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In this paper we review our research on the effect and computational role of dynamical
synapses on feed-forward and recurrent neural networks. Among others, we report on the
appearance of a new class of dynamical memories which result from the destabilization
of learned memory attractors. This has important consequences for dynamic information
processing allowing the system to sequentially access the information stored in the
memories under changing stimuli. Although storage capacity of stable memories also
decreases, our study demonstrated the positive effect of synaptic facilitation to recover
maximum storage capacity and to enlarge the capacity of the system for memory recall
in noisy conditions. Possibly, the new dynamical behavior can be associated with the
voltage transitions between up and down states observed in cortical areas in the brain.
We investigated the conditions for which the permanence times in the up state are
power-law distributed, which is a sign for criticality, and concluded that the experimentally
observed large variability of permanence times could be explained as the result of noisy
dynamic synapses with large recovery times. Finally, we report how short-term synaptic
processes can transmit weak signals throughout more than one frequency range in noisy
neural networks, displaying a kind of stochastic multi-resonance. This effect is due to
competition between activity-dependent synaptic fluctuations (due to dynamic synapses)
and the existence of neuron firing threshold which adapts to the incoming mean synaptic
input.
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1. INTRODUCTION
In the last decades many experimental studies have reported that
transmission of information through the synapses is strongly
influenced by the recent presynaptic activity in such a way that
the postsynaptic response can decrease (that is called synaptic
depression) or increase (or synaptic facilitation) at short time
scales under repeated stimulation (Abbott et al., 1997; Tsodyks
and Markram, 1997). In cortical synapses it was found that after
induction of long-term potentiation (LTP), the temporal synap-
tic response was not uniformly increased. Instead, the amplitude
of the initial postsynaptic potential was potentiated whereas the
steady-state synaptic response was unaffected by LTP (Markram
and Tsodyks, 1996).

From a biophysical point of view it is well accepted that
short-term synaptic plasticity including synaptic depression and
facilitation has its origin in the complex dynamics of release,
transmission and recycling of neurotransmitter vesicles at the
synaptic buttons (Pieribone et al., 1995). In fact, synaptic depres-
sion occurs when the arrival of presynaptic action potentials
(APs) at high frequency does not allow an efficient recovering
at short time scales of the available neurotransmitter vesicles to
be released near the cell membrane (Zucker, 1989; Pieribone
et al., 1995). This causes a decrease of the postsynaptic response
for successive APs. Other possible mechanisms responsible for

synaptic depression have been described including feedback acti-
vation of presynaptic receptors and from postsynaptic processes
such as receptor desensitization (Zucker and Regehr, 2002).
On the other hand, synaptic facilitation is a consequence of
residual cytosolic calcium—that remains inside the synaptic
buttons after the arrival of the firsts APs—which favors the
release of more neurotransmitter vesicles for the next arriv-
ing AP (Bertram et al., 1996). This increase in neurotrans-
mitters causes a potentiation of the postsynaptic response or
synaptic facilitation. It is clear that strong facilitation causes
a fast depletion of available vesicles so at the end it also
induces a strong depressing effect. Other possible mecha-
nisms responsible for short-term synaptic plasticity include,
for instance, glial-neuronal interactions (Zucker and Regehr,
2002).

In the two seminal papers (Tsodyks and Markram, 1997) and
(Abbott et al., 1997) a simple phenomenological model has been
proposed based in these biophysical principles which nicely fits
the evoked postsynaptic responses observed in cortical neurons.
The model is characterized by three variables xj(t), yj(t), zj(t) that
follow the dynamics

dxj(t)

dt
= zj(t)

τrec
− Uj · xj(t) · δ(t − t

j
sp)
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dyj(t)

dt
= −yj(t)

τin
+ Uj · xj(t) · δ(t − t

j
sp)

dzj(t)

dt
= yj(t)

τin
− zj(t)

τrec
(1)

where yj(t) is the fraction of neurotransmitters which is released

into the synaptic cleft after the arrival of an AP at time t
j
sp, xj(t)

is the fraction of neurotransmitters which is recovered after pre-
vious arrival of an AP near the cell membrane and zj(t) is the
fraction of inactive neurotransmitters. The model assumes con-
servation of the total number of neurotransmitter resources in
time so one has xj(t) + yj(t) + zj(t) = 1. The released neuro-
transmitter inactivates with time constant τin and the inactive
neurotransmitter recovers with time constant τrec. The synaptic
current received by a postsynaptic neuron from its neighbors is
then defined as Ii(t) = ∑

j Aijyj(t) where Aij represents the maxi-
mum synaptic current evoked in the postsynaptic neuron i by an
AP from presynaptic neuron j which in cortical neurons is around
40 pA (Tsodyks et al., 1998).

For constant release probability Uj, the model describes the
basic mechanism of synaptic depression. The model is com-
pleted to account for synaptic facilitation by considering that Uj

increases in time to its maximum value U as the consequence of
the residual cytosolic calcium that remains after the arrival of very
consecutive APs, and follows the dynamics

dUj(t)

dt
= [U − Uj(t)]

τfac
+ U · [1 − Uj(t)] · δ(t − t

j
sp). (2)

Short term synaptic plasticity has profound consequences on
information transmission by individual neurons as well as on net-
work functioning and behavior. Previous works have shown this
fact on both feed-forward and recurrent networks. For instance,
in feed-forward networks activity-dependent synapses act as non-
linear filters in supervised learning paradigms (Natschläger et al.,
2001), being able to extract statistically significant features from
noisy and variable temporal patterns (Liaw and Berger, 1996).

For recurrent networks, several studies revealed that popu-
lations of excitatory neurons with depressing synapses exhibit
complex regimes of activity (Senn et al., 1996; Tsodyks et al., 1998,
2000; Bressloff, 1999; Kistler and van Hemmen, 1999), such as
short intervals of highly synchronous activity (population bursts)
intermittent with long periods of asynchronous activity, as is
observed in neurons throughout the cortex (Tsodyks et al., 2000).
Related with this, it was proposed (Senn et al., 1996, 1998) that
synaptic depression may serve as a mechanism for rhythmic activ-
ity and central pattern generation. Also, recent studies on rate
models have reported the importance of dynamic synapses in the
emergence of persistent activity after removal of stimulus which
is the base of the so called working memories (Barak and Tsodyks,
2007), and in particular it has been also reported the relevant role
of synaptic facilitation, mediated by residual calcium, as the main
responsible for appearance of working memories (Mongillo et al.,
2008).

All these phenomena have stimulated much research to eluci-
date the effect and possible functional role of short term synaptic

plasticity. In this paper we review our own efforts over the last
decade in this research field. In particular, we have demon-
strated both theoretically and numerically the appearance of
different non-equilibrium phases in attractor networks as the
consequence of the underlying noisy activity in the network and
of the existence of synaptic plasticity (see section 2). The emer-
gent phenomenology in such networks includes a high sensitivity
of the network to changing stimuli and a new phase in which
dynamical attractors or dynamical memories appear with the pos-
sibility of regular and chaotic behavior and rapid “switching”
between different memories (Pantic et al., 2002; Cortes et al.,
2004, 2006; Torres et al., 2005, 2008; Marro et al., 2007). The ori-
gin of such new phases and the extraordinary sensibility of the
system to varying inputs—even in the memory phase—is pre-
cisely the “fatigue” of synapses due to heavy presynaptic activity
competing with different sources of noise which induces a desta-
bilization of the regular stable memory attractors. One of the
main consequences of this behavior is the strong influence of
short-term synaptic plasticity on storage capacity of such net-
works (Torres et al., 2002; Mejias and Torres, 2009) as we will
explain in section 3.

The switching behavior is characterized by a characteristic
time scale during which the memory is retained. The distribu-
tion of time scale depends in a complex way on the parameters of
the dynamical synapse model and is the result of a phase transi-
tion. We have investigated the conditions for the appearance of
power-law behavior in the probability distribution of the per-
manence times in the Up state, which is a sign for criticality
(see section 4). This dynamical behavior has been associated
(Holcman and Tsodyks, 2006) to the empirically observed tran-
sitions between states of high activity (Up states) and low activity
(Down states) in the mammalian cortex (Steriade et al., 1993a,b).

The enhanced sensibility of neural networks with dynamic
synapses to external stimuli could provide a mechanism to detect
relevant information in weak noisy external signals. This can be
viewed as a form of stochastic resonance (SR), which is the gen-
eral phenomenon that enhances the detection by a non-linear
dynamical system of weak signals in the presence of noise. Recent
experiments in auditory cortex have shown that synaptic depres-
sion improves the detection of weak signals through SR for a
larger noise range (Yasuda et al., 2008). In a feed-forward network
model of spiking neurons, we have modeled these experimental
findings (Mejias and Torres, 2011; Torres et al., 2011). We demon-
strated theoretically and numerically that, in fact, short-term
synaptic plasticity together with non-linear neuron excitability
induce a new type of SR where there are multiple noise lev-
els at which weak signals can be detected by the neuron. We
denoted this novel phenomenon by bimodal stochastic resonances
or stochastic multiresonances (see section 5) and, very recently, we
have proved that this intriguing phenomenon not only occurs
in feed-forward neural networks but also in recurrent attractor
networks (Pinamonti et al., 2012).

2. APPEARANCE OF DYNAMICAL MEMORIES
In this section we review our work on the appearance of dynam-
ical memories in attractor neural networks with dynamical
synapses as originally reported in (Pantic et al., 2002; Torres et al.,
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2002, 2008; Mejias and Torres, 2009). For simplicity and in order
to obtain straightforward mean-field derivations we have consid-
ered the case of a network of N binary neurons (Hopfield, 1982;
Amit, 1989). However, we emphasize that the same qualitative
behavior emerges in networks of integrate and fire (IF) neurons
(Pantic et al., 2002).

Each neuron in the network, whose state is si = 1, 0 depending
if the neuron is firing or not an AP, receives at time t from its
neighbor neurons a total synaptic current, or local field, given by

hi(t) =
∑

j

ωij(t)sj(t) (3)

where ωij(t) is the synaptic current received by the postsynap-
tic neuron i from the presynaptic neuron j when this fires an AP
(sj(t) = 1). If the synaptic current to neuron i, hi(t), is larger than
some neuron threshold value θi, neuron i fires an AP with a prob-
ability that depends on the intrinsic noise present in the network.
The noise is commonly modeled as a thermal bath at tempera-
ture T. We assume parallel dynamics (Little dynamics) using the
probabilistic rule

Prob(si(t + 1) = σ) = 1

2
+
(

σ − 1

2

)
tanh[2T−1(hi(t) − θi)]

(4)

with σ = 1, 0.

To account for short-term synaptic plasticity in the network
we consider

ωij(t) = ωijDj(t)Fj(t) (5)

where Dj(t) and Fj(t) are dynamical variables representing
synaptic depression and synaptic facilitation mechanisms. The
constants ωij denote static maximal synaptic conductances,
that contain information concerning a number P of random
patterns of neural activity, or memories, ξμ ≡ {ξμ

i = 1, 0; i =
1, . . . , N,μ = 1, . . . , P} previously learned and stored in the net-
work. Such static memories can be achieved in actual neural
systems by LTP or depression of the synapses due to network stim-
ulation with these memories. For concreteness, we assume here
that these weights are the result of a Hebbian-like learning pro-
cess that takes place on a time scale that is long compared to the
dynamical time scales of the neurons and the dynamical synapses.
The Hebbian learning takes the form

ωij = 1

Na(1 − a)

P∑
μ= 1

(ξ
μ

i − a)(ξ
μ

j − a) ωii = 0, (6)

also known as the covariance learning rule, with a = 〈ξμ

i 〉 repre-
senting the mean level of activity in the patterns. It is well-known
that a recurrent neural network with synapses (Equation 6) acts
as an associative memory (Amit, 1989). That is, the stored patterns
ξμ become local minima of the free-energy and within the basin
of attraction of each memory, the neural dynamics (Equation 4)
drives the network activity toward this memory. Thus, appropri-
ate stimulation of (a subset of) neurons that are active in the

stored pattern initiates a memory recall process in which the
network converges to the memory state.

To model the dynamics of the synaptic depression Dj(t) and
facilitation Fj(t), we simplify the phenomenological model of
dynamic synapses described by Equations (1, 2), taking into
account that in actual neural systems such as the cortex τin �
τrec, which implies that yi(t) = 0 for most of the time and only
at the exact point at which the AP arrives has a non-zero value
yj(tsp) = xj(tsp)Uj(tsp). Thus, the synaptic current evoked in the
postsynaptic neuron i by a presynaptic neuron j every time it

fires is approximatively Iij(t) = Aij xj(t
j
sp) Uj(t

j
sp) which has the

form given by Equation (5) with ωij = Aij, Dj(t) ≡ xj(t) and
Fj(t) ≡ Uj(t). We set U = 1 without loss of generality in order
to have Dj(t) = Fj(t) = 1∀j, t for τrec, τfac � 1, that corresponds
to the well know limit of static synapses without depressing and
facilitating mechanism. In this limit, in fact, one recover the clas-
sical Amari–Hopfield model of associative memory (Amari, 1972;
Hopfield, 1982) when one chooses the neuron thresholds as

θi = 1

2

∑
j

ωij. (7)

It is important to point out that due to the discrete nature of
the probabilistic neuron dynamics (Equation 4) together with the
approach τin � τrec, only discrete versions of the dynamics for
xi(t) and Ui(t) [see for instance (Tsodyks et al., 1998)] are needed
here, namely

xj(t + 1) = xj(t) + 1 − xj(t)

τrec
− Uj(t) · xj(t) · sj(t)

Uj(t + 1) = Uj(t) + [U − Uj(t)]
τfac

+ U · [1 − Uj(t)] · sj(t). (8)

Equations (4–8) completely define the dynamics of the network.
Note, that in the limit of τrec, fac → 0 the model reduces to the
standard Amari–Hopfield model with static synapses.

To numerically and analytically study the emergent behavior of
this attractor neural network with dynamical synapses, it is useful
to measure the degree of correlation between the current network
state s ≡ {si; i = 1, . . . , N} and each one of the stored patterns
ξμ by mean of the overlap function

mμ(s) = 1

N a(1 − a)

∑
i

(ξ
μ

i − a) si. (9)

Monte Carlo simulations of the network storing a small num-
ber of random patterns (loading parameter α ≡ P/N → 0),
each pattern having 50% active neurons (a = 0.5), no facilita-
tion (Uj(t) = 1) and an intermediate value of τrec is shown in
Figures 1A,B. It shows a new phase where dynamical memo-
ries characterized by quasi-periodic switching of the network
activity between pattern (ξμ) and anti-pattern (1 − ξμ) configu-
rations appear. For lower values of τrec the network reduces to the
attractor network with static synapses and shows the emergence
of the traditional ferromagnetic or associative memory phase at
relatively low T, where network activity reaches a steady state
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FIGURE 1 | Emergence of dynamic memories in attractor neural

networks. (A) Raster plots showing the switching behavior of the network
neural activity between one activity pattern and its anti-pattern for τrec = 26
and T = 0.025 (left) and for τrec = 50 and T = 0.025 (right), respectively.
(B) The behavior of the overlap function mμ(s) (thin red line), the mean
recovering variable xμ

+ of active neurons in the pattern (thick black line) and

the mean recovering variable xμ
− of not active neurons in the pattern (thick

gray line) are plotted for the two cases depicted in (A). (C) Raster plot that
shows the emergence of dynamic memories when 10 activity patterns are
stored in the synapses for τrec = 50. In all panels the firing threshold was
set to θi = 0, and the network size was N = 120 in (A) and (B) and
N = 100 in (C).

that is highly correlated with one of the stored patterns, and a
paramagnetic or no-memory phase at high T where the network
activity reaches a highly fluctuating disordered steady state.

The Figure 1C shows simulation results of a network with P =
10 patterns and a = 0.1, demonstrating that switching behavior
is also obtained for relatively large number of patterns and sparse
network activity. Figure 2B shows that the switching behavior is
not an artifact of the binary neuron dynamics and is also obtained
in a network of more realistic networks of spiking integrate-and-
fire neurons.

All time constants, such τrec or τfac are given in units of Monte
Carlo steps (MCS) a temporal unit that in actual systems can be
associated, for instance, with the duration of the refractory period
and therefore of order of 5 ms.

In the limit of N → ∞ (thermodynamic limit) and α → 0
(finite number of patterns) the emergent behavior of the model
can be analytically studied within a standard mean field approach
[see for details (Pantic et al., 2002; Torres et al., 2008)]. The
dynamics of the system then is described by a 6P-dimensional
discrete map

vt + 1 = F(vt) (10)

where F is a 6P-dimensional non-linear function of the order
parameters

vt ≡ {mμ
+(t), mμ

−(t), xμ
+(t), xμ

−(t), Uμ
+(t), Uμ

−(t);
μ = 1, . . . , P} (11)

that are averages of the microscopic dynamical variables over the
sites that are active and quiescent, respectively, in a given pattern
μ, that is

cμ
+(t) ≡ 1

N a

∑
i ∈ Act(μ)

ci(t),

cμ
−(t) ≡ 1

N(1 − a)

∑
i /∈ Act(μ)

ci(t), (12)

with ci(t) being mi(t), xi(t), and Ui(t), respectively.
Local stability analysis of the fixed point solutions of the

dynamics (Equation 10) shows that, similarly to the Amari–
Hopfield standard model and in agreement with Monte Carlo
simulations described above, the stored memories ξμ are stable
attractors in some regions of the space of relevant parameters,
such as T, U, τrec, and τfac. Varying these parameters, there are,
however, some critical values for which the memories destabilize
and an oscillatory regime, in which the network visits differ-
ent memories, can emerge. These critical values are depicted in
Figures 2A,C,D in the form of transition lines between phases or
dynamical behaviors in the system. For instance, for only depress-
ing synapses (τfac = 0, Uj(t) = 1), there is a critical monotonic
line τ∗

rec(T−1), as in a second order phase transition, separat-
ing the no-memory phase and the oscillatory phase (solid line in
Figure 2A) where oscillations start to appears with small ampli-
tude as in a supercritical Hopf bifurcation. Also there is a transi-
tion line τ∗∗

rec(T−1), also monotonic, between the oscillatory phase
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FIGURE 2 | (A) Phase diagram (τrec, β ≡ T−1) of an attractor binary neural
network with depressing synapses for α = 0. A new phase in which
dynamical memories appear—with the network activity switching
between the different memory attractors—emerges between the
traditional memory and no-memory phases that characterize the behavior
of attractors neural networks with static synapses. (B) The emergent
behavior depicted in (A) is robust when a more realistic attractor
network of IF neurons and more stored patterns are considered (5 in
this simulation). From top to bottom, the behavior of the network activity
for τrec = 0, 300, 800 and 3000 ms is depicted, respectively. For some
level of noise the network activity pass from the memory phase to the
dynamical phase and from this to the no-memory phase when τrec is
increased. (C) Phase diagram (T , τfac) for τrec = 3 and U = 0.1 of an

attractor binary neural network with short-term depression and facilitation
mechanisms in the synapses and α = 0. (D) Phase diagram (τrec, τfac) for
T = 0.1 and U = 0.1 in the same system than in (C). In both, (C,D), the
diagrams depict the appearance of the same memory, oscillatory and
no-memory phases than in the case of depressing synapses. The
transition lines between different phases, however, show here a clear
non-linear and non-monotonic dependence with relevant parameters
consequence of the non-trivial competition between depression and
facilitation mechanisms. This is very remarkable in (C) where for a given
level of noise, namely T = 0.22 (horizontal dotted line), the increase of
facilitation time constant τfac induces the transition of the activity of the
network from a no-memory state to a memory state, from this one to a
no-memory state again, and finally from this last to an oscillatory regime.

and the memory phase which occurs sharply as in a first order
phase transition (dashed line in Figure 2A). When facilitation is
included, the picture is more complex, although similar critical
and sharp transitions lines appear separating the same phases.
Now, however, the lines separating different phases are non-
monotonic and highly non-linear which shows the competition
between a priori opposite mechanisms, depressing and facilitat-
ing, as is depicted in Figures 2C,D. In fact, among other features,
synaptic depression induces fatigue at the synapses which destabi-
lizes the attractors, and synaptic facilitation allows a fast access to
the memory attractors and to stay there during a shorter period
of time (Torres et al., 2008). As in Figure 1, in all phase dia-
grams appearing in Figure 2, τrec and τfac are given in MCS units

(see above) with a value for that temporal unit of around the typ-
ical duration of the refractory period in actual neurons (∼5ms).

The attractor behavior of the recurrent neural network has
the important property to complete a memory based on par-
tial or noisy stimulus information. In this section we have seen
that memories that are stable with static synapses become meta-
stable with dynamical synapses, inducing a switching behavior
among memory patterns in the presence of noise. In this manner,
dynamic synapses provide the associative memory with a natu-
ral mechanism to dissociate from a memory in order to associate
with a new memory pattern. In contrast, with static synapses the
network would stay in the stable memory state forever, preventing
recall of new memories. Thus, dynamic synapses change stable
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memories into meta-stable memories for certain ranges of the
parameters.

3. STORAGE CAPACITY
It is important to analyze how short-term synaptic plasticity
affects the maximum number of patterns of neural activity the
system is able to store and efficiently recall, that is, the so called
maximum storage capacity. In a recent paper we have addressed
this important issue using a standard mean field approach in the
model described by Equations (3–8) when it stored P = αN activ-
ity random patterns with α > 0 and N → ∞, a = 1/2 and in
the absence of noise (T = 0). In fact, for very low temperature
(T � 1), redefining the overlaps as Mν ≡ mν − 1

N

∑
i(2ξν

i − 1)

≡ mν − Bν and assuming steady-state conditions in which there
is only one pattern (condensed pattern) with overlap M ≡ M1 ∼
O(1) and the remaining patters Mν ∼ O(1/

√
N), ν = 2, . . . , P,

it is straightforward (Hertz et al., 1991) to see that the steady state
of the system is described by the set of mean field equations

M = 1

N

∑
i

tanh

[
β

(
γ′

1 + γγ′ M + ζi

)]

q = 1

N

∑
i

tanh2
[
β

(
γ′

1 + γγ′ M + ζi

)]

r = q(
1 − β

γ′
1 + γγ′ (1 − q)

)2
(13)

where γ ≡ Uτrec, γ′ ≡ 1+τfac
1+Uτfac

, q ≡ 1
N

∑
i tanh2[2β(hi(t) − θi)]

is the spin-glass order parameter, r = 1
α

∑
ν �= 1(Mν)2 is the pat-

tern interference parameter and

ζi ≡
∑
ν �= 1

(2ξ1
i − 1)(2ξν

i − 1)

[
γ′

1 + γγ′ Mν +
(

1 − γ′

1 + γγ′

)
Bν

]

which in the limit of N → ∞ becomes a Gaussian variable

ζ ≈ γ′

1 + γγ′

(
αr + α

(
1 + γγ′ − γ′

γ′

)2
)1/2

z

where z is a random normal-distributed variable N[0, 1]—see
details in (Mejias and Torres, 2009). Then, the 1

N

∑
i appearing

in Equation (13) becomes an average over P(ζ). Using standard
techniques in the limit T = 0 (Hertz et al., 1991), the set of the
resulting three mean-field equations reduces to a single mean-
field equation which gives the maximum number of patterns that
the system is able to store and retrieve, namely (see mathematical
details in Mejias and Torres, 2009)

y

⎡
⎣
√

2α

(
1 + γγ′ − γ′

γ′

)2

+ 2√
π

exp(−y2)

⎤
⎦ = erf(y) (14)

where y ≡ M/

√(
2αr + 2α

(
1+γγ′−γ′

γ′
)2
)

with M being the over-

lap of the current state of the network activity with the pattern
that is being retrieved. The Equation (14) has a trivial solution
y = 0 (M = 0). Non-zero solutions (with non-zero overlap M)
exist for α less than some critical α, which defines the maximum
storage capacity of the system αc.

A complete study of the system by means of Monte Carlo
simulations (in a network with N = 3000 neurons) has demon-
strated the validity of this mean field result and is depicted
in Figure 3A. The figure shows the behavior of αc obtained
from Equation (14) (different solid lines), when some relevant
parameters of the synapse dynamics are varied, and it is com-
pared with the maximum storage capacity obtained from the
Monte Carlo simulations (different symbols). The most remark-
able feature is that in the absence of facilitation the storage
capacity decreases when the level of depression increases (that
is, large release probability U , or large recovering time τrec);
see black curves in the top and middle panels of Figure 3A.
This decrease is caused by the loss of stability of the mem-
ory fixed points of the network due to depression. Facilitation
(see dark and light gray curves) allows to recover the maxi-
mal storage capacity of static synapses, which is the well know
limit αc ≈ 0.14 (dotted horizontal line), in the presence of
some degree of synaptic depression. In general the competition
between synaptic depression and facilitation induces a com-
plex non-linear and non-monotonic behavior of αc for different
synaptic dynamics parameters as is shown in different panels
of Figure 3B. In general, large values of αc appear for moder-
ate values of U and τrec, and large values of τfac. These values
qualitatively agree with those described in facilitating synapses
in some cortical areas, where U is lower than in the case of
depressing synapses and τrec is several times lower than τfac

(Markram et al., 1998). Note that facilitation or depression never
increases the storage capacity of the network above the maximum
value αc ≈ 0.14.

4. CRITICALITY IN UP–DOWN TRANSITIONS
In a recent paper (Holcman and Tsodyks, 2006), the emer-
gent dynamic memories described in section 2 that result from
short-term plasticity have been related to the voltage transitions
observed in cortex between a high-activity state (the Up state) and
a low-activity state (the Down state). These transitions have been
observed in simultaneous individual single neuron recordings as
well as in local field measurements.

Using a simple but biologically plausible neuron and synapse
model similar to the models described in sections 1 and 2, we
have theoretically studied the conditions for the emergence of
this intriguing behavior, as well as their temporal features (Mejias
et al., 2010). The model consists of a simple stochastic bistable
rate model which mimics the average dynamics of a population of
interconnected excitatory neurons. The neural activity is summa-
rized by a single activity ν(t), whose dynamics follows a stochastic
mean field equation

τν
dν(t)

dt
= −ν(t) + νmS[ Jν(t)x(t) − θ] + ζ(t) (15)
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FIGURE 3 | Maximum storage capacity obtained in attractor neural

networks with dynamic synapses with both depressing and

facilitating mechanisms. (A) Behaviour of αc as a function of U, τrec

and τfac. The solid lines correspond the theoretical prediction from the
mean field Equation (14) and symbols are obtained from Monte Carlo
simulations. From top to bottom, it is shown αc(U) for τrec = 2 and
different values of τfac, αc(τrec) for U = 0.2 and different values of τfac

and αc(τfac) for U = 0.2 and different values of τrec, respectively. The

horizontal dotted lines correspond to the static synapses limit
αc ≈ 0.138. (B) Mean-field results from Equation (14) for the
dependence of αc for different combinations of relevant parameters.
This corresponds—from top to bottom—to the surfaces αc(U, τfac) for
τrec = 2, αc(U, τfac) for τrec = 50 and αc(τrec, τfac) for U = 0.02. In all
panels, τrec and τfac are given in MCS units that can be associated to
a value of 5 ms if one assumes that a MCS corresponds to the
duration of the refractory period in actual neurons.

where τν is the time constant for the neuron dynamics, νm is
the maximum synaptic input to the neuron population, J is the
(static) synaptic strength and θ is the neuron threshold. The func-
tion S[X] is a sigmoidal function which models the excitability of
neurons in the population.

The synaptic input from other neurons is modulated by a
short-term dynamic synaptic process x(t) which satisfies the
stochastic mean field equation

dx(t)

dt
= 1 − x(t)

τr
− U x(t)ν(t) + D

τr
ξ(t). (16)

The parameters τr , U and D are, respectively, the recovery time
constant for the stochastic short-term synaptic plasticity mech-
anism, a parameter related with the reliability of the synaptic
transmission (the average release probability in the population)

and the amplitude of this synaptic noise. The explanation of
each term appearing in the rhs of Equation (16) is the following:
the first term accounts for the slow recovery of neurotransmitter
resources, the second term represents a decrease of the available
neurotransmitter due to the level of activity in the population and
the third term is a noise term that accounts for all possible sources
of noise affecting transmission of information at the synapses of
the population and that remains at the mesoscopic level.

A complete analysis of this model, both theoretically and by
numerical simulations, shows the appearance of complex tran-
sitions between high (up) and low (down) neural activity states
driven by the synaptic noise x(t), with permanence times in the
up state distributed according to a power-law for some range of
the synaptic dynamic parameters. The main results of this study
are summarized in Figure 4. On Figure 4A, a typical time series
of the temporal behavior of the mean neural activity ν(t) of the
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FIGURE 4 | Criticality in up–down transitions. (A) Typical times series for the
neuron population rate variable ν(t) and the mean depression variable x(t) in
the neuron population when irregular up–down transitions emerge. Parameter
values were J = 1.2 V, τr = 1000 τν U = 0.6, D = 0, δ = 0.3, and νm = 5 · 10−3.

(B) Histogram of the same time series for ν(t) which presents bimodal features
corresponding to two different levels of activity. (C) Transitions from
exponential to power law behavior for the probability distribution for the
permanence time in the up or down state P(T ) when parameters D (left panel)

and τr (right panel) are varied. Model parameters were the same than in panel
(A) except that J = 1.1 V in the left panel and U = 0.04 and D/τr = 0.02/τν in
the right panel. (D) A variation of x(t) induces a change in the shape of the
potential function �—driving the dynamics of the rate variable ν(t)—which
causes transitions between the up and down states. Parameters were the
same than in panel (A) except that J = 1.1 V. (E) Complete phase diagram (D,

τr ), for the same set of parameters than in panel (D), where different phases
characterize different dynamics of ν(t), x(t) (see main text for the explanation).

system in the regime in which irregular up–down transitions occur
is depicted. In Figure 4B, the histogram of ν(t) for this time series
shows a clear bimodal shape corresponding to the two only pos-
sible states for ν(t). Figure 4C shows how the parameters τr and
D, that control the stochastic dynamics of x(t), also are relevant
for the appearance of power law distributions P(T) for the per-
manence time in the up or down state T. As is outlined in (Mejias
et al., 2010), the dynamics can be approximately described in an
adiabatic approximation, in which the neuron dynamics is sub-
ject to an effective potential �. Figure 4D shows how � changes
for different values of the mean synaptic depression x.

For relatively small x (orange and brown lines) all synapses in the
population have a strong degree of depression and the population
has a small level of activity, that is, the global minimum of the
potential function is the low-activity state (the down state). On the
other hand, when synapses are poorly depressed and x takes rela-
tively large values (dark and light green lines) the neuron activity
level is high and the potential function has its global minimum
in a high-activity state (up state). For intermediate values of x
(black line) the potential becomes bistable. Figure 4E shows the
complete phase diagram of the system and illustrates the regions
in the parameter space (D, τr) where different behaviors emerge.
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In the phase (P) no transition between a high-activity state and
low-activity state occurs. In phase (E) transitions between up and
down states are exponentially distributed. The phase (C) is char-
acterized by the emergence of power-law distributions P(T), and
therefore is the most intriguing phase since it could be associated
to a critical state. Finally, phase (S) is characterized by a highly
fluctuating behavior of both ν(t) and x(t). In fact, ν(t) is behaving
as a slave variable of x(t) and, therefore, it presents the dynamical
features of the dynamics (Equation 16), which has some similar-
ities with those of colored noise for U small. In fact for U = 0,
and making the change z(t) = x(t) − 1 the dynamics (Equation
16) transforms in that for an Ornstein–Uhlenbeck (OU) process
(van Kampen, 1990).

From these studies, we can conclude that the experimentally
observed large fluctuations in up and down permanence times
in the cortex can be explained as the result of sufficiently noisy
dynamical synapses (large D) with sufficiently large recovery
times (large τr). Static synapses (τr = 0) or dynamical synapses
in the absence of noise (D = 0) cannot account for this behavior,
and only exponential distributions for P(T) emerge in this case.

5. STOCHASTIC MULTIRESONANCE
In section 2 we mentioned that short-term synaptic plasticity
induces the appearance of dynamic memories as the consequence
of the destabilization of memory attractors due to synapse fatigue.
The synaptic fatigue in turn is due to strong neurotransmitter
vesicle depletion as the consequence of high frequency presynap-
tic activity and large neurotransmitter recovering times. Also, we
concluded that this fact induces a high sensitivity of the system
to respond to external stimuli, even if the stimulus is very weak
and in the presence of noise. The source of the noise can be due
to the neural dynamics as well as the synaptic transmission. It is
the combination of non-linear dynamics and noise that causes
the enhanced sensitivity to external stimuli. This general phe-
nomenon is the so called stochastic resonance (SR) (Benzi et al.,
1981; Longtin et al., 1991).

In a set of recent papers we have studied the emergence of SR in
feed-forward neural networks with dynamic synapses (Mejias and
Torres, 2011; Torres et al., 2011). We considered a post-synaptic
neuron which receives signals from a population of N presynap-
tic neurons through dynamic synapses modeled by Equations
(1, 2). Each one of these presynaptic neurons fires a train of
Poisson distributed APs with a given frequency fn. In addition
the postsynaptic neuron receives a weak signal S(t) which we can
assume sinusoidal. In addition, we assume a stationary regime,
where the dynamic synapses have reached their asymptotic values

u∞ = U+Uτfac fn
1+Uτfacfn

and x∞ = 1
1+u∞τrec fn

. If all presynaptic neurons

fire independently the total synaptic current is a noisy quantity
with mean ĪN and variance σ2

N given by

ĪN = NfnτinIp

σ2
N = 1

2
Nfnτin(Ip)

2
(17)

with Ip = A u∞x∞ and A the synaptic strength. To explore the
possibility of SR, we vary the firing frequency of the presynap-
tic population fn. The reason for this choice is that varying fn

changes the output variance σ2
N and fn can also be relatively easily

controlled in an experiment.
To quantify the amount of signal that is present in the out-

put rate we use the standard input–output cross-correlation or
power norm (Collins et al., 1995) during a time interval �t and
defined as:

C0 = 〈S(t)ν(t)〉 = 1

�t

∫ t+�t

t
S(t)ν(t)dt, (18)

where ν(t) is the firing rate of the post-synaptic neuron. The
behavior of C0 as a function of fn for static synapses is depicted in
Figure 5A which clearly shows a resonance peak at certain non-
zero input frequency fn. The output of the postsynaptic neuron
at the positions in the frequency domain labeled with “a,” “b,”
and “c” is illustrated in Figure 5B and compared with the weak
input signal. This shows how stochastic resonance emerges in this
system. For low firing frequency (case labeled with “a”) in the
presynaptic population the generated current is so small that the
postsynaptic neuron only has sub-threshold behavior weakly cor-
related with S(t). For very large fn (case labeled with “c”) both ĪN

and σ2
N are large and the postsynaptic neuron is firing all the time,

so it can not detect the temporal features of S(t). However, there
is an optimal value of fn at which the postsynaptic neuron fires
strongly correlated with S(t); in fact it fires several APs each time
a maximum in S(t) occurs (case labeled with “b”).

This behavior dramatically changes when dynamic synapses
are considered, as is depicted in Figures 5C,D. In fact, for
dynamic synapses there are two frequencies at which resonance
occurs. That is, short-term synaptic plasticity induces the appear-
ance of stochastic multi-resonances (SMR). Interestingly, the
position of the peaks is controlled by the parameters that control
the synapse dynamics. For instance, in Figure 5C it is shown how
for a fixed value of facilitation and increasing depression (increas-
ing τrec) the second resonance peak moves toward low values of fn
while the position of the first resonance peak remains unchanged.
On the other hand, for a given value of depression, the increase
of facilitation time constant τfac moves the first resonance peak
while the position of the second resonance peak is unaltered (see
Figure 5D). This clearly demonstrates that in actual neural sys-
tems synapses with different levels of depression and facilitation
can control the signal processing at different frequencies.

The appearance of SMR in neural media with dynamic
synapses is quite robust: SMR also appears when the post-synaptic
neuron is model with different types of spiking mechanisms, such
as the FitzHugh–Nagumo (FHN) model or the integrate and fire
model (IF) with an adaptive threshold dynamics (Mejias and
Torres, 2011). SMR also appears with more realistic stochastic
dynamic synapses and more realistic weak signals such as a train
of inputs with small amplitude and short durations distributed in
time according to a rate modulated Poisson process (Mejias and
Torres, 2011).

The physical mechanism behind the appearance of SMR is the
existence of a non-monotonic dependence of the synaptic cur-
rent fluctuations with fn—due to the dynamic synapses—together
with the existence of an adaptive threshold mechanism in the
postsynaptic neuron to the incoming synaptic current. In this
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FIGURE 5 | Appearance of stochastic multiresonances in feed forward

neural networks of spiking neurons with dynamic synapses. (A)

Behaviour of C0—defined in Equation (18)—as a function of fn for static
synapses showing the phenomenon of stochastic resonance. (B)

Temporal behavior for the response of the postsynaptic neuron at each
labeled position of the resonance curve in panel (A). (C) Resonance

curve for C0 when dynamic synapses are included. The most remarkable
feature is the appearance of a two-peak resonance in the frequency
domain, with the position of high frequency peak controlled by the
particular value of τrec. (D) The panel shows another interesting feature of
the two-peak resonance curve for C0, that is, the control of the position
of the low frequency peak by τfac.

way, the distance in voltage between the mean post-synaptic sub-
threshold voltage and the threshold for firing remains constant or
decreases very slowly for increasing presynaptic frequencies. This
implies the existence of two values of fn at which current fluctua-
tions are enough to induce firing in the post-synaptic neuron [see
Mejias and Torres (2011) for more details].

In light of these findings, we have reinterpreted recent SR
experimental data from psycho-physical experiments on human
blink reflex (Yasuda et al., 2008). In these experiments the neu-
rons responsible for the blink reflex receive inputs from neurons
in the auditory cortex, which are assumed to be uncorrelated due
to the action of some external source of white noise. The sub-
ject received in addition a weak signal in the form of a periodic
small air puff into the eyes. The authors measured the correlation
between the air puff signal and the blink reflex and their results
are plotted in Figure 6A (dark gray square error-bar symbols).
They used a feed-forward neural network with a postsynaptic
neuron with IF dynamics with fixed threshold to interpret their
findings (light-gray dashed line). With this model, only the high-
frequency correlation points can be fitted. Using instead a FHN
model or an IF with adaptive threshold dynamics, we were able

to fit all experimental data points (black solid line). The SMR is
also observed with more realistic rate-modulated weak Poisson
pulses (light-gray filled circles) instead of the sinusoidal input
(black solid line). Both model predictions are consistent with the
SMR that is observed in this experiments. In Figure 6B we sum-
marize the conditions that neurons and synapses must satisfy for
the emergence of SMR in a feed forward neural network.

6. RELATION WITH OTHER WORKS
The occurrence of non-fixed point behavior in recurrent neural
networks due to dynamic synapses has also been reported by oth-
ers (Senn et al., 1996; Tsodyks et al., 1998; Dror and Tsodyks,
2000). These studies differ from our work because one assumes
continuous deterministic neuron dynamics (instead of binary and
stochastic, as in our work). The oscillations observed in these net-
works do not have the rapid switching behavior as we observe
and seem unrelated to the metastability that we have found in our
work.

In addition, it has been reported that oscillations in the firing
rate can be chaotic (Senn et al., 1996; Dror and Tsodyks, 2000)
and present some intermittent behavior that resembles observed
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FIGURE 6 | (A) Appearance of stochastic multi-resonance in experiments in
the brain. Dark gray square symbols represent the values of C0 obtained in
the experiments performed in the human auditory cortex. Dashed light gray
line corresponds to best model prediction using a neuron with fixed
threshold (Yasuda et al., 2008). Solid black line correspond to our model
consisting of a FHN neuron and depressing synapses. Gray filled circle
symbols shows C0 when the weak signal is a train of (uncorrelated)
Poisson pulses instead of the sinusoidal input (solid line). (B) Schematic
overview showing the neuron and synapse mechanisms needed for the
appearance of stochastic multi-resonances in feed-forward neural
networks. (see (Torres et al., 2011) for more details).

patterns of EEG. The chaotic regime in these continuous models
seems unrelated to the existence of fixed point behavior and most
likely understood as a generic feature of non-linear dynamical
systems.

It is worth noting that for each neuron, the effect of dynamic
synapses is modeled through a single variable xi that multiplies
the synaptic strength wij for all synapses that connect to i. There
is one depression variable per neuron and not per connection. As
a result, one can obtain the same behavior of the network by inter-
preting xi as implementing a dynamic firing thresholds (Horn and
Usher, 1989) instead of a dynamic synapse.

The switching behavior that we described in this paper, is
somewhat similar to the neural network with chaotic neurons that
displays a self-organized chaotic transition between memories
(Tsuda et al., 1987; Tsuda, 1992).

The possible interpretation of the switching behavior as
up/down cortical transitions is controversial, because similar

cortical oscillations can be generated without synaptic dynam-
ics, where the up state is terminated because of hyperpolariz-
ing potassium ionic currents (Compte et al., 2003). However, a
very recent study has focused on the interplay between synap-
tic depression and these inhibitory currents and concludes that
synaptic depression is relevant for maintaining the up state
(Benita et al., 2012). The reason for that counterintuitive behavior
is that synaptic depression decreases the firing rate in the up state
which also decreases the effect of the hyper-polarizing potassium
currents and, as a consequence, the prolongation of the up state.

Related also is a recent study on the effect of dynamic synapses
on the emergence of a coherent periodic rhythm within the Up
state which results in the phenomenon of stochastic amplifica-
tion (Hidalgo et al., 2012). It has been shown that this rhythm
is an emergent or collective phenomenon given that individual
neurons in the up state are unlocked to such a rhythm.

The relation between dynamic synapses and storage capacity
has also been studied by others. For very sparse stored patterns
(a � 1) it has been shown that storage capacity decreases with
synaptic depression (Bibitchkov et al., 2002), in agreement with
our findings. On the other hand, it has been reported that the
basin of attraction of the memories are enlarged by synaptic
depression (Matsumoto et al., 2007) and these are even enlarged
more when synaptic facilitation is taken into account (Mejias and
Torres, 2009).

(Otsubo et al., 2011) reported a theoretical and numerical
study on the role of short-term depression on memory storage
capacity in the presence of noise, showing that noise reduces the
storage capacity (as is also the case for static synapses). (Mejias
et al., 2012) shows the important role of facilitation to enlarge the
regions for memory retrieval even in the presence of high noise.

In the last decade there has been some discussion whether
neural systems, or even the brain as a whole, can work in a criti-
cal state using the notion of self-organized criticality (Beggs and
Plenz, 2003; Tagliazucchi et al., 2012). As we stated in section 4,
the combination of colored synaptic noise and short-term depres-
sion can cause power-low distributed permanence times in the Up
and Down states, which is a signature of criticality. The emergence
of critical phenomena as a consequence of dynamic synapses has
also been explored by others (Levina et al., 2007, 2009; Bonachela
et al., 2010; Millman et al., 2010).

Finally, it is worth mentioning a recent work that has inves-
tigated the formation of spatio-temporal structures in an exci-
tatory neural network with depressing synapses (Kilpatrick and
Bressloff, 2010). As a result of dynamic synapses, robust complex
spatio-temporal structures, including different types of travelling
waves, appear in such a system.

7. CONCLUSIONS
It is well-known that during transmission of information,
synapses show a high variability with a diverse origin, such as the
stochastic release and transmission of neurotransmitter vesicles,
variations in the Glutamate concentration through synapses and
the spatial heterogeneity of the synaptic response in the dendrite
tree (Franks et al., 2003). The cooperative effect of all these mech-
anisms is a noisy post-synaptic response which depends on past
pre-synaptic activity. The strength of the postsynaptic response
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can decrease or increase and can be modeled as dynamical
synapses.

In a large number of papers, we have studied the effect of
dynamical synapses in recurrent an feed-forward networks, the
result of which we have summarized in this paper. The main
findings are the following:

Dynamic memories: Classical neural networks of the Hopfield
type, with symmetric connectivity, display attractor dynam-
ics. This means that these networks act as memories. A
specific set of memories can be stored as attractors by
Hebbian learning. The attractors are asymptotically stable
states. The effect of synaptic depression in these networks
is to make the attractors lose stability. Oscillatory modes
appear where the network rapidly switches between memo-
ries. Instead, the permanence time to stay in a memory can
have any positive value and becomes infinite in the regime
where memories are stable. Thus, the recurrent network
with dynamical synapses implements a form of dynamical
memory.

Input sensitivity: The classical Hopfield network is relatively
insensitive to external stimuli, once it has converged into
one of its stable memories. Synaptic depression improves the
sensitivity to external stimuli, because it destabilizes the mem-
ories. In addition, synaptic facilitation further improves the
sensitivity of the attractor network to external stimuli.

Storage capacity: The storage capacity of the attractor neu-
ral network, i.e., the maximum number of memories that
can be stored in a network, is proportional to the num-
ber of neurons N and scales as Pmax = αN with α = 0.138.
Synaptic depression causes a decrease of the maximum
storage capacity but facilitation allows to recover the
capacity of the network with static synapses under some
conditions.

Up and down states: The emergence of dynamic memories has
been related to the well-known up–down transitions observed
in local-field recording in the cortex. We demonstrated that the
observed distributions of permanence times can be explained
by a stochastic synaptic dynamics. Scale free permanence

time distributions could signal a critical state in the
brain.

Stochastic multiresonance: Whereas static synapses in a stochas-
tic network give rise to a single stochastic resonance peak,
dynamical synapses produce a double resonance. This phe-
nomenon is robust for different types of neurons and input
signals. Thus, dynamic synapses may explain recently observed
SMR in psychophysical experiments. SMR also seems to occur
in recurrent neural networks with dynamic synapses as it has
been recently reported (Pinamonti et al., 2012). This work
demonstrates the relevant role of short-term synaptic plastic-
ity for the appearance of the SMR phenomenon in recurrent
networks, although the exact underlying mechanism behind
it is slightly different than in the case described here, namely
feed-forward neural networks.

It is important to point out that although the phenomenology
reported in this review has been obtained using different mod-
els, all the reported phenomena can be also derived in a single
model consisting in a network of binary neurons with dynamic
synapses as described in section 1. The phenomena reported in
sections 2 and 3 have in fact been obtained using this model
and the phenomenon of stochastic multiresonance (section 5) has
been reported recently in such a model by Pinamonti et al. (2012).
The results on critical up and down states that are reported in
section 4 have been obtained in a mean-field model that can be
derived from the same binary model and by assuming in addition
sparse neural activity and sparse connectivity, which increases
the stochasticity in the synaptic transmission through the whole
network.

In addition, our studies show that the reported phenomena
are robust to detailed changes in the model, such as replacing the
binary neurons by graded response neurone or integrate-and-fire
neurone.

ACKNOWLEDGMENTS
Joaquin J. Torres acknowledges support from Junta de Andalucia
(project FQM-01505) and the MICINN-FEDER (project
FIS2009-08451).

REFERENCES
Abbott, L. F., Valera, J. A., Sen, K.,

and Nelson, S. B. (1997). Synaptic
depression and cortical gain control.
Science 275, 220–224.

Amari, S. (1972). Learning pat-
terns and pattern sequences by
self-organizing nets of threshold
elements. IEEE Trans. Comput. 21,
1197–1206.

Amit, D. J. (1989). Modeling Brain
Function: The World of Attractor
Neural Network. Cambridge, UK:
Cambridge University Press.

Barak, O., and Tsodyks, M. (2007).
Persistent activity in neural net-
works with dynamic synapses.
PLoS Comput. Biol 3:e35. doi:
10.1371/journal.pcbi.0030035

Beggs, J. M., and Plenz, D. (2003).
Neuronal avalanches in neo-
cortical circuits. J. Neurosci. 23,
11167–11177.

Benita, J. M., Guillamon, A., Deco,
G., and Sanchez-Vives, M. V.
(2012). Synaptic depression and
slow oscillatory activity in a bio-
physical network model of the
cerebral cortex. Front. Comp.
Neurosci. 6:64. doi: 10.3389/
fncom.2012.00064

Benzi, R., Sutera, A., and Vulpiani, A.
(1981). The machanims of stochas-
tic resonance. J. Phys. A Math. Gen.
14, L453.

Bertram, R., Sherman, A., and
Stanley, E. F. (1996). Single-
domain/bound calcium hypothesis

of transmitter release and facil-
itation. J. Neurophysiol. 75,
1919–1931.

Bibitchkov, D., Herrmann, J. M., and
Geisel, T. (2002). Pattern stor-
age and processing in attractor
networks with short-time synap-
tic dynamics. Netw. Comput. Neural
Syst. 13, 115–129.

Bonachela, J. A., de Franciscis, S.,
Torres, J. J., and Muñoz, M. A.
(2010). Self-organization with-
out conservation: are neuronal
avalanches generically criti-
cal? J. Stat. Mech. Teor Exp.
2010:P02015. doi: 10.1088/1742-
5468/2010/02/P02015

Bressloff, P. C. (1999). Mean-field
theory of globally coupled

integrate-and-fire neural oscil-
lators with dynamic synapses. Phys.
Rev. E 60, 2160–2170.

Collins, J. J., Carson Chow, C.
C., and Imhoff, T. T. (1995).
Aperiodic stochastic resonance in
excitable systems. Phys. Rev. E 52,
R3321–R3324.

Compte, A., Sanchez-Vives, M. V.,
McCormick, D. A., and Wang.
X.-J. (2003). Cellular and network
mechanisms of slow oscilla-
tory activity (<1 hz) and wave
propagations in a cortical net-
work model. J. Neurophysiol. 89,
2707–2725.

Cortes, J. M., Garrido, P. L., Marro, J.,
and Torres, J. J. (2004). Switching
between memories in neural

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 30 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Torres and Kappen Computational implications of dynamic synapses

automata withsynaptic noise.
Neurocomputing 58–60. 67–71.

Cortes, J. M., Torres, J. J., Marro, J.,
Garrido, P. L., and Kappen, H. J.
(2006). Effects of fast presynaptic
noise in attractor neural networks.
Neural Comput. 18, 614–633.

Dror, G., and Tsodyks, M. (2000).
Chaos in neural networks with
dynamic synapses. Neurocomputing
32–33, 365–370.

Franks, K. M., Stevens, C. F., and
Sejnowski, T. J. (2003). Independent
sources of quantal variability at
single glutamatergic synapses. J.
Neurosci. 23, 3186–3195.

Hertz, J., Krogh, A., and Palmer, R. G.
(1991). Introduction to the Theory of
Neural Computation. Redwood City,
CA: Addison-Wesley.

Hidalgo, J., Seoane, L. F., Cortés, J.
M., and Muñoz, M. A. (2012).
Stochastic amplification of fluctu-
ations in cortical up-states. PLoS
ONE 7:e40710. doi: 10.1371/jour-
nal.pone.0040710

Holcman, D., and Tsodyks, M. (2006).
The emergence of up and down
states in cortical networks. PLoS
Comput. Biol. 2, 174–181. doi:
10.1371/journal.pcbi.0020023

Hopfield, J. J. (1982). Neural networks
and physical systems with emer-
gent collective computational abili-
ties. Proc. Natl. Acad. Sci. U.S.A. 79,
2554–2558.

Horn, D., and Usher, M. (1989). Neural
networks with dynamical thresh-
olds. Phys. Rev. A 40, 1036–1044.

Kilpatrick, Z. P., and Bressloff, P. C.
(2010). Spatially structured oscilla-
tions in a two-dimensional excita-
tory neuronal network with synap-
tic depression. J. Comput. Neurosci.
28, 193–209.

Kistler, W. M., and van Hemmen, J.
L. (1999). Short-term synaptic plas-
ticity and network behavior. Neural
Comput. 11, 1579–1594.

Levina, A., Herrmann, J. M., and Geisel,
T. (2007). Dynamical synapses caus-
ing self-organized criticality in neu-
ral networks. Nat. Phys. 3, 857–860.

Levina, A., Herrmann, J. M., and Geisel,
T. (2009). Phase transitions towards
criticality in a neural system with
adaptive interactions. Phys. Rev.
Lett. 102, 118110.

Liaw, J. S., and Berger, T. W. (1996).
Dynamic synapse: a new concept of
neural representation and computa-
tion. Hippocampus 6, 591–600.

Longtin, A., Bulsara, A., and Moss, F.
(1991). Time-interval sequences
in bistable systems and the
noise-induced transmission of

information by sensory neurons.
Phys. Rev. Lett. 67, 656–659.

Markram, H., and Tsodyks, M.
(1996). Redistribution of synap-
tic efficacy between neocortical
pyramidal neurons. Nature 382,
759–760.

Markram, H., Wang, Y., and Tsodyks.
M. (1998). Differential signaling via
the same axon of neocortical pyra-
midal neurons. Proc. Natl. Acad. Sci.
U.S.A. 95, 5323–5328.

Marro, J., Torres, J. J., and Cortes,
J. M. (2007). Chaotic hopping
between attractors in neural net-
works. Neural Netw. 20, 230–235.

Matsumoto, N., Ide, D., Watanabe, M.,
and Okada, M. (2007). Retrieval
property of attractor network with
synaptic depression. J. Phys. Soc.
Jpn. 76, 084005.

Mejias, J. F., Hernandez-Gomez, B.,
and Torres, J. J. (2012). Short-term
synaptic facilitation improves infor-
mation retrieval in noisy neural net-
works. EPL (Europhys. Lett.) 97,
48008.

Mejias, J. F., Kappen, H. J., and Torres,
J. J. (2010). Irregular dynamics in
up and down cortical states. PLoS
ONE 5:e13651. doi: 10.1371/jour-
nal.pone.0013651

Mejias, J. F., and Torres, J. J. (2009).
Maximum memory capacity on
neural networks with short-term
depression and facilitation. Neural
Comput. 21, 851–871.

Mejias, J. F., and Torres, J. J. (2011).
Emergence of resonances in
neural systems: the interplay
between adaptive threshold
and short-term synaptic plas-
ticity. PLoS ONE 6:e17255. doi:
10.1371/journal.pone.0017255

Millman, D., Mihalas, S., Kirkwood,
A., and Niebur, E. (2010). Self-
organized criticality occurs in
non-conservative neuronal net-
works during up states. Nat. Phys.
6, 801–805.

Mongillo, G., Barak, O., and Tsodyks,
M. (2008). Synaptic theory of
working memory. Science 319,
1543–1546.

Natschläger, T., Maass, W., and Zador,
A. (2001). Efficient temporal pro-
cessing with biologically realistic
dynamic synapses. Netw. Comput.
Neural Syst. 12, 75–87.

Otsubo, Y., Nagata, K., Oizumi, M.,
and Okada, M. (2011). Influence
of synaptic depression on memory
storage capacity. J. Phys. Soc. Jpn. 80,
084004.

Pantic, L., Torres, J. J., Kappen, H. J.,
and Gielen, S. C. A. M. (2002).

Associative memory with dynamic
synapses. Neural Comput. 14,
2903–2923.

Pieribone, V. A., Shupliakov, O.,
Brodin, L., Hilfiker-Rothenfluh,
S., Zernik, A. J., and Greengard, P.
(1995). Distinct pools of synaptic
vesicles in neurotransmitter release.
Nature 375, 493–497.

Pinamonti, G., Marro, J., and Torres,
J. J. (2012). Stochastic reso-
nance crossovers in complex
networks. PLoS ONE 7:e51170. doi:
10.1371/journal.pone.0051170

Senn, W., Wyler, K., Streit, J., Larkum,
M., Lüscher, H. r., Merz, F. et al.
(1996). Dynamics of random neu-
ral network with synaptic depres-
sion. neural networks. Neural Netw.
9, 575–588.

Senn, W., Segev, I., and Tsodyks,
M. (1998). Reading neuronal syn-
chrony with depressing synapses.
Neural Comput. 10, 815–819.

Steriade, M., McCormick, D. A.,
and Sejnowski. T. J., (1993a).
Thalamocortical oscillations in the
sleeping and aroused brain. Science
262, 679–685.

Steriade, M., Nunez, A., and Amzica,
F. (1993b). A novel slow (<1hz)
oscillation of neocortical neurons in
vivo: depolarizing and hyperpolar-
izing components. J. Neurosci. 13,
3252–3265.

Tagliazucchi, E., Balenzuela, P.,
Fraiman, D., and Chialvo, D. R.
(2012). Criticality in large-scale
brain fMRI dynamics unveiled
by a novel point process anal-
ysis. Front. Physiol. 3:15. doi:
10.3389/fphys.2012.00015

Torres, J. J., Cortes, J. M., and Marro,
J. (2005). Instability of attractors in
auto-associative networks with bio-
inspired fast synaptic noise. LNCS
3512, 161–167.

Torres, J. J., Cortes, J. M., Marro, J., and
Kappen, H. J. (2008). Competition
between synaptic depression and
facilitation in attractor neural
networks. Neural Comput. 19,
2739–2755.

Torres, J. J., Marro, J., and Mejias, J. F.
(2011). Can intrinsic noise induce
various resonant peaks? New J. Phys.
13:053014. doi: 10.1088/1367-2630/
13/5/053014

Torres, J. J., Pantic, L., and Kappen, H.
J. (2002). Storage capacity of attrac-
tor neural networks with depressing
synapses. Phys. Rev. E. 66:061910.
doi: 10.1103/PhysRevE.66.061910

Tsodyks, M., Uziel, A., and Markram,
H. (2000). Synchrony genera-
tion in recurrent networks with

frequency-dependent synapses. J.
Neurosci. 20, RC50 (1–5).

Tsodyks, M. V., and Markram, H.
(1997). The neural code between
neocortical pyramidal neurons
depends on neurotransmitter
release probability. Proc. Natl. Acad.
Sci. U.S.A. 94, 719–723.

Tsodyks, M. V., Pawelzik, K., and
Markram, H. (1998). Neural net-
works with dynamic synapses.
Neural Comput. 10, 821–835.

Tsuda, I. (1992). Dynamic link of
memory–chaotic memory map in
nonequilibrium neural networks.
Neural Netw. 5, 313–326.

Tsuda, I., Koerner, E., and Shimizu, H.
(1987). Memory dynamics in asyn-
chronous neural networks. Prog.
Theor. Phys. 78, 51–71.

van Kampen, N. G. (1990).
Stochastic Processes in Physics
and Chemistry. Amsterdam:
North-Holland Personal Library
(Elsevier).

Yasuda, H., Miyaoka, T., Horiguchi,
J., Yasuda, A., Hanggi, P., and
Yamamoto, Y. (2008). Novel class
of neural stochastic resonance and
error-free information transfer.
Phys. Rev. Lett. 100:118103. doi:
10.1103/PhysRevLett.100.118103

Zucker, R. S. (1989). Short-term synap-
tic plasticity. Annu. Rev. Neurosci.
12, 13–31.

Zucker, R. S., and Regehr, W. G. (2002).
Short-term synaptic plasticity.
Annu. Rev. Physiol. 64, 355–405.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 11 October 2012; accepted: 20
March 2013; published online: 05 April
2013.
Citation: Torres JJ and Kappen HJ
(2013) Emerging phenomena in neu-
ral networks with dynamic synapses and
their computational implications. Front.
Comput. Neurosci. 7:30. doi: 10.3389/
fncom.2013.00030
Copyright © 2013 Torres and Kappen.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and repro-
duction in other forums, provided
the original authors and source are
credited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 30 | 13

http://dx.doi.org/10.3389/fncom.2013.00030
http://dx.doi.org/10.3389/fncom.2013.00030
http://dx.doi.org/10.3389/fncom.2013.00030
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Emerging phenomena in neural networks with dynamic synapses and their computational implications
	Introduction
	Appearance of Dynamical Memories
	Storage Capacity
	Criticality in Up-Down Transitions
	Stochastic Multiresonance
	Relation with Other Works
	Conclusions
	Acknowledgments
	References


