that the PMPs
could be learned an order of magnitude faster than the DMPs. As
expected from the earlier experiment, the PMPs could find clearly
better solutions as the DMPs as they can adapt the variance of the
trajectory to the task constraints. Again, PI2 showed a worse per-
formance than 2nd order search. Illustrated are mean values and
standard deviations over 15 runs of learning (1034 ± 1.46 for the
PMPs and 1876 ± 131 for the DMPs using CMA). To compare
these results to the optimal costs we evaluated the best learned
policies of both approaches and generated 1000 trajectories. The
learned solution for the PMPs was similar to the hand-coded
optimal solution, 1190 ± 584 versus costs of 1173 ± 596 for the
optimal solution. DMPs achieved costs of 1478 ± 837, illustrat-
ing that, eventhough the DMPs are able to represent much better
solutions with costs of 1286 ± 556 (see Figure 3), it is very hard
to find this solution.

In Table 1, we show the mean and variance of the found
parameters averaged over 15 runs for the first via-point in

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

Table 1 | Learned parameters using PMPs for the via-point task (1st via-point).

Scenario d[1] g[1] log(r[1]) log(h[1])

Optimal 0.3 −0.2 [5, 0] −2.3

No noise 0.29 ± 0.01 −0.27 ± 0.03 [4.08 ± 4.18,−0.8 ± −0.77] −3.05 ± −4

With noise 0.29 ± 0.01 −0.23 ± 0.05 [4.93 ± 5.29,−0.31 ± −0.12] −2.85 ± −3

The symbol ± denotes the standard deviation.

comparison to the optimal PMP parameters. We can see that the
found parameters matched the optimal ones. Interestingly, in the
experiment with no noise, the found parameters had a larger devi-
ation from the optimal ones, especially for the first via-point g[1]
in Table 1. The reason for this is the simple observation that with-
out noise, we can choose many via-points which results in the
same trajectory, whereas with noise we have to choose the correct
via-point in order to reduce the variance of the trajectory at this
point in time.

4.1.3. Generalizability to different task settings
Next, we investigate the ability of both approaches to adapt to
different situations or to adapt to different priors. In the previ-
ous task, Figure 3 the initial and the target state were assumed
as prior knowledge. The movement was learned for the ini-
tial state φ1 = 0 and for the target state φT = 1. We want to
investigate if the same learned parameters can be re-used to gen-
erate different movements, e.g., used for different initial or target
states.

For PMPs we use the new initial or final states denoted by x1

and g[N] in the graphical model in Figure 1 and re-plan the move-
ment (using the same learned parameters). The change of the
initial state or the target state is also allowed by the DMP frame-
work. However, how the movement is generalized to these new
situations is based on heuristics (Pastor et al., 2009) and does not
consider any task constraints (in this example to pass through the
via-point).

In Figure 5 the learned policies are applied to reach dif-
ferent initial states φ1 ∈ {−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6}
(Figures 5A,B) and different goal states φT ∈
{1.5, 1.25, 1, 0.75, 0.5} (Figures 5C,D). All plots show the
mean trajectory. In order to change the initial or the target
state of the movement we have to change the point attractor of
the DMPs, which changes the complete trajectory. Due to this
heuristic, the resulting DMP trajectories shown in Figures 5A,C
do not pass through the via-point any more. Note that we use
a modified version of the DMPs (Pastor et al., 2009) which has
already been built for generalization to different initial or target
points. The PMPs on the other hand still navigate through the
learned via-point when changing the initial or the goal state as
shown in Figures 5B,D.

4.1.4. Concluding summary
As we have seen the PMPs implement all principles of optimal
control, which allows to learn solutions for stochastic systems of
a quality which is not representable with traditional trajectory-
based methods such as the DMPs. The optimal movement trajec-
tory could be learned from scratch up to one order of magnitude

faster compared to DMPs. This difference was even more visible
in the stochastic case, where the DMPs needed more than 30, 000
episodes to find satisfactory solutions. In the setting with control
noise the learned parameters matches the optimal ones because
only by the use of noise the parameters are uniquely determined.
Finally the PMPs could extract the task-relevant feature, the via-
point. Even if the task changes—e.g., the initial or the final state
are changed, the movement trajectory still passes through the
learned via-point. The DMPs on the other hand heuristically scale
the trajectory which offers no control for fulfilling task-relevant
constraints.

With DMPs 12 parameters were learned, where we used 10
Gaussian kernels and optimized 2 control gains. For the PMPs 2
via-points were sufficient, where the last one was fixed. However,
for both via-points we could specify 3 importance weights. Thus,
in total 8 = 2 + 3 + 3 parameters were learned.

4.2. DYNAMIC HUMANOID BALANCING TASK
In order to assess the PMPs on a more complex task, we evaluate
the PMP and DMP approach3 on a dynamic non-linear balancing
task (Atkeson and Stephens, 2007). The robot gets pushed with a
specific force F and has to keep balance. The push results in an
immediate change of the joint velocities. The motor torques are
limited, which makes direct counter-balancing of the force unfea-
sible. The optimal strategy is therefore to perform a fast bending
movement and subsequently return to the upright position, see
Figure 6. This is a very non-linear control problem, applying any
type of (linear) balancing control or local optimal control algo-
rithm such as AICO with the extrinsic cost function fails. Thus,
we have to use a parametric movement representation. Like in
the previous experiment, we take the DMP (Schaal et al., 2003)
approach as a baseline.

We use a 4-link robot as a simplistic model of a
humanoid (70 kg, 2 m) (Atkeson and Stephens, 2007). The
eight-dimensional state xt is composed of the arm, the hip,
the knee and the ankle positions and their velocities. Table 1
in Rückert and Neumann (2012) shows the initial velocities
(resulting from the force F which always acts at the shoul-
der of the robot) and the valid joint angle range for the task.
In all experiments the applied force was F = 25Ns. If one of
the joints leaves the valid range the robot is considered to be
fallen. Additionally to the joint limits, the controls are limited
to the intervals [±250,±500, ±500,±70] Nm (arm, hip, knee,
and ankle). For more details we refer to Atkeson and Stephens
(2007).

3For PMPs again 2 via-points were optimal. DMPs performed best when using
10 Gaussian kernels per dimension.

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

FIGURE 5 | For the previous task illustrated in Figure 3 the

movement was learned for a single initial state φ1 = 0 and a

single target state φT = 1. The initial and the target state were
assumed as prior knowledge. In this experiment we evaluated the
generalization of the learned policies to different initial states
φ1 ∈ {−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6} (A–B) and different target states

φT ∈ {1.5, 1.25, 1, 0.75, 0.5} (C–D). Always the same parameters θ have
been used, i.e., the parameters were not re-learned. Illustrated are the
mean trajectories. The DMPs (A,C) are not aware of task-relevant
features and hence do not pass through the via-point any more. (B,D)

PMPs can adapt to varying initial or target states with small effects on
passing through the learned via-point.

FIGURE 6 | This figure illustrates a dynamic balancing movement

learned using the proposed Planning Movement Primitives. The 4-link
robot modeling a humanoid (70 kg, 2 m) gets pushed from behind with a
specific force (F = 25 Ns) and has to move such that it maintains balance.
The optimal policy is to perform a fast bending movement and
subsequently return to the upright robot posture. The circles denote the
ankle, the knee, the hip, and the shoulder joint. The arm link is drawn as
dotted line to differentiate it from the rest of the body.

Let ts be the last time index where the robot has not fallen
and let xts be the last valid state. The final state or rest-
ing state (upright position with zero velocity) is denoted by
xr . The movement was simulated for 5 s with a �t = 10 ms

resulting in T = 500 time-steps. As extrinsic cost function C(τ)

we use:

C(τ) = 20(ts − T)2 + (xts − xr)
TRE(xts − xr)

+
ts∑

t=1

uT
t HEut . (6)

The first term (ts − T)2 is a punishment term for falling over. If
the robot falls over, this term typically dominates. The precision
matrix RE determines how costly it is not to reach xr . The diag-
onal elements of RE are set to 103 for joint angles and to 10 for
joint velocities. Controls are punished by HE = 5 · 10−6I. Because
of the term (ts − T)2 we cannot directly encode the extrinsic
cost function as a sum of intermediate costs, which is usually
required for SOC algorithms. But we can use PMPs to trans-
form this reward signal into an intrinsic cost function for a local
probabilistic planner.

4.2.1. Optimality of the solutions
We use additive zero-mean Gaussian noise with a standard devi-
ation σ = 10. In contrast to the simple via-point task where

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

imitation learning was used to compare the trajectories shown
in Figure 3 are the policies for the 4-link task learned from
scratch. Figure 7 illustrates the best learned policies for DMPs
(left column) and PMPs (right column). Shown are the joint
angle trajectories (Figures 7A,B) and the variance of these trajec-
tories (Figures 7C,D). The corresponding controls are illustrated
in Figure 8. We evaluated 100 roll-outs of the best policies found
by both approaches. While the DMPs cannot adapt the variance
during the movement Figure 7C, the PMPs can exploit the power
of SOC and are able to reduce the variance at the learned via-
point (marked by crosses) Figure 7D. As the PMPs are able to
control the variance of the trajectory, we can see that the vari-
ance of the movement is much higher compared to the DMPs

(Figures 7C,D). Accuracy only matters at the via-points. We can
also see that the arm trajectory has a high variance after the robot
is close to a stable up-right posture Figure 7B, because it is not
necessary to strictly control the arm in this phase. The best found
policy of the DMPs had costs of 568 while the best result using
PMPs was 307. This strongly suggests that it is advantageous to
reduce the variance at certain points in time in order to improve
the quality of the policy.

4.2.2. Robustness to noise for learning
Next, we again want to assess the learning speed of both
approaches. We again used CMA policy search for the PMPs and
DMPs as well as PI2 for the DMP approach. The average over 20

FIGURE 7 | This figure illustrates the best learned policies for the 4-link

balancing task using DMPs (left column) and PMPs (right column).

Shown are the joint angle trajectories (A–B) and the variance of these
trajectories (C–D). The applied controls are illustrated in Figure 8. We
evaluated 100 roll-outs using the same parameter setting θ for each approach.
The controls were perturbed by zero-mean Gaussian noise with σ = 10 Ns.
PMPs can exploit the power of stochastic optimal control and the system is

only controlled if necessary, see the arm joint trajectories in (B). The learned
via-points are marked by crosses in (B) and (C). For DMPs the variance of the
joint trajectories (C) is determined by the learned controller gains of the
inverse dynamics controller. As constant controller gains are used the
variance can not be adapted during the movement and is smaller compared
to (D). For DMPs the best available policy achieved cost values of 568
whereas the best result using PMPs was 307.

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

runs of the learning curves are illustrated in Figure 9. Using the
PMPs as movement representation, good policies could be found
at least one order of magnitude faster compared to the trajectory-
based DMP approach. The quality of the found policies was better
for the PMP approach (mean values and standard deviations after
learning: 993 ± 449 for the DMPs and 451 ± 212 for the PMPs).
For the DMP approach we additionally evaluated PI2 for policy
search, however, PI2 was not able to find good solutions—the
robot always fell over.

4.2.3. Generalizability to different task settings
In the next step we again test the generalization to different ini-
tial or final states. More specific we investigate how well the
approaches can adapt to different priors of the arm joint.

In the previous task the target was assumed to be known
prior knowledge and the policy was learned for a final arm
posture of φTarm = 0. We used this learned policy to generate
movements to different final targets of the arm joint φTarm ∈
{3, 2.5, 2, 1.5, 1, 0.5, 0, −0.2,−0.4,−0.6}. We only change either
the arm-position of the last via-point or the point attractor of
the dynamical system. The results shown in Figure 10 confirm
the findings of the one-dimensional via-point task. The PMPs
first move to the via-point, always maintaining the extracted task
constraints, and afterward move the arm to the desired position
while keeping balance. All desired target positions of the arm
could be fulfilled. In contrast, the DMPs managed to keep bal-
ance only for few target positions. The valid range of the target
arm position with DMPs was φTarm ∈ [−0.2, 1]. This shows the
advantage of generalization while keeping task constraints versus
generalization per using the DMP heuristics.

The ability of the two approaches to adapt to different ini-
tial states is illustrated in Figure 11. We used the learned policy
for φ1arm = 0 to generate movements using different initial states

of the arm joint: φ1arm = {1, 0.5, 0.2, 0,−0.2,−0.4,−0.6}. The
push perturbing the robot results in an immediate change of the
joint velocities, which are shown in Table A5 in the Appendix for
these different initial states. For the DMPs only the joint angles 0
and −0.2 resulted in successful policies. Whereas with PMPs the
valid range of the initial arm position was φ1arm ∈ [−0.6, 0.5].

4.2.4. Model learning using PMPs
So far all experiments for the PMPs were performed using the
known model of the system dynamics, these experiments are
denoted by PMP in Figure 12. Note that also for the DMPs the
known system model has been used for inverse dynamics con-
trol. Now we want to evaluate how model learning affects the
performance of our approach. This can be seen in Figure 12. In
the beginning of learning the extrinsic costs are larger compared
to motor skill learning with a given analytic model. However, as
the number of collected data-points 〈[xt; ut], ẋt〉 increases the
PMPs with model learning quickly catch up and converge finally
to the same costs. The PMP representation with model learning
in parallel considerably outperforms the trajectory-based DMP
approach in learning speed and in the final costs.

4.2.5. Computational time
For our simulations we used a standard personal computer
(2.6 Ghz, 8 Gb ram) with implementations of the algorithms in
C++. For the 4-link pendulum the DMPs could generate the
movement trajectory within less than 0.1 s. With the proposed
PMPs it took less than 1 s (including model learning). The time
horizon was 5 s and we used a time-step of �t = 10 ms.

4.2.6. Concluding summary
In contrast to the via-point task the optimal solution for this
dynamic balancing task is unknown. The comparison to the

FIGURE 8 | This figure illustrates the controls of best learned policies for

the 4-link balancing task using DMPs (A) and PMPs (B). The
corresponding joint angle trajectories are shown in Figure 7. The controls

were perturbed by zero-mean Gaussian noise with σ = 10 Nm. Shown are
100 roll-outs using the same parameter setting θ for each approach. The
dotted horizontal lines in the last row indicate the control constraints.

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

FIGURE 9 | The figure illustrates the learning performance of the

two movement representations, DMPs and PMPs for the 4-link

balancing task. Illustrated are mean values and standard deviations
over 20 runs after CMA policy search. The controls (torques) are
perturbed by zero-mean Gaussian noise with σ = 10 Nm. The PMPs are
able to extract characteristic features of this task which is a specific
posture during the bending movement, shown in Figure 7B. Using the

proposed Planning Movement Primitives good policies could be found at
least one order of magnitude faster compared to the trajectory-based
DMP approach. Also, the quality of the best-found policy was
considerably better for the PMP approach (993 ± 449 for the DMPs and
451 ± 212 for the PMPs). For the DMP approach we additionally
evaluated PI2 for policy search, which could not find as good solutions
as the CMA policy search approach.

FIGURE 10 | This figure illustrates the joint angle trajectories (arm,

hip, knee, and ankle) of a 4-link robot model during a balancing

movement for different final targets of the arm joint (3, 2.5, 2, 1.5,

1, 0.5, 0, −0.2, −0.4, −0.6). The applied policies were learned for a final

arm posture of φTarm = 0. (A) The valid range of the arm joint using
DMPs is φTarm ∈ [−0.2, 1]. Large dots in the plot indicates that the robot
has fallen. (B) PMPs could generate valid policies for all final arm
configurations.

DMPs shows a similar result as for the via-point task. With the
PMPs we could find movements of significantly higher quality
compared to the DMPs and the motor skill could be learned up
to one order of magnitude faster with PMPs. We again applied
the same parameters to different initial or final states to demon-
strate the generalization ability. Now we can see the advantage
of the learned task-relevant features. While the PMPs still try to
fulfill the extracted task-relevant constraints and therefore suc-
ceeded for almost all initial/final state configurations, the DMPs
again just heuristically scale the trajectory, which results in the

robot falling in almost all but the learned configurations. Finally
we showed that the dynamic model could be learned in parallel
for the 4-link balancing task.

For all balancing experiments shown in this section the robot
was pushed with the specific force F = 25 Ns. We have per-
formed the same evaluations for various forces and the results
are basically the same. For example, a comparison of the learn-
ing performances using the negative force F = −25 Ns is shown
in Figure 13. The executed movement of the best learned policy
using PMPs is shown in Figure 14.

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 14

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

FIGURE 11 | This figure illustrates the joint angle trajectories (arm,

hip, knee and ankle) of a 4-link robot model during a balancing

movement for different initial states of the arm joint (1, 0.5, 0.2,

0, −0.2, −0.4, −0.6). The applied policies were learned for an initial

arm posture of φ1arm = 0. (A) The valid range of the arm joint using
DMPs is φ1arm ∈ [−0.2, 0]. Large dots in the plot indicates that the
robot has fallen. (B) PMPs could generate valid policies for
φ1arm ∈ [−0.6, 0.5].

FIGURE 12 | This figure shows the influence of model learning on the

4-link balancing task. Illustrated are mean values and standard deviations
over 20 runs. The learning performance with the given system model is
denoted by PMP. Instead of using the given model we now want to learn
the system model from data (as described in section 3.3), which is
denoted by PMP-M. In the beginning of learning the extrinsic costs are

larger compared to motor skill learning with a given analytic model.
However, as the number of collected data-points 〈[xt ; ut], ẋt 〉 increases the
PMPs with model learning quickly catch up and converge finally to the
same costs. The PMP representation with model learning in parallel
considerably outperforms the trajectory-based DMP approach in learning
speed and in the final costs.

In total 40 weights and 8 control gains were learned with
DMPs. For PMPs we used 2 via-points where the second one was
fixed. Thus, we learned 8 parameters specifying the first via-point
and additionally 12 importance weights for each via-point. This
results in 32 parameters.

5. DISCUSSION
In this paper we concentrated on three aspects of biological
motor control, which are also interesting for robotic motor
skill learning: (1) the modularity of the motor system, which
makes it possible to represent high-dimensional action spaces in
terms of lower-dimensional MPs, (2) its variability and behavior
under stochasticity, and (3) the efficiency in learning movement
strategies.

In order to achieve similar properties also for robotic motor
skill learning we propose to exploit the power of SOC already at
the level of the MP. Instead of endowing a MP with a dynami-
cal system, like the DMPs (Schaal et al., 2003), we endow a MP
with an intrinsic probabilistic planning system. The resulting MP
is called PMP. For the dynamical systems approach the parame-
ters of the MP indirectly define the shape of the trajectory. In our
case, the parameters of the MP define the intrinsic cost function of
a graphical model, which represents a SOC problem. Performing
inference in this graphical model yields the controls for executing
the movement.

Due to the use of the intrinsic planning system our represen-
tation complies with basic principles of SOC. For example, the
PMPs are able to account for the motor variability often observed

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 15

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

FIGURE 13 | This figure illustrates the learning performance of the two

movement representations, DMPs and PMPs for the 4-link balancing

task. But in contrast to the evaluations shown in the experimental

section did we here apply a negative force F = −25 Ns. Illustrated are
mean values and standard deviations over 20 runs after CMA policy search.
The controls (torques) are perturbed by zero-mean Gaussian noise with

σ = 10 Nm. Using the proposed Planning Movement Primitives good policies
could be found at least one order of magnitude faster compared to the
trajectory-based DMP approach. Also, the quality of the best-found policy
was considerably better for the PMP approach (720 ± 323 for the DMPs and
227 ± 112 for the PMPs). For the DMP approach we additionally evaluated PI2

for policy search which could not find good policies.

FIGURE 14 | This figure illustrates a dynamic balancing movement

learned using the proposed Planning Movement Primitives. The 4-link
robot modelling a humanoid (70 kg, 2 m) gets pushed with the specific
force (F = −25 Ns) and has to move such that it maintains balance. The
circles denote the ankle, the knee, the hip, and the shoulder joint.

in human motion. Instead of suppressing the noise of the sys-
tem by following a single reference trajectory, the PMPs are able
to learn to intervene the system only if it is necessary to fulfill
a given task, also known as the minimum intervention principle
(Todorov and Jordan, 2002). This allows a much higher variance
in parts of the trajectory where less accuracy is needed. Current
methods which rely on a reference trajectory are not able to
reproduce these effects.

The parameters of PMPs encode learned task-relevant features
of the movement, which are used to specify the intrinsic cost
function for the MP’s intrinsic planning system. Our experiments
have shown that such a task-related parameterization facilitates
learning and generalization of movement skills. Policies of higher
quality could be found an order of magnitude faster than with
the competing DMP approach. In addition, as confirmed by our

experiments, the intrinsic planner also allows a wide generaliza-
tion of the learned movement, such as generalization to different
initial or goal positions. The DMPs on the other hand have to use
heuristics for this generalization (Pastor et al., 2009), which had
the consequence that the robot typically fell over in a new situ-
ation. In this case relearning is needed for the DMPs while the
PMPs allow to reuse the learned parameters.

In traditional SOC methods (Todorov and Li, 2005; Kappen,
2007; Toussaint, 2009) the intrinsic cost function is typically
hand-crafted. In contrast we learn the cost function from expe-
rience. We considered a general class of motor skill learning tasks
where only a scalar reward is observed for the whole movement
trajectory. Thus, with PMPs this external sparse reward signal
is used to learn the intrinsic cost function. We applied the sec-
ond order stochastic search method CMA (Hansen et al., 2003)
for finding appropriate intrinsic cost functions. In this paper
we focused on the representation of movements, and placed less
emphasis on a specific policy search method. We want to point
out again that our method does not depend on the used pol-
icy search method, any episode-based exploring policy search
method can be used. We also do not want to argue for using
episode-based exploring methods for policy search, however, as
our experiments show, these methods provide useful alternatives
to the more commonly used step-based approaches such as the
PI2 algorithm (Theodorou et al., 2010). Future work will con-
centrate on more grounded approaches for extracting immediate
costs from a sparse reward signal. This can also be of interest
for imitation learning, where we do not know the immediate
costs used by the demonstrator, but often we can evaluate the
demonstrators behavior by an external reward signal.

The planner requires to know the system dynamics, which
we also learn from data. As shown by our experiments this
can be done without significant loss of performance. Hence,
our approach combines model-based and model-free RL. As in

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 16

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

model-based RL, we learn a system model to plan with. Model-
free RL is used as method to search for appropriate intrinsic cost
functions. We used the LWR (Atkeson et al., 1997) for learning
the system dynamics as it is a very simple and effective approach.
Future work will also concentrate on more complex robot models
where more sophisticated methods like Vijayakumar et al. (2005),
Nguyen-Tuong et al. (2008a), and Nguyen-Tuong et al. (2008b)
could be applied for model learning.

In our experiments the number of phases was fixed (N = 2).
It was assumed as prior knowledge and can model the complex-
ity of the movement representation (Similarly, the complexity of
DMPs can be scaled by the number of Gaussian activation func-
tions). During our experiments we also evaluated the balancing
task with up to N = 5 phases, but more than 2 phases did not
improve the quality of the learned policy. One via-point on the
other hand was not sufficient to describe the movement.

A promising topic for future investigation is the combination
of primitives in order to achieve several tasks simultaneously. This
is still a mostly unsolved problem for current movement repre-
sentations. Because of the non-linear task demands and system
dynamics a naive linear combination in trajectory space usually
fails. Here, our PMPs offers new opportunities. New movements
can be inferred by a linear combination of cost functions, which
results in a non-linear combination of the policies for the single
tasks.

ACKNOWLEDGMENTS
This paper was written under partial support by the European
Union project FP7-248311 (AMARSI) and project IST-2007-
216886 (PASCAL2). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.

REFERENCES
Atkeson, C., and Stephens, B. (2007).

“Multiple balance strategies from
one optimization criterion,” in
Proceedings of the 7th International
Conference on Humanoid Robots,
57–64.

Atkeson, C. G., Moore, A. W., and
Schaal, S. (1997). Locally weighted
learning for control. Artif. Intell.
Rev. 11, 75–113.

Bernstein, N. A. (1967). The Co-
ordination and Regulation of
Movements. Oxford, NY: Pergamon
Press Ltd.; first english edition.

Bizzi, E., Cheung, V. C. K, d’Avella,
A., Saltiel, P., and Tresch, M.
(2008). Combining modules for
movement. Brain Res. Rev. 57,
125–133.

Chhabra, M., and Jacobs, R. A. (2006).
Properties of synergies arising
from a theory of optimal motor
behavior. Neural Comput. 18,
2320–2342.

d’Avella, A., and Pai, D. K. (2010).
Modularity for sensorimotor con-
trol: evidence and a new prediction.
J. Mot. Behav. 42, 361–369.

d’Avella, A., Saltiel, P., and Bizzi, E.
(2003). Combinations of muscle
synergies in the construction of a
natural motor behavior. Nature 6,
300–308.

Hansen, N., Muller, S., and
Koumoutsakos, P. (2003). Reducing
the time complexity of the deran-
domized evolution strategy with
covariance matrix adaptation
(CMA-ES). Evol. Comput. 11,
1–18.

Heidrich-Meisner, V., and Igel, C.
(2009a). “Hoeffding and bernstein
races for selecting policies in evo-
lutionary direct policy search,” in
ICML ’09: Proceedings of the 26th
Annual International Conference on

Machine Learning, (Montreal, QC:
ACM), 401–408.

Heidrich-Meisner, V., and Igel, C.
(2009b). Neuroevolution strategies
for episodic reinforcement learning.
J. Algorithms 64, 152–168.

Ijspeert, A. J., and Schaal, S. (2003).
“Learning attractor landscapes
for learning motor primitives,” in
Advances in Neural Information
Processing Systems 15, (NIPS 2003),
(Cambridge, MA: MIT Press),
1523–1530.

Kappen, B., Gómez, V., and Opper,
M. (2009). Optimal control
as a graphical model infer-
ence problem. Comput. Res.
Repos. arXiv:0901.0633. doi:
10.1007/s10994-012-5278-7

Kappen, H. J. (2007). “An introduc-
tion to stochastic control theory,
path integrals and reinforcement
learning,” in Cooperative Behavior
in Neural Systems, Volume 887
of American Institute of Physics
Conference Series, (Granada, Spain),
149–181.

Khansari-Zadeh, S. M., and Billard, A.
(2011). Learning stable non-linear
dynamical systems with Gaussian
mixture models. IEEE Trans. Robot.
27, 943–957.

Kober, J., Oztop, E., and Peters, J.
(2010). “Reinforcement learning to
adjust robot movements to new
situations,” in Proceedings of the
2010 Robotics: Science and Systems
Conference (RSS 2010), (Zaragoza,
Spain).

Kober, J., and Peters, J. (2011). Policy
search for motor primitives in
robotics.Mach.Learn. J.84,171–203.

Kuffner, J., and LaValle, S. (2000).
“RRT-connect: an efficient
approach to single-query path
planning,” in Proceedings of the 2000
IEEEE International Conference on

Robotics and Automation ICRA,
(San Francisco, CA), 995–1001.

Mitrovic, D., Klanke, S., and
Vijayakumar, S. (2010). “Adaptive
optimal feedback control with
learned internal dynamics mod-
els,” in From Motor Learning
to Interaction Learning in
Robots, (Berlin; Heidelberg:
Springer-Verlag), 65–84.

Neumann, G., Maass, W., and Peters, J.
(2009). “Learning complex motions
by sequencing simpler motion tem-
plates,” in Proceedings of the 26th
International Conference on Machine
Learning, (ICML 2009), (Montreal,
QC, Canada), 753–760.

Nguyen-Tuong, D., Peters, J., Seeger,
M., and Schölkopf, B. (2008a).
“Learning inverse dynamics: a
comparison,” in 16th European
Symposium on Artificial Neural
Networks, (ESANN 2008), (Bruges,
Belgium), 13–18.

Nguyen-Tuong, D., Seeger, M., and
Peters, J. (2008b). “Local gaus-
sian process regression for real
time online model learning and
control,” in Proceedings of 22nd
Annual Conference on Neural
Information Processing Systems,
(NIPS 2008), (Vancouver, BC,
Canada), 1193–1200.

Pastor, P., Hoffmann, H., Asfour, T.,
and Schaal, S. (2009). “Learning
and generalization of motor skills
by learning from demonstra-
tion,” in International Conference
on Robotics and Automation
(ICRA 2009), (Kobe, Japan).

Peters, J., Mistry, M., Udwadia, F. E.,
Nakanishi, J., and Schaal, S. (2008).
A unifying methodology for robot
control with redundant DOFs.
Auton. Robots 24, 1–12.

Peters, J., and Schaal, S. (2008).
Reinforcement learning of motor

skills with policy gradients. Neural
Netw. 21, 682–697.

Rückert, E. A., and Neumann, G.
(2012). Stochastic optimal con-
trol methods for investigating the
power of morphological computa-
tion. Artif. Life 19, 1–17.

Schaal, S., Peters, J., Nakanishi,
J., and Ijspeert, A. J. (2003).
“Learning movement primitives,”
in International Symposium on
Robotics Research, (ISRR 2003),
(Lucerne, Switzerland), 561–572.

Sehnke, F., Osendorfer, C., Rückstieß,
T., Graves, A., Peters, J., and
Schmidhuber, J. (2010). Parameter-
exploring policy gradients. Neural
Netw. 23, 551–559.

Theodorou, E., Buchli, J., and Schaal,
S. (2010). “Reinforcement learn-
ing of motor skills in high dimen-
sions: a path integral approach,” in
Robotics and Automation (ICRA),
2010 IEEE International Conference,
(Anchorage, AL), 2397–2403.

Todorov, E., and Jordan, M. (2002).
Optimal feedback control as a the-
ory of motor coordination. Nat.
Neurosci. 5, 1226–1235.

Todorov, E., and Li, W. (2005). “A
generalized iterative LQG method
for locally-optimal feedback control
of constrained nonlinear stochastic
systems,” in Proceedings of the 24th
American Control Conference, vol-
ume 1 of (ACC 2005), (Portland,
Oregon, USA), 300–306.

Toussaint, M. (2009). “Robot trajectory
optimization using approximate
inference,” in Proceedings of the
26th International Conference
on Machine Learning, (ICML
2009), (Montreal, QC, Canada),
1049–1056.

Trommershauser, J., Gepshtein,
S., Maloney, L., and Banks, M.
(2005). Optimal compensation for

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 17

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

changes in task-relevant move-
ment variability. J. Neurosci. 25,
7169–7178.

Vijayakumar, S., D’Souza, A., and
Schaal, S. (2005). Incremental
online learning in high dimensions.
Neural Comput. 17, 2602–2634.

Wierstra, D., Schaul, T., Peters, J.,
and Schmidhuber, J. (2008).
“Episodic reinforcement learn-
ing by logistic reward-weighted
regression,” in Proceedings of the

18th International Conference on
Artificial Neural Networks, Part I,
(ICANN 2008) (Berlin;Heidelberg:
Springer-Verlag), 407–416.

Williams, R. J. (1992). Simple statistical
gradient-following algorithms for
connectionist reinforcement learn-
ing. Mach. Learn. 8, 229–256.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any

commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 12 October 2012; accepted: 04
December 2012; published online: 02
January 2013.
Citation: Rückert EA, Neumann G,
Toussaint M and Maass W (2013)
Learned graphical models for proba-
bilistic planning provide a new class of
movement primitives. Front. Comput.

Neurosci. 6:97. doi: 10.3389/fncom.
2012.00097
Copyright © 2013 Rückert, Neumann,
Toussaint and Maass. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License, which permits use, distribution
and reproduction in other forums, pro-
vided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 18

http://dx.doi.org/10.3389/fncom.2012.00097
http://dx.doi.org/10.3389/fncom.2012.00097
http://dx.doi.org/10.3389/fncom.2012.00097
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

APPENDIX
A. DYNAMIC MOVEMENT PRIMITIVES
The most prominent representation for movement primitives
(MPs) used in robot control are the DMP (Schaal et al., 2003). We
therefore used the DMPs as a baseline in our evaluations and will
briefly review this approach in order to clarify differences to our
work. For our experiments we implemented an extension of the
original DMPs (Pastor et al., 2009), which considers an additional
term in the dynamical system which facilitates generalization to
different target states. For more details we refer to Schaal et al.
(2003) and Pastor et al. (2009).

DMPs generate multi-dimensional trajectories by the use of
non-linear differential equations. The basic idea is to a use for
each degree-of-freedom (DoF) of the robot a globally stable, lin-
ear dynamical system which is modulated by learnable non-linear
functions f :

τż = αzβz(g − y) − αzz − αzβz(g − y1)s + f , τẏ = z,

where the desired final position of the joint is denoted by g and the
initial position of the joint is denoted by y1. The variables y and ẏ
denote a desired joint position and joint velocity, which represent
our movement plan. The temporal scaling factor is denoted by
τ and αz and βz are time constants. The non-linear function f
directly modulates the derivative of the internal state variable z.
Thus, f modulates the desired acceleration of the movement plan.
s denotes the phase of the movement.

For each DoF of the robot an individual dynamical system,
and hence an individual function f is used. The function f only
depends on the phase s of a movement, which represents time,
τṡ = −αss. The phase variable s is initially set to 1 and will con-
verge to 0 for a proper choice of τ and αs. With αs we can modulate
the desired movement speed. The function f is constructed of the
weighted sum of K Gaussian basis functions �i

f (s) =

K∑
i=1

�i(s)wis

K∑
i=1

�i(s)

, �i(s) = exp(− 1

2σ2
i

(s − ci)
2).

As the phase variable s converges to zero also the influence of
f vanishes with increasing time. Hence, the dynamical system is
globally stable with g as point attractor.

In our setting, only the linear weights wi are parameters of the
primitive which can modulate the shape of the movement. The
centers ci specify at which phase of the movement the basis func-
tion becomes active and are typically equally spaced in the range
of s and not modified during learning. The bandwidth of the basic
functions is given by σ2

i .
Integrating the dynamical systems for each DoF results into

a desired trajectory 〈yt , ẏt〉 of the joint angles. We will use an
inverse dynamics controller to follow this trajectory (Peters et al.,
2008). The inverse dynamics controller receives the desired accel-
erations q̈des as input and outputs the control torques u. In order
to calculate the desired accelerations we use a simple decoupled

linear PD-controller

q̈des = diag(kpos)(yt − qt) + diag(kvel)(ẏt − q̇t). (7)

Unfortunately standard inverse dynamics control did not work in
our setup because we had to deal with control limits of multi-
dimensional systems. Thus, we had to use an inverse dynamics
controller which also incorporates control constraints. For this
reason we performed an iterative gradient ascent using the dif-
ference between the actual (using constrained controls) and the
desired accelerations q̈des as error function. This process was
stopped after at most 25 iterations.

For our comparison, we will learn the linear weights w for
each DoF as well as the controller gains kpos and kvel, i.e., θ =
[w1, . . . , wD, kpos, kvel]. This results into KD + 2D parameters
for the movement representation, where D denotes the number
of DoF of the robot.

B. TASK SETTINGS AND PARAMETERS
In this section the MP parameters and constants are specified
for the one-dimensional via-point task and for the humanoid
balancing task.

B.1 ONE-DIMENSIONAL VIA-POINT TASK
For the one-dimensional via-point task the parameters of the
Dynamic Movement Primitives are listed in Table A1. The valid
configuration space for the policy search algorithm is listed in
Table A2. The CMA policy search algorithm has just one param-
eter, the exploration rate. Where the best exploration rate using
DMPs for this task found was 0.05.

The limits of the parameterization of the Planning Movement
Primitives (PMPs) (see Equation 4) is listed in Table A3. For
the via-point task we choose N = 2, where the second via-point
g[N] = gT was given. The exploration rate was set to 0.1 in all
experiments.

Table A1 | Via-point task: DMP movement primitive parameters.

K αs αz βz τ

10 1 2 0.9 0.1

Table A2 | Via-point task: DMP policy search configuration

parameters.

w kpos kvel

Lower bound −100 0 0

Upper bound +100 100 100

Table A3 | Via-point task: PMP policy search configuration

parameters with i = 1,2.

d[1] g[1] r[i] h[i]

Lower bound 0.05 −2 [1, 10−6] 10−4

Upper bound 0.4 +2 [106, 104] 10−2

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 19

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Rückert et al. Planning movement primitives

B.2 DYNAMIC HUMANOID BALANCING TASK
The DMP parameters for the balancing task are listed in Table A4.
The policy search parameters are the same like for the via-point
task, Table A2. The exploration rate was set to 0.1.

The PMPs were again evaluated with N = 2 via-points, where
the second via-point g[N] = gT (the up-right robot posture) was
given and for the first via-point the valid joint angle configuration
is shown in Table 1 in Rückert and Neumann (2012). The explo-
ration rate was 0.1 and the policy search algorithm configuration
is listed in Table A5.

In the generalization experiment we applied the same learned
policy of the 4-link balancing task to different initial states. For
different initial arm joint configurations the push modulated with
F resulted in different initial joint velocities, which are shown in
Table A6.

Table A4 | Balancing task: DMP movement primitive parameters.

K αs αz βz τ

10 1 5 5 1

Table A5 | Balancing task: PMP policy search configuration

parameters with i = 1, 2.

d [1] r[i] h[i]

Lower bound 0.1 10−2 for angles and 10−4 for velocities 10−91

Upper bound 4.6 104 for angles and 102 for velocities 10−31

Vector 1 denotes a 4-dimensional column vector, where all elements are

equal to 1.

Table A6 | Initial velocities (multiplied by 102/F) for different initial

states of the arm joint φ0arm
.

φ0arm
Arm Hip Knee Ankle

1 −2.39 7.56 −8.54 1.42

0.5 −3.61 6.12 −7.9 1.32

0.2 −4.15 5.29 −7.52 1.25

0 −4.27 5.09 −7.43 1.24

−0.2 −4.15 5.29 −7.52 1.25

−0.4 −3.82 5.8 −7.75 1.29

−0.6 −3.43 6.38 −8 1.34

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 97 | 20

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Learned graphical models for probabilistic planning provide a new class of movement primitives
	Introduction
	Related Work and Background
	Parameterized Movement Policies
	Policy Search for Movement Primitives
	Stochastic Optimal Control and Probabilistic Inference for Planning

	Materials and Methods
	Problem Definition
	Parameterization of PMP's Intrinsic Cost Function
	Dynamic Model Learning
	Policy Search for PMP's Intrinsic Cost Function
	Probabilistic Planning Algorithm

	Results
	One-Dimensional Via-Point Task
	Optimality of the solutions
	Robustness to noise for learning
	Generalizability to different task settings
	Concluding summary

	Dynamic Humanoid Balancing Task
	Optimality of the solutions
	Robustness to noise for learning
	Generalizability to different task settings
	Model learning using PMPs
	Computational time
	Concluding summary

	Discussion
	Acknowledgments
	References
	Appendix
	Dynamic Movement Primitives
	Task Settings and Parameters
	One-Dimensional Via-Point Task
	Dynamic Humanoid Balancing Task

