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The work introduces a linear neural population model that allows to derive analytically
the power spectrum subjected to the concentration of the anesthetic propofol. The
analytical study of the power spectrum of the systems activity gives conditions on
how the frequency of maximum power in experimental electroencephalographic (EEG)
changes dependent on the propofol concentration. In this context, we explain the
anesthetic-induced power increase in neural activity by an oscillatory instability and
derive conditions under which the power peak shifts to larger frequencies as observed
experimentally in EEG. Moreover the work predicts that the power increase only occurs
while the frequency of maximum power increases. Numerically simulations of the
systems activity complement the analytical results.
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1. INTRODUCTION
General anesthesia (GA) is an important medical application in
today’s hospital surgery. Although GA is omnipresent in recent
medicine, its underlying neural interactions have been a long-
standing mystery. In the last decades, the anesthetic phenomena
have attracted theoreticiens, e.g., (Steyn-Ross et al., 1999; Bojak
and Liley, 2005; Hutt, 2011), who aim to describe mathemati-
cally some major experimental phenomena by population mod-
els (Steyn-Ross et al., 2004, 2012; Bojak and Liley, 2005; Hutt
and Longtin, 2009; Hindriks and van Putten, 2012), or spiking-
neuron models (McCarthy et al., 2008; Ching et al., 2010). Most
theoretical studies aim to explain signal features of electroen-
cephalographic (EEG) data observed during anesthesia. Such
features comprise the diminution of α-activity accompanied by
a subsequent enhancement of δ-activity while increasing anes-
thetic concentration (Gugino et al., 2001; Cimenser et al., 2011;
Murphy et al., 2011) and the power enhancement of activity
induced by some anesthetics (McCarthy et al., 2008; Ching et al.,
2010). Another example is the increase of the frequency of maxi-
mum EEG-power to higher values as observed experimentally in
several studies (Gugino et al., 2001; Ching et al., 2010; Murphy
et al., 2011; Boly et al., 2012; Hindriks and van Putten, 2012). The
current work focusses on the power enhancement and the fre-
quency shift of maximum power while increasing the anesthetic
concentration and gives insights into its origin by the analytical
treatment of a linear neural field model.

One of the major objectives of this work is to answer the
question whether it is possible to explain spectral EEG-features
observed during GA by a low-dimensional linear model. The
advantage of such a reduced model is the analytical tractability
and an identification of underlying neural interactions or even the
origin of the spectral feature. Here the difficulty is to find a simple

model, that, however, still involves important, i.e., realistic and
neural interactions. We are convinced that such a model has been
found in a previous work (Hutt and Longtin, 2009). The present
work will simplify further this spatio-temporal model while tak-
ing into account the biophysical effects of the anesthetic propofol
on synaptic receptors and hence retaining the neurobiological
plausibility.

The simplicity of the model will allow to reveal the effect of dif-
ferent actions of the anesthetic propofol on synaptic receptors on
the frequency of maximum spectral power. Moreover, the work
gives criteria under which conditions the frequency of maximum
power increases with increasing propofol concentration and when
it may decreases. In the analytical treatment, we will see that the
power enhancement for larger propofol concentrations may be
explained by an oscillatory instability and we predict that it always
occurs while the frequency of maximum power increases.

2. METHODS
2.1. THE MODEL
The neural field model under study (Hutt and Longtin, 2009)
describes the evolution of the mean membrane potential of
a neural population in a small spatial patch at spatial loca-
tion x and at time t. Similar models have been derived
and studied before (Wilson and Cowan, 1972; Amari, 1977;
Ermentrout, 1998) and applied successfully to explain spatio-
temporal neural activity observed experimentally (Ermentrout
and Cowan, 1979; Huang et al., 2004; Angelucci and Bressloff,
2006; Schwabe et al., 2006). The population includes both excita-
tory and inhibitory neurons and takes into account excitatory and
inhibitory synapses. Assuming that excitatory and inhibitory neu-
rons exhibit identical effective membrane potentials, i.e., an iden-
tical difference between excitatory and inhibitory post-synaptic
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potentials, the mean excitatory and inhibitory post-synaptic
potentials Ve(x, t) and Vi(x, t), respectively, obey

L̂eVe(x, t) = ae

∫
D

Ke(x − y)Se[Ve(y, t) − Vi(y, t)]dy + I(x, t)

L̂iVi(x, t) = ai

∫
D

Ki(x − y)Si[Ve(y, t) − Vi(y, t)]dy (1)

with the circular spatial population domain D of length L,
i.e., assuming periodic boundary conditions. The model under
study differs from some other previous models, e.g., by Liley and
Bojak (2005), by the implementation of synaptic action, gener-
ation of action potentials or axonal connectivity [see also the
work of Coombes et al. (2007) for a comparison of the cur-
rent model and other models]. The functionals Se[·] and Si[·]
are continuously increasing and represent the population fir-
ing rate of excitatory and inhibitory neurons, respectively. In
the population the single neurons are connected by a com-
plex system of axons from neuron somata to synapses. The
kernels Ke(x) and Ki(x) are the probability density of such con-
nections in the population. Here axonal transmission delay is
neglected for simplicity although it is straightforward to include
it in this type of model (Hutt and Longtin, 2009). In addi-
tion, the model considers excitatory and inhibitory synapses,
L̂e = L̂e(d/dt) and L̂i = L̂i(d/dt) denote functional operators
describing the corresponding temporal synaptic response phase
and the factors ae, ai represent the corresponding synaptic
efficacies.

Mathematically, the differential operators are the inverse of the
integral operators in

V(t) =
∫ t

−∞
h(t − τ)P(τ) dτ (2)

where h(t) is the synaptic response function, or more precisely the
electric current response in the synaptic receptor to an impact of
binding neurotransmitters (Koch, 1999). The function P(τ) > 0
is the mean pulse activity arriving at the synapses. In a reasonable
approximation, the response function reads

h(t) = a

τ
e−t/τ

with the decay time constant τ and the synaptic efficacy a > 0.
Then the response amplitude is h(0) = a/τ and the charge trans-
ferred in the receptor ρ = a is the time integral over the current
flow. The corresponding differential operator stipulates L̂V(t) =
aP(t) leading to

L̂

(
∂

∂t

)
= τ

∂

∂t
+ 1

and Equation (2) re-casts to

τ
∂V(t)

∂t
+ V(t) = aP(t).

These expressions hold for excitatory and inhibitory synapses.

The synaptic receptors are major targets of anesthetic agents.
The present work considers the action of propofol on inhibitory
synaptic and extra-synaptic GABAA-receptors. The former recep-
tor is supposed to be a major anesthetic target (Franks and
Lieb, 1994) and there is growing evidence that extra-synaptic
inhibitory receptors may play an important role in anesthesia as
well (Orser, 2006; Hutt, 2012). The subsequent sections consider
effects on synaptic receptors due to the well-established experi-
mental evidence. Hence, the synaptic parameters of inhibitory
synaptic receptors depend on the anesthetic concentration and
are parameterized by the factor p ≥ 1 (Steyn-Ross et al., 2001),
i.e., the decay time of inhibitory synapses τ2 = τ2(p) and the
corresponding synaptic efficacy ai = ai(p) depend on p.

The input in Equation (1) fluctuates randomly in space
and time with ξ(x, t) about a constant value I0 = const, i.e.,
I(x, t) = I0 + ξ(x, t). The random fluctuations are independent
in space and time and thus obey 〈ξ(x, t)〉 = 0, 〈ξ(x, t)ξ(y, T)〉 =
2Dδ(t − T)δ(x − y), where 〈·〉 denotes the ensemble average.

Considering the latter definitions of synaptic properties, anes-
thetic action and external input, the final model equations read

τ1
∂Ve(x, t)

∂t
= −Ve(x, t) + ae

∫
D

Ke(x − y)Se[Ve(y, t)

−Vi(y, t)]dy + I0 + ξ(x, t)

τ2(p)
∂Vi(x, t)

∂t
= −Vi(x, t) + ai(p)

∫
D

Ki(x − y)Si[Ve(y, t)

−Vi(y, t)]dy (3)

with the decay time of excitatory synapses τ1.
Assuming that the random fluctuations are small and do not

affect the stationary state [in contrast to recent results gained
from non-linear systems (Hutt et al., 2007; Hutt, 2008)], the sta-
tionary state Ve(x, t) = V0

e = const, Vi(x, t) = V0
i = const obeys

V0
e = aeSe[V−] + I0, V0

i = ai(p)Si[V−] with V− = V0
e − V0

i =
aeSe[V−] − ai(p)Si[V−] + I0 (Hutt and Longtin, 2009).

2.2. THEORETICAL POWER SPECTRUM
To compute the power spectrum, we employ the method of
Greens function. Let us assume the activity variable vector x(t) ∈
RN , the matrix A, the external input vector ξ(t) ∈ RN , the
Greens function matrix G(t) ∈ RN×N and

ẋ(t) = Ax + ξ(t).

Then, for t → ∞, the solution of the system is

x(t) =
∫ ∞

−∞
G(t − τ)ξ(τ)dτ. (4)

and the Greens function obeys

Ġ − AG(t) = 1δ(t)

with te unitary matrix 1 ∈ RN × N . Applying the Fourier
transform

G(t) = 1√
2π

∫ ∞

−∞
G̃(ω)eiωtdω. (5)
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yields

G̃(ω) = 1√
2π

(iω1 − A)−1 (6)

= 1√
2π

F(iω)

P(iω)
(7)

with the matrix F(iω) and the characteristic polynom P(iω). The
matrix F in Equation (7) includes the matrix elements of the
inverse of iω1 − A and the characteristic polynom P represents
the corresponding matrix determinant.

Inserting Equation (6) into (5) allows to compute G(t) by the
residue theorem in functional analysis

G(t) = 2πi
r∑

n = 1

Res(zn, t)�(t) (8)

with the Heaviside function �(t) and the residues matrix
Res(zn, t) of F(z)/P(z) at the roots zn of the characteristic equa-
tion P(z) = 0. The condition t > 0 considered by the Heaviside
function is the mathematical condition for the validity of
Equation (8) while it also guarantees the causality of the system
response. Equation (8) together with Equation (4) determines the
time dependence of the solution x and is computed explicitly in
section 3.4.

Finally, the power spectral density matrix S(ω) of x is
the Fourier transform of the auto-correlation function matrix
〈xt(t)x(t − T)〉 (Wiener-Khinchine Theorem) leading to

S(ω) = 2D
√

2πG̃(ω)G̃t(−ω),

where the high index t denotes the transposed vector or matrix.

3. RESULTS
3.1. EFFECT OF PROPOFOL
The effect of the anesthetic propofol on neural properties is
manifold (Alkire et al., 2008). It affects properties of mem-
brane ion channels, synaptic receptors and extra-synaptic recep-
tors, see Franks and Lieb (1994) for a review. Kitamura et al.
(2002) have revealed in an experimental study how propofol
affects post-synaptic phasic responses of inhibitory synapses to
spontaneous neurotransmitter release. They have found that the
decay time constant decreases with increasing anesthetic blood
concentration, the charge transfer increases while the amplitude
of the responses remains constant. Some previous studies (Hutt
and Longtin, 2009; Hindriks and van Putten, 2012) have imple-
mented these effects for a bi-exponential synaptic response func-
tion. The present work considers an exponential decay phase
due to its mathematical simplicity, which nevertheless reflects
the major anesthetic impact. To this end, the phasic response
at inhibitory synapses is determined by the decay time con-
stant and the response amplitude. Introducing the parameter p =
τ2(p)/τ2(1), p = 1 reflects the absence of anesthetic agents and
increases of the anesthetic concentration yields an increase of p.
In addition Kitamura et al. (2002) have shown that the amplitude
in cortical neurons remains constant or changes slightly only, i.e.,

h(0) = a/τ2(p) ≈ const and the charge transfer ρ(p) = a increase
with increasing anesthetic concentration. In the case of constant
the model

τ2(p) = τ2(1)p, ai(p) = H0p. (9)

with the constant H0 > 0. These choices of anesthetic actions
reflect different synaptic mechanism. The first relation reflects
the increase of the time constant with increasing anesthetic con-
centration, and the second one both the constant amplitude and
the resulting increasing charge transfer. However, synapses may
have different properties in different brain areas, e.g., synapses
in cortico-thalamic connections increase their amplitude with
increasing propofol concentrations (Ying and Goldstein, 2005).
Hence the relations (Equation 9) are specific properties of
inhibitory synapses on cortical neurons only.

3.2. THE LINEAR MODEL
The following investigation considers the stability of stationary
states and spectral properties of small deviations about them.
These small deviations represent fluctuating currents on the den-
dritic trees of the neurons in the population generating an electric
field on the scalp. They originate from fluctuations in the neuron
membranes or from spontaneous neurotransmitter emission at
synapses. The generated electric field is measured in terms of volt-
age differences between two spatial locations on the scalp which is
the electroencephalogram (EEG) (Nunez and Srinivasan, 2006).

The small fluctuations about the stationary states ue(x, t) =
Ve(x, t) − V0

e , ui(x, t) = Vi(x, t) − V0
i obey

τ1
due(x, t)

dt
= −ue(x, t) + aeS′

e

∫
D

Ke(x − y)
(
ue(y, t)

− ui(y, t)
)

dy + ξ(x, t)

τ2(p)
dui(x, t)

dt
= −ui(x, t) + ai(p)S′

i

∫
D

Ki(x − y)
(
ue(y, t)

− ui(y, t)
)
dy

with the somatic non-linear gain S′
e,i = dSe,i(x)/dx at x =

{V0
e , V0

i }. By virtue of the finite spatial domain, the small
deviations about the stationary state may be expanded into
a discrete infinite Fourier series. The major contribution of
neuronal activity to encephalographic activity on the scalp
is modeled successfully by a spatially constant Fourier mode
ue(x, t) = x(t), ui(x, t) = y(t) (Nunez and Srinivasan, 2006).
Then x(t), y(t) obey

τ1
dx(t)

dt
= (−1 + N1)x(t) − N1y(t) + γ (t)

τ2(p)
dy(t)

dt
= N2x(t) + (−1 − N2)y(t) (10)

with the synaptic non-linear gains N1 = aeS′
eK̃e(0)

√
L, N2 =

N2(p) = ai(p)S′
iK̃i(0)

√
L, the spatial Fourier transform of the ker-

nels K̃e(k), K̃i(k) and the spatial Fourier transform of the external
noise at zero wavenumber γ (t). We point out that 〈γ (t)〉 = 0,
〈γ (t)γ (T)〉 = 2Dδ(t − T).
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3.3. STABILITY ANALYSIS
To study the dynamics about the stationary state, at first let us
neglect the external input ξ(t) since in a first approximation the
stability of the linear system does not depend on the external
input. Then the stationary state is asymptotically stable if the
characteristic equation of Equation (10)

λ2 − λTr + det = 0 (11)

with λ ∈ C and

Tr = N1 − 1

τ1
− N2 + 1

τ2
(12)

det = N1N2

τ1τ2
− N1 − 1

τ1

N2 + 1

τ2
. (13)

has solutions Re(λ) < 0. Here Tr and det are the trace and deter-
minant of the linear matrix in Equation (10), respectively. In
addition, the stationary state is a stable focus if Im(λ) = � �= 0,
� ∈ R and

�2 = N1N2

τ1τ2
− 1

4

(
N1 − 1

τ1
+ N2 + 1

τ2

)2

.

We observe immediately from Equation (12), that the stable focus
is asymptotically stable if Tr < 0 or N1 < 1 for all other param-
eters and the system may lose stability only if N1 > 1. Since
the present work aims to give conditions for certain oscillation
frequencies in the population, the subsequent part of the work
considers stable foci only. In addition the inhibitory synaptic
time scale τ2 = τ2(p) depends on the anesthetic concentration,
but not τ1. Thus τ1 is treated as a constant.

The new variables a = (N1 − 1)2, b = N1N2 − N1 + N2 + 1
and c = (N2 + 1)2 depend solely on N1, N2, and simplify the
notation in the following analysis. Then for N1 > 1, stable foci
stipulate

Tr =
√

a

τ1
−

√
c

τ2
< 0 or

τ2

τ1
<

√
c

a
, (14)

� = 1

2

√√√√ 1

τ1

(
2b

τ2
− a

τ1
− cτ1

τ2
2

)
∈ R. (15)

The last equation implies that the determinant is positive defi-
nite, i.e.,

d(τ2) = aτ2
2 − 2bτ1τ2 + cτ2

1 < 0.

A comparison to Equation (15) reveals that d(τ2) = 0 leads to
� = 0 which permits to compute the range of τ2 for which the
system exhibits stable foci:

τ−
2

τ1
≤ τ2

τ1
≤ τ+

2

τ1
(16)

τ−
2

τ1
= b

a

(
1 +

√
1 − ac

b2

)
,

τ+
2

τ1
= b

a

(
1 −

√
1 − ac

b2

)

inhibitory decay time τ
2

ex
ci

ta
to

ry
 d

ec
ay

 ti
m

e 
τ 1

stable oscillations

unstable 

no oscillations

no oscillations

f=0Hz

f=0Hz

increasing concentration

f=f
max

FIGURE 1 | Illustration of the parameter areas which exhibit stable,

unstable, and no oscillations. The upper and lower solid lines denote
τ−

2 /τ1 and τ+
2 /τ1, respectively. The dotted line denotes the maximum

frequency fmax = 2πωm with τ2/τ1 = b/c, cf. Equation (20), and the
stability threshold is given by τ2/τ1 = √

c/a, see Equation (14).

implying (b/a)2 > c/a. Condition (16) constrains the relation of
both synaptic time scales τ2/τ1 by N1 and N2, see Figure 1 for the
corresponding parameter space.

To learn more about the dynamics of the model, we con-
sider parameters yielding strong oscillations with a predefined
frequency, such as f = 4 Hz (δ-band), f = 10 Hz (α-band),
or f = 15 Hz (β-band) as observed in experiments (Cimenser
et al., 2011). To this end, we fix the frequency � = 2πf in
Equation (15). Then inserting the threshold condition τ2/τ1 =√

c/a given in Equation (14) into (15) for a fixed τ1 yields a rela-
tion between N1 and N2, see Figure 2A. Similarly the condition
� = 0 given by Equation (16) determines the values of N1 and N2

at the threshold of oscillations. Figures 2B–E plot the parameter
space τ2/τ1 − N2 where the system exhibits stable oscillations.
The figure also shows how the values change when increasing
p (arrows in panels), i.e., increasing the propofol concentration,
and it turns out that the system always approaches the stability
threshold.

3.4. THE SPECTRAL POWER
To compute the power spectrum, we employ the method of
Greens function. Equations (10) show that the solutions of the
system obey

x(t) =
∫ ∞

−∞
G11(t − τ)γ (τ)dτ, y(t) =

∫ ∞

−∞
G21(t − τ)γ (τ)dτ

with the Greens functions

G11(t) = 1

2π

∫ ∞

−∞
iω + (N2 + 1)/τ2

P(iω)
eiωt dω (17)

G21(t) = − 1

2π

∫ ∞

−∞
N2/τ2

P(iω)
eiωt dω (18)
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FIGURE 2 | Conditions for Hopf-instabilities and the effect of propofol

action. (A) threshold of Hopf-instability at 4, 10, and 15 Hz dependent on
N1, N2. Panels (B,C) show parameters for Hopf-instabilities at 4 Hz
dependent on N2 for which the corresponding values of N1 obey
N1 < N1,min = 1.12 and (C) N1 ≥ 1.12, respectively. Panels (D,E) show
parameters for Hopf-instabilities at 10 Hz for N1 < N1,min = 1.45 and
N1 ≥ 1.45, respectively. In each panel (B–E) the top line reflects no

oscillations, i.e., f = 0 Hz, and the bottom line denotes the corresponding
stability threshold. Hence the shaded areas include parameters for which
the system exhibits stable oscillations. The black solid and dotted lines
reflect the situation of no anesthetic action, i.e., p = 1.0. The red-dashed
line denotes the values of τ1/τ2 × p with p = 1.3. The arrows illustrate
how the parameters change when anesthetic action is increased, i.e.,
when p is increased.

and P(iω) = −ω2 − iωTr + det using the definitions of Tr and
det in Equations (12) and (13). In fact, P(iω) in Equations (17)
and (18) is the characteristic polynom in Equation (11) for
λ = iω.

In the following in a good approximation (Nunez and
Srinivasan, 2006) we assume that the experimental encephalo-
graphic data that we want to model originates from the exci-
tatory synapses, i.e., x(t). This assumption is reasonable since
the encephalographic activity is observed due to aligned apical
dendritic branches and more excitatory synapses than inhibitory
synapses are located on the apical branches of dendrites on cor-
tical neurons. However, it is also possible to derive the power
spectral density for the difference of excitatory and inhibitory
potentials x(t) − y(t) (Hutt and Longtin, 2009). Now the appli-
cation of the residue theorem allows to compute the integrals in
Equation (17) by

G11(t) = 1

2πi

2∑
n = 1

Res(zn)�(t)

with the residues

Res(z1) = 1

2πi

λ1 + (N2 + 1)/τ2

λ1 − λ2
eλ1t,

Res(z2) = 1

2πi

λ2 + (N2 + 1)/τ2

λ2 − λ1
eλ2t

and the roots λ1 = λ∗
2 = R + i� of the characteristic polynom

P(λ) = 0 in Equation (11). This solution is valid if and only if
Res(λn) = R < 0. These yields

G11(t) = eRt
(

R + Z

�
sin(�t) + cos(�t)

)
�(t)

with Z = −(N2 + 1)/τ2, i.e., the Greens function of x, and hence
x(t) itself oscillates with frequency � and is damped with the fac-
tor |R|. In other words, the solution x oscillates with the imaginary
part of the root of the characteristic equation, and this frequency
is already determined in the stability analysis.
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Finally, the power spectral density S(ω) of x is the Fourier
transform of the auto-correlation function 〈x(t)x(t − T)〉:

S(ω) = 2D
√

2π|G̃11(ω)|2

= 2D
√

2π
Z2 + ω2

(R2 + �2 − ω2)2 + 4R2ω2
(19)

where G̃11(ω) is the Fourier transform of the Greens function
G11(t).

3.5. THE FREQUENCY OF MAXIMUM POWER SPECTRAL DENSITY
According to the reversed-engineering approach motivated in
the previous section, this section aims to derive further con-
ditions on model constants for certain oscillations close to
instabilities. This vicinity to the stability threshold guarantees
a small damping factor R and thus the power peak is located
close to �.

There is a maximum frequency ωm of the oscillation frequency
with respect to τ2 given in Equation (15) and reached at

τ2

τ1
= b

c
→ ωm = 1

2

√
c/τ2

2 − a/τ2
1 if

τ2

τ1
<
√

c/a. (20)

The last condition is identical to the stability condition (14), i.e.,
stable systems always have a non-vanishing maximum frequency
ωm > 0. Together with Equation (16):

• If b/c <
√

c/a, then the frequency � may increase or decrease
while increasing τ2 with

d�

dτ2
> 0 for

τ−
2

τ1
≤ τ2

τ2
<

b

c
, (21)

d�

dτ2
≤ 0 for

b

c
≤ τ2

τ2
≤
√

c

a
. (22)

• If b/c ≥ √
c/a, then the frequency � increases only while

increasing τ2 with

d�

dτ2
> 0 for

τ−
2

τ1
≤ τ2

τ2
≤
√

c

a
. (23)

Figure 1 shows the case b/c <
√

c/a. There increasing τ2 by
increasing p from small frequencies on the left border for constant
τ1 increases the oscillation frequency until reaching the dotted
line, i.e., d�/dτ2 > 0. Then a further increase of p decreases
the frequency of the oscillations again, d�/dτ2 < 0. Although
this reasoning assumes that N2(p) does not change with p, it
gives a first insight into the dependence of the systems oscillation
frequencies on p.

Now considering the power spectral density (Equation 19),
for R4 + R2(2�2 − 3Z2) + �2(�2 + Z2) > 0 S(ω) has a global
maximum at

�peak =
√

�2 + R2

(
1 − 4

Z2

R2 + �2 + Z2

)
.

We learn that a vanishing real part of the characteristic root
|R| yields a global maximum of the power spectral density at
the imaginary part of the characteristic root �. From a reversed-
engineer point of view, one could say that a strong peak in
the experimental power spectral density reflects a character-
istic root in the underlying linear system with a small real
part. This way to interpret the spectral results allows to find
analytical conditions for physiological parameters, as will be
seen below.

If R4 + R2(2�2 − 3Z2) + �2(�2 + Z2) < 0, then the system
exhibits a global maximum at �peak = 0. Since R and � depend
on the anesthetic concentration, i.e., the parameter p, it is inter-
esting to examine how �peak depends on R and �:

d�peak

dR
> 0 for R2 > Z2(p) − �2 or R2 < Z2(p) − �2 (24)

d�peak

d�
> 0 for R2 >

√
2|Z(p)|� − �2 + Z2(p)

or R2 < −√
2|Z(p)|� − �2 + Z2(p) (25)

Figure 3 illustrates these conditions and shows that �peak

is increased or decreased subjected to values of R and �.
Importantly, we observe in Figure 3 that �peak increases with R
and � for large frequencies �.

It remains to examine how R2 and �2 depend on p to finally
gain the full description how �peak changes with p. To this end, we
consider the specific assumption (Equation 9) on the anesthetic
action yielding the specific dependence of �2 and R2 to p

d2R

dp
= −2

R

τ2(1)

1

p2
> 0

d�2

dp
= − 2

τ2(1)p2

(
A − 1

τ2(1)p

)

FIGURE 3 | Illustration of the conditions (24) and (25). The regions are
marked as follows: (+): d�peak/d� > 0, d�peak/dR > 0; (∓): d�peak/

d� < 0, d�peak/dR > 0; (−): d�peak/d� < 0, d�peak/dR < 0; (±): d�peak/

d� > 0, d�peak/dR < 0.
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with A = (1 − N1)/τ1 − N2(1)/τ2(1), N2(p) = N2(1)p, and
τ2 = τ2(1)p. Defining p0 = (N2(1) + τ2(1)(N1 − 1)/τ1)

−1 and
re-calling p ≥ 1, then there exist two distinct cases:

• If p0 < 1, then d�2/dp > 0 for all p. Specifically, this stipulates

N2(1) > 1 + τ2(1)

τ1
− τ2(1)

τ1
N1.

• If p0 ≥ 1, then there is a small interval 1 ≤ p ≤ p0 for which
d�2/dp ≤ 0. For larger p, d�/dp > 0. For instance, for p0 =
1.3, i.e.,

N2(1) = 1/1.3 + τ2(1)

τ1
− τ2(1)

τ1
N1,

the frequency decreases with increasing p for clinically rea-
sonable concentrations, i.e., 1 ≤ p ≤ 1.3 (Hutt and Longtin,
2009).

Figure 4 illustrates the parameter space where d�2/dp has dif-
ferent signs and we observe that the system may exhibit either
increasing or decreasing frequencies while increasing p.

To elucidate the systems behavior at the stability threshold, we
set τ2(1)/τ1 = (N2(1) + 1)/(N1 − 1) according to Equation (14)
and find p0 = 1/(2N2(1) + 1) < 1. Consequently, oscillations
close to the stability threshold always increase their frequencies
with increasing p. In contrast, for 1 < τ2(1)/τ1 � (N2(1) + 1)/

(N1 − 1), i.e., systems far from the stability threshold, may exhibit
values p0 > 1.

Finally, Figure 5 illustrates the temporal dynamics in
two different frequency bands close to the corresponding

Hopf-instabilities and shows the effect of increased propofol
concentration. The power increases and the peak of maximum
power moves to larger frequencies as predicted by the theory and
as observed in experiments (Hindriks and van Putten, 2012).

4. DISCUSSION
The introduced model considers first-order synaptic responses
and take into account experimental findings on the propo-
fol effect in synaptic GABAA-receptors in cortical neurons. It
describes the evolution of neural populations on a mesoscopic
level involving major properties of underlying neurons and
synapses on the microscopic description level.

The analytical study reveals that the frequency of maximum
power may increase or decrease with increasing anesthetic con-
centration subjected to the physiological constants, cf. Figure 3.
In detail, close to the oscillatory instability the frequency of max-
imum power always increases with increasing p as observed in
EEG (Gugino et al., 2001; Feshchenko et al., 2004; Hindriks
and van Putten, 2012), whereas far from the stability threshold
the maximum power frequency may also decrease as observed
recently in EEG (Ching et al., 2010; Cimenser et al., 2011),
cf. Figures 3, 4. The analytical treatment shows clearly that these
two findings depend strongly on the physiological parameters,
which are derived analytically in section 3.5, i.e., the phenomena
depend on the brain area in which they are generated.

Moreover, the analytically predicted increase of the power at
higher frequencies explains the power enhancement in the α-
and β-band in anesthesia (Gugino et al., 2001; McCarthy et al.,
2008) by a dynamic oscillatory instability. In fact, the analytical
treatment in the present work suggests that power enhance-
ment always starts from oscillatory activity at lower frequencies

2.11
N1

0.5

1

N
2(1

)

dΩ2
/dp>0 for all p

dΩ2
/dp<0 possible 

no oscillations

clinical doses

FIGURE 4 | Parameter space for different signs of d�2/dp. The red line denotes p0 = 1.3 and the parameter space of clinical doses (red) implies
d�2/dp < 0 for clinically reasonable drug doses, i.e., p ≤ 1.3. An additional parameter is r = τ2(1)/τ1 = 1.11 .
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FIGURE 5 | Simulated time series of x(t) + V0
e and the

corresponding power spectrum of x(t). (A) N1 = 1.1, N2 = p ×
0.25128, τ2 = τ1 × p/0.10 generating a maximum power in the
δ-band. (B) N1 = 1.1, N2 = 0.2236 × p, τ2 = τ1 × p/0.10 generating a

maximum in the α-band. Other parameters are τ1 = 2 ms, the
noise strength κ = 0.01 mV and V 0

e = −60 mV. The Equation (10) is
simulated with a Euler–Maryuama method for 200 s, time step was

t = 0.05 ms.

and are generated at slightly higher frequencies with increased
concentration (Figure 5). This is in accordance to previous EEG-
studies (Gugino et al., 2001; Hindriks and van Putten, 2012)
showing power enhancement induced in the α- and β-band.

The analytical discussion in section 3.3 also predicts that
decreasing the inhibitory time constant always moves the sys-
tem toward an oscillatory instability, cf. Figure 1, and hence
increases the spectral power, whereas increasing the charge trans-
fer yields a stabilization of the system due to dR/dP < 0 and
consequently a decrease of power. Hence the balance between
decay prolongation and increased charge transfer decides on the
change of the spectral power and the shift of the frequency
peaks. Since many anesthetics share this balance in the major
target GABAA-receptor (Alkire et al., 2008) and exhibit similar
EEG-change (Gugino et al., 2001; Kuizenga et al., 2001), the pre-
sented work suggests that this balance reflects one of the major
underlying mechanisms during the sedation phase in GA.

Previous studies (Bojak and Liley, 2005; Hindriks and van
Putten, 2012) already have explained the power enhancement in
anesthesia by an oscillatory instability in high-dimensional neu-
ral models. As one of the first, the present work gives analytical
conditions on physiological parameters for this effect, while Bojak
and Liley (2005) and Hindriks and van Putten (2012) mainly per-
formed numerical studies. The recent work of Hindriks and van

Putten (2012) resembles in some aspects the analytical approach
of the present work by discussing in some detail the dynamics of
superimposed oscillation modes subjected to the propofol con-
centration. However, no analytical conditions are given due to the
higher model complexity.

It is important to point out that the current model is low-
dimensional, physiologically reasonable and analytically treatable
but still able to explain the neural phenomenon of the frequency
shift to larger values. Bojak and Liley (2005) and Hindriks and
van Putten (2012) have not performed a detailed analytical study
of this phenomenon and have not derived analytical conditions
under which it may occur. The current work shows that already
a rather simple coupling of excitation and inhibition in cortical
neural networks is sufficient to explain this phenomenon. This
is concluded partially by Hindriks and van Putten (2012) based
on a small numerical study, whereas the present work shows this
explicitly. However, Hindriks and van Putten (2012) also argue
that the cortico-thalamic feedback should be negative to gain this
effect. The presented model does not need the thalamic feedback
loop for the explanation.

In principle, the present work extends the work of Bojak
and Liley (2005) studying just numerically a rather complicated
model with tens of unknown parameters, while the current model
allows to achieve some insights into the effect of few parameters.
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For instance, the maximum of spectral power and the corre-
sponding frequency are highly sensitive to modification of the
relation between excitatory and inhibitory synaptic time scales.
This confirms the general observation that many different anes-
thetics share effects on the activity spectrum.

The work both supports the hypothesis of cortical generation
of α-activity and predicts the presence of oscillating neural cir-
cuits where each circuit generates a certain oscillation observed
experimentally. This can be observed in Figure 5 showing emerg-
ing δ- and α-activity for different parameters. Hence two neural
circuits with different properties may explain the occurrence of
both δ- and α-activity observed in experimental data. This inter-
pretation of the results complements the findings of Hindriks
and van Putten (2012) showing implicitly a linear decomposition
into eigenmodes with corresponding eigenvalues and manifests
the notion of interacting oscillation modes generated by interact-
ing networks as observed experimentally (Fries, 2009; Spaak et al.,
2012).

Of course the present model is limited since it cannot explain
the increase of activity in the δ-band as observed in experiments
and modeled by the previous studies. In the present work, we

observe clearly that this synchronous modeling of two rhythms
is not possible since the model is too low-dimensional and just
can describe a single rhythm such as the α- or the δ-rhythm.
Consequently further neural elements should be considered to
gain this additional rhythm such as the thalamic loop. This may
be possible due to the linear superposition of oscillatory activ-
ity originating from different networks. This linear superposition
proposes the interaction of different sub-networks each oscil-
lating in a certain frequency band. Future work will consider
such entangled neural networks on the basis of the presented
neural field to explain the spontaneous emergence or diminu-
tion of spectral peaks in experimentally observed data such
as the δ-rhythms or transient phenomena such as paradoxi-
cal excitation.
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