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Stability is an important dynamical property of complex systems and underpins a broad
range of coherent self-organized behavior. Based on evidence that some neurological
disorders correspond to linear instabilities, we hypothesize that stability constrains
the brain’s electrical activity and influences its structure and physiology. Using a
physiologically-based model of brain electrical activity, we investigated the stability and
dispersion solutions of networks of neuronal populations with propagation time delays
and dendritic time constants. We find that stability is determined by the spectrum of the
network’s matrix of connection strengths and is independent of the temporal damping
rate of axonal propagation with stability restricting the spectrum to a region in the
complex plane. Time delays and dendritic time constants modify the shape of this region
but it always contains the unit disk. Instabilities resulting from changes in connection
strength initially have frequencies less than a critical frequency. For physiologically
plausible parameter values based on the corticothalamic system, this critical frequency
is approximately 10 Hz. For excitatory networks and networks with randomly distributed
excitatory and inhibitory connections, time delays and non-zero dendritic time constants
have no impact on network stability but do effect dispersion frequencies. Random
networks with both excitatory and inhibitory connections can have multiple marginally
stable modes at low delta frequencies.
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INTRODUCTION
The brain is possibly the most complicated example of a sys-
tem of interacting dynamical units whose activity self-organizes
to produce complex global behavior. The human brain performs
cognitive functions through the transmission of action potentials
within a vast structurally dynamic network consisting of approx-
imately 1011 neurons and up to 1015 synaptic interconnections
(Kandel et al., 2000; Koch, 2004; Sporns et al., 2005). The aggre-
gate of all neural firings within this network results in large-scale
coherent electrical activity and the performance of high-level cog-
nitive functions. Understanding the structure and physiology of
the brain thus gives insight into its overall behavior.

At large scales the excitatory and inhibitory neurons in the
brain are organized into a complex large-scale network of distinct
anatomical and functional structures (Sporns et al., 2004, 2005;
Bullmore and Sporns, 2009; van den Heuvel and Sporns, 2011)
We can represent this structure as a complex network—the struc-
ture of which has been studied extensively in recent times with
a number of experimental cortical connection networks deter-
mined for the cat and the macaque monkey (Felleman and van
Essen, 1991; Scannell et al., 1995; Jouve et al., 1998; Hilgetag et al.,
2000a,b; Sporns, 2011). These networks have a modular hier-
archical structure with the small-world properties of high local
clustering and short path length between structures (Hilgetag
et al., 2000a,b; Sporns et al., 2000, 2004, 2005; Young, 2000;

Sporns and Zwi, 2004; Bassett and Bullmore, 2006; Bullmore and
Sporns, 2009, 2012).

Reasons for why the brain has evolved this particular large-
scale structure are currently unknown. A number of investiga-
tions have concentrated on the effect of physical constraints on
brain structure. Such constraints include brain volume, wiring
length, and energy consumption or metabolic demands (Laughlin
et al., 1998; Attwell and Laughlin, 2001; Lennie, 2003). Other
studies have looked at functional constraints such as minimizing
the conduction delay or processing steps for a signal to travel from
one neuron to another (Wen and Chklovskii, 2005). Alternatively,
the dynamics of the brain’s electrical activity may constrain the
brain’s structure. If the physiology and structural characteris-
tics of the brain produce adverse electrical activity resulting in
seizures, tremors, or other neurological disorders then it is likely
the structural characteristics of the brain will be constrained to
limit these disorders.

One of the most important dynamical properties of com-
plex systems such as the brain is stability. It has been associ-
ated with pattern formation (Turing, 1952; Murray, 2002), syn-
chronized activity (Kuramoto, 1984; Pecora and Carroll, 1998;
Jirsa and Ding, 2004; Acebrón et al., 2005; Feng et al., 2006),
the complexity and diversity of ecosystems (May, 1972, 1974;
Hogg et al., 1989; McCann, 2000; Allesina and Tang, 2012), the
functioning of biological systems (Murray, 2002; Taverna and

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 31 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2013.00031/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RichardGray_2&UID=63176
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PeterRobinson&UID=4728
mailto:rgray@kirby.unsw.edu.au
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gray and Robinson Stability constraints on structural brain networks

Goldstein, 2002; Steuer, 2007), and the generation of coher-
ent self-organized behavior. Stability is also an important aspect
of the design and control of advanced technological systems
(Bechhoefer, 2005).

A common approach to studying the large-scale dynamics of
the brain’s electrical activity is to use a continuum mean-field
approximation for neural activity. This approach has been exten-
sively studied over the past 30 years producing numerous models
for the electrical activity within the brain (Wilson and Cowan,
1973; da Silva et al., 1974; Nunez, 1974, 1995; Freeman, 1975;
Steriade et al., 1990; Jirsa and Haken, 1996; Wright and Liley,
1996; Robinson et al., 1997, 2003a; Wright et al., 2001; Robinson,
2005). This work has been reviewed recently (Deco et al., 2008;
Bressloff, 2011). These models have been used extensively to per-
form stability analysis and understand pattern formation, oscilla-
tions and waves in the brain’s electrical activity (Deco et al., 2008;
Bressloff, 2011).

Measurements of brain activity suggest that the brain oper-
ates close to marginal stability, permitting a wide range of
flexible, adaptable, and complex behavior (Stam et al., 1999;
Robinson et al., 2001b; Breakspear, 2002; Breakspear et al., 2003).
Physiological modeling also suggests that linear instabilities in
the brain’s electrical activity correspond to neurological disorders,
such as epilepsy (Robinson et al., 1998, 2002; Breakspear et al.,
2006; Kim and Robinson, 2007; Deco et al., 2008). It is there-
fore possible that stability is a dynamical property that imposes
constraints on the brain’s physiology and structure.

In previous work we have used a simplified version of the
Robinson, Rennie, Wright (RRW) physiologically-based contin-
uum (mean-field) model (Robinson et al., 1997, 1998, 2003a;
Wright et al., 2001; Rennie et al., 2002; Robinson, 2003, 2005) to
study the dynamics of the electrical activity in large-scale struc-
tural brain networks. Based on the hypothesis that stability is a
dynamical constraint on the structure and physiology of struc-
tural brain networks we have investigated the effect of stability of
large-scale structural brain networks (Gray and Robinson, 2006,
2008, 2009b,a; Robinson et al., 2009).

Our previous work ignored the dendritic time constants of
neurons and the propagation time delays for signals to travel
between neural populations. However, time delays due to axonal
propagation affect stability and the possible physiology of neu-
ronal networks (Atay and Hutt, 2004; Jirsa and Ding, 2004;
Coombes, 2005; Coombes et al., 2007; Qubbaj and Jirsa, 2007,
2009; Venkov et al., 2007; Jirsa, 2009). This previous work has
generally used integro-differential neural field equations with
connectivity within a neural mass described by homogeneous
or heterogeneous kernels. Our approach here is to focus on the
temporal dynamics of the overall electrical activity of arbitrarily
connected large-scale structural brain networks, ignoring the spa-
tial spread and propagation of electrical activity within individual
neuronal populations.

In this study, we increase the physiological realism of our struc-
tural brain network model by allowing propagation time delays
and non-zero dendritic time constants. After reviewing the sta-
bility of structural brain networks, we aim to investigate how
these physiological features might affect the dynamics and sta-
bility of networks of neuronal populations where the connection

patterns between populations are arbitrary—ignoring the spatial
and geometric placement of the populations and simply focusing
on which populations are inter-connected.

We also investigate the dispersion frequencies of marginally
stable modes of electrical activity using plausible physiological
parameters. The incorporation of non-zero dendritic time con-
stants generalizes the work in (Jirsa and Ding, 2004) which, by
including time delays, extended May’s original analysis on the
stability of complex systems (May, 1972, 1974).

METHODS
A structural brain network of n neural populations is represented
by a directed graph N whose vertices and edges represent specific
neural populations and inter-population connections, respec-
tively. Neural populations within a network are collections of
neurons with an assumed effective range and of sufficient number
for a mean-field approximation to be valid. For example, a neu-
ral population can represent all the neurons in a distinct region
or nuclei of the brain (e.g., cortical area, thalamus), a particular
neuron type (e.g., interneuron, pyramidal cell), or a particu-
lar neurotransmitter type (e.g., glutamate, GABA, dopamine).
Neurons in one population do not have to be separated geomet-
rically or physically within the brain and can be intermixed with
the neurons of another population (e.g., excitatory and inhibitory
neurons in the cortex).

The structure of N is represented by a connection matrix
C(N) = [Cab]; where Cab = 1 if there is a connection from popu-
lation b to population a, Cab = 0 otherwise. If Cab = Cba for all a
and b, the network is symmetric; otherwise it is asymmetric. Self-
connections in structural brain networks correspond to non-zero
diagonal entries in C(N). The connection matrix simply records
whether one neuronal population sends neural signals to another
neuronal population. Properties of connections are not included
in C(N).

PHYSIOLOGICALLY-BASED STRUCTURAL BRAIN NETWORK DYNAMICS
In this section we outline the physiological model used to describe
the dynamics of a brain network. If a neural population con-
tains a sufficient number of neurons a continuum approxima-
tion can be used, whereby the properties of population neurons
are averaged over. This approximation is valid for length scales
greater than a few tenths of a millimeter and is thus suitable
for investigating the dynamics of large-scale structural brain
networks.

The continuum approximation allows the use of a previously
developed model, the RRW model, for the brain’s electrical activ-
ity (Robinson et al., 1997; Wright et al., 2001; Rennie et al.,
2002; Robinson et al., 2003b, 2004; Robinson, 2005). This con-
tinuum model incorporates and describes three features of neural
dynamics: (1) the synapto-dendritic dynamics resulting in the
cell body potential; (2) from the mean cell body potential an
average firing rate is determined via a non-linear sigmoid func-
tion; and (3) the population firing rate generates a neural pulse
forming a field φ(t) that propagates along the populations out-
going connections. The field within a population is temporally
described using a damped wave equation. Implicitly the neurons
in each population are assumed to have an effective range which
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gives a rate at which spikes reach axonal terminals and cease
existance.

This model has been extensively used to model the corti-
cothalamic system with the linear version having been shown
to produce excellent agreement with EEG spectra, ERP, and
other neurophysical phenomena (Robinson et al., 1997, 2001a,b;
Rennie et al., 2002; Robinson, 2003). To apply this continuum
model to brain networks we previously used a number of sim-
plifying assumptions. In particular, we assumed that all neural
populations have instantaneous dendritic response times and
there is no time delay for a signal to be sent from one popu-
lation to the other (Gray and Robinson, 2006, 2008, 2009b,a;
Robinson et al., 2009). For this study we relax some of these
assumptions.

Firstly we assume time delays τ for a signal to be sent from
one population to another are equal. Secondly, we assume each
population in a network has the same dendritic decay rate α

and rise rate β. The values of 1/α and 1/β equal the dendritic
decay and rise time constants, respectively; instantaneous rise
and decay times imply 1/α = 1/β = 0. These assumptions are
unrealistic for real structural brain networks but improve our
previous analysis and allow us to analytically determine stabil-
ity. Though for some structural brain networks these assumptions
may be good approximations of the networks physiology. Another
weakness of these assumptions is self-connections have the same
time delay as connections between distinct populations—if τ �= 0
then self-connections in a network also involve a delay. Generally,
self-connections represent interconnections within a neural pop-
ulation and would be expected to have zero time delay. However,
for cortical networks self-connections can be used to represent
feedback from underlying structures such as the thalamus. Time
delayed self-connections would be appropriate for this type of
feedback. We will generalize the assumption of equal time delays
in future work.

The neurophysics and neurophysiology incorporated into the
general RRW model and the equations for the linear perturba-
tions of the neural field φa, for each neural population a, are
described and derived in detail elsewhere (Robinson et al., 1997;
Wright et al., 2001; Rennie et al., 2002; Robinson et al., 2003b,
2004; Robinson, 2005). This study uses the notation and equa-
tions derived in (Robinson, 2005). Under the assumptions used
here the RRW equations describing linear perturbations of the
neural field φa of population a about the assumed steady state in
Fourier space reduce to

(1 − iω/γ)2 φa(ω) =
∑

b

L(ω)Gabeiωτφb(ω), (1)

= L(ω)eiωτ
∑

b

Gabφb(ω), (2)

where ω is the angular frequency and

L(ω) = αβ

(α − iω)(β − iω)
= 1

(1 − iω/α)(1 − iω/β)
. (3)

The gain Gab is a dimensionless quantity describing the effect
of changes in the firing rate of neurons in population b on the

neurons of population a. Physiologically, Gab is the number of
extra action potentials produced in a per extra action potential
incident from b. Hence, Gab is a measure of how sensitive and
responsive a is to changes in b’s activity. In the general RRW
model γ is a damping rate equal to the velocity of the φ’s prop-
agation within a neural population divided by the characteristic
range of the axons that carry it. In the spatially uniform case used
here, γ represents a temporal damping rate.

Letting G = [Gab] be the matrix of gains and setting

D(ω) = [L(ω)]−1(1 − iω/γ)2e−iωτ, (4)

= (1 − iω/α)(1 − iω/β)(1 − iω/γ)2e−iωτ, (5)

which is a complex analytic function. Equation (1) can be written
in matrix form as

�(ω)�(ω) = G�(ω), (6)

where � is a column vector of the φa and �(ω) = D(ω)I, where
I is the identity matrix. Setting A = G − �, Equation (6) can be
simplified to

A(ω)�(ω) = 0. (7)

The linear stability of a network is then determined by the
solutions ω of the dispersion relation,

det[A(ω)] = 0. (8)

The gain matrix G = [Gab] encodes all of the information in
C, since Gab �= 0 implies Cab �= 0, as well as the strength of
connections between populations. No assumptions (such as
homogeneity or isotropy) are made for the characteristics of a
connection and any attenuation or phase shifting of an incom-
ing signal due to time delays are reflected in the exponential
term of Equation (1). However, the model implicitly assumes
an effective range for neurons within a population. If Gab > 0
then the connection is excitatory and if Gab < 0 the connection
is inhibitory. Note that Equation (5) shows that if the values of α

and β are exchanged, the brain network has the same dynamics
and stability.

REALISTIC PARAMETER VALUES FOR LARGE-SCALE STRUCTURAL
BRAIN NETWORKS
Physiologically plausible parameter values for γ, α, β, and τ are
shown in Table 1. These values are based on the parameters used
in the corticothalamic model (Robinson et al., 2003a, 2004), with
the specific values taken from (Robinson et al., 2004). The nom-
inal values in Table 1 are the default model parameters used to
illustrate our results under our assumptions α and β are the
same value for all populations and τ is the same for all con-
nections. The values for γ are based on the cortical excitatory
neurons which form the long range connections within the cor-
tex. Inhibitory inter-neurons in the cortex are short range (Nunez,
1995) and therefore have γ ≈ ∞. Under the assumptions used
here all neural populations are given the same γ value.

In real structural brain networks dendritic time constants and
propagation time delays may vary. The spatial distribution and
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Table 1 | Physiologically plausible ranges and nominal values of

parameters.

Parameter Range Nominal value Unit

γ 30–220 100 s−1

α 5–200 60 s−1

β 17–2500 240 s−1

β/α 1–10 4 –

τ 0–50 10 ms

Based on the corticothalamic model parameters in Robinson et al. (2004). The

nominal values are the default model parameters we use in this work.

physical separation of structures within the brain will lead to
distinct time delays. The values of τ in Table 1 are physiologi-
cally plausible values for the time delays based on corticothalamic
modeling. The nominal value is a realistic value for the average
delay between the large-scale neural populations (or areas) in the
cerebral cortex.

RANDOMLY CONNECTED LARGE-SCALE STRUCTURAL BRAIN
NETWORKS
To illustrate our results we investigate randomly connected struc-
tural brain networks where neural populations are connected
randomly with probability p. The size n and probability of
connection we use is based on experimentally determined corti-
cal connection networks for animals. These have been analyzed
with graph-theoretical methods and all of these networks have
less than 100 neural populations with a connection density (per-
centage of existing connections out all possible connections) of
20–40% (Felleman and van Essen, 1991; Scannell et al., 1995;
Hilgetag et al., 2000a; Sporns et al., 2000, 2004; Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010; Sporns, 2011). We
use random networks with n = 50 and p = 0.5 to illustrate our
results, allowing comparisons with real cortical networks. These
values of p ensure the networks are strongly connected (Bollobás,
1985) and all populations have at least one input and one out-
put with high probability; i.e., there are no sources or sinks of
electrical activity.

The specific random networks we investigate are the same
random networks we have previously investigated (Gray and
Robinson, 2006, 2008, 2009a,b). These networks consist of exci-
tatory and inhibitory connections. The probability that a con-
nection is inhibitory is given by pi and such a connection has
a negative gain. Excitatory gains are given values from a nor-
mal distribution with a mean μe > 0 and variance σ 2

e . Similarly,
inhibitory connections have a gain sampled from a normal distri-
bution with μi < 0 and variance σ 2

i . In terms of the gain matrix
G all positive entries are sampled fromN (μe, σ 2

e ) and all negative
entries are sampled from N (μi, σ 2

i ).
Based on these parameters we investigated the stability of

three types of networks: random networks with fixed excitatory
gains (RENs), random connection networks (RCNs) with excita-
tory and inhibitory connections distributed randomly within the
network (Gray and Robinson, 2009b), and random population
networks (RPNs) (Gray and Robinson, 2009a). RPNs represent
random networks with excitatory and inhibitory populations of

neurons, this implies the outgoing connections of a given popula-
tions are all excitatory or all inhibitory. The gain matrix of RPNs
consists of columns with either all entries ≤ 0 or all entries ≥ 0.

We determine the dispersion solutions for these structural
brain networks numerically using a FORTRAN program called
CROOT (Botten et al., 1983). This program finds dispersion
solutions by implementing a recursive algorithm that employs
Cauchy’s integral formula (Mitrinović and Kec̈kić, 1984) within
a specified annulus or disk.

RESULTS
Our results describe the stability of structural brain networks by
determining the criteria for a network to stable—starting from
simple excitatory networks and then adding time delays and
dendritic time constants. For our network model we show that
stability is determined by the eigenvalues of the gain matrix with
stability constraining the eigenvalues to a specific zone in the
complex plain. The first subsections translate the results from
previous work into the current context. In particular, when time
delays are included we produce a similar tear-drop shaped sta-
bility zone found by others (Jirsa and Ding, 2004; Feng et al.,
2006; Qubbaj and Jirsa, 2007; Jirsa, 2009; Qubbaj and Jirsa, 2009).
However, we show the addition of dendritic time constants mod-
ifies the shape of the stability zone. Finally, we use our results
to assess how stability constrains the physiology of randomly
connected networks with excitatory and inhibitory connections.

STABILITY OF STRUCTURAL BRAIN NETWORKS
The solutions ω of the dispersion relation Equation (8) determine
the linear stability of a network. Setting λ = D(ω), the dispersion
relation is

det (G − λI) = 0. (9)

Therefore, network stability is determined by the spectrum of G,
which we denote Sp(G). All the dispersion solutions ω of the
network can be obtained by solving

λ − D(ω) = 0 (10)

for each λ in Sp(G). If all the λ in Sp(G) have corresponding ω

[given by Equation (10)] with Imω < 0 then the network is stable.
However, if there exists one λ which has a corresponding disper-
sion solution with Imω ≥ 0 then the network is unstable. The set
of dispersion solutions of a brain network is termed the dispersion
spectrum. Taking the complex conjugate of Equations (4, 10)
show that if ω1 = Reω + iImω = ωr + iωi is solution for λ then
ω2 = −ωr + iωi is a solution for the complex conjugate λ of
λ. Therefore, since both λ and λ are in Sp(G), the dispersion
spectrum is symmetric about the real axis.

Solving Equation (10) for ω is equivalent to solving
λ − D(	) = 0 for 	 where

D(	) = D(γ	) = (1 − i	γ/α)(1 − i	γ/β)(1 − i	)2e−i	γτ,

(11)

and 	 = ω/γ is a dimensionless frequency parameter. From
the 	 solutions the dispersion solutions for the network are
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ω = γ	. Since D and D are analytic, the dispersion spec-
trum can be obtained by numerically solving Equation (10)
for each λ.

Boundary between unstable and stable states
As the stability of a network is determined by Sp(G) we are
interested in the zone of the complex plane where the all the
eigenvalues of G must lie for the network to be stable. If a dis-
persion solution has Imω = 0 (i.e., ω is real and marginally
stable) then the λ corresponding to ω lies on the critical bound-
ary between the unstable and stable zones in the complex plane.
Therefore, the stability boundary is given by D(ω) for real ω rang-
ing from −∞ to ∞. To describe the stability boundary we use
D(	) with real 	. This function traces out a continuous curve
in the complex plane as 	 ranges from −∞ to ∞. Points on
this curve represent λ in Sp(G) with real dispersion solutions
ω = γ	. The stability boundary of a network is a segment of
this curve since, in general, D(	) can intersect itself to form
loops.

Since D is a re-parameterization of D using 	 = ω/γ, a
brain network with model parameters γ = γ′, α = α′, β = β′,
and τ = τ′ has the same stability boundary as a network with
γ = 1, α = α′/γ′, β = β′/γ′, and τ = γ′τ. However, the disper-
sion spectra of these networks will differ. If an initially stable
network becomes unstable due to changes in its connection gains,
its spectrum initially lies in the stability zone before at least one
eigenvalue moves across the stability boundary from the stable
to unstable zones. The λ that crosses the boundary is an insta-
bility with frequency ω/2π = γ	/2π, where λ = D(	) on the
boundary.

We now describe some general properties of the stability
boundary for structural brain networks with time delays and
non-zero dendritic time constants. In the following sections we
investigate particular cases. Firstly, D �= 0 for all real −∞ < 	 <

∞, thus λ = 0 does not lie on the stability boundary. If λ = 0 is
substituted into Equation (11) then

(1 − i	)2 = 0, (1 − i	γ/α)2 = 0, or (1 − i	γ/β)2 = 0, (12)

for complex 	. The only solutions to Equation (12) are 	 = −i,
	 = −iα/γ, or 	 = −iβ/γ giving the dispersion solution ω =
−iγ, ω = −iα, and ω = −iβ. These solutions all lie in the lower
half plane for α, β, γ > 0 and hence λ = 0 is a stable eigenvalue.
If ω = 	 = 0 then D(	) = 1, since L(0) = 1, and λ = 1 lies on
the stability boundary. This implies that if λ = 1 is in Sp(G) then
the network has a zero frequency marginally stable dispersion
solution. Furthermore, if we consider

|λ| = |L(	)|−1|e−i	γτ||1 − i	|2, (13)

= |1 − i	γ/α||1 − i	γ/β||e−i	γτ||1 − i	|2, (14)

then |λ| < 1 implies at least one of the factors on the right of
Equation (14) is less than 1. Since α, β, γ, and τ are all posi-
tive, this condition can only be satisfied if Imω < 0. Therefore,
the unit disk is always contained in the stability zone and if all
the eigenvalues of a gain matrix lie in the unit disk the network is
stable independent of α, β, γ, and τ.

Stability of excitatory networks
If the all the connections in a structural brain network are
excitatory then Gab ≥ 0 and G is a non-negative matrix. The
Perron–Frobenius theorem (Horn and Johnson, 1985; Cvetković
et al., 1995) then implies that G has a real eigenvalue λp such that
|λi| ≤ λp for all λi in Sp(G). Therefore, an excitatory brain net-
work is stable if and only if λp < 1; i.e., all the eigenvalues are in
the unit disk. This stability criteria follows from the discussion at
the end of the previous section and the fact that if λp = 1 then
ω = 0 is a solution to Equation (11). Since 0 lies on the stabil-
ity boundary this implies if λp ≥ 1 then Imω ≥ 0. This means
the stability of an excitatory brain network is independent of
α, β, γ, and τ (as described in the previous section). In general,
structural brain networks have inhibitory connections and the
Perron–Frobenius theorem does not apply. This implies the pres-
ence of inhibitory connections allows the stability zone to extend
beyond the unit disk.

IMPACT OF TIME DELAYS AND DENDRITIC TIME CONSTANTS ON
NETWORK STABILITY
Stability of networks with no time delays and instantaneous rise
and decay times
For networks with no time delays and instantaneous dendritic rise
and decay times (i.e., 1/α = 1/β = τ = 0)

D(	) = (1 − i	)2, (15)

and hence, for each λ in Sp(G) there are two dispersion solutions
given by

ω = γ	 = −γ(i ± i
√

λ). (16)

Taking the imaginary part of Equation (16) we obtain

Imω = −γ(1 ± Re
√

λ). (17)

The stability condition Imω < 0 implies that −γ(1 ± Re
√

λ) or
Re

√
λ ≤ 1 since γ > 0. Thus the stability of a network with

1/α = 1/β = τ = 0 is independent of γ and all λ must sat-
isfy Re

√
λ ≤ 1 or alternatively Reλ + |λ| ≤ 2 [since (Re

√
λ)2

equals (Reλ + |λ|)/2, with equality corresponding to the stability
boundary].

If λr = Reλ and λi = Imλ then the stability zone is a parabolic
zone in the complex plane given by

λ2
i ≤ 4 − 4λr (18)

with equality giving the stability boundary. The axis of the
parabolic boundary is along the real axis with a turning point at
(λr, λi) = (1, 0) and imaginary axis intercepts at λi = ±2. This
stability zone is the light gray zone in Figure 1 and is the sta-
bility region described previously in (Gray and Robinson, 2008,
2009a,b).

Stability of networks with equal time delays
We now consider the effect of time delays on the stability of net-
works with 1/α = 1/β = 0. In this section we determine how the
addition of a time delay to structural brain networks modifies the
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parabolic stability zone described by Equation (18) and describe
the characteristics of the stability boundary. As noted previously,
under our assumptions any self-connection in a brain network
has the same time delay as connections between populations.

In this case L(ω) = 1, τ �= 0, and

D(	) = (1 − i	)2e−i	γτ. (19)

Due to the exponential in Equation (19), λ − D(	) = 0 has
an infinite number of solutions for each eigenvalue of the gain
matrix. If λ = Reλ + iImλ = λr + iλi then λ = D(	) (for real
	) implies

λr = ReD(	) = (1 − 	2) cos(	γτ) − 2	 sin(	γτ), (20)

and

λi = ImD(	) = (	2 − 1) sin(	γτ) − 2	 cos(	γτ), (21)

FIGURE 1 | Stability zone for a brain network with 1/α = 1/β = τ = 0. The
gray zone is where all the eigenvalues λ of the brain network must lie for the
network to be stable. The dark region within this zone is the unit disk.

these equations can be combined giving

λi = − tan(	γτ)[λr + 2	cosec(	γτ)], (22)

which gives the stability boundary in the complex plane. For
	 ≥ 0, Equation (22) describes a spiral curve in the complex
plane starting at the point (λr, λi) = (1, 0), centered on the ori-
gin, and spiraling in a clockwise direction as 	 increases, as seen
in Figure 2A. For 	 < 0, Equation (22) describes a similar coun-
terclockwise spiral curve, corresponding to a reflection of the
curve in Figure 2A about the imaginary axis.

Using Equations (20–22) we now describe the characteristics
of the stability boundary and the resulting stability zone. The
D(	) curve crosses the real axis when λi = 0. Substituting λi = 0
into Equation (21) and (22) gives

(	2 − 1)sin(	γτ) = 2	cos(	γτ), (23)

and
λr = −2	cosec(	γτ), (24)

respectively. The values of 	 for which λi = 0 can be obtained
by solving Equation (23) numerically. Note that Equation (24) is
only valid if 	γτ �= ±mπ/2 for integers m. Due to the periodicity
of the sine and cosine functions there is an infinite number of 	

that satisfy these equations.
Thus the stability boundary consists of two spiral curves

produced by bending the arms of the parabola described by
Equation (18) inwards. These spiral curves intersect an infinite
number of times on the real axis enclosing larger and larger
regions of the complex plane as |	γτ| increases. The intersec-
tion of all these enclosed regions, corresponding to the inner-
most zone, represents the stability zone for the network. The
reason eigenvalues outside this innermost zone are instabilities
is because they correspond to eigenvalues outside the stabil-
ity zone described by Equation (18) when transformed through
multiplication by ei	γτ (which removes the effect of the time
delay).

FIGURE 2 | Stability boundaries and stability zones for networks

with 1/α = 1/β = 0. The curve D(	) for 	 ≥ 0 (A) and
corresponding stability boundary (B) for networks with 1/α = 1/β = 0
and γτ = 3.0. The shaded zone in (B) is the stability zone for a
network and the dark region within this zone is the unit disk. The

dot-dashed line is the boundary for 1/α = 1/β = τ = 0. (C) Stability
boundaries for brain networks with 1/α = 1/β = 0 and γτ = 0.1, 0.5,
1.0, and 5.0. The values of γτ are written slightly above and to the
left of the corresponding boundary. The dark gray region within this
zone is the unit disk.
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We define the smallest ω = γ	 > 0 that gives λi = 0 the
critical ω value. This critical value is denoted by ωc with the corre-
sponding 	 and λr denoted 	c and λc

r , respectively. The stability
zone is defined by

|Imλ| < |Im[D(	)]|, (25)

for 0 ≤ 	 ≤ 	c. This zone has a boundary defined by
Equation (19) for −	c ≤ 	 ≤ 	c . The real axis intercepts
of the stability boundary are given by λr = 1 and λr = λc

r =
−2	ccosec(	cγτ). As seen in Figure 2B the stability zone has a
teardrop shape containing the unit disc. Note that Equation (25)
also defines the stability zone in Figure 1 with 	c = ∞. As
γτ → 0 then λr → (1 − 	2) in Equation (20), λi → −2	 in
Equation (21), and the stability boundary converges to the
parabola λ2

i = 4 − 4λr , as expected.
The effect of increasing τ on the stability boundary is shown

in Figure 2C. As γτ increases, the stability boundary converges
to the unit circle with the stability zone converging to the unit
disk, shaded dark gray. The values of 	c in Figure 2C for the
four values of γτ shown are 3.0 (γτ = 0.1) , 1.92 (γτ = 0.5), 1.31
(γτ = 1.0), and 0.46 (γτ = 5.0), respectively. The correspond-
ing λc

r are −9.4 (intersection not seen), −4.6, −2.7, and −1.2.
For γ = 100 s−1 and τ = 0.01 s (the nominal values in Table 1)
ωc/2π ≈ 30 Hz.

Overall, the presence of time delays bends the parabola
described by Equation (18) inward, forming a teardrop-shaped
stability zone containing the unit disk. As τ → ∞ the stability
boundary wraps around the unit circle an infinite number of
times and the stability zone converges to the unit disk, restricting
the critical frequency.

Stability of networks with non-zero dendritic rise and decay time
constants and no time delays
The teardrop shaped zone and the time-delay effects on
stability described in the previous section produce similar
results to those seen in other studies (Marcus and Westervelt,
1989; Jirsa and Ding, 2004; Feng et al., 2006). However,
our model also incorporates dendritic rise and decay time
constants. In the next two sections we describe the stabil-
ity of structural brain networks with non-zero dendritic time
constants.

We first investigate brain networks with dendritic time con-
stants and no propagation time delays. In this case τ = 0, α �= 0,
and β �= 0. Hence L(ω) �= 1 and

D(	) = (1 − i	γ/α)(1 − i	γ/β)(1 − i	)2. (26)

From Equation (26) the stability boundary is given by

λr = 1 − [1 + 2γ(1/α + 1/β) + γ2/(αβ)]	2 + γ2/(αβ)	4,

(27)
and

λi = −[2 + γ(1/α + 1/β)]	 + [γ(1/α + 1/β) + 2γ2/(αβ)]	3.

(28)

where λr = Reλ, Imλ = λi, and 	 is real. In this case λ −
D(	) = 0 only has a finite number of solutions since D(	) is
a polynomial of degree four. From Equation (28) the values of 	c

and ωc are given by

	2
c = 2αβ + γ(α + β)

2γ2 + γ(α + β)
, (29)

and

ωc =
√

2αβγ + γ2(α + β)

α + β + 2γ
, (30)

respectively. An equation similar to Equation (30) was previously
derived to describe gamma resonances produced by a similar
mechanism (Robinson, 2005). If αβ < γ2 then Equation (30)
implies ωc < γ.

Unlike the case for time delays in the previous section, the
D(	) curve only crosses the real axis once for real 	 > 0; an
example of such a D(	) curve is shown in Figure 3A. However,
the region enclosed by D(	) for −	c ≤ 	 ≤ 	c is again the
stability zone and defined by Equation (25). The corresponding
stability zone for the D curve in Figure 3A is shown in Figure 3B.

The stability zone in Figure 3B contains the unit disk and has
a similar teardrop shape to the zone in Figure 2B with the arms
of the parabola given by Equation (18) bent inward. In terms of
stability, this implies non-zero 1/α and 1/β have similar effects to
a propagation time delay. This is consistent with previous work on
the corticothalamic model and highlights the low-pass filter effect
of L(ω) (Robinson et al., 1997, 2001a,b; Rennie et al., 2002). The
effective time delay resulting from γ/α and γ/β can be obtained
by solving

e−i	cγτ = (1 − i	cγ/α)(1 − i	cγ/β), (31)

for τ.
In the remainder of this section we explore the effect of vary-

ing γ, α, and β on the stability zone. We illustrate these effects by
setting β/α to a positive constant. Firstly, for fixed β/α and large
γ/α, Equations (27, 29) imply

λr ≈ 1 + (γ/α)2	2(	2 − 1), (32)

and
	2

c ≈ α/γ, (33)

respectively. From Equation (33), ωc ≈ 0 for large γ/α and
substituting Equation (33) into (32) shows that λc

r → −∞ as
γ/α → ∞. These results are illustrated in Figures 3C, 4.

The change in the stability zone for fixed β/α and varying γ/α

is shown in Figure 3C. All the stability zones contain the unit
circle, and for γ/α = 0.1 and 1.7 the stability zone is contained
within the parabolic zone defined by Equation (18). However,
the zone for γ/α = 100 has expanded so that its boundary inter-
sects the parabolic boundary at λr ≈ −11. The 	c in Figure 3C
for γ/α = 100, 0.1, and 1.7 are 0.15 , 4.0, and 1.08, respectively.
The corresponding λc

r are −66 (intersection not seen), −19, and
−4.9. For γ/α = 1.7, the nominal value from Table 1, the critical
frequency is ωc/2π ≈ 17 Hz.
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FIGURE 3 | Stability boundaries and stability zones for networks

with non-zero dendritic rise and decay time constants and no time

delays. The curve D(	) for real 	≥0 (A) and corresponding stability
zone and boundary (B) for networks with α = 60 s−1, β = 240 s−1 and
γ = 100 s−1 and τ = 0 s. The stability zone is shaded gray and the dark
region within this zone is the unit disk. The dot-dashed line is the

boundary for 1/α = 1/β = τ = 0. (C) Stability boundaries for β = 4α and
γ/α = 100, 0.1, and 1.7. The values of γ/α are written next to their
corresponding boundary. (D) Stability boundaries for γ/α = 1.7 and
β/α = 1, 4 (dashed curve), and 10. The dot-dashed line in (C,D) is the
boundary for 1/α = 1/β = τ = 0 and the dark gray region in (C,D) is the
unit disk.

The effect of changing β/α on the stability zone, while γ/α

remains fixed, is shown in Figure 3D. The 	c (λc
r) in Figure 3D

for β/α = 1 and β/α = 10 are 0.77 (λc
r = −4.3) and 1.26

(λc
r = −6.2), respectively. Note that if β/α < 1, then the values

of α and β can be swapped and the results in Figure 3 are repro-
duced. This is because exchanging γ/α and γ/β in Equation (4)
has no effect on the dynamics and stability of a network. This
implies the smallest stability zone with the minimum λc

r occurs
when α = β. Note that experimental measurements of dendritic
time constants in the brain give β/α ≈ 4–10 (Robinson et al.,
2003a, 2004), the upper range in Table 1, and hence, a larger
stability zone for brain activity.

Figure 3 suggests that as β/α increases the stability zone
expands in a similar way to decreasing τ. However, as τ → 0 the
stability zone converges to the parabolic zone (Equation 18), this
is not the case for γ/β → ∞ and fixed γ/α. If γ/α is fixed to a pos-
itive constant and γ/β 
 γ/α then, from Equation (29), 	2

c � 1
and therefore

λr ≈ 1 − γ	2/β, (34)

and
λi ≈ −γ	/β. (35)

When λr = 0, Equation (34) implies 	 ≈ √
β/γ and λi ≈

−√
γ/β. Therefore as γ/β → ∞, the imaginary axis intercepts

converge to ±∞ and the stability zone expands to cover the entire
region of the complex plane defined by Reλ < 1. Note that in this
case, even though the eigenvalues can lie anywhere to the left of
Reλ = 1, the dispersion solutions have an angular frequency ω <

γ. These results explain the intersection of the stability boundary
with the parabolic boundary in Figure 3C.

With Figure 3C these convergence results suggest that as γ/α

increases from 0, the stability zone contracts toward the unit cir-
cle, and then expands again. Figure 4 shows the values of λc

r and
ωc as a function of γ/α and β/α. As γ/α increases from 0, λc

r
rapidly increases from −∞ to a maximum value and then slowly
decreases back to −∞; this decrease is greatest for the β/α = 1
curve which intersects the other two curves in Figure 4A. The
maximum turning point for λc

r occurs when γ ≈ α for each β/α,
with maximum λc

r decreasing as β/α increases. When β/α = 4
(which is the nominal value in Table 1), λc

r is approximately con-
stant for 1 � γ/α � 3, with a maximum at γ/α ≈ 1.7, the nom-
inal value. The corresponding ωc curves in Figure 4B all show
similar monotonic decreases as γ/α increases. The curves do not
intersect or have a turning point as in Figure 4A. This decrease
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FIGURE 4 | Change in stability boundary real axis intercept and critical

frequency as a function of γ/α. (A) λc
r and (B) ωc as a function of γ/α for

γτ = 0 and β/α = 1 (solid lines), 4 (dotted lines), and 10 (dot-dashed lines). In
(B) ωc is determined with γ = 100 s−1. The dotted lines represent the
nominal γ/α from Table 1.

from ∞ is initially very rapid, before gradually decreasing to 0
as γ/α → ∞. This change approximately occurs at the nomi-
nal γ/α value in Table 1, where ωc/2π � 20 Hz for each β/α.
Note that when β/α is a fixed constant, Equation (33) shows that
ωc → 0. Figure 4B also shows that increasing γ/α and decreasing
γ/β results in a decreased value for ωc.

In this section we have shown that physiologically realistic den-
dritic time constants have an effect on network stability similar to
that of propagation time delays restricting, the critical frequency
and the stability zone to a teardrop-shaped zone in the complex
plane. However, unlike τ, for particular values of γ/α and γ/β the
stability zone can expand to enclose an area outside the parabolic
region described by Equation (18).

Stability of networks with time delays and non-zero dendritic time
constants
The effect of having both time delays and non-zero dendritic
time constants on stability is now described. In this case each
of the parameters γ, 1/α, 1/β, and τ are non-zero and D is
given by Equation (11). As in the previous section, the stabil-
ity boundary for these networks is defined by λr = ReD(	) and
λi = ImD(	) for −∞ < 	 < ∞. Analysis of these equations
gives the properties of the stability boundary and zone. However,
the effects on stability of having equal time delays and dendritic
time constants are easily understood qualitatively as a combi-
nation of our previous results. Beginning with a network that
has γ/α = γ/β = γτ = 0 and a parabolic stability zone, given
by Equation (18), adding a time delay τ contracts the stability
zone toward the unit circle, by “pulling in” the parabolic bound-
ary, forming a teardrop-shaped zone within the original parabolic
region. Adding dendritic rise and decay constants then, depend-
ing on their value, expands or contracts this stability zone. In all
cases the stability zone is defined by

|Imλ| < |Im[D(	)]|, (36)

for 0 ≤ 	 ≤ 	c. Note that for large γτ, γ/α, and γ/β the con-
traction caused by γτ is greater than the expansion effects due to
γ/α and γ/β because of the exponential in Equation (11).

In Figure 5 the stability zone of a brain network with plausible
time delays and dendritic time constants (from Table 1) is shown.
This shows that for realistic parameter values brain networks have

FIGURE 5 | Stability boundaries for brain networks with γ/α = 1.7,

β/α = 4 and γτ = 0.1, 1.0, and 5.0. The values of γτ are written slightly to
the left of their corresponding boundary. The gray region is the unit disk.

a teardrop-shaped stability zone completely within the parabolic
zone (Equation 18). For large realistic τ the stability zone is only
slightly larger than the unit disc. The 	c in Figure 5 for increasing
γτ are 1.02, 0.72, and 0.35, respectively. The corresponding criti-
cal frequencies ωc/2π for γ = 100 are then 16, 11.3, and 5.5 Hz,
respectively.

STABILITY AND DISPERSION SOLUTIONS OF RANDOMLY CONNECTED
NETWORKS
We now investigate the stability and dispersion solutions of the
randomly connected structural brain networks defined in the
“Methods” section. For these networks we fix the model parame-
ters γ, α, β, and τ to their nominal values in Table 1. The stability
and dispersion solutions of this networks are determined from
Sp(G). If all the eigenvalues λ in Sp(G) satisfy Equation (25)
then the network is stable. The corresponding dispersion solu-
tions are obtained numerically by solving Equation (10) for
each λ using CROOT (Botten et al., 1983) (as described in
“Methods”).

The spectrum of a RENs consists of one eigenvalue at npμe

with the other n − 1 eigenvalues uniformly distributed in a disc
of radius μe

√
np(1 − p) < npμe. The spectrum of RCNs and

RPNs with maximum μe and μi allowed by stability is distributed
within the unit disk, see (Gray and Robinson, 2009a), with mul-
tiple eigenvalues near the stability boundary. Therefore, stability
constrains the spectrum of random brain networks to the unit
disk and the stability of random brain networks is independent
of the γ, α, β, and τ. However, the frequencies of the dispersion
solutions do depend on the model parameters.

In Figure 6 the spectrum and dispersion solutions for a REN,
RCN, and RPN with the nominal model parameters are shown.
The parameters of each network are set so that the networks are
marginally stable and μe and |μi| are as large as possible while
maintaining stability. Note the larger values of μe and |μi| for the
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FIGURE 6 | Spectrum and dispersion solutions for a REN, a RCN,

and a RPN. Each network has n = 50, p = 0.5, and the nominal
parameters in Table 1, other parameters are set so that the network
is close to marginal stability. The left column is the spectrum
(crosses), the middle column shows the dispersion solutions

(diamonds), and the right column shows an expanded view of the
dispersion solutions near the imaginary axis with dotted lines
representing the critical frequencies ± ωc/2π. (A) REN with
μe = 0.04, (B) RCN with pi = 0.5, μe = −μi = 0.2, σe = σi = 0, and
(C) RPN with pi = 0.5, μe = −μi = 0.22, σe = σi = 0.

RPN, compared to the RCN. This highlights that RPNs can have
larger μe and |μi|, and hence be more responsive, before becom-
ing almost certainly unstable as shown in (Gray and Robinson,
2009a). This suggests stability may have an effect on the arrange-
ment of inhibitory and excitatory neurons and their physiology in
structural brain networks.

Each network has an infinite number of dispersion solu-
tions because τ �= 0. The second column of Figure 6 shows the
dispersion spectrum is symmetrically placed around the real
axis. Each network has a qualitatively similar dispersion spec-
trum, with a finite cluster of solutions near the origin and a
broad “arrowhead” of solutions for Imω � 800 s−1; this arrow-
head has an infinite number of solutions with Imω decreas-
ing as |Reω| increases. The third column shows the dispersion
solutions near the imaginary axis. In Figure 6A3 one solution,
ω = ω1, lies on the origin, separate from the other dispersion
solutions. This solution corresponds to the eigenvalue at λ ≈ 1
that is separated from the rest of the spectrum in Figure 6A1.
This implies the dynamics of an REN will be dominated by a
zero-frequency mode. Since the rest of the dispersion solutions

have Imω � 0 all other modes rapidly decay to zero amplitude.
However, the RCN and RPN in Figure 6 have a very simi-
lar dispersion spectrum with multiple dispersion solutions near
the imaginary axis. The solutions closest to the imaginary axis
have small frequencies � 5 Hz. This shows that the presence of
inhibitory connections allows random networks to have multi-
ple marginally stable low frequency modes (Gray and Robinson,
2008, 2009a,b).

DISCUSSION
We increased the physiological realism of a structural brain net-
work model we studied previously in (Gray and Robinson, 2006,
2008, 2009a,b; Robinson et al., 2009) by allowing the network
to have equal time delays τ for propagation between neuronal
populations and non-zero dendritic rise 1/β and decay 1/α time
constants. Under these assumptions the stability of an arbitrar-
ily connected network of neural populations is determined by the
network’s gain matrix. The addition of time delays changed the
stability zone in the complex plane from a parabolic region to a
teardrop-shaped zone, dependent on α, β, τ, and the temporal
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damping rate γ. Our results are similar to previous work investi-
gating the effect of time delays on stability of electrical activity
within spatially continuous networks of neural tissue (Marcus
and Westervelt, 1989; Jirsa and Ding, 2004; Feng et al., 2006;
Qubbaj and Jirsa, 2007, 2009; Jirsa, 2009). This previous work
has generally used integro-differential neural field equations with
connectivity within a neural mass described by homogeneous
or heterogeneous kernels. While in principle this work could be
applied to large-scale connection topologies of discrete neural
masses, as we have investigated here, this has generally not been
done as it is difficult to incorporate arbitrary connectivity pat-
terns (Qubbaj and Jirsa, 2009). In this work we have investigated
the temporal dynamics of the overall electrical activity of arbi-
trarily connected structural brain networks, ignoring the spatial
spread and propagation of electrical activity within individual
neuronal populations.

In terms of stability the effect of non-zero dendritic time con-
stants is similar to a time delay, further suggesting that dendrites
act as a low-pass filter on synaptic inputs (Robinson et al., 1997,
2001a,b; Rennie et al., 2002). However, dendritic time constants
can change the shape of the stability zone even allowing it to
expand and enclose areas outside the parabolic stability region for
networks with zero time delays and instantaneous dendritic rise
and decay times. For all values of γ, α, β, and τ the stability zone
contains the unit disk. This result implies that the stability criteria
originally derived by May (1972, 1974) (that a network is stable if
all its eigenvalues lie in the unit disk) is a sufficient condition for
the stability of structural brain networks.

We also explored the dispersion solutions and frequencies
of structural brain networks. If an initially stable brain net-
work becomes unstable through a change in its connection gains,
then at least one eigenvalue moves across the stability bound-
ary and the network has an instability at a frequency given by
the eigenvalue’s corresponding dispersion solution. For networks
with time delays and non-zero dendritic time constants there is
a maximum frequency, the critical frequency ωc/2π, at which
initially stable networks will become unstable. For example, if all
the gain matrix eigenvalues of a networks are initially inside the
stability zone but then move across the stability boundary (e.g.,
due to changes in connection gains) then the frequency of these
instabilities will be less than the critical frequency.

Measurements of brain activity (Stam et al., 1999; Robinson
et al., 2001b; Breakspear, 2002; Breakspear et al., 2003) suggest
the brain operates near marginal stability allowing the brain to
have rich dynamics and a wide range of complex behavior. A
network near marginal stability has eigenvalues near the stabil-
ity boundary with corresponding modes that are the slowest to
decay back to the steady state dominating the network’s dynam-
ics. These modes have a frequency less than the critical frequency.
Using physiologically plausible parameter values in our struc-
tural network model (see Table 1) we would expect the electrical
dynamics to be dominated by frequencies �100 Hz. When the
nominal parameter values of α, β, γ, and τ are used the critical
frequency is approximately 10 Hz and decreases as γτ increases
(see Figures 4, 6).

For the randomly connected structural brain networks we
investigated previously (Gray and Robinson, 2006, 2008, 2009a,b)

the spectrum of the gain matrix is almost certainly contained in
a disk centered on the origin with a radius dependent on the
network’s architecture and the average values of its excitatory
and inhibitory gains. Thus, the stability zone of these networks
is the unit disk and their stability is independent of time delays
and dendritic time constants. Therefore, the results of that work
remain valid in the more general case studied here. However, for
the critical frequency is dependent on dendritic time constants,
temporal damping rate, and time delays. We showed marginally
stable randomly connected networks with inhibitory connec-
tions have multiple marginally stable low frequency dispersion
solutions.

The primary goal of this and our previous work on structural
brain networks is to understand how stability potential con-
strains the structure physiology of networks. For the randomly
connected networks studied in (Gray and Robinson, 2006, 2008,
2009a,b), we have shown that time delays and non-zero dendritic
time constants have minimal effect on their stability. One network
type whose stability could be affected by these physiological prop-
erties is networks with inhibitory self-connections. The spectrum
of these networks, even if they are randomly connected, is no
longer restricted to a disc by stability but can have eigenvalues dis-
tributed within the teardrop-shaped region. Such networks could
have marginally stable modes with frequencies (up to the criti-
cal frequency) in the alpha, beta, and gamma ranges. This will be
explored in future work.

LIKELY EFFECTS OF DISTRIBUTED OR VARYING PARAMETERS ON
STABILITY
Assuming structural brain networks have equal γ, α, and β

for each neural population and equal τ for each connection
is unrealistic. Different neuronal populations in the brain have
different parameter values; for example, excitatory cortical neu-
rons have γ ≈ 100 s−1 while for inhibitory cortical neurons
γ ≈ 103–104 s−1 (Robinson et al., 2004). Also, the time delay
in real cortical networks is expected to vary from τ = 0 for
self-connections to a large value for areas physically far apart.
A realistic model of a structural brain network would therefore
allow the model parameters γ, α, β, and τ to vary across neu-
ral populations. This variation could possibly be represented as a
distribution.

The effect of distributed time delays on network stability has
been studied using general models for network activity (Yi and
Tan, 2002; Atay, 2003; Jirsa and Ding, 2004; Feng et al., 2006).
In (Feng et al., 2006) and (Jirsa and Ding, 2004) networks with
a distributed time delay with mean τ were shown to have a sta-
bility zone that contained the stability zone of networks with an
constant delay equal to τ. These results are applicable to the brain
networks studied here, since our model without dendritic time
constants can be described as a specific case of the model studied
in (Jirsa and Ding, 2004; Feng et al., 2006). This implies brain net-
works with distributed delay are more stable than networks with
equal time delays; in the sense that a stable network with a distri-
bution of delays could be unstable if its delays were replaced with
a constant delay equal to the distribution mean. Hence, the equal
time delay case is the least stable case and yields a bound on the
stability of a structural brain network.
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Here we have shown that plausible dendritic time constants
have similar effects on stability as a time delay. This suggests that
similar results to those found in (Jirsa and Ding, 2004; Feng et al.,
2006) will likely be observed for distributed α and β. Also, we have
shown that γ only affects the dispersion frequencies of a network,
not its stability. A distributed γ is therefore expected to have no
effect on the stability, only on the dispersion frequencies but this
needs to be confirmed numerically.

Given the previous results investigating distributed parameter
values we argue our results are still informative. But the exact
effect of distributed γ, α, and β on structural brain network
dynamics needs to be determined, particularly to understand the
critical frequency and the dynamics of marginally stable modes in
a networks electrical activity. To fully understand the stability and
dynamics of structural brain networks with varying time delays
and dendritic time constants requires a numerical approach. This
will be investigated using CROOT (Botten et al., 1983) in future
work.

CONCLUSIONS
We investigated the stability of discrete networks of neuronal
populations using a simplified physiologically-based mean-field
model of brain electrical activity. Incorporating time delays and
non-zero dendritic time constants affects the stability of arbi-
trarily connected structural brain networks by constraining the
eigenvalues of the gain matrix to a teardrop-shaped region in
the complex plane. The stability of randomly connected networks
of excitatory and inhibitory neuronal populations is unaffected
by time delays and dendritic time constants; as stability con-
strains the gain matrix eigenvalues to the unit circle. However,
the dispersion frequencies of instabilities are affected by net-
work physiology. Randomly connected brain networks with the
largest average excitatory and inhibitory gains allowed by stability
can have multiple marginally stable low-frequency modes. Such
networks would be highly responsive and adaptable to external
stimuli while remaining stable, and have a wide range of flexible,
adaptable, and complex behavior.
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