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We present and apply a method that uses point process statistics to discriminate the
forms of synergies in motor pattern data, prior to explicit synergy extraction. The method
uses electromyogram (EMG) pulse peak timing or onset timing. Peak timing is preferable
in complex patterns where pulse onsets may be overlapping. An interval statistic derived
from the point processes of EMG peak timings distinguishes time-varying synergies
from synchronous synergies (SS). Model data shows that the statistic is robust for most
conditions. Its application to both frog hindlimb EMG and rat locomotion hindlimb EMG
show data from these preparations is clearly most consistent with synchronous synergy
models (p < 0.001). Additional direct tests of pulse and interval relations in frog data
further bolster the support for synchronous synergy mechanisms in these data. Our
method and analyses support separated control of rhythm and pattern of motor primitives,
with the low level execution primitives comprising pulsed SS in both frog and rat, and both
episodic and rhythmic behaviors.
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INTRODUCTION
The efficient control of an organism’s motor architecture poses
significant difficulties for the central nervous system. In par-
ticular, control of the limbs is an ill-posed problem: too many
possible solutions are available to perform a particular motion
for the nervous system to find the correct combinations of mus-
cles in a timely manner. As a solution to this problem, a variety
of modular control strategies have been presented (Giszter et al.,
1989, 1991, 1992, 1993, 2007, 2010a,b; Mussa-Ivaldi et al., 1990,
1994; Bizzi et al., 1991, 1992; Mussa-Ivaldi, 1992; Mussa-Ivaldi
and Giszter, 1992; Giszter and Kargo, 2000, 2002; Kargo and
Giszter, 2000a,b; Mussa-Ivaldi and Bizzi, 2000; Mussa-Ivaldi and
Solla, 2004; Cheung et al., 2005, 2009; d’Avella and Bizzi, 2005;
d’Avella et al., 2006; Tresch et al., 2006; Bizzi et al., 2008). Modular
control of motor structures reduces the number of indepen-
dent points of control for the system and therefore reduces the
number of degrees of freedom available in the execution of a
movement.

TYPES OF MODULARITY
Specifying that the motor system employs a modular control
scheme does not, in the end, tell us very much. There are
many different kinds of motor modularity. For example, some
groups have found evidence of “kinematic modularity” or reg-
ular, repeated structure in movements or the planning level of
movements (Viviani and Terzuolo, 1982; Hogan, 1984; Sosnik
et al., 2004; Chiovetto et al., 2010; Omlor and Giese, 2011). In
contrast, and perhaps as complement to kinematic modularity,
there is execution modularity, or modular organization in the

control mechanisms underlying performance of a particular task
or set of tasks. Many examples of execution modularity have been
reported in recent years and include such examples as central
pattern generators (Grillner, 2006), half center oscillator models,
blends (Stein et al., 1986; Stein, 1989), motor primitives (Giszter
et al., 1991, 1993; Hart and Giszter, 2004, 2010), and time-varying
synergies (d’Avella et al., 2006).

We are interested in examining two of these forms of execu-
tion modularity in detail. The first group, synchronous synergies
(SS) (Hart and Giszter, 2004, 2010; Kargo et al., 2010), are built
from synergistic groups of muscles activated with a fixed time
course. Work done, both in our lab and several others, sup-
ports the observation that most movements generated by an
unconstrained frog can be represented as the summation of mul-
tiple motor primitive style elements (Bizzi et al., 1991; Giszter
et al., 1992; Mussa-Ivaldi and Giszter, 1992; Giszter et al., 1993;
Mussa-Ivaldi and Bizzi, 2000). However, some researchers have
advanced time-varying synergies an alternative to the motor
primitive model (d’Avella et al., 2006). In this model, tem-
porally coordinated (but not necessarily synchronous) drives
are supplied to groups of muscles. These time-varying syn-
ergies are thought to form sequence units. Kinematic strokes
form modules, and the time-varying synergy (TVS) might be
thought to correspond to such higher order task units. Such
time-varying drives, as formulated in theory, may be dilated uni-
formly across their temporal duration, as required by the task.
In the TVS model described above, there is a strong connec-
tion between the duration of a sequence of a pulses on several
muscles and the temporal widths of the pulses supplied to those
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muscles, i.e., uniform temporal scaling across the entire motor
compositional unit.

To distinguish these two frameworks: “spatial/synchronous
muscle synergies” and time-varying synergies we have examined
how these models constrain the onset and peak timings of mus-
cle activity viewed as point processes. To do this we will construct
models of point processes reflecting both synchronous and TVS
schemes. We show that distinct point process statistics arise. We
plan to test the hypothesis that real electromyogram (EMG) activ-
ity recorded in frogs resembles activity that one would expect to
see generated by a synchronous synergy model of motor produc-
tion, rather than a TVS model of motor production and examine
the degree to which statistics computed on real EMG data from
10 hindlimbs of the bullfrog resembles the statistics computed on
each model.

There have been many metrics and procedures developed for
quantifying the level of synchronous activity between sets of point
processes. Many of these statistics have attempted to quantify
synchronicity in terms of metrics computed between pairs of
spike trains, such as cross corellograms and joint peristimulus
time histograms (Ellaway and Murthy, 1985; Adams et al., 1989;
Datta and Stephens, 1990; Nordstrom et al., 1990, 1992; Bremner
et al., 1991a,b; Datta et al., 1991; Ushiba et al., 2002), although
most of these metrics show significant sensitivity to the den-
sity of events within measured intervals (Bremner et al., 1991a,b;
Kim et al., 2001). Higher order synchronization (between three
timestamps) has been examined and quantified using such tools
as the snowflake plot (Perkel et al., 1975; Czanner et al., 2005).
However, statistics on synchronicity for time series of arbitrary
dimensionality are lacking. Since the number of muscles partici-
pating in synergies is not necessarily fixed, this lack represents a
problem for comparison of time series representing the activation
of differing types of multi-muscle synergies. In light of these dif-
ficulties, in order to make comparisons between such processes,
we have developed a metric that shows sensitivity to the degree
of onset or peak synchronization over a wide range of parame-
ters. We have performed extensive testing of this statistic using
data from models of both synchronous motor synergy strategies
and TVS strategies. We then apply this statistic to frog motor
pattern data.

METHODS
All experimental data from frogs and rats used in this paper for
exposition was obtained under strict compliance with USDA and
PHS guidelines, and with full oversight of the Drexel University
College of Medicine IACUC.

DATA CONSTRUCTION
Both real data and modeled data were used and tested in the
developed type of discriminant analysis.

Real EMG data collection
Real EMG data were derived from 10 spinalized frogs, with
recording electrodes in 10 hindlimb muscles. (RA, RI, AD, SM,
GL, VI, BI, SA, VE, ST). Frogs were anaesthetized, spinalized, and
decerebrated. Ball electrodes, constructed as in (Hart and Giszter,
2004) were implanted in these 10 muscles of the hindlimb. After

at least a day of recovery, EMG recordings were made dur-
ing a variety of frog behaviors at 2 kHz. EMGs were recorded
using a Cerebus 128-channel data acquisition system (Blackrock
Microsystems) and saved to a file. Files were imported into the
MATLAB™ programming environment for analysis. Imported
EMG data were rectified, smoothed using an 80 point, triangu-
lar window, moving average filter, and down sampled to 250 Hz.
The data were then saved to a MATLAB MAT-file and retained for
later analysis.

Basic model data generation parameters. The basic model
was defined as a renewal process, constructed on intervals of
variable duration, ranging between 90 and 250 ms. Every � =
90–250 ms, an interval value was drawn from a Poisson interval
distribution (exponential), and a pulse or sequence of pulses was
placed at the cumulative sum of intervals up to that draw. The
distribution of intervals constructed in this manner was approxi-
mately Poisson, with a maximum interval cutoff below 2 × � ms
(because every interval is populated with a draw). There was also
some distortion away from true Poisson at the longer time scales,
due to the fact that the Poisson process “reboots” at the edge
of every � ms interval. We tested and compared several differ-
ent point process distributions. However, these did not affect our
basic discrimination findings and here we focus entirely on the
Poisson process results.

DISCRIMINANT METHOD
We examined the effect of varying several synergy parameters
on the subsequent discriminability of synchronous and time-
varying synergies from one another using point process model
statistics, and to distinguish the sum of time intervals between
local maxima in each type of time series. These parameters were
the density of synergies on an interval (ρ), the number of mus-
cles per synergy (σ) and the number of simultaneous muscles
in TVS models (η). We do not assume any a priori knowledge
of σ in real-world data, although we do know that the majority
of primitives examined in our work generally contribute signif-
icantly to between ∼2 and 4 muscles (Hart and Giszter, 2004),
and because synergistic groupings with more or less muscles
are possible.

Two distributions were used to model σ. The first distribu-
tion was sharply peaked and σ was permitted to vary between 2
and 10 muscles, with a maximum likelihood occurring at around
3 muscles. A second flat distribution, in which all values of σ

are equiprobable, was also used. Other parameters, such as pulse
amplitude were not expected to have a significant effect, based
on the structure of the onset or peak-picking algorithm (the peak
detection algorithm identifies all peaks above the noise threshold
based on their resemblance to a template peaked waveform ) but
were examined as well. For each model run, the total number of
synergies was selected, at random, from a Gaussian distribution
with a mean and median of ∼4 synergies/run, omitting negative
results.

Synchronous Synergy Model Construction (SS model) Modeled
data were constructed using the two different models (syn-
chronous vs. time-varying), and used to act as the main poles of
comparison for real data in this discrimination task.
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The first model (Figure 1A) represented an idealization of
SS or motor primitives. This model was constituted of several
simultaneous pulses delivered to a subset of channels (“muscles”)
that are multiplied by a channel-specific gain. The EMG was
constructed on intervals of 500 ms and the density (ρ) of pos-
sible synergies delivered on a single interval was varied between
0 and 5. Each simulated EMG would be constructed of several
distinct synergies. The number of distinct synergies to be used
in the entire constructed data set was selected and allowed to
vary stochastically between different realizations, with care being
taken not to include any duplicate synergies. (As an example
of this constraint, if there were 8 muscles in one synergy, then
only 2 non-identical and non-overlapping or disjoint synergies
could be drawn, one synergy with 8 muscles and the second syn-
ergy with the remaining 2 muscles). We then created and drew
from a distribution representing the number of possible muscles
(σ) participating in each of these synergies. As mentioned in the
preceding section, this distribution was permitted to be either a
peaked function (reaching a maximum between 2 and 4 muscles
per primitive, consistent with observed data) or a flat function
where primitive muscle membership numbers were all equiprob-
able. For each synergy, we then randomly selected “muscles” from
the 10 available muscles.

SS synergies were modeled as occurring in episodic motor
patterns. After a time of occurrence of the first SS synergy (the
episode onset) was chosen, other SS synergies were positioned to
occur following. To accomplish this, the (randomly selected) fol-
lowing SS synergies in the motor pattern were assigned random
onset times on the 250 ms interval following a first “seed” synergy
event of the episode. This created a point process representation
of motor pattern under the SS model. A continuous signal was
then constructed for each synergy’s component muscles, and then
these were combined to obtain the different activity patterns on
each virtual EMG channel. More specifically, we proceeded as fol-
lows: A gaussian pulse forming the “seed synergy” with a time

course of around 300 ms was placed at each of the point process
sampled motor pattern event times. Each synergy pulse occur-
ring on the interval was positioned shifted from the “seed synergy
event” by a small amount, drawn from an exponential distribu-
tion, with a mean value of 250 ms and a median of 153 ms. Given
that several synergies may in this way be invoked on the same
interval, it is thus possible that there may be several overlapping
pulses in a motor pattern “event” interval. In this case, the ampli-
tudes of each pulse of an individual muscle’s activity occurring in
overlapping synergies were summed together. After the synergies
were positioned in time the EMG signals were next calculated in
this way. White noise was then added to all EMG channels of the
model, with a maximum noise amplitude of 5% the maximum
value of the clean signal. Amplitudes of each Synergy pulse were
assumed to be either the same, or to be drawn from a normal
distribution, with a mean value of 0.5, and truncated at ampli-
tude values of 0 and 1. Amplitude effects on final results were
negligible.

Time-varying synergy model construction (TVS model)
The second model (Figure 1B), used in this analysis was con-
structed to simulate various instantiations of a TVS model of
motor control. A single pulse event was created and placed on a
250 ms interval at a randomly drawn time. Delays for the remain-
ing pulse events from the drawn time ranged from −100 to
100 ms and were sampled from an exponential distribution with
a mean of 100 ms (the sign of the delay was selected randomly).
These shifted pulse events were then delivered to a subset of chan-
nels (“muscles”) that were multiplied by a channel-specific gain.
A small number of such TVS were then randomly selected to
be a set used in an individual realization, by repeating a ran-
domly selected member of the set at the (Poisson distributed)
synergy event times. Each such constructed synergy occurrence
was scaled in time in its overall duration by a factor that was
drawn from an exponential distribution with a mean of 2. This

FIGURE 1 | Two forms of synergistic muscle activity compared in this

analysis. (A) Synchronous synergy model. Pulses are multiplexed to several
muscles to several muscles, with tight coordination of temporal activity of
each pulse. (B) Time-varying synergy model. Pulses are sent to several

muscles with some time delay between them, and the entire set of pulses
and delays may be dilated or contracted as necessary. In both models, the
delay between different synergys is drawn from an exponential distribution
(or in a few cases, from a uniform distribution).

Frontiers in Computational Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 52 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hart and Giszter Interval statistics of motor synergies

created a point process representation of motor pattern varia-
tions under the TVS model. Apart from these changes, the TVS
model continuous signal representation was then constructed
as in the SS case. TVS models could thus range from mod-
els in which there were no synchronous drives delivered to any
muscles, to models in which synchronous drives are supplied
to many muscles in the TVS, while other muscles in a synergy
are asynchronously activated. This latter variant could in prin-
ciple be thought of as a TVS containing within it some number
of SS.

Discriminant analysis of real and model data
Simulated data from both TVS and SS models were compared
with rectified, filtered, and downsampled examples of real data
from frogs.

Peak/Onset times were extracted from each channel of real
or simulated EMG by thresholding the EMG to 2 standard
deviations above its mean value and identifying all points
which exceeded this value. We then used a sliding gaussian
pulse of duration 250 ms to discriminate values over the prede-
fined threshold which represented peaks in the recorded data.
We chose this peak width as it most closely reflected the
dominant time scale observed in EMG recordings in bullfrog

(Hart and Giszter, 2004). However, this peak discrimination pro-
cess was simply to subject both real and artifically created data
to a similar workflow and any errors introduced in peak or onset
selection. Peaks were identified as those points over the ampli-
tude threshold where the correlation with the sliding Gaussian
pulse is more than 2 standard deviations over the mean corre-
lation value (Figure 2A). This criterion nearly always (>95% of
the time) found the correct local maximum in a sequence of
data. We then chose the times taken from one chosen sample
channel of EMG as “reference times” to be used in the ensu-
ing analysis. The times of peak occurrence on other channels
were identified via the thresholding algorithm described above
and the difference from the reference times were calculated on
each successive 250 point time window defined around each
reference time. Peak time differences were rank ordered within
each window and the mean time difference on the intervals were
calculated.

A cumulative statistic Q was then created for the time window
by summing time differences (Figures 2B,C) as follows:

Q =
∑

tref

∑
ti

(|ti − tref|) × �(|ti − tref|)
N

(1)

FIGURE 2 | Calculation of the Q statistic. (A) On an interval ranging from
−250 to 250 ms, we identify peaks in a rectified and smoothed set of EMG
waveforms by sliding a gaussian waveform along the intervals and identifying
points of maximum correlation with amplitudes larger than a rejection
amplitude (more than 2 sds the mean EMG activity). Peak times are

subtracted from a randomly drawn reference time from each interval, and the
(B) absolute differences are summed over that interval. (C) The same
procedure is performed for all such non-overlapping intervals on the data set.
The resultant Q values are rank ordered for the purpose of comparing
distributions from different sets of data.
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where � is a step function with value 1 when its argument is
< 250, and 0 otherwise. ti is the time of a peak in the window, tref

is the reference time, and N is the total number of pulse events in
the analysis window.

The procedure for calculating Q was then repeated for the
next time window in the record defined by the reference chan-
nel and reference times. We calculated Q values for each segment
of the real data files, as well as each segment of both model imple-
mentations. This analysis was carried out on all runs of each
model. Reference channels used were randomly assigned. In some
instances all channels were tested as reference and compared.
Choice of reference had little effect on statistics. This statistic,
Q, captures the deviation of the peak clustering in SS and TVS
patterns from that observed or expected in an unconstrained
random distribution of pulse times, which was constrained to
neither SS or TVS structure. The composite interval structures
captured in the measure Q, will deviate from predictions based on
uncorrelated point process assumptions, due to the correlations
and constraints on intervals imposed by synergy structures. For
example, the expectation of interval differences in unconstrained
Poisson processes will be that they effectively represent the result
of a Poisson process of higher rate, reflecting the independent
constituent process rates. In contrast, SS constraints enforce short
intervals in the joint process, and TVS enforce longer intervals,
and also short intervals to the extent that SS are found within the
TVS sequences.

Discriminant scaling analysis of real data
To compare models and data we used the cumulative distribu-
tions of the statistic Q. Given the likelihood that connected peaks
in TVS data will be farther apart than in SS data, we expected that
data consistent with a TVS model will have larger values of this
statistic than data consistent with SS models. Given a set of ran-
domly drawn reference times, and for any distribution of pulses
on a given interval, the maximum likelihood (ML) of the abso-
lute value of the difference between Q values computed from a
set of reference times and the distribution of pulses will be non-
zero. If data is described perfectly by a SS model, Q-values will
cluster around the ML value for this model, more or less nor-
mally, by the central limit theorem. Q-values from data better
described by a TVS model will cluster around the ML Q-value
for TV synergies. Taking the difference between Q values for each
model (Qss, Qtvs) and the real data (Qreal) we arrive at two error
distributions, both approximately normal.

We further anticipated that by rescaling (i.e., dilating) small
time differences in EMG peak times in SS models, we will even-
tually obtain Q-statistics characteristic of, or similar to a TVS
model, or a non-SS random pulse pattern.

Rescaling of synergies was done in constructed data as follows.
During construction of simulated data sets, time-varying syner-
gies were generated according to the procedure outlined above
and were then rescaled by a variable factor. Each synergy was
scaled independently before adding it to the data. Consequently,
synergies consisting of only a single muscle were not shifted
in time, nor was the stochastic rate at which synergies were
generated scaled, leaving the length of the time series intact.
Constructed SS were scaled in an analogous fashion, although in

this case the rescaling factor was applied to the small temporal jit-
ter between pulses in a primitive (See previous section for details
of SS contruction).

To scale real data for comparison, we first identified likely syn-
ergies by identifying near-synchronous pulses in different EMG
channels. Any pulses with a time difference of less than 5 ms were
selected as potential SS and retained for dilation and statistical
analysis. Those collections of pulses that appeared more often
than expected due to random chance (2 SD > average frequency
of occurrence calculated from 50 shuffles of time indexes of all
peaks detected in a record) were identified as “synchronous syner-
gies” for the purpose of this analysis. The small jitter between the
pulses in each such synergy were then scaled as above. Scaling was
relative to the mean midpoint time for each synergy/collection
of pulses, so early pulses were shifted backward and late pulses
forward.

As stretch of intervals outside of 250 ms is impossible in our
formulation i.e., it invalidates the interval for the analysis (it will
push timestamps into next window), it follows that, dilation
should not significantly move the Q difference distribution of
TVS data. In contrast, dilation of the SS model data was expected
to yield cumulative Q values that were eventually more statisti-
cally similar to the original TVS Q values computed. Assuming
real data is described by the SS model, subjecting the data to this
procedure should yield Q distributions that are similar to TVS
distributions. If real data is better described by the TVS model,
one would expect little change in cumulative Q upon performing
the dilation operation. With this in mind, we took the timestamps
associated with peak times in real data and scaled the differences
in timestamps over scale factors that ranged between x2 to x20
and calculated Q values at each scale-step. Scaling the differences
in timestamps and scaling the underlying waveforms made no dif-
ference, as the peak picking algorithm identifies the same peak for
a pulse, regardless of its width. Differences between the median
Q at each scale and the original unscaled median Q-value were
retained.

Are primitive timing and dynamics related?
We also used more data-driven techniques to further assess the
likelihood that synergies in the bullfrog consisted of SS style
constructions, which has been our working hypothesis in prior
research. To do this, we performed two analyses on real frog EMG
data. In keeping with the Gottlieb work showing triphasic acti-
vation of muscle groups during movements (Gottlieb, 1998), we
examined timing relationships within triplets of pulses extracted
from frog EMG data. We first performed regressions of pulse
widths for each pulse in a triplet against both the pulse widths
of the other members of that triplet, and against the time delay
between pulse 1 and pulse 2, as well as between pulse 2 and
pulse 3. In order to assess the main sources of variance to the
resultant regression coefficients, we then performed a principal
components analysis on these coefficients, and generated projec-
tion biplots to assess the relative significance of the contribution
of each component. Additionally, we took the entire sequence
of pulse widths and pulse time differences, treated each of these
variables as covariates for an independent component analysis
(ICA) in order to assess the relative independence of each of the
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variables. Additional details on this analysis are provided in the
Results section below.

RESULTS
DIFFERENCE OF Q STATISTIC FOR SS AND TVS MODEL DATA
We constructed 25 time series for each parameter set as above
(Poisson interval distributed events) and calculated Q values on
simulated TVS and simulated SS models for each sampling on
these series. For a single draw from a distribution with six com-
ponents and an η = 1 and a ρ = 1/90 we found that the Q
distributions were easily distinguished from one another. The
rank ordering of Q values from each SS and TVS distribution
(Figure 3A), or the cumulative probabilities for each distribu-
tion (Figure 3B) were clearly and cleanly distinguishable from
each other. Additionally, we compared Q statistics from the dis-
tribution of uniformly distributed synergy events (see above) with
those calculated using the Poisson interval distribution, for each
of the chosen sets of parameter values. Q statistics could not be
discriminated between the uniform and Poisson generators using
paired t-tests (comparison of TVS statistics: p = 0.34, SS statis-
tics p = 0.75). Lowering ρ to 1/250 did not appreciably alter the
situation.

EFFECTS OF DIFFERENT PARAMETERS
As previously mentioned, we recognized that varying the parame-
ters σ, ρ, and η has the potential to alter our ability to discriminate
the outcomes of these different models. There are several different

parameters that must be examined for their effect on the discrim-
inability of TVS and SS models. First, the number of synergies
must be considered. Secondly, each synergy may be constituted
by a variable number of muscles. The distribution of the number
of muscles in a synergy may also have an effect on discrim-
inability. Q values calculated on two muscle synergies will tend
toward smaller summed differences than in five muscle synergies
by nature of the number of items measured and summed. This
aspect of the statistic is unavoidable. Finally, the number of syn-
ergies on each interval used to calculate a Q value can impact the
value of the Q parameter as well.

The number of synergies on an interval can have a drastic
impact on the value of Q, as can the form of the TVS synergy itself.
Therefore, we examined each 250 ms interval of our constructed
data, and looked at the number of pulses on that interval.

EFFECT OF VARYING σ

For small values of σ (the number of muscles per synergy), we
find that the TVS, SS and real local Q distributions are very hard
to discriminate. Q values that are very similar persist over all
three models for a range of ρ values (Figure 3C), but begin to
clearly diverge at a σ value of five or six muscles per primitive.
For higher σ values, TVS and SS Q values are easily discriminated
from one another. Real values, and SS synergies are much more
similar than real and TVS values. The reason for this is easy to
see. At small values of σ, only one or two muscles participate in
a given synergy. Thus it becomes more difficult to say whether

FIGURE 3 | (A) Comparison of rank ordered Q statistics from five runs of the
basic TVS model (blue) (ρ = peaked distribution, σ = 3, η = 1) and five runs
of the basic SS model. (B) cumulative probability of the same Q distributions.

(C) Comparison of the effect of ρ on local Q statistics for SS models, TVS
models, and real data. Note that as ρ increases, Q statistics tend toward
higher for TVS models than for real or SS constructed model data.
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a given synergy is time-varying or not. At larger values, there
are many pulses on an interval. For TVS, many of these pulses
will be separated by significant time delays, resulting in a higher
Q statistic. For SS, the pulses will be more tightly coordinated,
yielding a lower Q statistic.

EFFECT OF VARYING ρ AND η

Because σ (the number of muscles per synergy) tends to be
around three or four muscles for both SS and TVS models as
described in the literature and since σ and η (the number of
simultaneous muscles in a TVS model ) are going to be somewhat
coupled, we chose to examine the effect on model discriminability
of varying ρ and η simultaneously.

For our purposes, we are classifying as “synchronous” only
those synergy models in which all muscle activations in a given
synergy are simultaneous (within some error δ). Synergy models
containing two or more out of phase muscle activations (with the
remainder occurring at variable times) will be considered, for the
purposes of this study, as “time-varying.”

Given this classification, we chose to examine how varying
the number of simultaneous muscles in a TVS model interacts

with the density of primitives on a 200 ms interval to impact the
discriminability of TVS and SS models. We did this by identifying
the points at which TVS and SS distributions were maximally
discriminable, a measure which coincides with the Kolmogorov-
Smirnov (KS) statistic. KS statistics for the discriminability of
TVS and SS models, as a function of these variables are shown
in Figure 4. TVS and SS models were constructed using both
peaked (Figure 4A) and flat (Figure 4B) muscle/synergy distribu-
tions. As can be seen, for the peaked distribution, KS statistics
were significant for a wide range of combinations of param-
eters. Further, the number of simultaneous muscles within a
synergy did not appear to significantly impact the significance
of these differences even at the lowest synergy density. For the
peaked distributions, the Q statistic failed to distinguish TVS
and SS models for high numbers of muscles (>4) in combi-
nations that occurred only rarely on an interval (black floor in
Figure 4C). Expanding the interval, or increasing the data set,
might abolish this dead zone of discrimination. For the flat dis-
tribution of primitives, for all combinations of these variables,
TVS and SS models were easily discriminable across all tested
conditions.

FIGURE 4 | Varying model parameters alters discriminability of

models. (A) A sharply peaked distribution. (B) A flat synergy distribution.
(C) The peaked distribution resulted in easy discrimination of TVS models
from SS models at an alpha level of 0.001 for up to three simultaneous

synergies in TVS models. (D) The flat synergy distribution results in
discrimination of TVS models from SS models for all values of ρ (density
of synergies on an interval) and all η (the number of simultaneous
muscles in a TVS).
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DISTANCE BETWEEN REAL DATA AND SS DATA vs. REAL DATA AND
TVS DATA
We next calculated Q values for five records of real EMG activity
(see methods). We then compared the middle of this Q dis-
tribution (Qreal) to the middle of Q distributions calculated
for SS (Qss) and TVS (Qtvs) models at each of the parameter
values examined above. We plotted the distance between Qreal
and Qss against that between Qreal and Qtvs. Note that where
the two distributions are broadly discriminable, either for syn-
ergy densities drawn from a peaked distribution (Figure 5A) or
a flat distribution (Figure 5B) the distances between Qreal and
Qss were smaller than Qreal and Qtvs (Figures 5C,D). Further,
the real data is found beyond the model SS cumulative curve,
rather than between the SS and TVS curves. The real data thus
exhibited stronger SS statistics than our artificially created data.
Accordingly, the cumulative distributions support the idea that
the SS hypothesis for real data is likely still stronger than the
p < 0.001 calculated for the artificial data. However, we limit our
assessment to this value here.

EFFECTS OF FORCING DILATION ON DATA AND Q STATISTICS
The construction of the Q statistic provides an additional test for
the presence of SS synergies, based on a dilation manipulation of

the synergies’ time scale within the analysis window. The analogy
is to using a higher powered microscope field, the intervals are
dilated but some fall out of the analysis window field of view. If we
assume that a particular distribution of pulses were constituted
primarily of time-varying synergies with a maximum time scale of
less than 200 ms (reasonable for frogs given that most movements
are executed in under a half second), then finding the time of
each pulse with respect to some arbitrary reference time on each
interval and then scaling these times by a constant dilation within
each interval should not impact the Q statistic significantly. In
pure TVS synergies lacking SS components, or non-synergy pro-
cesses, this scaling would simply push a few of the pulses out
of the analysis window interval for computing Q values. So the
Q value before dilation minus the Q value computed after dila-
tion should often be near zero. In contrast, for a SS model, it
should be possible to dilate all the short pulse times (with respect
to a reference time) while keeping them all in the analysis win-
dow. As short intervals are highly associated with SS synergies
(e.g., Krouchev et al., 2006; Markin et al., 2012)—dilation in the
analysis window affects SS quite a lot, first altering Q statistics,
before the Q statistics plateau. The statistic will plateau at the
point at which pulses are pushed into the next computational
interval). A new statistical measure then is obtained from the

FIGURE 5 | Q statistically classifies real from EMG data as a

synchronous synergy strategy for range of discriminability of the

statistic. Linear discriminant separates Qss-Qreal (y axis) and
Qtvs-Qreal (x axis). (A) In data drawn from the peaked distribution.
(B) Cumulative probability shows TVS/SS distinction. (C) For peaked
distribution (see Figure 4A) we find that for a range of discriminable

parameters (see Figure 4A) plotted points are less than unity,
indicating Qss-Qreal < Qtvs-Qreal. All parameter pairs ρ and η show
Qss-Qreal < Qtvs-Qreal. (D) For flat distribution (see Figure 4B) all
parameter pairs ρ and η Qss-Qreal < Qtvs-Qreal. In both cases, this
is consistent with a model where EMG activity is generated via an
SS-type strategy.
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difference of the Q statistic after the dilation minus that of the
unaltered data. This new difference in Q statistic should rise to
a plateau at a particular scale value. We found that the dilation
of real data time intervals does tend to push the Q statistic for
dilated data toward the Q distributions for TVS data, and obvi-
ously this is captured in the difference. This is shown to be the case
in Figure 6A. As the real data is dilated (Figure 6B), the cumu-
lative distribution moves from its position beyond the synthetic
SS model data, and crosses over to lie between the SS and TVS
cumulative distributions. Furthermore (Figures 6C,D), the dif-
ference between dilated and unaltered data Q statistics in model
data is close to zero for TVS synergies (tQ cannot be signifi-
cantly altered as the analysis intervals are dilated) but increases
significantly for real data or SS model synergies. This observation
holds true for both peaked and flat synergy density distribution
models.

CONNECTION BETWEEN PULSE TIMING AND SCALING OF MUSCLE
ACTIVATION
TVS models predict a certain degree of covariance between the
time scale of individual EMG activation and the relative timing
of pulses in a synergy (d’Avella and Bizzi, 2005; d’Avella et al.,
2006). Therefore, separate from the Q statistic analysis, we also

chose to examine the functional dependence of primitive dura-
tion on the time delay between primitives. We explored this in
wipes with a three primitive sequence, largely following work on
triphasic bursts in human reaching (Gottlieb, 1998). We wanted
to examine the degree to which primitive duration varied within
these three primitive sequences, as well the dependency of primi-
tive duration on pulse timing within a short sequence of primitive
activity. Occurrences for each triplet were shuffled and significant
three primitive sequences in the original data were identified by
finding those triplets with z-scores greater than 2 (based on the
statistics of the shuffled data). For each occurrence of a signifi-
cant triplet, we calculated regression coefficients between (a) the
durations of pulse 1 (D1) and pulse 2 (D2), (b) pulse 2 and pulse
3 (D3), (c) time of pulse 2-time of pulse 1 (t2-t1) and the time
of pulse 3—the time of pulse 1 (t3-t1), (d) all cross terms (i.e.,
pulse duration 1 vs. time delay between pulse 1 and pulse 2). A
principal components analysis was performed on the calculated
regression coefficients, and the first two principal components
were retained and plotted against one another (Figure 7A). Each
of the regression coefficients was plotted on these axes as well. The
regression coefficients between pulse widths (a, b) tended to align
with the second principal component (Figure 7A, red lines) while
the regression coefficients between pulse time delays (c) aligned

FIGURE 6 | Stretching the interval between jittered pulses causes real

data that resembles SS model data to begin to resemble data

generated by a TVS strategy, for a fixed analysis window. (A) The Q
statistic distribution of real data (green, left) which is clearly SS in form,
is moved toward the Q statistic distribution of the TVS model data when
intervals between real data are scaled linearly with an unscaled analysis
window (B). (C) Peaked σ-distribution: comparing the difference between

scaled Q stats of real data and their unscaled values with scaled TVS Q
values and the unscaled Q values implies real data is clustered more
tightly around particular time scales (i.e., there is more room to scale
intervals within the window before a timestamp is forced into the next
counting interval and drops from the statistic) compared to TVS
generated data. (D) Flat σ-distribution: note the nearly identical
performance to that in (C).
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FIGURE 7 | Direct tests of whether pulse durations and pulse

intervals are independent. PCA on regressions between inter pulse
delays and pulse duration time scales and ICA of delays and timescales
together do not support a time-varying synergy model for real frog data.
(A) Regression coefficient between pulse widths (D) and those between
pulse time delays (S12, S31, and S23) in triplets of active motor
primitives are large relative to cross terms. Additionally, these large
terms align with axes defined by two largest principal components.

(B) Mixing matrix coefficients from an independent component analysis
on time series defined by each peak time difference from first element
in each triplet concatenated to the scale of the pulses during counting
interval demonstrate a strong segregation of time-scale related
information and peak time related information. Taken together, these
results indicate that the duration of pulses in the EMG do not scale
linearly with the variations in the interval to their time of occurrence,
which is a prediction of a TVS model.

strongly with the first principal component. Cross term regres-
sion coefficients tended to be smaller than either of these and were
distributed more or less equally between the principal component
axes.

As a second test, for each occurrence of each significant three
primitive sequence, we placed the t2-t1 values for each word
occurrence in one row of a multidimensional array, t3-t1 in
another row, and D1, D2, and D3 in the final three rows. The
resulting multidimensional array was treated as a time series and
decomposed using an independent components analysis (ICA).
The resultant mixing weights (Figure 7B) show a clear segrega-
tion between the time scale components (the final three com-
ponents that project to D1, D2, D3) and the pulse occurrence
components (the first two components which project to the t2-t1
and t3-t1 series.

CYCLIC PATTERNS—SS AND TVS COMPARED IN RAT TREADMILL
WALKING
We examined the behavior of the Q statistic and related mea-
sures in rat ambulation, where cyclic patterns occur. The value
of the Q statistic would be very limited if use was confined only
to non-rhythmic motor behaviors. Surrogate TVS and SS data
sets were constructed as in the methods. Calculation of the Q
statistic was performed as described in the methods. We limited

the counting time window to 400 ms in order to better deal with
the compressed time scale of pulse activation observed in EMGs
recorded from treadmill walking rats. Pulse widths extracted from
data at a mean step rate of 1.0 step/cycle did not appear to exhibit
significant variability (Figure 8A), an observation that was con-
firmed when we compared pulse widths against the actual step
cycle length (Figure 8B).

We then sought to systematically vary step cycle duration
and observe the effect on the Q statistic and pulse scaling
(Figures 9A,B). We noted that the distribution of Q values did
not exhibit any noticeable trend as step cycle duration was var-
ied, either in TVS and SS models, or in real data (Figure 9A).
The Kolmogorov Smirnov test showed the rat interval structure
deviated from TVS significantly (p < 2.3 E-15) and also from
expected SS (p < 5.2 E-11). However, once again, as in the frog
data, for the rat, the real data is found beyond the model SS
cumulative curve, rather than lying between the SS and TVS
curves. The discontinuity observed in the real rat EMG data Q
statistic curve in Figure 9 is due to overlapping occurrence of two
nearly-simultaneous, but apparently distinct, muscle groups on
some trials. Because of these short-interval follow-on synergies in
the rat data, the Q statistic could not go much above a certain
value on the intervals where these overlaps occurred, because the
short time separation between them lowered Q significantly and
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FIGURE 8 | (A) Temperature plot of pulse amplitudes during treadmill walking in one animal. Overlay: average pulse waveform over all steps. (B) Step cycle
duration variability does not appear to induce any systematic variability in EMG pulse full width at half max, as a TVS model predicts.

FIGURE 9 | (A) Q statistic computed on rat walking on treadmill at 1
step/cycle compared to Q statistics for cyclic runs of SS and TVS model. (B)

Median Q statistics for real, SS, and TVS models as a function of treadmill

speed. (C) Example pulse waveforms at each treadmill speed. (D) Mean
pulse duration scaling relationship with increasing treadmill speed is
non-monotonic.

thus created the low values and the discontinuity seen in the Q
value population rank order. This was a situation not explicitly
modeled in either the TVS or SS cyclic model data. However, it
does not appear to affect our results discrimination using median

values (Figure 9B) but may account for the increased distance
of rat data from TVS curves. Examining pulse time course as a
function of step cycle duration (Figures 9C,D) we observed that
there does not appear to be a strong monotonic trend relating
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cycle duration and the scaling of pulse widths. Q statistics of the
real data favored the SS models over TVS patterns, even in these
cyclic repeating “pattern generator” data, consistent with separa-
tion of pattern formation and rhythm generation (Rybak et al.,
2006; McCrea and Rybak, 2007, 2008).

DISCUSSION
There is significant controversy in motor control as to the nature
and origin of the strategy used for reduction of dimensionality.
Many kinds of primitive—synchronous synergy, or TVS or motor
pattern “block,” or kinematic stroke—have been advanced as the
fundamental organizational units for the great bulk of motor
activities. To date it has proven difficult to identify which organi-
zational strategy is used in the assembly of a given motor pattern
observed during behavior.

Prior work has used onset or peak timings in EMG to explicitly
cluster patterns into SS (Krouchev et al., 2006; Drew et al., 2008;
Markin et al., 2012). We here presented a newly developed set of
tests, that are capable of discriminating presence of TVS and SS
based on onset or peak timing statistics prior to any explicit clus-
tering of data. In part, the largest value of our method is that it is
applicable to the EMG time series prior to any synergy extraction
or fitting processes and free of assumptions about the precise type
or numbers of synergies. After this new analysis, other synergy
extraction procedures, guided by the discriminant results could
be applied to extract the synergy structures with better precision.
We investigated the statistical properties of a range of TVS and SS
models for the construction of muscle activity and found that the
Q statistic we developed represented a good discriminant over a
large range of parameters when applied to the EMG time series in
this way.

RANGE OF APPLICABILITY OF Q
For a large range of parameters, it is possible to discriminate mod-
els arising from a TVS model from those arising out of a SS model
by examining the EMG (or mixed) output time series’ Q statistic.
We varied three parameters in modeling phase of this study: the
density of synergies occurring on an interval (ρ), the number of
muscles per synergy (σ) and the number of simultaneous mus-
cles in a TVS model (η). In general, the models became harder
to discriminate as η increased (i.e., for mixed models), and we
also observed that varying the shape of the synergy member-
ship (σ) distribution appeared to have the strongest effect on the
significance of these discriminations.

These limitations on results are not surprising: If most prim-
itives have between 2 and 4 synchronous muscles active during
their activation (as is the case in the peaked distribution) it will
become much more difficult to discriminate TVS constructed
data from SS data as the number of synchronous muscles mixed
into the set of time-varying synergies increases. In effect, the time-
varying synergies look more and more like SS in this case, because
of the larger number of small delays. However, we found that in
real data sets from rats and frogs the Q statistic we found was
unambiguous, and was structurally always clearly in the SS model
domain. In fact the real data Q statistic curve was “more” SS (i.e.,
further from the TVS curve) than the randomly generated family
of SS data curves, and in both instances (frog and rat) the data lay

further beyond these SS curves rather than between SS and TVS.
The Q statistic of actual real world motor patterns and synergy
data is a specific realization of one of the SS family of realizations
and apparently strongly different.

As a test of the generalizability of this approach, we did the
analysis of cyclic data using treadmill walking data from adult
rats. The behavior of the Q statistic was qualitatively the same,
although some adjustment had to be made for the fact that bursts
of activity in rat EMG tend toward shorter time scales in the rat,
at least during treadmill walking behaviors, and short latency syn-
ergy burst overlaps occurred in some cycles. Our Q statistic results
for the rat were consistent with the idea of separation of rhythm
and pattern components of CPG output suggested by McCrea
and Rybak. The Kolmogorov Smirnov test shows the rat interval
structure deviates from TVS significantly (p < 2.3 E-15) and also
from expected SS (p < 5.2 E-11). However, the Q aligns well with
SS Q behavior over much of its range (Figure 9A). We attribute
the deviation in mid range to the cyclical pattern of locomotion,
occasional closely overlapped or near synchrony of specific syner-
gies during the cycle, and consequent deviations from the levels
of intermittency used in the original simulations of motor pat-
terns generating the expected Q distributions. A more complete
exploration of the Q statistic and other interval-pulse-scaling
metrics in the cyclic patterns may provide significant insight into
the mechanisms underlying locomotor flexibility in quadrupedal
mammals.

WHAT Q TELLS US ABOUT SYNERGIES IN THE FROG
We compared SS to time-varying synergies using a linear discrim-
inant analysis with the Q statistic. Differences were taken between
Q value from each model and Q values computed on real data.
These differences were then plotted against one another and a
separatrix representing equal differences was used as a criterion
for classification. Those “below” the line represented values where
Qtvs-Qreal was greater than Qss-Qreal. I.E, i.e., these points were
“closer” to a SS model than a TVS model. The separatrix used in
this case was thus a line with slope of 1.

A broadly similar pattern was seen to that in the preceding
section. Discrimination was possible for synergies with muscle
densities (σ) drawn from a flat distribution, but became more
difficult for σ drawn from the peaked distribution as η (num-
ber of simultaneous muscles in a synergy) was increased. The
results for comparison of frog data to a flat σ distribution are
unambiguously indicative of an SS model. Assuming instead that
the σ is from a peaked distribution in frogs, it is still most likely
the case that synergies observed in the bullfrog during a vari-
ety of reflex and locomotor tasks arise only from SS. The only
alternative would be very weak scaling of time-varying and very
high jitter synergies, within which most muscles are activated syn-
chronously. This alternative may beg the question, and weakens
the TVS formulation elegance and simplicity of more strongly
coupled units. It also may not match other measures of syn-
ergy compositionality. The real data lay outside the bounds of
both the TVS and SS curves, below the SS curves in both rat
and frog. In the rat, inspection of a discontinuity revealed an
intermittent coactivation of two synergies caused the discontin-
uous and outward deviation. Similar coactivations occur in frogs
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(e.g., in wiping behaviors). The statistics associated with these
tight coactivations or “synergies of synergies” were not well rep-
resented in our simulations and would have been very rare in
our generator processes. However, the processes noted would fur-
ther differentiate the point process statistics between TVS and SS
rather than collapsing them together, and should not be assumed
a priori.

As a final check on the discrimination we used an interest-
ing side effect of the Q statistic that we discovered, namely that
rescaling the pulse times, thereby moving some pulses outside
the bounds of the 250 ms counting interval does not appreciably
change the TVS Q statistic, but significantly alters the SS Q statis-
tic. We used this as an additional check to ascertain whether TVS
or SS models statistics better explain observed EMG data from the
frog. Because the statistic is only sensitive to rescaling within each
counting intervals, rescaling the time differences between nearly
SS results in large changes to the Q statistic relative to the unscaled
data. These increases in �Q occur with increasing scaling, until
plateauing at a particular �Q value (the point at which “rescaled”
pulses are pushed into the next counting window). Rescaling TVS
(time-varying synergies) fails to alter �Q appreciably for TVS
models. Consonant with the other results so far, performing these
operations on real EMG data we found that the data rescaled as
one would expect SS to scale. The coactive synergies noted above
in real frog and rat data would likely have further exacerbated
these scaling effects.

Taken together, these data and analyses lead to the following
conclusion: at least in the bullfrog, and SS model, or syner-
gist coactivation of groups of muscles appears to be the norm.
Any strategies similar to the TVS model are much more of an
exception, at least within this preparation.

Covariance of muscle activation and pulse timing
As a final check for any evidence of time-varying synergies
in the frog, given the Q statistic results, we explored directly
whether the time differences between pulses in a three pulse
triplet depended at all on the pulse widths in that sequence.
This would indicate correlated time-rescaling. PCA performed on
regression coefficients between pulse time differences and time
widths found that the most significant contributions to vari-
ance were entirely from components closely aligned to either
the time difference axes, or pulse width axes. In contrast, PCs
representing regression cross terms between pulse widths and

pulse time differences contributed to very much less variance
to the overall data set. The results thus indicate that there
is little overlap or covariation between pulse width and pulse
time/phasing differences and that the bulk of the variation of
the delay between pulses in the EMG is independent of the
variations underlying pulses durations. This observation is incon-
sistent with the notion of a uniformly scaled TVS, but matches
the Q statistic data presented here. In frogs other data support
SS structure based on ICA decomposition (Hart and Giszter,
2004), neural analyses (Hart and Giszter, 2010) and explicit
physiological perturbations. We have demonstrated the abil-
ity to recruit SS synergies as single pulses (Kargo and Giszter,
2000a,b), and perturb them separately within a motor pat-
tern (Kargo and Giszter, 2008), both inconsistent with TVS
descriptions.

To bolster the temporal structure observations here, we per-
formed an ICA on all time differences in the data set, and the
corresponding pulse widths. We found that the resulting mix-
ing matrixes indicated very little mixing between pulse width
and time differences, with components contributing primarily to
one or the other category of time series. This observation is also
inconsistent with uniformly or correlated scaling of pulse dura-
tion and sequence as expected in TVS. The rat cyclic data also
showed a lack of correlation between pulse duration and cycle
duration in our data.

In summary, we present a new analysis working directly with
EMG peak or onset data to differentiate synchronous and TVS
patterns prior to full decomposition. These analyses applied to
data from frog and rat support composition of frog and rat
motor patterns as independent rhythms and synchronous synergy
pulses, consistent with a separated control of the rhythm/phase
and pattern compositional elements. These separated controls
may be important to allow the force/effector compositional con-
trols to adjust as needed to support the next level of task compo-
sition. Unitary task elements at the kinematic and kinetic levels of
task description occur in reaching, and locomotion, but adapta-
tion of these to momentary conditions may require less stereotypy
in the supporting compositionality of muscle synergy bursts and
pattern.
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