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In this paper we review the works related to muscle synergies that have been
carried-out in neuroscience and control engineering. In particular, we refer to the
hypothesis that the central nervous system (CNS) generates desired muscle contractions
by combining a small number of predefined modules, called muscle synergies. We
provide an overview of the methods that have been employed to test the validity of
this scheme, and we show how the concept of muscle synergy has been generalized
for the control of artificial agents. The comparison between these two lines of
research, in particular their different goals and approaches, is instrumental to explain
the computational implications of the hypothesized modular organization. Moreover, it
clarifies the importance of assessing the functional role of muscle synergies: although
these basic modules are defined at the level of muscle activations (input-space), they
should result in the effective accomplishment of the desired task. This requirement
is not always explicitly considered in experimental neuroscience, as muscle synergies
are often estimated solely by analyzing recorded muscle activities. We suggest that
synergy extraction methods should explicitly take into account task execution variables,
thus moving from a perspective purely based on input-space to one grounded on

task-space as well.
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1. INTRODUCTION

One of the fundamental questions in motor control concerns
the mechanisms that underlie muscle contractions during the
execution of movements. The complexity of the musculoskele-
tal apparatus as well as its dynamical properties allow biological
systems to perform a wide variety of motor tasks (Bizzi et al.,
1992); on the other hand, such a complexity has to be mas-
tered by efficient strategies implemented in the central nervous
system (CNS). How does the CNS “choose” among the infin-
ity of solutions of a given motor task (i.e., Bernstein problem)
(Bernstein, 1967)? How are motor intentions translated into
muscle activations? How can biological systems learn and plan
movements so rapidly? A prominent hypothesis suggests that
motor circuitries are organized in a modular fashion, so that
muscle activations can be realized by flexibly combining such
modules. Modularity has been observed in various forms such
as kinematic strokes, spinal force fields and muscle synergies
(Flash and Hochner, 2005); this paper provides an overview of
the findings related to the so-called muscle synergies, as well
as the application of such a concept in robotics and character
animations.

Muscle synergies are defined as coordinated activations of a
group of muscles®. It has been suggested that the CNS encodes
a set of synergies, and it combines them in a task-dependent
fashion in order to generate the muscle contractions that lead
to the desired movement (muscle synergy hypothesis). Evidence
for this organization relies on the spatio-temporal regularities
observed in the EMG (Electromyography) activities of several
species (Tresch et al., 2002; Bizzi et al., 2008). Since in many cases
these regularities appear to be very similar across subjects and
motor tasks (i.e., robustness of muscle synergies), scientists have
proposed that they might reflect a modular organization of the

IThe term synergy has also been used in the context of another motor con-
trol hypothesis, the uncontrolled manifold hypothesis (UMH) (Latash, 2010
Latash et al., 2010). In that context, the term refers to “a neural organization
of a set of elemental variables (e.g., muscle contractions) with the purpose to
ensure certain stability properties of a performance variable produced by the
whole set (e.g., desired joint configuration)” (Latash et al., 2008). These stud-
ies are out of the scope of this paper, however, we will discuss the concept of
M-modes, that has been introduced in the UMH but it is very similar to the
definition of synergies we adopt in this manuscript.
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underlying neural circuitries. Assuming that muscle activations
represent the control input to the musculoskeletal system, in
this context muscle synergies are implicitly defined as input-
space generators (i.e., components that are able to generate the
necessary input signals).

From a computational point of view, a modular organiza-
tion based on muscle synergies is very attractive. The activations
of many muscles is hypothetically implemented by modulating
the contributions of a small set of predefined muscle synergies.
Such a dimensionality reduction may simplify motor control and
learning, and it may contribute to the adaptability observed in
biological systems (Mussa-Ivaldi and Bizzi, 2000). This obser-
vation has recently motivated roboticists and control engineers
to develop control strategies that are based on the same con-
cept: combination of a small number of predefined actuations. In
addition to the possible dimensionality reduction, the modular-
ity of such scheme has the advantage that improved performance
may be achieved incrementally by introducing additional syner-
gies to the controller. The price to be paid is the restriction of the
possible actuations to those that can be obtained by combining
the synergies (i.e., synergies span set). This also implies a reduc-
tion of the possible movements that the controlled system can
perform.

In the two fields of neuroscience and control engineering,
research on muscle synergies is characterized by radically different
goals and approaches (see Figure 1). In the context of control-
ling artificial systems, the main goal is the synthesis of a small
set of synergies that instantiates an effective control strategy. The
obtained controller, as such, is mainly evaluated in relation to
task-accomplishment, and in particular it should be able to gen-
erate a set of feasible actuations that allows the agent to perform a
wide variety of tasks. In neuroscience, on the other hand, the main
goal is to validate or falsify the hypothesis of muscle synergy. The
typical approach consists in analyzing a dataset of recorded mus-
cle activities, and in verifying if such a dataset is compatible with
the proposed modular decomposition; the hypothetical synergies
are inferred by applying a decomposition algorithm to the dataset
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describe implement
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FIGURE 1 | Comparative scheme between research on muscle
synergies in neuroscience and control engineering.

of EMG signals. Unlike in control engineering, the major focus
of this line of research resides at the motor level (i.e., the input-
space of muscle activations); the evaluation of the hypothesized
modular organization at the level of task is not always considered
and, from our point of view, it deserves more attention. Does
the set of identified muscle synergies actually lead to the task
performance observed experimentally? Does it generate feasible
actuations? These issues have been investigated a-posteriori using
realistic models of the musculoskeletal systems of different species
(Berniker et al., 2009; Neptune et al., 2009; McKay and Ting,
2012). Additionally, novel methodologies to deal with these chal-
lenges are starting to emerge in experimental neuroscience as well
(Chvatal et al., 2011; Delis et al., 2013). We believe that a shift
of paradigm from an input-space to a task-space identification of
muscle synergies, which seems to be already in progress, may con-
tribute to a better understanding of the hypothetical modularity
of the CNS, and of its relationship to human learning and control.
In particular in this review we argue that task-space constraints
could be directly integrated in the decomposition algorithm used
to extract the synergies.

This paper reviews the studies that investigate the hypothesis
of muscle synergies, as well as the methods to control artificial
systems that have been developed taking inspiration from this
hypothesis. The organization of the paper follows the rationale
developed so far. Initially, in section 2, we provide a mathematical
formulation of the concept of muscle synergies, we detail different
synergy models (proposed as the mechanism to generate muscle
contractions), and we analyze their computational implications.
In section 3 we discuss the works that evaluate the hypothesis
of muscle synergies solely in the space of input-signals, and the
ones that seek more direct neural evidence. Then, in section 4,
we present the studies that evaluate synergies also at the task-
level; this section includes robotics, characters animation, as well
as neuroscience. Finally, in section 5 we offer further discussions
and concluding remarks.

2. MODELS OF MUSCLE SYNERGY
The concept of muscle synergy has been formalized in a vari-
ety of mathematical models. We will present these models in
the context of controlling a generic dynamical system. This
formulation is sufficiently generic to represent both the control
of the musculoskeletal system and the control of an artificial
agent. Furthermore, it is useful to explain the computational
implications of the various synergy models, and to clarify the dif-
ference between input-space and task-space evaluation of a set of
synergies.

The generic dynamical system we employ can be represented
as follows:

x(1) = f(x(1), 1) + g(x(2), Hu(?),

where t represents time, x(f) € R" is the system state variable at
time ¢ (e.g., angular positions and velocities of the joints), and
u(f) € R™ is the system input at time ¢ (e.g., muscle activations
or joint torques). Within this framework, the variable to be con-
trolled is denoted as y(#) € R?, and it is a generic function of the
system state: y(¢) = h(x(t)). The task is defined in terms of a set of
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constraints applied on the time evolution of this variable. Typical
examples of tasks include reaching (y(tr) =y, where # is the
desired reaching time), and tracking (y(t) = y,(t)Vt, where y,(-)
is the desired trajectory to be tracked). We refer to the task-space,
as the space where the task y; is defined; similarly, the input-space
is the space of the input signals u(-). The relation between these
two spaces is given by the dynamics of the system. It is now clear
that a given control input should always be evaluated in relation to
the error between the corresponding evolution of the controlled
variable and the desired task; in other words, it should always be
evaluated in task-space.

Classically, control inputs u(-) belong to the infinite dimen-
sional space of continuous functions. Under this assumption a
number of interesting control properties (e.g., controllability and
observability) can be proven. The idea behind modular control,
is to significantly restrict the control input-space by constrain-
ing u(-) to be a combination of modules, or muscle synergies.
The various muscle synergy models can be distinguished based
on the mathematical formalization of this combination, and they
are described in the following (see Figure 2 for a schematic repre-
sentation). An empirical comparison of these models is proposed
by Chiovetto et al. (2013).

2.1. TEMPORAL AND SYNCHRONOUS SYNERGIES

In these models, the control input is defined as a linear com-
bination of k vectors w € R™, with 1-dimensional time-varying
coefficients a(t) : RT™ — R (Figure 2A):

k
u(t) =Y ai(t)w;. (1)

j=1

Each vector w; specifies a balance between the input variables
(e.g., balance between muscle activations), and its coefficient a;(t)
determines its temporal evolution. In the temporal synergy model,
the coefficients {a;(¢)} serve as the task-independent predefined
modules, and the vectors {w;} represent the new (task-dependent)
control input. As a result, this model reduces the control space to
k x m dimensions; i.e., the k m-dimensional vectors w; have to
be appropriately specified to fulfill the desired task y,. Synergies
are thus interpreted as the temporal patterns that are recruited
selectively by different muscles. In literature, temporal syner-
gies are also referred to as temporally fixed muscle synergies.
An important special case, the premotor drive model, is obtained
by defining the temporal coefficients as a;j(t) = A;jd(t — 7). In
this case, the time course of the vectors w; are determined by
a common function ¢(t), called premotor drive or burst pulse,
that can be modulated in amplitude and shifted in time. In con-
trast, the synchronous synergy model defines the task-independent
synergies as the vectors w;. The the new control input {a;(t)}
belongs to the infinite dimensional space of the one-dimensional
real functions. Therefore this model, unlike the previous one,
provides a dimensionality reduction only if the number of syn-
ergies is lower then the number of input variables, i.e., k < m.
Synchronous synergies are co-varying group of muscles, and
are also called time-invariant synergies, spatially fixed muscle
synergies, or muscle modes.
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FIGURE 2 | Different models of muscle synergies. The temporal and the
synchronous models explain motor signals as linear combinations of
muscle balance vectors (spatial patterns), with 1-dimensional time-varying
coefficients (A). In the temporal model, these coefficients serve as
task-independent predefined modules, and the spatial patterns as the new
(task-dependent) control input. In the synchronous model, on the other
hand, the control input is represented by the temporal patterns, while the
spatial patterns act as predefined modules. Finally, time-varying synergies
are spatio-temporal predefined motor patterns, which can be scaled in
amplitude and shifted in time by the new input coefficients (B).

2.2. TIME-VARYING SYNERGIES

This model defines the control input as the superposition of
k task-independent vector-valued functions w(t) : RT™ — R™
(Figure 2B):

k
u(t) = Z ajw;(t — ). (2)

j=1

Each synergy w; can be scaled in amplitude and shifted in time
by means of the coefficients a;, T; € R. These coefficients repre-
sent the new control input, and have to be chosen in order to
accomplish the task y,. As a result, the new input-space is reduced
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to a 2 x k dimensional space. Neuroscientifically, these synergies
are genuine spatiotemporal muscle patterns which do not make
any explicit spatial and temporal separation. As such, according
to this model, muscles within the same time-varying synergy do
not necessarily co-vary.

3. SYNERGIES AS INPUT-SPACE GENERATORS

As discussed above, muscle synergies can be considered as input-
space generators. Whether or not these generators are imple-
mented in the CNS, and how they are eventually coordinated
through the sensorimotor loops, is a main stream of research
in motor neuroscience. To tackle this question, scientists have
employed two main approaches. One of them is solely based on
the analysis of EMG signals, therefore it can only provide indirect
evidence of a modular neural organization. The other approach
aims at locating the areas of the CNS where muscle synergies
might be implemented, therefore providing a direct evidence.
These methodologies as well as the obtained results are discussed
in the following.

3.1. INDIRECT EMG-BASED EVIDENCE

The classical approach to evaluate the hypothesis of muscle syner-
gies consists in searching spatio-temporal regularities (i.e., syner-
gies) in a dataset of muscle activities (Figure 3, continuous green
arrows). Such a dataset is obtained by recording the EMG signals
from a group of subjects/animals that are performing some pre-
scribed motor tasks. As such, this methodology is mainly based on
considerations grounded at the input level. The possibility to dis-
criminate the various task instances from motor signals represents
the only (a-posteriori) task-related verification of the identified
synergies (see Figure 1).

Linear dimensionality reduction algorithms are employed to
identify a small set of components (i.e., synergies) that approx-
imate the EMG dataset according to the chosen synergy model
(see section 2). The number of synergies to be extracted has to be
specified a-priori by the experimenter, as it constitutes an input
parameter of the decomposition algorithm. The choice of the
decomposition algorithm to be used depends on the assump-
tions made on the nature of the hypothetical muscle synergies
(e.g., non-negativity, orthogonality, statistical independence etc.)
(Ting and Chvatal, 2010). Principal component analysis (PCA)
(Mardia et al., 1980) looks for orthogonal synergies that account
for as much of the variability in the data as possible. Similarly,
factor analysis (FA) (Darlington, 1968) seeks the smallest set
of synergies that can account for the common variance (cor-
relation) of a set of muscles. Independent component analysis
(ICA) (Bell and Sejnowski, 1995) maximizes the statistical inde-
pendence of the extracted components, thus it assumes that syn-
ergies represents independent information sources. Non-negative
matrix factorization (NMF) (Lee and Seung, 1999) enforces
the extracted synergies and their activation coefficients to be
non-negative; this constraint reflects the non-negativity of neu-
ral and muscle activations (“pull-only” behavior). Additionally,
NMF does not assume that the generators are statistically inde-
pendent, thus it is more compatible with the observation that
activations of multiple synergies are correlated (Saltiel et al.,
2001). Finally, the extraction of time-varying synergies is per-
formed by an NMF-based algorithm developed ad-hoc that allows
the components to be shifted in time (d’Avella and Tresch,
2002).

To assess the quality of the extracted synergies, the so-
called VAF (Variance Accounted For) metric is typically used
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FIGURE 3 | Procedures for the identification and the testing of muscle
synergies. In experimental neuroscience (green arrows), initially a group of
subjects perform the tasks prescribed by the experimenter (A). The EMG
signals acquired during the experiments (B) are then analyzed, and a
dimensionality reduction algorithm is applied to obtain the synergies (C). Very
often such synergies are not evaluated at the task-level (dashed arrow),
therefore there is no guarantee that they lead to the observed task

performance. In robotics (red arrows), synergies are synthesized (C) based
on the requirements of the desired class of tasks (A). Then they are
appropriately combined to generate the motor signals (B) to solve a specific
task instance. The quality of the synthesized synergies is finally tested in
terms of the obtained task performance (A). Without loss of generality, the
figure presents the time-varying synergy model; however, the previous
description holds for all the models.
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(see Figure1). VAF quantifies the percentage of variability in
the EMG dataset that is accounted for by the extracted syner-
gies. High values of VAF indicate good reconstruction of the
recorded EMGs, which lends credit to the extracted synergy set;
low VAF values cast doubt on the extracted synergies, indicat-
ing that they do not explain a large part of the EMG variance.
This metric is also used for determining the dimensionality of
the synergy space. The criteria used for this purpose rely on
the assumption that most of the EMG variability is attributable
to task-dependent muscle activations, whereas a small portion
is due to several sources of noise. Under this assumption, the
number of synergies is defined either by the point where the
VAF-graph (i.e., the curve that describes the trend of the VAF
as function of the number of synergies, which increases mono-
tonically) reaches a threshold level (e.g., 90%) (Torres-Oviedo
et al., 2006), or by its flattening point, i.e., the point where a
drastic decrease of slope is observed. Such an “elbow” is in fact
interpreted as the point that separates “structured” and noise-
dependent variability, and therefore it can be used to define the
minimum number of synergies that capture the task-related fea-
tures (d’Avella et al., 2006; Tresch et al., 2006). Besides the VAF
metric, other metrics [e.g., log-likelihood (Tresch et al., 2006)]
have been proposed to evaluate the effectiveness of extracted
synergies (still in input-space); a thorough discussion of these
metrics is beyond the scope of the present review. As depicted
in Figure 1, this indirect methodology is mainly restricted to the
analysis of input-level data. A complementary metric based on
single-trial task-decoding techniques has been proposed by Delis
et al. (2013).

A significant amount of experiments has been conducted in
frogs, cats, primates as well as humans in order to test the validity
of the above-mentioned synergy models, and by extension, of the
muscle synergy hypothesis itself. A pioneering study showed that
a small set of synchronous muscle synergies could generate a large
number of reflexive motor patterns produced by cutaneous stim-
ulations of the frog hindlimb (Tresch et al., 1999). This study also
demonstrated that microstimulations of the spinal cord produced
very similar muscle synergies to the ones generated by the freely
moving animal. Qualitatively similar synergies were also found
by intraspinal microstimulation (Saltiel et al., 2001). The above
analysis was then extended in order to identify spatiotemporal
patterns of muscle activities (i.e., time-varying muscle synergies)
(d’Avella et al., 2003). A few time-varying synergies were shown
to underlie the muscle patterns required to let the frog kick in
different directions, and their recruitment was directly related to
movement kinematics. These findings were further generalized
to a wide variety of frog natural motor behaviors such as jump-
ing, swimming, and walking; evidence for both synchronous and
time-varying synergies was reported (d’Avella and Bizzi, 2005).
Additionally, this study revealed that some synergies are shared
across motor behaviors, while others are behavior specific.

The synergy models described in section 2 do not include
sensory feedback, however, the original experiments on animals
involved sensory-triggered reflexive movements. In fact, only a
few studies have systematically investigated the influence of sen-
sory feedback in the muscle synergy organization. Cheung et al.
(2005) analyzed the EMG signals collected from the bullfrog

during locomotor behaviors before and after having interrupted
its sensory pathways (i.e., deafferentation). Their findings support
the existence of centrally organized synchronous muscle syner-
gies that are modulated by sensory inflow. Further support was
provided by showing that an appropriate modulation of the syn-
ergy activations could explain immediate motor adjustments, and
that these synergies were robust across different dynamic condi-
tions (Cheung et al., 2009a). A discussion on the role of sensory
feedback is provided in section 5.

A number of studies have examined the generalization of the
above results to other species. In primates, Overduin et al. (2008)
found that three time-varying synergies described a large reper-
toire of grasping tasks. Shape and size of the grasped objects were
shown to modulate the recruitment strength as well as the timing
of each synergy. In this way, this study validated that time-varying
synergies account for salient task differences, and their activa-
tions can be tuned to adapt to novel behavioral contexts. Along
the same lines, Brochier et al. (2004) provided further support
for such a robust and distinctive synergistic organization of pri-
mates’ muscle patterns during grasping. Analysis of single-trial
EMG signals demonstrated that the time-varying activation of
three synchronous synergies was reproducible across repetitions
of the same grasping task and allowed unequivocal identification
of the object grasped in each single trial. In cats, Ting’s group
showed that muscle synergies could be mapped onto the con-
trol of task-level variables; such experiments will be detailed in
section 4.2.

The framework of muscle synergies has been successful also in
characterizing the spatio-temporal organization of muscle con-
tractions during human reaching tasks. Muscle patterns observed
during movements in different directions (d’Avella et al., 2006)
and speed (d’Avella et al., 2008) were accurately reconstructed
by appropriate linear combinations of synergies, which appeared
very similar across subjects. The synergies that were extracted
from muscle activities during unloaded reaching (i.e., subjects
did not hold any load in their hands) accounted for the EMG
signals obtained during loaded conditions. The recruitment of
the individual synergies, as well as their onset time, were consis-
tently modulated with movement direction, and did not change
substantially with movement speed. This observation was fur-
ther confirmed by Muceli et al. (2010); in this study a small
set of specialized synchronous synergies was able to explain a
large set of multijoint movements in various directions. Finally,
visually guided online corrections during center-out reaching
were tested recently. The synergistic strategy was shown to be
robust and more effective in explaining the corrective muscle
patterns than the individual muscle activities (d’Avella et al,,
2011). Furthermore, it was shown that to correct ongoing reach-
ing movements, the CNS may either modulate existing synergies
(d’Avella et al., 2011), or reprogram new ones (Fautrelle et al.,
2010).

Roh et al. (2012) showed that an appropriate set of syner-
gies could reconstruct the average patterns of muscle activation
observed during isometric forces production in humans. The
EMG signals were obtained for different force magnitude, direc-
tions and initial postures. The extracted synergies were very
similar across conditions, and they were able to explain the
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corresponding datasets. Each synergy seemed to underly a specific
force direction, while its activation coefficient appeared corre-
lated to the force magnitude. In another series of experiments, a
small set of synchronous synergies was able to explain static hand
postures and discriminate the shapes of grasped objects (Weiss
and Flanders, 2004). Moreover, a few time-varying synergies suc-
ceeded in revealing the spatiotemporal patterns of muscle activity
during hand shape transitions, as in fingerspelling (Klein Breteler
et al., 2007).

A relevant series of experiments showed that muscle activa-
tions involved in human postural control can be explained in
terms of combinations of muscle synergies. A set of synchronous
muscle synergies was able to explain muscle activations involved
in postural stabilization; the EMG variation observed among
trials and perturbation directions was accounted for by appropri-
ate modulations of the synergies activation coefficients (Torres-
Oviedo and Ting, 2007). In order to verify that the extracted
synergies did not depend only on the specific biomechanical con-
text, in a new experiment a set of subjects were asked to react
to support perturbation from different postural configurations
(Torres-Oviedo and Ting, 2010). The extracted synergies were
very similar across the different conditions; however, in some
cases task-specific muscle synergies needed to be added to the
original synergy set to obtain a satisfactory EMG reconstruc-
tion. As the various postures lead to different patterns of sensory
inflow, these results rule out the possibility that the observed
synergies are only determined by specific patterns of sensory
stimulations. On the contrary, they support the hypothesis that
different muscle postural responses are generated by task-related
modulations of the synergy activation levels. Such a hypothesis
found evidence in the experiments performed by Safavynia and
Ting (2012), where the temporal recruitment of the identified
synchronous muscle synergies were explained by a mathemati-
cal model that explicitly takes into account the kinematic of the
subject’s center-of-mass (CoM). The authors then concluded that
synchronous muscle synergies are recruited according to an esti-
mate of task-related variables. The same model was previously
used to fit the activations of each muscle independently during
the same postural perturbation tasks (Welch and Ting, 2007).
Related to postural control, Krishnamoorthy and colleagues ana-
lyzed the muscle activations that underly shifts of the centers
of pressure (COP) of standing subjects (Krishnamoorthy et al,,
2003a,b). In this experiment three “muscle modes,” extracted by
means of PCA, explained most of the variability of the integrated
EMG signals. Such components are equivalent to synchronous
muscle synergies as defined in section 2, and they are character-
ized by the authors as the independent elemental variables that
are controlled synergistically (in the sense of the UMH) by the
CNS to stabilize the COP. Specifically, the model assumes that
the location of the COP is modified by linear combinations of
the M-modes, and their mixing coefficients represent the inde-
pendent variables controlled by the CNS. Perreault et al. (2008)
examined the organization of reflexes involved in postural sta-
bilization in both stiff and compliant environments; although
reflexive responses are modulated by the direction of perturba-
tion, they showed that the synchronous muscle synergies appear
very similar across conditions.

Another scenario that provides evidence to the hypothesis of
muscle synergies is human locomotion (Ivanenko et al., 2006a;
Lacquaniti et al., 2012b). Ivanenko et al. (2004) showed that five
temporal synergies could reconstruct the muscle activity involved
in locomotion tasks. These patterns are robust across walking
speeds and gravitational loads, and they relate to foot kinematics
(Ivanenko et al., 2003). Additionally, the same temporal synergies
(accompanied by additional ones) were observed during the coor-
dination of locomotion with additional voluntary movements
(Ivanenko et al., 2005). Similar results have been reported in other
locomotor behaviors such as running (Cappellini et al., 2006) and
pedaling (Hug et al., 2011).

Finally, some experiments have investigated how the hypothet-
ical synergy organization of the CNS evolves during onthogenetic
development (Lacquaniti et al., 2012a). Dominici et al. (2011)
observed that the two temporal synergies identified in stepping
neonates are retained through development, and they are aug-
mented by two new patterns first revealed in toddlers. The final
set of synergies was observed in several animal species, consistent
with the hypothesis that, despite substantial phylogenetic dis-
tances and morphological differences, locomotion is built starting
from common temporal synergies. This conclusion was also sup-
ported by the comparison of temporal synergies extracted from
young and elderly people, which revealed no significant effect of
aging on synergy compositionality and activation (Monaco et al.,
2010).

3.2. DIRECT NEURAL EVIDENCE

The studies presented so far support the existence of synergistic
muscle activations during the sensorimotor control of move-
ments. However, these methods are indirect, in the sense that
the presence of synergistic structures within the CNS can only
be inferred. What remains to be tested is whether the uncov-
ered muscle organization is neurally implemented in the CNS
and, if so, in which areas. Alternatively, one could argue that
the extracted synergies represent a phenomenological output of
the motor coordination required for movement execution. For
instance, recently Kutch and Valero-Cuevas (2012) designed care-
fully thought experiments and simulations to show that muscle
synergies can be observed even if the nervous system does not
control muscles in groups. The authors demonstrated that mus-
cle synergies, as detected via dimensionality reduction methods
(see section 3.1), may originate from biomechanical couplings
and/or from constraints of the task. Similar conclusions were
already reached by Valero-Cuevas et al. (2009), who showed
that the observed within-trial variability of EMG data under-
lying the production of fingertip forces, was incompatible with
the (unique) associated muscle synergy that would have been
extracted. Although these findings do not directly falsify the mus-
cle synergy hypothesis, they cast at least some doubts about the
sole neural origin of modularity.

This underlines the need for a more critical assessment of the
validity of the muscle synergy hypothesis. In this direction, a
number of recent studies sought evidence for a neural implemen-
tation of muscle synergies, and examined which regions of the
CNS may express synergies and their activations. This question
has been addressed by attempting to relate neural activity with
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simultaneously recorded muscle activity during performance of
different motor tasks. Using such an approach, Holdefer and
Miller (2002) provided direct support for the existence of neu-
ral substrates of muscle synergies in monkey’s primary motor
cortex. In particular, they studied the activity of neurons and
muscles during the execution of a variety of reaching and point-
ing movements, and they found that the discharge of individual
neurons represents the activation of functional groups of mus-
cles. In addition, Hart and Giszter (2010) showed that some
interneurons of the frog spinal cord were better correlated with
temporal synergies than with individual muscles. Therefore, they
suggested that these neural populations constitute a neural basis
for synergistic muscle activations (Delis et al., 2010). Another
study demonstrated that the sequential activation of populations
of neurons in the cat’s motor cortex initiates and sequentially
modifies the activity of a small number of functionally distinct
groups of synergistic muscles (Yakovenko et al., 2010). Similarly,
Overduin et al. (2012) showed that microstimulations of specific
regions of the motor cortex of two rhesus macaques corresponded
to well-defined spatial patterns of muscle activations. These syn-
chronous synergies were very similar to those extracted from the
same animals during natural reaching and grasping behaviors.
Extending this research line in the context of motor learning,
Kargo and Nitz (2003) showed that early skill learning is expressed
through selection and tuning of primary motor cortex firing
rates, which specify temporal patterns of synergistic muscle con-
tractions in the frog’s limb. Finally, Roh et al. (2011) analyzed
the muscle patterns of the frog before and after transection at
different levels of the neuraxis: brain stem, medulla and spinal
cord, respectively. They found that medulla and spinal cord are
sufficient for the expression of most (but not all) muscle syner-
gies, which are likely activated by descending commands from
supraspinal areas. Similarly, Hart and Giszter (2004) examined
the compositionality of temporal synergies in decerebrated and
spinalized frogs. Their results indicated that in both cases tem-
poral synergies consisted of pulsed or burst-like activations of
groups of muscles. They also showed that brainstem frogs had
more focused muscle groups and showed richer behaviors than
spinalized equivalents.

In humans, the main approach to locate hypothetical mus-
cle synergies has been to analyze brain-damaged patients.
Comparing the synergies extracted from healthy and brain-
damaged subjects could provide hints about the neural cen-
ters involved in the synergistic control of muscles. In this vein,
examining motor tasks involving arm and hand movements,
Cheung et al. (2009b) showed that the synchronous synergies
extracted from the arm affected by a stroke were strikingly
similar to the ones extracted from the unaffected arm, conclud-
ing that muscle synergies were located in regions of the CNS
that were not damaged. In a second study involving subjects
with more severe motor impairment (Cheung et al., 2012), they
found that synchronous synergies may be modified according
to three distinct patterns—including preservation, merging, and
fractionation of muscle synergies—reflecting the multiple neu-
ral responses that occur after cortical damage. These patterns
varied as a function of both the severity of functional impair-
ment and the temporal distance from stroke onset. Similarly, Roh

et al. (2013) found systematic alterations of the upper limb syn-
ergies involved in isometric force production in stroke patients
with severe motor impairment. However, these alterations did
not involve merging or fractionation of normal synergies. Clark
et al. (2010) investigated the modular organization of loco-
motion in stroke patients. They found a coordination pattern
consisting of fewer synchronous synergies than for the healthy
subjects. These synergies resulted from merging of the synergies
observed in healthy subjects, suggesting reduced independence
of neural control signals. In contrast, Gizzi et al. (2011) demon-
strated that the temporal waveforms of the synergy activation
signals, but not the synchronous synergies, were preserved after
stroke.

Finally, a different but worth-mentioning approach has been
the attempt to map the activity of leg muscles onto the alpha-
motoneuron pools along the rostrocaudal axis of the spinal cord
during human locomotion (Ivanenko et al., 2006b, 2008). Using
this procedure, the authors could infer the temporal and spa-
tial spinal motor output for all the muscles of the legs during
a variety of human walking conditions, and relate them to the
control of task-relevant variables such as center of mass dis-
placements. Overall, their findings support the existence of some
spinal circuitry that implement temporal synergies. The strength
of this approach resides in the explicit use of anatomical and
clinical charts that document the innervation of the lower limb
muscles from the lumbosacral enlargement (Cappellini et al.,
2010).

4. SYNERGIES FROM THE PERSPECTIVE

OF THE TASK-SPACE
4.1. FROM INPUT-SPACE TO TASK-SPACE: GENERAL RATIONALE
The methodology presented in section 3.1 undeniably led to
many crucial insights, however, it does not guarantee that the
extracted synergies account for the observed task performance.
VAF-like metrics only measure the capability of the synergies
to reconstruct/fit the dataset of recorded “input-signals” (i.e.,
EMG data). Moreover, in some studies, such signals are averaged
across movement repetitions. In this case, the VAF constitutes
an average indicator, and it does not quantify the capability of
the synergies to reconstruct each individual trial (Ranganathan
and Krishnan, 2012). Since the musculoskeletal apparatus is a
non-linear system, these approximations of the recorded muscle
activities may not lead to the observed task performance (Broer
and Takens, 2011; section 1.1), a condition that would harm
the validity of the hypothesized modular control structure. On
a similar note, the extracted synergies might generate unfeasi-
ble joint torques. Finally, even if the dataset of muscle activity is
very well approximated, additional muscles that are not recorded
during the experiment might have a crucial role in the genera-
tion of the movement. These issues emerge because the dynamics
of the musculoskeletal system (i.e., its input—output relation) is
not directly taken into account in the synergy decomposition
algorithms.

In this section we review those works that attempt to relate
muscle synergies to performance variables defined in task-space.
Initially, we present the concepts of functional synergies and
spinal force fields. The former constitutes a valid strategy to
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include the task variables into the classical EMG-based analysis;
the latter provides task-based evidence for neurally implemented
muscle synergies. Then, we discuss some studies that, in the con-
text of biomechanics, employ plausible musculoskeletal models
to test the movements obtained from experimentally extracted
muscle synergies. Finally, we shift our attention to robotics and
characters animation. In these fields, the main challenge is the
synthesis of a small set of synergies that reduces the dimensional-
ity of control and, at the same time, spans a subspace of actuations
that allows the agent to perform a wide variety of tasks (Figure 3,
red arrows). Ideally, the synthesized synergies should preserve
controllability and reachability of the system. Loosely speaking,
this means that any desired system state can be reached by an
appropriate control input (i.e., combination of synergies) in a
finite amount of time. At the motor level, it is important that the
synergies generate feasible actuations; additional properties, such
as the generation of optimal control signals, may also be desirable
(see Figure 1).

4.2. FUNCTIONAL MUSCLE SYNERGIES AND SPINAL FORCE FIELDS

In most of the works presented so far, the functional role of mus-
cle synergies is estimated a-posteriori by analyzing the dependence
of the recruitment coefficients (i.e., gain and/or onset time) on
the task conditions (e.g., reaching direction, force magnitude and
direction, perturbation direction). Typically, each muscle syn-
ergy is assumed to underlie the task-level functionality observed
in conjunction with the higher values of its activation coeffi-
cient. As an example, the analysis of directional tuning curves
illustrated that some of the synergies were directly related to
reaching in specific directions (d’Avella et al., 2008). A different
approach is taken by a pool of studies which define the concept
of functional synergies; i.e., components, typically extracted by
means of NMF, of a dataset containing both EMG signals and
measurements of defined task-related variables. As a result, each
component consists of two elements: a balance of muscle con-
tractions (i.e., synchronous muscle synergy), and the evolution of
the task-related variables induced by such a muscle synergy (task-
related vector). In our view, the concept of functional synergies
provides a way to tackle the drawbacks of input-based extrac-
tion algorithms: if a set of functional muscle synergies extracted
from a training-set is able to reconstruct both the EMG and, more
importantly, the task-related signals observed in another set of
data (testing set), then it is more likely that combinations of such
muscle synergies will generate the appropriate control signals to
perform the task successfully.

Functional muscle synergies were analyzed in the context of
postural tasks in experiments with humans (Chvatal et al., 2011)
and cats (Ting and Macpherson, 2005; Torres-Oviedo et al.,
2006). The task-related variables were defined as the forces mea-
sured under the feet of the subject, which reacted to unexpected
motions of the support surface. The experiments showed that
each subject exhibited the same functional synergies for both
stepping and non-stepping responses to perturbations (Chvatal
et al., 2011), suggesting that a common pool of muscle syner-
gies, with specific biomechanical functionalities, can be used by
the CNS to drive the motion of the CoM independently of the
subject’s behavioral response. The functional synergies extracted

from the non-stepping data were able to reconstruct the EMG
signals, the CoM acceleration and the direction (not the mag-
nitude) of the forces recorded during stepping responses; how-
ever, an additional stepping-specific muscle synergy was needed
to increase the quality of EMG reconstruction. Generality and
robustness of functional synergies were also analyzed in postu-
ral experiments with cats (Torres-Oviedo et al., 2006). In this
study, a group of cats experienced both translations and rota-
tions of the support surface. Functional muscle synergies were
extracted from a dataset containing EMG signals and ground
forces observed for different postural configurations (i.e., dis-
tances between the anterior and the posterior legs). The func-
tional synergies extracted during surface translations for the most
natural posture were able to reconstruct the data observed in all
the other conditions (i.e., different postural configurations and
surface rotations). Moreover, functional synergies appeared very
similar across subjects. These results suggested that each mus-
cle synergies implements a specific biomechanical functionality
(Ting and Macpherson, 2005), which is general across tasks and
robust across subjects.

The methodology proposed by Ting and colleagues is
undoubtedly a valuable attempt to identify muscle synergies that
are directly related to task execution, however, it presents some
limitations. First, NMF extracts non-negative components and
coefficients; while this constraint is well justified at the muscle
activation level (see section 3.1), task variables may exhibit neg-
ative values. Second and more important, in addition to a linear
superposition also at the task-level, this decomposition procedure
assumes that both EMG signals and task-variables are gener-
ated with the same mixing coefficients. Although it is possible
to obtain a good fit of a given dataset, due to the non-linearity
of the musculoskeletal system, this assumption does not hold in
general.

A radically different approach to investigate the modularity of
motor circuitries consists in analyzing the so called spinal force
fields. This method is grounded on the seminal discovery that
electrical stimulations of individual regions of the frog’s spinal
cord produce peculiar isometric endpoint forces that depend on
the posture of the limb; the direction of the force vectors within
each of these fields is invariant over time, while their magni-
tudes are characterized by a specific time evolution. Additionally,
each of these force fields features a specific point of convergence.
Structures with these characteristics can be generated by groups
of coactive and linearly covarying muscles (Giszter et al., 1993;
Mussa-Ivaldi et al., 1994). In particular, only a small subset of
all the possible muscle combinations leads to robust and conver-
gent force fields (Loeb et al., 2000). Therefore, the observation
of such characteristics in an experimentally measured force field
can be regarded as an indirect evidence for spinally implemented
temporal muscle synergies (see section 2). Kargo and Giszter
(2000b) showed that rapid corrections of movements in wip-
ing frogs can be explained as linear combinations of spinal force
fields. Additional evidence was obtained by examining the force
fields generated by frogs (Giszter and Kargo, 2000) and turtles
(Stein, 2008) that exhibited deletion of motor patterns. Another
method to investigate the nature of spinal circuits is the analy-
sis of feedback mechanisms in relation to force fields. Different
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external excitations of the frog’s muscle spindles during wip-
ing reflexes led to structurally invariant force fields across time.
Furthermore, the bursts of muscle activity underlying the wip-
ing behavior and the balance of activations across muscles were
not altered by the spindle feedback. Instead, feedback regulated
the amplitude and the timing of each single burst. Since these
variables did not covary across the pulses, the authors concluded
that individual premotor drive pulses and not time-varying syn-
ergies are the units of spinal activity (Kargo and Giszter, 2008).
Such hypothetical neural organization is compatible with the
synergy scheme proposed by Drew et al. (2008) and Krouchev
et al. (2006) for locomotive behaviors. These schemes allow a
sequential activation of coordinated groups of muscles, a mech-
anism that can be implemented in the premotor drive model
by modulating the onset time of the bursts. Spinal force fields
are effectively task-level representations of hypothetical neural
modules, however, this methodology does not provide any esti-
mate of what the corresponding muscle synergies may look like.
Moreover, the relation between linear combinations of muscle
synergies and linear combinations of force fields is far from being
trivial.

4.3. NEUROMECHANICAL MODELING

Although many studies in experimental motor control provide
support to the hypothesis of muscle synergies, it is hard to
test whether the proposed control model can effectively lead
to the task performance observed experimentally and general-
ize to other tasks. This issue can be tackled computationally by
employing biologically plausible models of the musculoskeletal
apparatus.

A pool of studies investigate if a modular organization like
the synchronous synergy model can explain a complex task like
human walking (Neptune et al., 2009; McGowan et al., 2010;
Allen and Neptune, 2012). A set of synergies are identified from a
dataset of recorded EMG signals by means of NME. Such “mod-
ules” are then used to generate the muscle control inputs to a
musculoskeletal model of the human legs. Using these synergies
as a first guess, a numerical procedure optimizes the relative level
of muscle activation within each module and the time course of
the weighting coefficients; the objective is to minimize the dif-
ference between the results of the forward simulation and the
values of the task variables measured experimentally. The walk-
ing kinematic and the ground reaction forces are well reproduced
by 5 modules, if the motion is constrained in 2D (Neptune et al.,
2009), and 6 modules for 3D walking (Allen and Neptune, 2012).
Additional simulations reveal that the muscle groups identified
during normal walking are able to emulate walking tasks with very
different mechanical demands (i.e., change in mass and weight
of the models) (McGowan et al., 2010). These results agree with
the theoretical considerations formulated by Nori et al. (2008).
Finally, this research shows that each module is associated to a
specific biomechanical functionality (e.g., body support, forward
propulsion, leg swing and balancing).

Related results are presented by McKay and Ting (2008, 2012).
The goal of these studies is to predict the patterns of muscle activ-
ities and the ground reaction forces observed experimentally in
unrestrained balance tasks with cats (Torres-Oviedo et al., 2006).

Muscle contractions for an anatomically-realistic musculoskeletal
model of the cat are computed; the used optimization proce-
dure constrains task-related variables (i.e., center of mass) to the
experimental results. Although many different cost functions are
tested, the best predictions are achieved by minimizing control
effort (i.e., total squared muscle activation). Predictions improve
if muscle contractions are constrained to linear combinations
of the experimentally derived synergies (Torres-Oviedo et al.,
2006); however, the overall control effort increases, and the range
of admissible ground forces reduces substantially. Furthermore,
these studies validate the assumption made by Torres-Oviedo
et al. (2006) that the ground reaction forces associated to each
synergy rotate as a function of the limb axis. These results sug-
gest that muscle synergies are feasible physiological mechanisms
for the implementation of near-optimal or “good-enough” motor
behaviors (de Rugy et al., 2012).

Kargo et al. (2010) employed a biomechanical model of the
frog hindlimb to test whether the model of premotor drive could
account for the wiping behavior observed experimentally (Kargo
and Giszter, 2008). The parameters of the premotor drive model
(i.e., muscle groups, pulse time course, and amplitude and phas-
ing of the single synergies) are initially identified to reproduce
experimental isometric forces and free limb movement kinemat-
ics. As expected, starting from different limb postures the derived
feedforward control fail in driving the simulated limb toward the
target. However, as showed by Kargo and Giszter (2008), appro-
priate feedback modulations of the amplitude and the phase shift
of the drive burst, and the adjustment of muscle balance based
on the initial configuration of the limb, are enough to generate
successful muscle activations. Furthermore, the limb trajectories
obtained with and without feedback are very similar to those
observed in intact and deafferented (Kargo and Giszter, 2000a)
frogs, respectively. These results support the model of premotor
drives, in which feedback mechanisms preserve the duration of
the pulses.

Berniker (2005) analyzed mathematically the control scheme
of muscle synergies and proposed a principle for its formation
(Berniker et al., 2009). A linear reduced-dimensional dynami-
cal model that preserves (to the best extent possible) the natural
dynamic of the original system is initially computed. Synergies
are defined as the minimal set of input vectors that influ-
ence the output of the reduced-order model (Berniker, 2005),
and that minimally restrict the commands (and the resulting
responses) useful to solve the desired tasks (Berniker et al., 2009).
Practically, this set is found by optimizing the synergy matrix
over a representative dataset of desired sensory-motor signals.
This method was able to synthesize a set of synergies for the
model of the frog hindlimb that were very similar to the ones
observed experimentally (Cheung et al., 2005). Furthermore, the
synergy-based controller produced muscle activations and kine-
matic trajectories that were comparable with the ones obtained
with the best-case controller (that can activate each muscle
independently).

4.4. ROBOTICS AND CHARACTER ANIMATION
In the context of robotics and characters animation, the concept
of muscle synergies is appealing as it provides a strategy to reduce
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the number of variables to be controlled (synchronous synergy
model), or more generically, the dimensionality of the control
signals (time-varying synergy model). Animated characters are
embedded in physical environments (i.e., dominated by physics
laws) thus the associated control problem is totally equivalent to
the control of a musculoskeletal model or of a humanoid robot.
In this section we present the works that have been carried out in
these fields of research.

The work proposed by Mussa-Ivaldi (1997) is one of the
first attempts to develop a controller based on the modular-
ity observed in biological systems (Mussa-Ivaldi and Giszter,
1992). The idea is that the motion of a kinematic chain can
be determined by a force field applied to its end effector.
Inspired by the experiments performed by Giszter et al. (1993),
such a force-field results from the linear combination of basic
fields, each characterized by a single equilibrium point in oper-
ational space. Results show that, for a simulated planar kinematic
chain, an appropriate choice of the basis-field coefficients can
produce a wide variety of end-effector trajectories. Similarly,
Matari¢ et al. (1999) used force fields to drive joint torque
controllers on a rigid-body animated character (Mataric et al,,
1998a,b).

Although the concept of spinal-force field is very similar,
Mussa-Ivaldi’s work does not directly use the notion of synergy as
defined in section 2. A step forward is taken by Nori and Frezza,
who propose a mathematical formulation for a set of actuations
(i.e., synergies) that comply with the hypothetical properties of
spinal-force fields (Mussa-Ivaldi and Bizzi, 2000). The mathemat-
ical description of the synergies is derived from the closed-form
solution of an optimal control problem. Additionally, a feedback
controller assures that the system follows the desired trajectory
toward the synergy equilibrium position. It is proved that the
proposed formulation guarantees system controllability 2 The
synthesized synergies are successfully tested on a simulated two-
degrees-of-freedom (dof) planar kinematic chain (Nori, 2005;
Nori and Frezza, 2005).

The idea that each synergy solves a well-defined control prob-
lem [e.g., to lead the system to a specific equilibrium posi-
tion (Nori and Frezza, 2005)], appears in several other studies
(Chhabra and Jacobs, 2008; Todorov, 2009; Alessandro and Nori,
2012). Chhabra and Jacobs (2008) propose a method called
Greedy additive regression (GAR). A library of task-specific actu-
ations (synergies) are kept in memory. When a new task has to
be performed, a suitable actuation is initially searched in the lin-
ear span of these synergies. If the lowest task-error is above a
certain threshold, the task will be solved via traditional meth-
ods (e.g., feedback error learning), and the obtained actuation
will be added to the library. If the library already contains the
maximum number of synergies allowed, the least used one will
be removed. The obtained results suggest that the synergies syn-
thesized via GAR outperform primitives based on PCA if the
dynamical system is non-linear (planar kinematic chain), and
there is no statistical difference for linear systems. However, no
theoretical explanation is provided.

2In control theory, a system is said to be controllable if an external input can
move the system from any initial state to any final state in a finite time interval.

In the same vein, Todorov (2009) proved that, for a cer-
tain class of stochastic optimal control problems, an appropriate
change of variable in the Bellman equation allows to obtain the
optimal control policy as a linear combination of some primi-
tives. These primitives are, in turns, solutions to other optimal
control problems. Such a method has recently been tested in the
context of character animation (da Silva et al., 2009). It is impor-
tant to clarify that this theory provides a theoretical grounding
to the compositionality of optimal control laws, but like GAR
it does not provide a method to compute such primitives. In
fact, although new efficient methods have been proposed recently,
solving an optimal control problem remains quite computation-
ally intense, and it might be unfeasible for systems with a large
number of dof.

Another mathematical framework, that has recently been
developed in the context of character animations, is based on
the optimal anechoic mixture decomposition model, mathe-
matically equivalent to the time-varying synergy decomposition.
Specifically, complex kinematic animations are obtained by mix-
ing primitive source signals that are learned from motion cap-
tured data (Mezger et al., 2005; Park et al., 2008a,b; Giese et al.,
2009). Within this framework a number of interesting results
have been achieved, including a mathematical proof of stability
properties for groups of characters that interact in various ways
(Mukovskiy et al., 2011).

The procedure presented by Alessandro et al. (2012) is
grounded on a method to solve generalized reaching tasks called
dynamic response decomposition (DRD). In this context, a task
is defined as a list of constraints on the values of the state
variables at given points of time. Initially, a state-space solu-
tion is computed by interpolating these constraints by means
of a set of dynamic responses (i.e., evolutions of the state vari-
ables); then, inverse dynamics is used to obtain the corresponding
actuations. Based on this technique, the following two-phase
procedure allows to synthesize a set of synergies. An extensive
collection of generic actuations are used to generate the system
dynamic responses (exploration phase); in a second stage (reduc-
tion phase), they are used to interpolate a small set of tasks.
The corresponding actuations proved to be effective synergies
for additional reaching tasks on a simulated planar kinematic
chain. Like GAR, this procedure generates synergies in the form
of feedforward controllers, and it allows to modify incrementally
the library of synergies. However, DRD provides a computation-
ally fast method to solve the task. This technique has proved
its efficacy empirically, but a solid theoretical grounding is still
lacking.

Most of the methods presented so far require an accurate
analytical model of the system dynamics. Such a model is not
always available, and for certain robots, it might be difficult to
identify. Todorov and Ghahramani (2003) propose a method to
synthesize synergies by means of unsupervised learning. Their
work emphasizes the role of muscle synergies in an hypothet-
ical hierarchical control scheme similar to the one proposed
by Safavynia and Ting (2012): receptive fields translate sensory
signals to internal variables, and muscle synergies translate high-
level control signals applied to these variables to actual muscle
contractions. From this perspective, receptive fields along with
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motor primitives must form an inverse model of the sensory-
motor system. This mapping is learned by fitting a proba-
bilistic model to a dataset of sensory-motor signals generated
by actuating the robot with random pulses. The use of the
learned synergies as low-level controllers substantially reduces
the time needed to learn a desired policy, however, their capa-
bility to generalize to additional control laws is not explicitly
tested.

Alessandro and Nori (2012) define synergies as parameterized
functions of time that serve as feedforward controllers. The iden-
tification procedure consists in finding the values of the param-
eters such that appropriate linear combinations of the resulting
synergies drive the dynamical system over a set of desired trajec-
tories (training set). The synergies identified are then tested for
generalization; the idea is to evaluate to which extent they can
generate actuations that drive the system along a new group of
trajectories (testing set). This procedure has been evaluated suc-
cessfully in simulation and does not require the analytical form of
the system dynamics. However, it is computationally very intense
as it involves heavy optimizations. In essence, this work proposes
a new formal definition of the concept of muscle synergies: ele-
mentary controls that are evaluated in terms of task-performance
(i.e., tracking error), rather then in terms of approximation of the
input-space.

Thomas and Barto (2012) formulate the problem of primitive
(i.e., synergy) discovery within the framework of reinforcement
learning. In this case, the problem that the agent has to solve
is a Markov decision process (MDP), and each primitive is a
parameterized feedback control policy. The idea is to identify the
optimal parameters that maximize the expected reward for a given
task, when the control is restricted to linear combinations of the
learned primitives. This method is tested on a simulated pla-
nar kinematic chain actuated with artificial muscles. Primitives
are identified on reaching tasks, and they are successfully tested
in a scenario that involve reaching and avoiding obstacles. This
work clearly shows the advantage of a synergy-based framework
in terms of learning speed of novel control policies. This method
is in essence similar to the one proposed by Alessandro et al.
(2012), however, it identifies complete feedback control policies
rather then single feedforward synergies.

The time-varying synergy model greatly reduces the
dimensionality of the problems by encoding actuations with
synergy-coefficients, however, at the same time it introduces a
complication. As the new input variables are piecewise constant,
it is difficult (although possible) to implement feedback loops.
The synchronous model ameliorates this problem and, to some
extent, it allows adapting traditional control strategies to the new
reduced-dimensional control input.

Some researchers employ the synchronous synergy model
to control the tendon-driven robotic ACT hand (Deshpande
et al., 2013) in a reduced dimensional space (Rombokas et al.,
2011; Zhang et al., 2011; Malhotra et al.,, 2012). Similarly to
Todorov and Ghahramani (2003), dimensionality reduction is
applied both in the sensory space and in the actuation space.
The “observation synergies” transform sensory readings (tendon
lengths) into a lower dimensional variable; the “control syner-
gies” translates synergy-coefficients (as defined in section 2) to

motor signals. Model adaptive control and PIDs are applied to the
reduced dimensional input, and allow the robotic hand to per-
form tasks like writing (Rombokas et al., 2011; Malhotra et al.,
2012) and playing piano (Zhang et al., 2011). The synergy matri-
ces (observation and control) are computed by applying PCA
and NMF to a dataset of tendon-lengths obtained as a result of
defined hand motions. It is noteworthy that the more similar this
motions are to the ones required to solve the task, the better the
quality of the obtained synergy-based controller. This is clearly
not surprising, but it highlights the importance of task-related
variables in the formation of muscle synergies (Todorov et al.,
2005).

Marques et al. (2012) identify synchronous synergies by means
of an unsupervised Hebbian-like algorithm that captures the
correlations between motor signals and sensory readings. Each
synergy thus summarizes the levels of correlation between each
motor and one of the sensors. The time modulation of each syn-
ergy to solve a given task is then obtained by means of a supervised
learning procedure that aims at reducing the task error. Unlike
many other works in robotics, the exploratory strategy proposed
to generate the dataset of sensory-motor data does not exploit
any prior information about the desired motor tasks, therefore
muscle synergies are implicitly interpreted as patterns of motor
coordinations that solely reflect the biomechanical constraints of
the robot. This method has been tested on a single-joint tendon
driven robot.

In the context of robotic hands, many researchers adopted the
idea of postural-synergies, or eigengrasps. This concept derived
by the observation that the variability of finger postures during
human grasps can be explained by a few principal components
(Santello et al., 1998), i.e., eigengrasps. Similarly, constraining the
finger-joints positions of a robotic hand in such a way that the
useful grasping postures can be obtained by superposing a small
number of components, would result in a substantial simplifica-
tion of the graphing problem. Ciocarlie and Allen (2009) derived
a theoretical formulation of the problem of stable grasping in the
low dimensional space of the postural-synergies; such a formula-
tion is further improved by Gabiccini et al. (2011) for complain
grasps. These studies are further analyzed and discussed by Bicchi
etal. (2011), who presented them from the point of view of mod-
eling the process of grasping and active touch. Finally, Brown
and Asada (2007) proposed a direct mechanical implementation
of the eigengrasps. In all these works, the quantitative details of
the postural-synergies are taken from human experiments and
adapted to the robot mechanical structure; the problem of finding
a set of synergies that is optimized for a given robotic hand is left
as future research.

Reduced dimensionality based on postural synergies is also
explored by Hauser et al. (2011) for the task of balancing a
humanoid robot. The authors propose a mathematical formu-
lation, as well as a method to construct kinematic synergies
(i.e., predefined balance between joint positions) that are directly
linked to task variables (e.g., for balance control, the center of
pressure). Additionally, the synergies are constructed in such a
way that the mapping from synergy coefficients to task vari-
ables is linear (similar to the work proposed by Nori and Frezza
(2005) but in kinematic space). This allows to use a simple
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proportional-integral-derivative controller (PID) on the synergy
coefficients to control the center of pressure of the robot, as long
as the movements are slow enough to neglect dynamic distur-
bances. The proposed method is demonstrated both in simulation
and in a real humanoid.

As a final note, it is important to say that the concept of modu-
larity has been employed in robot control in many other ways. In
most of these works modules are defined as kinematic-based con-
trollers that are combined sequentially to obtain complex joint
trajectories (Khansari-Zadeh and Billard, 2011; Ijspeert et al.,
2013). In this regard, these works are more related to the con-
cept of kinematic stroke than to muscle synergies (Pollick et al.,
2009). These works are out of the scope of this paper, as we
focus on controllers that, in accordance with the models of mus-
cle synergies, are based on (parallel) superpositions of primitives
in input-space.

5. CONCLUSIONS AND PERSPECTIVES

The hypothesis of muscle synergies, that proposes a modular
organization of the neural circuitry involved in muscle coordi-
nation, has been proved very difficult to validate or falsify (Tresch
and Jarc, 2009). As discussed in section 3, a substantial body of
evidence in favor of this hypothesis comes from the observation
that the main components of EMG recordings are robust across
behaviors, biomechanical contexts, and individuals. In addition,
the successful control of artificial agents confirm the compu-
tational feasibility of the hypothesized synergy-based controller
(section 4). However, there also exist experiments that, for the
case of the human hand, seem to disprove the hypothesis of mus-
cle synergies (Kutch et al., 2008; Valero-Cuevas et al., 2009). As
a matter of fact, there is no real consensus yet on whether muscle
synergies effectively represent a modular organization of the CNS,
or they merely result from the methodology employed during the
experiments.

The works that are based on the control of artificial agents
(e.g., musculoskeletal models, robots, and animated characters)
clarify the importance of evaluating synergies in task-space. In
this context, the idea is to synthesize a set of synergies that
guarantees the accomplishment of the desired tasks (Figure 3,
red arrows). On the contrary, the main focus of experimental
motor control has been to identify the synergies that better recon-
struct the recorded EMG dataset (Figure 3, continuous green
arrows), and to understand their neural substrate. This approach
implicitly assumes that a well reconstructed input signal leads
to the observed task performance. Given the non-linear dynam-
ics of the musculoskeletal system, this assumption might not
hold. For this reason, in our view the hypothesis of muscle syn-
ergies should be tested by validating an input-output model
(i.e., from muscle activations to task-variables), rather than fit-
ting a model of the input data alone (Figure 3, dashed green
arrow). In fact, we could speculate that muscle synergies encode
a form of body schema (Hoffmann et al, 2010) that allows
translating intentions to motor plans (i.e., the inverse dynamic
model of the musculoskeletal system) (Torres-Oviedo and Ting,
2010).

The concept of functional synergies represents a first attempt
to relate muscle synergies to task variables. However, as discussed

in section 4.2, EMG and task-level components are assumed to
be activated by the same coefficients. This assumption cannot
hold in general because the musculoskeletal system is non-linear;
rather, input-space and task-space coefficients should be related
by a non-linear mapping (as described by Alessandro et al., 2012).
To address this issue, one should go beyond the use of NMF, and
develop novel techniques that do not impose a linear mapping
between the two sets of coefficients. Additionally one could try
to reconstruct the task-variables with more general non-linear
methods instead of imposing a linear combination also at the
task level. In the same spirit of the procedure used so far, such
a technique should optimize the reconstruction error of the EMG
signals, and constrain a good fit of the task-variables. In any
case, the generality of the extracted functional synergies should
be tested. To the best of our knowledge, the model of functional
synergies was never used as a predictive framework. It would be
extremely interesting to evaluate the extent to which functional
synergies identified during the execution of a certain set of tasks,
are able to predict the muscle activations observed during the
execution of another task that involve the same task variables. If
such prediction was unsuccessful, the experimenter could con-
clude that the identified muscle synergies do not really encode
the hypothesized biomechanical functionalities, or that the same
functionalities might be encoded by different synergies. In gen-
eral, the model of muscle synergies has very seldom been used to
make predictions.

An alternative strategy to verify the relationship between mus-
cle synergies and task execution (Figure 3, dashed green arrow),
is to evaluate if they can account for task-related variations of
single movement executions (Delis et al., 2013). In practice, one
might assess the capability of these synergies to decode each
repetition of different motor tasks. In other words, one should
be able to classify the motor tasks from the activation coeffi-
cients of the extracted synergies. If the decoding capability is
satisfactory, one might conclude that the synergies not only con-
stitute a low dimensional, but also a functional representation
of the motor commands. This idea might be used to develop
novel extraction algorithms that include task decoding objectives
directly in the optimization procedure. The identified synergies
would then maximize not only the reconstruction of the orig-
inal motor patterns, but also the capability of disambiguating
task-relevant trial-to-trial variations. Unlike the dimensionality
reduction methods used so far, this approach would rely on super-
vised learning techniques to exploit information about the task.
Possible alternatives to standard extraction algorithms include
energy constrained discriminant analysis (Philips et al., 2009),
the discriminant NMF (Buciu and Pitas, 2004), and the hybrid
discriminant analysis (Yu et al., 2007).

The use of single-trial analysis, like the decoding strategy pro-
posed above, may be useful for addressing some open problems
that are relevant to this review. First, the development of such
techniques may be useful to identify muscle activation compo-
nents of relatively low amplitude that reflect unique information
about the task (Quiroga and Panzeri, 2009); such components
would be completely lost if an average across several trials is per-
formed prior to the analysis. Second, such single-trial analysis
techniques may be used to investigate the existence of trial-to-trial
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correlations across synergy activations, and to evaluate their
functional role in controlling and performing task-related move-
ment (Golledge et al., 2003; Schneidman et al., 2003). Finally,
approaches based on single-trial analysis of neural activity could
also be instrumental in clarifying the existence of a neural basis
for the muscle synergies (Hart and Giszter, 2004, 2010; Nazarpour
etal., 2012; Ranganathan and Krishnan, 2012). For example, they
could in principle be applied to decode the task from single-trial
neural population patterns that regulate the activation of syner-
gies, and also to determine which patterns encode task differences,
and which carry additional or independent information to that
carried by other patterns (Delis et al., 2010).

Finally, an important aspect that is worth discussing is the
role of feedback loops. In the case of synchronous synergies, the
time course of the mixing coefficients can be adjusted on-line by
means of appropriate feedback controllers; this is the reason of
the popularity of such a model in the context of robotics. On the
contrary, the models of temporal and time-varying synergies, in
which the actuation time course are directly embedded in the syn-
ergies themselves, naturally represent feedforward controllers. As

a result, the evolution of the task-variables intimately depends on
the initial condition of the dynamical system. Alternatively, these
synergies might be defined as functions of both time and state-
variables; such an approach would characterize temporal and
time-varying synergies as generators of complete control policies
(Nori and Frezza, 2005; Todorov, 2009; Thomas and Barto, 2012).

In conclusion, we believe that the evidence reviewed here pro-
vides support for the existence of muscle synergies. However,
many issues are still unresolved. A deeper investigation of the
relationship between synergies and task variables might help to
address some of the open questions. In general, a closer coordi-
nation between experimental and computational research might
lead to a more objective assessment of the muscle synergy hypoth-
esis in task-space, and a better understanding of the modularity of
the CNS.
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