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Neural mass signals from in-vivo recordings often show oscillations with frequencies
ranging from <1 to 100 Hz. Fast rhythmic activity in the beta and gamma range can be
generated by network-based mechanisms such as recurrent synaptic excitation-inhibition
loops. Slower oscillations might instead depend on neuronal adaptation currents whose
timescales range from tens of milliseconds to seconds. Here we investigate how
the dynamics of such adaptation currents contribute to spike rate oscillations and
resonance properties in recurrent networks of excitatory and inhibitory neurons. Based
on a network of sparsely coupled spiking model neurons with two types of adaptation
current and conductance-based synapses with heterogeneous strengths and delays we
use a mean-field approach to analyze oscillatory network activity. For constant external
input, we find that spike-triggered adaptation currents provide a mechanism to generate
slow oscillations over a wide range of adaptation timescales as long as recurrent
synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is
slower than excitation and oscillation frequency increases with the strength of inhibition.
Adaptation facilitates such network-based oscillations for fast synaptic inhibition and leads
to decreased frequencies. For oscillatory external input, adaptation currents amplify a
narrow band of frequencies and cause phase advances for low frequencies in addition
to phase delays at higher frequencies. Our results therefore identify the different key roles
of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in
recurrent networks.

Keywords: spike frequency adaptation, adaptation, oscillations, rate models, network dynamics, Fokker–Planck,

mean-field, recurrent network

INTRODUCTION
A prominent characteristic of cortical activity is its rhythmicity
as shown by electroencephalography or the local field potential.
Dominant oscillation frequencies in these signals range from <1
to 100 Hz and reflect synchronous activity of populations of neu-
rons. Such oscillations are linked to behavioral states (Wang,
2010) and involved in a variety of cognitive functions (Engel et al.,
2001; Fries, 2001; Melloni et al., 2007; Ghazanfar et al., 2008;
Wang, 2010) as well as pathological conditions (Hammond et al.,
2007; Zijlmans et al., 2009; Uhlhaas and Singer, 2010). It is there-
fore important to understand the mechanisms of oscillations in
neuronal networks, how they are initiated and terminated, and
how their frequency is determined.

Fast rhythmic activity in the beta and gamma band (>20 Hz)
can be generated by network-based mechanisms, such as synap-
tic excitation-inhibition loops or by feedback inhibition alone
(Isaacson and Scanziani, 2011). In these scenarios the oscilla-
tion frequency is largely determined by the inhibitory decay
time constant (Brunel and Wang, 2003; Tiesinga and Sejnowski,
2009). Low-frequency oscillations, on the other hand, could
depend on slow transmembrane outward currents (Compte et al.,
2003; Gigante et al., 2007b; Destexhe, 2009), which are medi-
ated by low-threshold voltage-dependent muscarinic (M) and
high-threshold calcium-gated afterhyperpolarization (AHP) K+

channels, respectively (Brown and Adams, 1980; Connors et al.,
1982; Stocker, 2004). These currents cause spike frequency adap-
tation and are typically more pronounced in cortical regular
spiking pyramidal (excitatory) neurons compared to fast spiking
(inhibitory) interneurons (La Camera et al., 2006). Both, the M
and AHP type K+ currents, are susceptible to cholinergic mod-
ulation (McCormick, 1992). Their kinetic time constants range
from milliseconds to seconds (Abel et al., 2004; Manuel et al.,
2005) and can be pharmacologically manipulated (Pedarzani
et al., 2001).

Here we study the interplay of the dynamics of such adapta-
tion currents with synaptic excitation and inhibition in recurrent
networks of excitatory and inhibitory neurons. Specifically, we
ask (1) how adaptation can generate slow oscillations, (2) how it
modulates faster rhythms based on synaptic interaction, and (3)
how adaptation affects resonance properties of the network.

In-vivo recordings from behaving animals have revealed that
even when the population activity oscillates, the spike trains of
the constituent neurons are rather irregular and display Poisson-
like characteristics (Fries, 2001; Wang, 2010). This stochasticity
in neuronal responses allows us to derive a mean-field model
from a recurrent network of adaptive spiking model neurons
coupled through conductance-based synapses with heteroge-
neous strengths and delays. Our approach is based on the
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Fokker–Planck (FP) formalism (Brunel, 2000; Deco et al., 2008)
and efficiently describes the activity of large networks where the
features of the spiking neurons (i.e., the model parameters) are
retained. Using this method we analyze network responses to
constant as well as rhythmic external input. In particular we
describe asynchronous irregular states with constant steady-state
activity as well as oscillatory states and their properties. We val-
idate our mean-field results qualitatively by large-scale network
simulations.

METHODS
We first describe our network model containing two popula-
tions (excitatory and inhibitory) of adaptive spiking neurons
with delayed conductance-based synaptic coupling. Based on that
model we then derive mean-field model equations and solve them
numerically to obtain distributions of the membrane potentials
and instantaneous spike rates.

NETWORK MODEL
We consider a network of N = NE + NI adaptive exponen-
tial integrate-and-fire neurons (aEIF) proposed by Brette and
Gerstner (2005), where NE and NI are the numbers of excita-
tory and inhibitory neurons, respectively. The dynamics of the
i-th neuron of population α ∈ {E, I} is described by

C
dVα

i

dt
= Iion(Vα

i ) − wα
i + Iα

syn,i(Vα
i , t) (1)

τw
dwα

i

dt
= a(Vα

i − EL) − wα
i (2)

with reset condition

if Vα
i > Vcut then

{
Vα

i := Vr

wα
i := wα

i + b.
(3)

The first Equation (1) is for the membrane potential Vα
i , where

the capacitive current through the membrane with capacitance C
equals the sum of ionic currents Iion, the adaptation current wα

i
and the synaptic current Iα

syn,i. The ionic currents are given by

Iion(V) := gL(EL − V) + gL�Te
V−VT

�T , (4)

where the first term on the right-hand side describes an Ohmic
leak current with conductance gL and reversal potential EL. The
exponential term with threshold slope factor �T and threshold
potential VT approximates the Na+-current which is responsi-
ble for the generation of spikes, assuming that the activation of
Na+-channels is instantaneous and neglecting their inactivation
(Fourcaud-Trocme et al., 2003). Equation (2) governs the dynam-
ics of the adaptation current wα

i , where τw denotes the adaptation
time constant and a quantifies a conductance that mediates sub-
threshold adaptation. A spike is said to occur at the time when
Vα

i diverges to infinity, but in practice a finite “cutoff” value
Vcut is chosen. When Vα

i crosses Vcut from below, Vα
i is set to

the reset potential Vr and wα
i is incremented by b, cf. condi-

tion (3). In this way spike-triggered adaptation is included in the

model. Immediately after the reset, Vα
i and wα

i are clamped for a
refractory period Tref.

The aEIF model has been shown to reproduce a broad range of
subthreshold dynamics (Touboul and Brette, 2008) and spike pat-
terns of cortical neurons (Naud et al., 2008) and can well predict
their spike times (Jolivet et al., 2008) and post-stimulus time his-
tograms (Pospischil et al., 2011). Importantly, the subthreshold
and spike-triggered adaptation components of this model have
been shown to capture the effects of the M and AHP currents
in a detailed biophysical neuron model, respectively (Ladenbauer
et al., 2012).

Neuron i of population α receives total synaptic current

Iα
syn,i(Vα

i , t) :=
∑

j

Iα,ext
ij +

∑
j

Iα,E
ij +

∑
j

Iα,I
ij , (5)

which is the superposition of synaptic inputs Iα,ext
ij from Kext

external excitatory neurons, Iα,E
ij from KE excitatory neurons of

the network and Iα,E
ij from KI inhibitory neurons of the network.

j is the index of the respective presynaptic neuron. The synaptic
current Iα,γ

ij caused by neuron j of population γ ∈ {ext,E, I} is
modeled using delta functions,

Iα,ext
ij (Vα

i , t) := CJα,ext
ij

∑
k

δ(t − tk
j )
(
EE − Vα

i

)
(6)

Iα,β

ij (Vα
i , t) := CJα,β

ij

∑
k

δ(t − tk
j − dα,β

ij )
(
Eβ − Vα

i

)
, (7)

where β ∈ {E, I} denotes the presynaptic population. Jα,γ

ij are
dimensionless synaptic efficacies drawn from a Gaussian distri-
bution with mean Jα,γ and standard deviation �Jα,γ. Here we
consider that Jα,γ ≡ Jγ and �Jα,γ ≡ �Jγ depend only on the
presynaptic population γ. tk

j is the k-th spike time of neuron j
from the respective population. EE and EI denote the excitatory

and inhibitory reversal potentials, respectively. dα,β

ij is the synaptic
delay, sampled using a bi-exponential probability density

pα,β

d (d) := 1

τd − τr

(
e
− d − d0

τd − e
− d − d0

τr

)
(8)

for positive delays d, where d0 is the minimal delay and τr , τd are
the rise and decay time constants, for each pair of populations.
In the model we use two different delay distributions pEd and pId
which do not depend on the postsynaptic population as for the
synaptic weights. For a schematic diagram of the network, see
Figure 1.

We assume the neurons from the external population gener-
ate spike times according to Poisson processes with rates rα

ext(t).
The spike rate of each population α ∈ {E, I} at time t is given by
the average number of spikes of neurons from the corresponding
population in the interval [t, t + �t],

r�t
α (t) := 1

Nα�t

Nα∑
j = 1

∫ t + �t

t

∑
k

δ(s − tk
j )ds. (9)
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FIGURE 1 | Network architecture. Each of NE excitatory and NI inhibitory
neurons receives excitatory input from Kext external neurons with mean
synaptic strength Jext as well as synaptic input from KE (KI ) excitatory
(inhibitory) neurons of the network with mean strength JE (JI ) and delays
distributed according to pE

d (pI
d ).

In the mean-field limit N → ∞, �t → 0 we obtain a continuous
population spike rate rα(t) (see below).

We selected the following parameters for the neuron model:
C = 200 pF, gL = 10 nS, EL = −70 mV, �T = 1 mV, VT =
−50 mV, Vr = −70 mV, Vcut = −40 mV, and Tref = 1.4 ms
(Badel et al., 2008; Destexhe, 2009). For excitatory neurons the
adaptation parameters were varied within reasonable ranges:
τw ∈ [5, 1000] ms, a ∈ [0, 10] nS, b ∈ [0, 50] pA. For inhibitory
neurons adaptation was neglected (a = b = 0) since it was found
to be weak in fast spiking interneurons compared to pyramidal
cells (La Camera et al., 2006).

The network parameter values were NE =40,000, NI =
10,000, Kext = 1600, KE = 1600, KI = 400, EE = 0 mV, EI =
−80 mV, Jext = 0.003, JE = 0.003, and �Jγ = 0.1Jγ with γ ∈
{ext,E, I} (Brunel and Wang, 2003). To adjust the balance of
recurrent synaptic excitation and inhibition we introduce the
parameter

g := JI |EL − EI |
JE |EL − EE | , (10)

which is the ratio of total charges induced at rest (Kumar et al.,
2008). g determines JI and thus �JI for fixed JE and was var-
ied in [0.8, 4] which yields a physiological range of inhibitory
postsynaptic potential amplitudes (Tamas et al., 1997). Note
that the value of g that corresponds to balanced mean recur-
rent excitatory and inhibitory synaptic currents depends on the
mean membrane potential for each population. The effect of
a spike of presynaptic neuron j on neuron i is mediated by
a delayed instantaneous increment or decrement of the post-
synaptic membrane potential, cf. Equations (1), (5), and (7).

This implies that dα,β

ij reflects the conduction delay as well as
delays in the synaptic kinetics. We therefore chose the parame-
ter values of pEd and pId such that conduction delays as well as
typical time courses of excitatory AMPA and inhibitory GABAA

synaptic receptors are taken into account. The values we selected
were d0 = 1 ms, τE

r ∈ [1.25, 1.5] ms, τE
d ∈ [1.5, 2] ms, τI

r ∈
[0.55, 1.25] ms, and τI

d ∈ [1.5, 5] ms. The input rate of the exci-
tatory population rEext was varied in [1, 12.5] Hz. rIext was chosen

such that rE = rI in case of uncoupled populations of neurons,
i.e., JE = JI = 0.

MEAN-FIELD MODEL
We reduce the two-population network of aEIF neurons to the
mean-field model in three steps. First, we replace the synap-
tic current fluctuations by a Gaussian white noise process via
the diffusion approximation. Next, we take a mean-field limit
to formulate the stochastic network model in terms of two cou-
pled deterministic scalar partial differential equations (PDE).
Finally, to allow for efficient numerical computation we reduce
the number of variables in these equations using an adiabatic
approximation.

Diffusion approximation
We approximate the total synaptic current Iα

syn,i of Equation (5)

by its mean plus a fluctuating Gaussian part, which is jus-
tified by the following physiologically plausible assumptions:
(1) The number of synaptic inputs to a neuron is large, i.e.,
Kext, KE , KI � 1 (Destexhe et al., 2003) and (2) the postsynaptic
potential amplitudes elicited by individual presynaptic spikes are
small, i.e., Jext|EE − V |, JE |EE − V |, JI |EI − V | � Vcut − Vr

(Williams and Stuart, 2002). We further assume that (3) the
network connectivity is random and sparse, i.e., KE , KI � N,
and that (4) presynaptic spike times are represented by Poisson
processes which are homogeneous in each small time interval.
The total synaptic current can then be written as (Brunel, 2000;
Nykamp and Tranchina, 2000; Renart et al., 2004; Richardson,
2004; Gigante et al., 2007b)

Iα
syn,i ≈ μα,i(Vα

i , t) + σα,i(Vα
i , t)ηi(t), (11)

where μα,i and σα,i are the infinitesimal mean and standard
deviation of Iα

syn,i, respectively, and ηi is a Gaussian white

noise process with δ-autocorrelation. The infinitesimal mean is
given by

μα,i := lim
�t→0

〈∫ t + �t
t Iα

syn,i(s)ds
〉

�t
(12)

= μext
α,i + μE

α,i + μI
α,i

with

μext
α,i = C(EE − Vα

i )JextKextr
α
ext(t) (13)

μ
β

α,i = C(Eβ − Vα
i )JβKβ(rβ ∗ pβ)(t), (14)

where 〈·〉 denotes the expectation operator. The infinitesimal
variance is

σ2
α,i := lim

�t→0

〈(∫ t + �t
t Iα

syn,i(s)ds
)2
〉
+ O(�t2)

�t
(15)

= (σext
α,i)

2 + (σEα,i)
2 + (σIα,i)

2
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with

σext
α,i = C(EE − Vα

i )

√(
J2
ext + �J2

ext

)
Kextrext(t) (16)

σ
β

α,i = C(Eβ − Vα
i )

√(
J2
β + �J2

β

)
Kβ(rβ ∗ pβ)(t), (17)

where β ∈ {E,I} and ∗ denotes convolution. In Equations (13),
(14), (16), and (17) we have used that the presynap-
tic Poisson processes, the synaptic weights and delays are
independent.

Mean-field limit
We analyze networks of sparsely coupled neurons, i.e., the prob-
ability for a connection between any pair of neurons is low,
cf. assumption (3) above. For large N correlations between the
fluctuations of synaptic currents of different neurons become
negligible, i.e., 〈ηi(t)ηj(t)〉 = 0 for i �= j. In the mean-field limit
N → ∞ the network model Equations (1)–(4), Equations (11)–
(17) can be described by two FP equations—one for each popu-
lation α—which are delay-coupled by the population spike rates
rE and rI ,

∂pα

∂t
+ ∂SV

α

∂V
+ ∂Sw

α

∂w
= 0 (18)

with

SV
α :=

(
Iion(V) − w + μα

C
− σα

2C2

∂σα

∂V

)
pα (19)

− σ2
α

2C2

∂pα

∂V

Sw
α := a(V − EL) − w

τw
pα. (20)

pα(V, w, t) is the probability density to find a neuron of popula-
tion α in the state (V, w) at time t. SV

α (V, w, t) and Sw
α (V, w, t) are

the probability fluxes in positive V and w direction, respectively.
Note that we used the Stratonovich interpretation of the under-
lying stochastic equations (Risken, 1996; Richardson, 2004). To
account for the reset condition (3) the flux through the cutoff
voltage Vcut at w is re-injected after the refractory period Tref at
Vr, w + b, i.e.,

lim
V↓Vr

SV
α (V, w + b, t) − lim

V↑Vr

SV
α (V, w + b, t) (21)

= SV
α (Vcut, w, t − Tref) ∀w ∈ R.

This implies that in general pα is not differentiable at the
line V = Vr . The boundary conditions are reflecting for
w → ±∞, V → −∞ and absorbing for V = Vcut,

lim
w→±∞ Sw

α (V, w) = 0 ∀V ∈ (−∞, Vcut] (22)

lim
V→−∞ SV

α (V, w) = 0 ∀w ∈ R (23)

pα(Vcut, w) = 0 ∀w ∈ R (24)

The spike rate of population α is given by the integral of the cutoff
fluxes,

rα(t) =
∫

R

SV
α (Vcut, w, t)dw. (25)

At any timepoint t the histogram of the membrane potentials of
neurons in population α can be seen as a sample drawn from
the probability density pα(V, t) which is governed by the FP
equation.

Adiabatic approximation
Solving the 2 + 1 dimensional PDE (Equations 18–20) with cor-
responding reset and boundary conditions (21)–(24) numerically
is possible but computationally demanding. We therefore reduce
the dimensionality of the FP system Equations (18)–(20) assum-
ing the timescales of membrane voltage and adaptation current
dynamics are separable. This is justified by the observation that
the dynamics of neuronal adaptation is significantly slower than
the other in the model system such as membrane time con-
stant and average inter-spike interval (Womble and Moises, 1992;
Stocker, 2004). Under this assumption, the adaptation current
of each neuron can be seen as an efficient integrator that filters
the fluctuations in the neuronal activity. We approximate wα

i (t)
in Equation (2) by its population average wα(t), which evolves
according to

τw
dwα

dt
= a(〈V〉pα(V,t) − EL) − wα + τw b rα(t), (26)

where 〈·〉p denotes the average over the density p (Brunel et al.,
2003; Gigante et al., 2007b). The probability density pα(V, t) then
satisfies the 1 + 1 dimensional FP equation

∂pα

∂t
+ ∂SV

α

∂V
= 0, (27)

where again SV
α is the probability flux defined in Equation (19)

and w := wα(t) appears as a system parameter. The reset condi-
tion is

lim
V↓Vr

SV
α (V, t) − lim

V↑Vr
SV
α (V, t) (28)

= SV
α (Vcut, t − Tref).

and the boundary conditions (23)–(24) become

lim
V→−∞ SV

α (V) = 0, (29)

pα(Vcut) = 0. (30)

The population spike rates are given by the corresponding fluxes
through the cutoff voltage,

rα(t) = SV
α (Vcut, t). (31)

Note that the adiabatic approximation described above could be
applied repeatedly for additional slow variables.
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NUMERICAL SOLUTION
We solved the reduced FP Equation (27) subject to con-
ditions (28)–(30) and mean adaptation current dynamics
(Equation 26) forward in time until either steady states r∞

E , r∞
I

with r∞
α := limt→∞ rα(t) or stable oscillatory states were reached.

The probability densities pE , pI were initialized using normal-
ized Gaussians with mean 0.5 · (Vr + VT) and standard devi-
ation 0.2 · (VT − Vr). We applied a first-order finite volume
method on a finite and non-uniform grid V0 < V1 < · · · < VNV

using upwind-fluxes to stabilize the numerical solution (LeVeque,
2002). Time was discretized using the implicit Euler method
on an equidistant grid, i.e., tn + 1 − tn ≡ �t. The resulting lin-
ear equation systems were solved with a preconditioned Krylov
subspace method in each time step. Specifically, BiCGSTAB
(van der Vorst, 1992) was used in combination with an incom-
plete LU decomposition preconditioner (Saad, 2003) that strongly
improved the convergence speed.

wE was initialized with values wE (0) ∈ [0, 500] pA (and
wI ≡ 0). The other parameters were �t = 50 μs, minm �Vm =
1 μV with �Vm := Vm+1 − Vm, V0 := −100 μV, VNV = Vcut

and NV = 256.
We complemented the mean-field results with numerical sim-

ulations of the network model Equations (1)–(4) using a Runge–
Kutta second order method implemented in Brian 1.4 (Goodman
and Brette, 2009) with a time step of 50 μs.

In case of stable periodic population spike rates the oscilla-
tion frequency was determined by the dominant frequency of the
Fourier spectrum of rE over the last 2 s of runtime.

RESULTS
ADAPTATION MEDIATES OSCILLATIONS
To examine how the interplay of adaptation and recurrent synap-
tic input shapes network dynamics we vary the type, strength and

timescale (parameters a, b, and τw) of adaptation for excitatory
neurons as well as the strength of synaptic inhibition (parame-
ter g) across networks. Adaptation currents are disregarded for
inhibitory neurons, which is supported by experimental obser-
vations, see the section Methods. We consider constant rates
rEext, rIext for the external Poisson-inputs and identical delay dis-
tributions pEd ≡ pId . First, we examine steady-state spike rates,
oscillation amplitudes and frequencies for networks with differ-
ent values of spike-triggered adaptation b and inhibition strength
g, see Figure 2A. All networks without adaptation (a = b = 0)
settle into asynchronous states with constant population rates
that decrease with increasing g. For networks with increased b
slow oscillatory states become stable if recurrent excitation is suf-
ficiently strong. The larger b is, the less recurrent excitation is
necessary for sustained oscillations. Amplitude and period of the
oscillatory rate decrease with an increase of b and g, respectively.
Thus, in networks where recurrent synaptic excitation dominates
inhibition at least slightly, spike-triggered adaptation b generates
spike rate oscillations. The dynamics of an example network is
shown in Figure 2B. The evolution of the population spike rates
rE , rI , membrane potential probability densities pE , pI and adap-
tation current wE display periodic bursts of population activity.
As a validation of the findings above using the mean-field model
the activity of simulated large networks of spiking neurons is
shown in Figure 2C. The raster plots reveal population bursts
when b is increased and g is small. An asynchronous state with
low population activity occurs if g is increased. If in addition
adaptation is removed (a = b = 0) the network settles into an
asynchronous state with increased spike rates.

The mechanism that generates these oscillations is a loop of
recurrent excitation, build up and decay of adaptation current as
indicated in Figure 2B. A low level of population activity is ini-
tiated by the external input rEext and recurrent synaptic excitation

FIGURE 2 | Population bursts caused by spike-triggered adaptation.

(A) Top: Spike rate rE of the excitatory population as a function of the
strength of inhibition g for networks without spike-triggered adaptation
(b = 0, black) and with increased levels of b (0.025 nA, brown and 0.05 nA,
red). In case of stable oscillatory states the maxima and minima of the
periodic rE are shown by dashed lines. Solid lines represent asynchronous
states. Arrows indicate balance of recurrent excitation and inhibition for
both populations. Bottom: Corresponding oscillation frequencies f.
τw = 200 ms, a = 0, and rEext = 6.25 Hz. The parameter values for both delay
distributions pE

d , pI
d were τr = 1.5 ms and τd = 2 ms. For other model

parameters see the section Methods. (B), Top: Time-dependent spike rates
rE (t) (green) and rI(t) (orange, dashed) for the parameter values
b = 0.05 nA and g = 1, as indicated in (A) by red dots. Center:
Corresponding membrane potential density pE (V, t). Bottom: Corresponding
mean adaptation current wE (t). (C): Raster plots of simulated networks of
N = 50,000 aEIF neurons for b = 0.05 nA, g = 0.85 (top), b = 0.05 nA,
g = 1.05 (center) and b = 0, g = 1 (bottom). The spike times of 200
excitatory neurons and 50 inhibitory neurons, all randomly selected, are
shown by green and orange dots, respectively. τw = 200 ms, a = 0, and
rEext = 3.75 Hz. Other parameter values as in (A).
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boosts the activity, thereby increasing the adaptation current wE
through b in a spike rate dependent way. The adaptation current
in turn acts as a negative feedback which eventually outweighs
the recurrent excitation. The population activity drops rapidly
and the adaptation current decays slowly. Upon recovery from the
adaptation current the cycle starts again.

Next, we investigate how these oscillations are affected by
the external input rEext, the subthreshold adaptation conduc-
tance a and the adaptation timescale τw, see Figure 3. The
existence of adaptation-induced oscillations is quite sensitive to
the level of rEext (Figure 3A). Periodic activity is stable for small
values of rEext (above threshold). While oscillation frequencies
increase monotonically with increasing rEext, oscillation ampli-
tudes increase initially for a small interval of rEext values and
decrease over the following interval. For larger values of rEext
oscillatory activity is destabilized and asynchronous states occur.
Interestingly, an increase in a does not lead to oscillations. On
the contrary, periodic population bursts are destabilized by a.
The dependence of oscillation amplitude and frequency on τw

is shown in Figure 3B. Stable oscillations exist for a large range
of values of τw, where the frequencies decrease with increasing
τw. Oscillations are unstable for small adaptation timescales in
the range of the membrane time constant and for very large
values of τw.

ADAPTATION MODULATES FREQUENCIES OF NETWORK-BASED
OSCILLATIONS
Here we study the influence of adaptation on oscillations gen-
erated by recurrent synaptic excitation-inhibition (E-I) loops.
The pace of such oscillations is believed to be largely deter-
mined by the decay of inhibition. To describe their dependence
on the timescale of inhibition for various recurrent network
regimes (from excitation dominated to inhibition dominated) we
first consider networks of neurons without an adaptation cur-
rent (a = b = 0), see Figures 4A,B. By varying the decay τI

d of
inhibition and its strength (by parameter g) across networks we
find that stable oscillatory states occur if inhibition is sufficiently
slow in comparison to excitation. The oscillation frequencies
increase with increasing external input spike rate rEext, increas-
ing g and decreasing τI

d , respectively. A low value of rEext leads
to frequencies in the low beta band (Figure 4A), for a higher
value of rEext the frequencies span the beta and low gamma bands
(Figure 4B). Note that the network parameters can be adjusted to
obtain higher oscillation frequencies. The generating mechanism
underlying the oscillations is a loop of recurrent synaptic exci-
tation and inhibition, initiated by the excitatory external input.
We verified this by removing the recurrent excitatory input to the
inhibitory population, which lead to a destabilization of the oscil-
lations. For larger values of g as the ones used in Figure 4, the

FIGURE 3 | Effects of subthreshold adaptation, external input, and

adaptation timescale on population bursts. (A), Top: Spike rate rE
depending on the external input rEext for networks without subthreshold
adaptation (a = 0, red) and with increased levels of a (5 nS, violet and
10 nS, dark blue). Maxima and minima of oscillating rE are shown by

dashed lines. Bottom: Corresponding frequencies f. b = 0.05 nA,
τw = 200 ms, g = 1, and other parameter values as in Figure 2A. (B):
Maxima and minima of rE (top) and oscillation frequency as a function of
the adaptation time constant τw . a = 0, rEext = 6.25 Hz, and other
parameter values as in (A).
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FIGURE 4 | Influence of synaptic inhibition and adaptation on

network-based oscillations. (A–D): Existence of oscillatory states (OSC)
and corresponding frequencies f as a function of the strength g and
timescale τI

d of synaptic inhibition for networks with adaptation parameters
and external input strengths as specified. Asynchronous states (ASYN) are

indicated by white regions in the parameter space. Arrows mark balance of
recurrent excitation and inhibition. On the left pE

d (green) and pI
d (orange) are

shown for τI
d = 1.5 ms, τI

d = 5 ms. τI
r was chosen such that the peaks of pE

d
and pI

d occur at the same delay value. τw = 200 ms, τE
r = 1.25 ms, and

τE
d = 1.5 ms. For other parameter values see the Methods section.

E-I-loop mechanism is replaced by an I-I-loop that does not
depend on recurrent excitation (not shown). Since adaptation is
only exhibited by excitatory neurons, we disregard the parameter
space where I-I-loop-based rhythmic activity occurs and focus
on E-I-loop-based oscillations instead.

An increase of spike-triggered adaptation or subthreshold cur-
rent stabilizes oscillatory states also for faster recurrent inhibition,
see Figures 4C,D. This change in single neuron dynamics causes
oscillations in large parts of explored (g, τI

d )-space. In particular,
for spike-triggered adaptation asynchronous states only occur in a
small region of the parameter space. Interestingly, the oscillation
frequencies are significantly reduced by either type of adaptation.

Next, we investigate how the timescale of adaptation τw affects
oscillations mediated by an E-I-loop. In Figure 5A we show
the dependence of amplitude and frequency of such oscillations
on τw for networks with both adaptation components increased
(a = 5 nS, b = 0.05 nA) and either dominant recurrent excitation
(g = 1.05) or inhibition (g = 1.5). In both cases, stable oscilla-
tory states exist for a large range of time constants. As τw increases
the oscillation frequencies decrease while the amplitudes first
increase abruptly and then decrease. The networks settle into
asynchronous states for small τw (in the order of the membrane
time constant) or large τw (several hundreds of milliseconds).
Note that these effects of τw are similar if either a or b is increased
individually (not shown). We validated these effects by simula-
tions of aEIF neuron networks, see Figure 5B. The raster plots
show that an increase in τw leads to a decrease in oscillation
frequency and amplitude.

ADAPTATION PROMOTES PERIODIC SIGNAL PROPAGATION
To analyze how the resonance properties of recurrent networks
in asynchronous states are influenced by adaptation currents, we
here consider external Poisson-inputs with oscillatory rates with
frequency f . Gain of input spike rate and phase difference between
network and input spike rates as a function of input frequency
for networks without (a = b = 0) and with adaptation (a = 5 nS,

b = 0.05 nA) considering two adaptation time constants are pre-
sented in Figures 6A,B. Excitation dominated networks without
adaptation do not exhibit resonance at any frequency and show
only phase delays. The presence of an adaptation current leads to a
significant amplification of oscillations in the input which is par-
ticularly strong at lower frequencies (of the beta band). This effect
is pronounced for an increased adaptation timescale. In addition,
adaptation causes a phase advance for low oscillation frequencies.

In networks where recurrent inhibition dominates excitation
on the other hand even in the absence of adaptation currents res-
onance is shown for a high frequency band and phase advances
for lower frequencies. Adaptation greatly enhances resonance and
shifts the preferred frequency band to the high gamma range.
The resonance effect is even stronger if the adaptation current
is slower, i.e., τw increased. Although these effects of adaptation
on resonance properties of recurrent networks are similar when
either the subthreshold (a) or spike-triggered adaptation compo-
nent (b) is increased individually, the dominant contribution to
the frequency amplifications comes from b (not shown). We addi-
tionally examined the response of single neurons to oscillatory
noisy inputs using our mean-field model and found that adap-
tation mediates resonance even in the absence of recurrent input
(not shown). These results emphasize the importance of adap-
tation for the amplification and thus propagation of oscillatory
signals in neuronal networks.

DISCUSSION
In this work we have investigated the role of neuronal adaptation
currents in shaping spike rate oscillations in large recurrent net-
works of excitatory and inhibitory neurons. Based on a network
of aEIF model neurons sparsely coupled through conductance-
based synapses with heterogeneous delays and strengths driven by
noisy external input, we used a mean-field method taking advan-
tage of the FP equation. We simplified the problem by applying
an adiabatic approximation and solved the resulting equations
numerically. Using this method we obtain membrane potential
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FIGURE 5 | Effects of adaptation timescale on network-based

oscillations. (A) Top: Spike rate rE as a function of the adaptation
time constant τw for networks with dominant recurrent excitation
(g = 1.05, violet) and inhibition (g = 1.5, blue). Dashed lines indicate
maxima and minima of oscillating rE , solid lines represent constant
rE . Bottom: Corresponding oscillation frequencies f. a = 5 nS and

b = 0.05 nA. rEext = 7.5 Hz, τE
r = 1.25 ms, τE

d = 1.55 ms, τI
r = 0.98 ms,

and τI
d = 2 ms. Other parameters as in Figure 4. (B): Raster plots of

simulated networks of size N = 50,000 with g = 1.5 and τw = 100 ms
(top) as well as τw = 400 ms (bottom), showing the spike times of
200 excitatory and 50 inhibitory aEIF neurons. Other parameter values
as in (A).

distributions and population averages of spike rates and adapta-
tion currents. At the same time, the dynamical properties of single
neurons, i.e., the neuron model parameters, are retained in the
derived mean-field network model.

Alternative mean-field methods have been developed for
conductance-based model neurons (Robinson et al., 2008) and
recurrent networks thereof in asynchronous states (Shriki et al.,
2003), where spike rates are obtained without having to solve a
PDE. Our approach based on the FP equation on the other hand
treats noise in the synaptic inputs in more detail and allows for
the calculation of membrane potential distributions in addition
to spike rates.

We chose the aEIF model because it provides a rich yet low-
dimensional description of neuronal dynamics and includes a
proper phenomenological description of the M and AHP adapta-
tion currents. The effects of subthreshold (a) and spike-triggered
adaptation (b) on response properties of aEIF neurons (measured
by spike rate-input current relationships and phase response
curves) match those of M and AHP adaptation currents in a
Hodgkin–Huxley type neuron model, respectively (Ladenbauer
et al., 2012). Furthermore, fitting the aEIF model parameters to
a detailed biophysical model using standard electro-physiological
paradigms revealed a clear relationship between parameter a and
the conductance for the M current as well as between parameter
b and the AHP current (not shown).

Our method is based on several assumptions which allow to
derive the mean-field equations. The Poisson approximation of
spike train statistics is justified by experimental findings (Tolhurst

et al., 1983; McAdams and Maunsell, 1999) although spiking
seems to be more regular in some cortical areas (Maimon and
Assad, 2009). The sparse random connectivity implies vanishing
noise correlations between neurons in the large network limit and
an experimental study in primary visual cortex of awake monkeys
has reported almost zero noise correlations (Ecker et al., 2010).
However, there is an ongoing debate about the strength of corre-
lations in experimental data (Cohen and Kohn, 2011). We have
used an adiabatic approximation, which relies on separable time
scales of adaptation current and membrane voltage. Although this
assumption is violated for small values of τw, numerically solv-
ing the unreduced FP system, Equations (18)–(24), showed that
our results are robust regarding the violation of this assumption.
The results we obtained by simulations of aEIF networks and
the mean-field results show quantitative differences. However,
the presented effects described using the mean-field model are
validated qualitatively by the network simulations.

We have shown that spike-triggered adaptation provides a
mechanism to generate spike rate oscillations in a low frequency
range (alpha band and lower) if recurrent excitation is suffi-
ciently strong. Increased subthreshold adaptation on the other
hand does not contribute to this mechanism but rather damp-
ens such oscillations. The type of adaptation current therefore
strongly determines rhythmic activity in excitation dominated
networks. The importance of activity-driven adaptation for slow
oscillations is consistent with results from simulations of detailed
(thalamo-)cortical spiking neuron network models (Bazhenov
et al., 2002; Compte et al., 2003; Destexhe, 2009), mean-field
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FIGURE 6 | Effects of adaptation on resonance properties of recurrent

networks. Gain (top) and phase shift (bottom) of the spike rate rE for
networks with dominant recurrent excitation [g = 1.05, (A)] and inhibition
[g = 1.5, (B)] as a function of the input frequency f . The gain is defined as the
quotient of the oscillation amplitude in rE for the input with frequency f and
the amplitude for the lowest frequency (fmin = 0.5 Hz). Adaptation parameter
values are a = b = 0 (black), a = 5 nS, b = 0.05 nA, τw = 100 ms (dark red),

and a = 5 nS, b = 0.05 nA, τw = 400 ms (orange). Delay distributions are
identically parameterized (pE

d ≡ pI
d ) with τr = 1.25 ms and τd = 1.5 ms. The

Poisson-input rates rEext, rIext each consist of a baseline rate plus a sinusoidal
component of small amplitude (1/1000th of the baseline) with frequency f.
The baseline of rEext is chosen to yield a steady-state spike rate r∞E of 50 Hz
with constant input rate. The baseline rate of rIext is chosen as explained in
the Methods section.

studies based on networks of excitatory neurons under the
assumption sparse (Gigante et al., 2007b) and all-to-all con-
nectivity (Nesse et al., 2008), as well as phenomenological rate
models (Latham et al., 2000). We have further shown that reduc-
ing inhibitory synaptic strength leads to a reduction on oscillation
frequency, which is in agreement with similar experimental find-
ings (Sanchez-Vives et al., 2010).

The M and AHP K+ currents, which mediate spike frequency
adaptation in pyramidal neurons, are known to be deactivated by
acetylcholine (McCormick, 1992), with the AHP current show-
ing higher sensitivity. Since the adaptation parameter b is strongly
related to AHP type adaptation, our results support the hypoth-
esis that the cholinergically induced activating transition from
slow-wave oscillations to asynchronous irregular states (Lee and
Dan, 2012) is mediated (at least in part) by a reduction of
spike-triggered adaptation (Destexhe, 2009).

We have demonstrated that an increase of either type of adap-
tation current leads to a reduction in the frequency of oscillations
generated by a loop of recurrent excitation and inhibition. This
shows that the dynamical properties of neurons in addition to
coupling characteristics strongly affect the network frequency.
Also the passive (integrative) membrane properties significantly
influence such networks oscillations as has been described previ-
ously (Geisler et al., 2005). Our additional finding of decreased

frequencies for increased adaptation time constants is consistent
with the results from a computational study on clustering effects
of spike-triggered adaptation in gamma oscillations (Kilpatrick
and Ermentrout, 2011).

Low input frequencies have been shown to be suppressed in the
output of single excitatory neurons with increased spike-triggered
(Gigante et al., 2007a) or subthreshold adaptation (Richardson
et al., 2003; Prescott and Sejnowski, 2008), which we confirmed
using our aEIF-based mean-field model. Such a high pass prop-
erty of single neurons has also been found using a more general
model of adaptation (Benda and Herz, 2003). We have demon-
strated that both adaptation currents cause spike rate resonance
in excitation dominated recurrent networks. Inhibition domi-
nated networks, on the other hand, exhibit resonance without
adaptation and we have shown that increased adaptation of exci-
tatory neurons strongly amplifies this resonance. A similar effect
has been described for purely inhibitory networks (Richardson,
2009). In addition, our results show that adaptation shifts the
resonance frequency to lower values.

In excitation dominated networks, adaptation further leads to
phase advances for low input frequencies in addition to phase
delays for higher frequencies as observed in previous studies
on single excitatory neurons (Fuhrmann et al., 2002; Gigante
et al., 2007a). These adaptation-induced phase advances enable
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synchronization of periodic activity between distant neurons (and
populations of neurons) in different areas of the brain if the
strength of adaptation is controlled appropriately, e.g., through
cholinergic neuromodulation.

Here we have considered one adaptation current for each neu-
ron of the excitatory population. To account for the multimodal
distribution of adaptation timescales found experimentally (La

Camera et al., 2006) our approach can be easily extended to
include multiple adaptation currents.
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