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Randomly connected recurrent networks of excitatory groups of neurons can possess a
multitude of attractor states. When the internal excitatory synapses of these networks
are depressing, the attractor states can be destabilized with increasing input. This leads
to an itinerancy, where with either repeated transient stimuli, or increasing duration of
a single stimulus, the network activity advances through sequences of attractor states.
We find that the resulting network state, which persists beyond stimulus offset, can
encode the number of stimuli presented via a distributed representation of neural activity
with non-monotonic tuning curves for most neurons. Increased duration of a single
stimulus is encoded via different distributed representations, so unlike an integrator, the
network distinguishes separate successive presentations of a short stimulus from a single
presentation of a longer stimulus with equal total duration. Moreover, different amplitudes
of stimulus cause new, distinct activity patterns, such that changes in stimulus number,
duration and amplitude can be distinguished from each other. These properties of the
network depend on dynamic depressing synapses, as they disappear if synapses are
static. Thus, short-term synaptic depression allows a network to store separately the
different dynamic properties of a spatially constant stimulus.

Keywords: short-term plasticity, dynamic synapses, attractor networks, short-term memory, distributed coding,
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INTRODUCTION
Circuits of reciprocally connected neurons have been long consid-
ered as a basis for the maintenance of persistent activity (Lorente
de Nó, 1933). Such persistent neuronal firing that continues for
many seconds after a transient input can represent a short-term
memory of prior stimuli (Funahashi et al., 1991). Indeed, Hebb’s
famous postulate (Hebb, 1949) that causally correlated firing of
connected neurons could lead to a strengthening of the connec-
tion, was based on the suggestion that the correlated firing would
be maintained in a recurrently connected cell assembly beyond
the time of a transient stimulus (Hebb, 1949). Since then, ana-
lytic and computational models have demonstrated the ability
of such recurrent networks to produce multiple discrete attrac-
tor states (Brunel and Nadal, 1998), as in Hopfield networks
(Hopfield, 1982, 1984), or to be capable of integration over time
via a marginally stable network, often termed a line attractor
(Zhang, 1996; Compte et al., 2000). Much of the work on these
systems has assumed either static synapses, or considered changes
in synaptic strength via long-term plasticity occurring on a much
slower timescale than the dynamics of neuronal responses. Here
we add some new results pertaining to the less well-studied effects
of short-term plasticity—changes in synaptic strength that arise
on a timescale of seconds, the same timescale as that of persistent
activity—within recurrent discrete attractor networks.

The two long-established forms of short-term synaptic plas-
ticity affect all synapses of the presynaptic cell according to its
train of action potentials. Synaptic depression refers to a reduced

synaptic efficacy in the few hundreds of milliseconds following
a presynaptic spike, effectively weakening connections strengths
as presynaptic firing rate increases (Markram and Tsodyks, 1996;
Abbott et al., 1997). Such weakening of efficacy of the most
active connections has an unavoidable destabilizing effect on any
network state that depends on those active connections for its per-
sistence. Synaptic facilitation is the opposite effect—a temporary
enhancement of synaptic efficacy in the few hundreds of mil-
liseconds following each spike (Markram et al., 1998), effectively
strengthening connections to post-synaptic cells as presynaptic
firing rate increases.

More recently described and information-theoretically more
powerful than depression or facilitation, is an associative form
of short-term plasticity (A-STP), which depends on both pre-
and post-synaptic activity (Erickson et al., 2010). A-STP pro-
duces a temporary enhancement of synaptic efficacy between
neurons after a short period of strong coactivity. Being a form
of positive feedback, A-STP, like facilitation, is likely to sta-
bilize states of persistent activity, but may have the added
benefit of maintaining sequences of persistent firing states
(Miller and Wingfield, 2010).

In this paper, we focus on short-term synaptic depression
in randomly connected networks of discrete attractors (Rigotti
et al., 2010). The attractors are formed by coupling multiple
groups of neurons, each group rendered bistable through recur-
rent excitation. The destabilization of discrete attractor states
by short-term synaptic depression produces a rich repertoire
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of network responses, allowing it to encode and store multiple
stimulus features.

Short-term depression arises from vesicle depletion (von
Gersdorff and Matthews, 1997), which leads to a maximum, sat-
urating rate of synaptic transmission—dependent on the rate
of vesicle recycling. The temporary weakening of connection
strengths from active cells tends to reduce the stability of active
recurrent cell-groups. This can lead to more dynamic or itinerant
activity states in recurrent networks. Here we show that in a net-
work of randomly coupled cell-groups, the itinerancy produced
by synaptic depression can cause the network to reach a state
that depends on any of stimulus intensity, or stimulus duration
or the number of successive identical stimuli presented. In the
latter case, neurons can be tuned to a specific number of inputs,
similarly to those recorded in vivo.

Counting of stimuli can be achieved without dynamic synapses
in a network behaving as an integrator. Indeed, appropriate feed-
forward connections from an integrator can produce numerosity-
tuned neurons (Verguts and Fias, 2004), with similar tuning
curves to those found in vivo (Nieder and Miller, 2003; Tudusciuc
and Nieder, 2007; Merten and Nieder, 2009; Nieder, 2013).
However, an integrator, whether it arises from a finely tuned net-
work with a continuous, line attractor (Seung et al., 2000; Miller
et al., 2003; Machens et al., 2005), or more robustly from a series
of discrete attractor states (Koulakov et al., 2002; Goldman et al.,
2003), is not ideal as the input to a counter. While a perfect
integrator does indeed produce distinct responses to successive
identical stimuli, it conflates both amplitude and duration of the
stimulus, with the number of stimuli, into a single response that
only depends on the produce of these three quantities. Thus,
an integrator’s response to two stimuli of a given magnitude
and duration is identical to that of a single stimulus with either
twice the magnitude or twice the duration. Any non-linearities
would remove such perfect scaling [which is essential in sit-
uations requiring perfect integration, such as from velocity to
position (Zhang, 1996; Samsonovich and McNaughton, 1997;
Song and Wang, 2005)] but would not remove the conflation of
stimulus features, since an integrator’s activity is confined to a
one-dimensional surface—input amplitude, duration and num-
ber produce shifts along the same one-dimensional line. Thus, for
an integrator to act as a counter, its inputs must be first scaled to
a fixed duration and amplitude by upstream sensory processing.

Here we test whether any advantage over the integrator is
offered by the high-dimensional space of attractor states pro-
duced by randomly connected bistable groups of neurons (Rigotti
et al., 2010). In a group of cells with recurrent excitatory con-
nections, the excitability of the cell-group—its ability to become
rapidly active in response to input—increases with the effect
strength of the internal connections. In a network with many
such cell-groups, if they are predominantly coupled by cross-
inhibition, those cell-groups most excited by the stimulus and
activated most quickly, can suppress activity of other cell-groups.
Short-term synaptic depression reduces the effective connection
strengths between coactive neurons compared to those between
quiescent neurons. Since the amplitude of synaptic depres-
sion is firing-rate dependent, and since internal randomness
in the network causes cell-groups to respond with different

amplitude-dependences of their firing rates, stimuli of different
amplitudes are likely to affect the network differently. Moreover,
dynamical synapses cause the network’s response to depend on
the temporal profile of stimuli, not just its temporal integration,
so that two spaced stimuli could produce a different response
from a single stimulus of twice the duration.

Therefore, we will vary three stimulus properties—number,
duration and amplitude—both individually and together, to
assess whether a randomly connected network with dynamic
synapses, unlike an integrator, can dissociate these features. We
first assess whether, when a stimulus is repeated, cell-groups active
to its first presentation can be replaced by other active cell-groups
during its second and later presentations. We then uncover how
this process, in a randomly connected sparse recurrent network,
depends on different qualities of the stimulus, such as its dura-
tion and intensity. Finally, we show these qualities interact with
the number of stimuli in a non-trivial manner, often producing
unique patterns of persistent activity as a function of number,
duration and intensity of preceding stimuli.

METHODS
FIRING RATE MODEL WITH DEPRESSING SYNAPSES
To model the effects of synaptic depression in a network of
coupled cells, we employ a firing rate model, which treats the
mean input current, Ii(t), the mean firing rate ri(t), the mean
depression variable, Di(t) and the mean synaptic output, Si(t),
of individual groups of neurons, labeled i, as continuous, time-
dependent quantities. The formulation is appropriate for cells
with Poisson spike statistics, as at fixed firing rates the depression
variable and synaptic outputs approach the steady state values
produced by Poisson spike trains, though with appropriate rate-
dependent modifications to the effective time constants. Thus, the
dynamics of the system is described by a set of coupled first order
differential equations. The firing rate depends upon its input
current according to a sigmoidal f–I curve, as:

τr
dri

dt
= −ri(t) + rmax

i

exp {[�i − Ii(t)]/�i} (1)

where τr = 10 ms is the time constant for, rmax
i is the maximum

firing rate of that cell-group, �i is the threshold, namely the
level of input current required for half-maximal firing and �i

determines (with rmax
i ) the slope of the f–I curve.

The depression variable follows:

τDi
dDi

dt
= 1 − Di(t) − p0ri(t)τDiDi(t) (2)

where p0 is the fraction of docked vesicles released per spike
and τDi is the recovery time to regain maximum transmission.
Equation 2 is chosen so as to reach the steady state value produced
by a Poisson spike train (Dayan and Abbott, 2001) of rate ri:

Dss(ri) = 1

1 + p0riτDi
, (3)

if the rate were fixed, assuming each presynaptic spike
at time ts causes a reduction in the depression variable,
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Di
(
t+s

) = Di
(
t−s

)
(1 − p0), due to loss of a proportion, p0, of

docked vesicles.
The synaptic gating variable follows:

τs
dsi

dt
= −si(t) + α̃p0ri(t)τsDi(t)[1 − si(t)] (4)

where τs is the synaptic time constant for decay of si to zero
in the absence of synaptic transmission and α̃ is the fraction of
open receptors bound by maximal vesicle release—that is, the
fractional increase in s for a given presynaptic spike at time ts

is α̃p0Di(t−s )
[
1 − si(t−s )

]
. Equation (3) reaches the steady state

value for si produced by a Poisson train of releases with fixed Di,
at a rate ri:

τsS
ss (ri, Di) = α̃p0Diriτs

1 + α̃p0Diriτs
. (5)

The connectivity matrix, Wi → j describes the connection
strengths from each cell-group i to cell-group j, so determines the
input current to a cell-group j via:

Ij(t) =
∑

i

si(t)Wi → j + I
app
j (t) + ση(t) (6)

where I
app
j (t) is the stimulus-dependent external, applied cur-

rent to cell-group j and η(t) is a white noise term which con-
tributes fluctuations to each cell-groups current, with a standard
deviation σ.

Full details of the simulation parameters are given in Tables 1
and 2.

NETWORK PROPERTIES, STIMULATION PROTOCOLS AND
MEASUREMENTS
Our main results were achieved with a network of NE = 100 exci-
tatory cell-groups and a single inhibitory cell-group, though we
tested the effects of using from NE = 20 to NE = 400 excita-
tory cell-groups. The dominant connections within the network

Table 1 | Components of the network simulations (Nordlie et al.,

2009).

A. Model summary

Populations 100 excitatory (E), 1 inhibitory (I)

Connectivity E-to-E: all-to-all with random strength; high self-excitation

Neuron model Firing rate model with sigmoidal f–I curve

Synapse model Single exponential with depression or facilitation

Plasticity No long-term plasticity

Input Fixed current pulses to all populations

Measurements Persistent firing rates after current offset

B. Populations

Name Elements Size

Excitatory (E) Firing-rate model 1 for each of 100 model cell-populations

Inhibitory (I) Firing-rate model 1 for the single cell-population

(Continued)

Table 1 | Continued

C. Connectivity

Name Source Target Pattern

EE (S) E Same E Fixed at WEEs

EE (X) E All other E All-to-all with weight a random iid in
[0, 2WEEx]

EI E I Fixed, constant at WEI

IE I E Fixed, constant to all at WIE

II I I Not Present

D. Neuron and synapse model

Name Firing rate model with dynamical synapses

Type Dynamic leaky integrate-and-fire, exponential
conductance input

Input current Ij (t) =
∑

i

si (t)Wi→j + Iapp
j (t) + ση(t)

Firing rate τr
dri

dt
= −ri (t) + rmax

i

exp
{[

�i − Ii (t)
]
/�i

}

Depression variable τDi
dDi

dt
= 1 − Di (t) + p0ri (t)τDi Di (t)

Synaptic transmission τs
dsi

dt
= −si (t) + α̃p0ri (t)τsDi (t) [1 − si (t)]

E. Plasticity

No long-term plasticity present

F. Input

Type Description

Applied current Transient pulses of fixed current with number of
pulses, amplitude of pulse and length of pulse varied
across simulations. Current is identical to all
excitatory populations and scaled by a constant factor
to the inhibitory population

G. Measurements

Firing rates vectors Mean rate per cell 750–1500 ms after stimulus onset

Correlations Correlation between firing vectors for different stimuli

Confusability Proportion of trials that response to a test stimulus is
closer to the mean response produced by a target
stimulus than to the mean response of any other
target stimulus

were produced by strong self-excitation within each excitatory
cell-group and strong cross-inhibition between all excitatory cell-
groups via the inhibitory cell-group. The cell-groups were further
coupled by all-to-all excitatory connections, with connection
strength chosen randomly from a uniform distribution between
zero and the maximum value. Such random cross-connections,
even in sum, produced a weaker excitatory input than the within-
group connection.

More specifically, the connection matrix, Wi → j (Equation 6)
comprised four types of connection: fixed strength excitatory
connections within an excitatory cell-group (Wi → i = W0

EE for
1 ≤ i ≤ NE); random strength excitatory connections between
excitatory cell-groups (Wi → j = ξijWX

EE/(NE − 1), if i �= j and
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Table 2 | Network simulation model parameters.

A. Firing rate model and input current

Population τr rmax
i

�i �i σ

Excitatory (E) 0.01 s 100 Hz [6.3–6.5] 1 0.002, 0.005

Inhibitory (I) 0.01 s 200 Hz 12 3 0.002, 0.005

B. Depression and synaptic transmission

Connection τD p0 τs α̃

EE (S), EE (X), EI 0.5 s 1 0.05 s 1

IE 0.5 s 0.1 0.005 s 1

C. Connection strengths

Connection W 0
EE W X

EE W EI W IE

Value 85 [0–0.4] 2.5 −300

D. Stimulus values

Property Nmax T I0 Interval

Value 10 (8, 6, 1) 0.1 s (0.01 s–1 s) 2 (0.5–3) 1.5 s (2 s)

1 ≤ i, j ≤ NE) and ηij is a random number selected from a uni-
form distribution (0 < ξij < 1); fixed strength excitatory connec-
tions to the inhibitory cell-group (Wi → j = WEI/(NE − 1) if 1 ≤
i ≤ NE and j = NE + 1); and fixed strength inhibitory connec-
tions to each excitatory cell-group (Wi → j = WIE if i = NE + 1
and 1 ≤ j ≤ NE). Values of these parameters are given in Table 2.
Different versions of a network with the same parameters were
generated by selecting a new set of random excitatory cross-
connections through a new generation of the random matrix, ξij.
In contrast, repeated trials with the same network were produced
with a fixed connection matrix, Wi→j, but with a new instanti-
ation of trial-specific random noise in the simulation, via η(t)
(Equation 6).

Stimuli were trains of transient current pulses, with each pulse
producing the same current input to all excitatory cell-groups,
as well as an input to the inhibitory cell-group. Depending on
the protocol, current pulses ranged in number from 1 to 10, in
duration from 10 ms to 1 s and in amplitude from 0.5 to 3 (in
units where the firing threshold was in the range 6.3–6.5 for
excitatory cells). Current pulses were delivered every 1.5 s in all
protocols, except for those with varying stimulus duration, in
which case delivery was every 2 s. While these current pulses could
evoke immense changes in network activity, even the strongest
inputs contributed only a small fraction of the total input to any
cell-group, as the network is dominated by feedback within the
circuit.

Mean network activity was calculated in all cases from at least
100 ms after stimulus offset until the onset of the subsequent
stimulus. In the standard protocol, with a stimulus of 250 ms,
rates of each cell were averaged from 375 to 1500 ms from stim-
ulus onset (i.e., 125–1250 ms from stimulus offset) to determine
the stimulus responses used in later analyses.

CONFUSABILITY MATRIX
To calculate a confusability matrix, we first simulated a set of
10 different random trials of the same network with different
instances of noise via η(t) (Equation 6). We used these initial
trials to obtain the mean response in the delay period following
each stimulus number or stimulus type, and defined these mean
responses as the “target response.” We then simulated a new set of
10 different random trials (“test trials”) of the same network, for
each test trial assessing which target response the delay activity
most closely resembled. The confusability matrix gives the frac-
tion of test trials, for which the response to one stimulus type and
number most closely resembles the “target response” of a given
stimulus type and number.

WEBER SCALING
To test for Weber’s law, we produced 10 distinct networks, with 25
target trials and 25 test trials in each network. Importantly, across
trials we allowed the level of noise to vary randomly, in this case
according to a uniform distribution over the range 0.0015 < σ <

0.0075. For each network, for a given test stimulus number, we
calculated the mean and standard deviation of the target stimulus
number the delayed activity most closely resembled. We then plot
the mean standard deviation across networks versus the mean
target reached in Figure 2C.

RESULTS
NUMEROSITY
Numerosity is the ability of a circuit to represent the number
of transient stimuli. In the first task, we simply applied, repeat-
edly, a constant transient stimulus current to all cell-groups
and assessed how reliably the resultant activity depended on the
number of stimuli to date. Given appropriate parameters—in
particular such that recurrent self-excitation within cell-groups
was sufficient to maintain activity beyond the time of the tran-
sient stimulus (Figure 1A), but not so strong that it could not
be suppressed by cross-inhibition arising from later activity in
other cell-groups—the network could switch through stable, dis-
tributed activity states as shown in Figure 1. Moreover, when
averaging single-cell responses during the delays between stim-
uli across 10 trials, many cells were tuned to individual num-
bers of stimuli (Figure 1B1). With increased noise, the observed
tuning was broader for neurons selective to higher numbers
(Figure 1B2). Similar tuning is seen in the neural activity of
numerosity-selective neurons in primates (Nieder and Miller,
2003; Tudusciuc and Nieder, 2007, 2009), neurons which also
respond to a temporal sequence of discrete stimuli (Nieder,
2012).

When analyzing the complete network response
(Figures 1C1,C2) one notices that the overall pattern of
activation is distributed: many cell-groups are active following
any particular number of stimuli and any one cell-group can be
active following multiply different stimuli. However, the activity
patterns following particular numbers of stimuli are distinct
from each other (Figures 2A1,A2). Indeed, the strongest effect
of depression is to decorrelate subsequent stimuli from each
other, so the lowest correlation is seen in a band surrounding
the diagonal in Figure 2A1. Such an effect can be understood as
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FIGURE 1 | Cell-group activity is tuned to the number of repeated

stimuli. (A1) Responses of two different cells to a series of 250 ms constant
inputs repeated every 1.5 s. (A2) Responses of two other cells to the same
sequence with increased noise in the network. (B1,B2) Tuning curves of
specific cell-groups in the network, each color represents a different cell,
whose firing rate is plotted as a function of the number of successive

identical stimuli. Colors matching those in (A1,A2) indicate the same cell.
(C1,C2) Mean delay activity of all cell-groups to a train of ten identical stimuli,
with color indicating firing rate. (A1,B1,C1) Internal noise, σ = 0.002.

(A2,B2,C2) Increased internal noise, σ = 0.005. All panels: Mean responses
averaged across ten trials of a single network, with error bars indicating
standard deviations.

depression ensuring a group of cells is least likely to be active if it
has just been active.

To assess how distinguishable were these different activity
patterns from each other, we produced a set of 20 trials by
using different instances of temporal noise. We took the mean
responses of the first 10 trials to produce “target” responses.
We then assessed for each of the next 10 “test” trials, which
“target” representation the persistent activity was most similar
to. If any two stimuli resulted in the same network response,
then the test stimuli would be as often as similar to one
as the other, producing a “confusability” of 0.5 to each pair.
However, as we see (Figure 2B1), in the low noise case, we
found 100% reproducibility of distinct activity patterns for
the first 9 of 10 stimulus types. With increased noise, while
the first three stimuli remained distinct with 100% reliabil-
ity, the confusability increased with increasing stimulus count
(Figure 2B2).

To quantify the variability in the response, in a separate exper-
iment we selected a different level of noise in each trial used to
simulate target responses then test responses. As in the calcula-
tion of the confusability matrix, for each stimulus number in a
test trial, we treated the network’s output as the stimulus num-
ber of the target response most correlated with the test response.
Across the 10 test trials we calculated the standard deviation of
these network outputs. We repeated across 10 different networks
to produce the curve in Figure 2C1. With noise in the low range
of 0.1 < σ < 0.3, the responses to the first three stimuli are always
precisely reproduced, so the variability is zero, but thereafter the
standard deviation in the networks’ responses increases linearly
with stimulus number.

While our standard network comprised 100 excitatory cell-
groups (NE = 100), the qualitative behavior did not depend on
this number. With increasing number of cell-groups, the effect
of noise was decreased, with an approximate noise-scaling factor
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FIGURE 2 | A randomly connected recurrent network with depressing

synapses counts identical stimuli. (A1,A2) Correlations between mean
post-stimulus firing rates of all cell-groups as a function of stimulus number.
(B1,B2) The confusability matrix indicates the probability of the network
activity being most like a given target template following a given number of
successive stimuli. Target position corresponds to each of the ten successive
stimuli whose mean network activity was evaluated on ten preliminary
trials. Recall position denotes each of ten successive stimuli on test
trials—following each stimulus, the network activity was measured and

compared with target stimuli. Mean of ten trials presented. Color scale:
red = 100% correct, green = 50% correct, blue = 0% correct. (A1,B1) Internal
noise, σ = 0.002. (A2,B2) Increased internal noise, σ = 0.005. (C1,C2)

Standard deviations in the target position as a function of test position. Ten
trials of each of ten networks, with different levels of noise, 0.1 < σ < 0.3 in
each trial. (C1) Network of 100 cell groups. Fitted line to points 3–8 is
y = 0.30x − 0.82. (C2) Network of 25 cells. Fitted line to all points
y = 0.24x − 0.04. (C1,C2) Straight line fits have higher adjusted r-square
values than polynomial fits to y(x) or x(y), suggesting Weber’s Law holds.

of 1/
√

NE. Similarly, near identical behavior was produced when
the number of cell-groups was reduced, given the appropriate
scaling of noise, so that a network with NE = 25 and σ = 0.001
produced as reliable behavior as a network with NE = 100 and
σ = 0.002. However, when the number of excitatory cell-groups
was reduced too much (for example, for NE < 15) then, with cur-
rent network parameters and random connections, the network

would cycle through a small number of 2–4 discrete states so its
ability to count inputs would be severely limited.

The effect of network size can be seen in Figure 2C2, in which
we reproduce the analyses leading to Figure 2C1, but with the
smaller network of 25 cell-groups. In this case, given the identical
range of noise used, more errors occur at any stimulus number,
so that even the response to the first stimulus is not completely
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reliable. The standard deviation of the outputs of 10 such net-
works is statistically indistinguishable from a straight line through
the origin, reproducing Weber’s Law of scaling (see Discussion).

STIMULUS DURATION
Our network is not an integrator, but relies upon synaptic depres-
sion, which has a fixed time constant, to reduce the stability of
active states. Therefore, it was not clear whether continuously
applied stimuli of fixed durations could have the same effect
on network activity as multiple, spaced individual stimuli. To
test whether the same network could be responsive to stimulus
duration, we reset the network following a range of stimuli of dif-
ferent durations then analyzed the resulting activity. The results
in Figure 3, demonstrate the ability of the network to produce
a response that is duration-dependent. Seven distinct states of
activity are produced in the example network displayed (six if
one excludes the unresponsive state following very short stimuli).
Interestingly, the tuning curves of individual neurons differ from
their tuning to numerosity—they are much broader and more of
them are monotonic (Figure 3B).

STIMULUS INTENSITY
We assessed whether the same random network could produce
resultant activity that depended on the strength of a fixed dura-
tion input current. Results of increasing stimulus strength are

similar to those of increased duration in that tuning curves
are broader and more monotonic. Interestingly, this is in line
with electrophysiological recordings of activities of numerosity-
tuned neurons in primates (Nieder and Merten, 2007). Given
the broader tuning curves, many pairs of stable activity states
were highly correlated (Figure 4C) but in the example shown,
all 9 distinct stimulus amplitudes, ranging over a factor of five,
were successfully encoded in distinct network states, with 100%
reliability (Figure 4D).

DIFFERENTIATING NUMBER, DURATION AND INTENSITY OF STIMULI
A perfect integrator would produce a network state-dependent
on the product of number, duration and intensity of stimuli.
Indeed, one could argue that a drawback to the applicability
of the perfect integrator to most sensory tasks is its inability,
in the absence of other feedback mechanisms (Machens et al.,
2005; Miller and Wang, 2006) to distinguish between number,
duration and intensity of stimuli. Moreover, such integrators,
as possessed by the head-direction system, or occulomotor sys-
tem, typically require networks with highly specified architectures
and often considerable fine-tuning of parameters. In our for-
malism, with randomly connected units, the network is robust,
because groups of cells are individually bistable. In this manner
the network resembles the discrete integrator (Koulakov et al.,
2002; Goldman et al., 2003). However, since the connections are

FIGURE 3 | A randomly connected network with depressing synapses

can encode stimulus duration. (A) Mean response for all cell-groups
following a single stimulus as a function of stimulus duration. Color indicates
firing rate. (B) Responses of four example cell-groups indicate broad tuning.

(C) Correlation between network firing rates of cell-groups to different
stimulus durations. (D) The confusability matrix (described in Figure 1)
indicates the network can differentiate stimulus duration into seven
completely distinct categories. Internal noise, σ = 0.002.
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FIGURE 4 | A randomly connected network with depressing

synapses can encode stimulus amplitude. (A) Mean response for all
cell-groups following a single stimulus as a function of stimulus
amplitude, ranging in steps of 0.5 from 1 to 5. Color indicates firing
rate. (B) Responses of four example cell-groups indicate broad tuning

to stimulus amplitude. (C) Correlation between network firing rates of
cell-groups to different stimulus amplitudes. (D) The confusability
matrix (described in Figure 1) indicates the network can differentiate
stimulus amplitude into nine completely distinct categories. Internal
noise, σ = 0.002.

random and not tuned to produce the one-dimensional line of
stable points typical of an integrator, the network is unlikely to
respond to changes in duration, amplitude and number of stim-
uli in qualitatively the same manner, as does an integrator. Rather,
the stable activity on the randomly connected network appears to
follow a high-dimensional, distributed representation—different
bistable groups can switch on or off with different combinations
of other bistable groups, without a systematic order to the switch-
ing. Therefore, it is plausible that multiple feature combinations
of the stimulus could be separately encoded.

To test the ability of the network to represent multiple stim-
ulus features, we first, within a single network, applied trains
of transient stimuli of varying durations and constant ampli-
tude. If the network were acting as an integrator, then it would
respond to total stimulus time, such that a doubling of the dura-
tion combined with halving of the number of stimuli would result
in the same network activity. However, we found this not to
be the case (Figures 5A,B). Indeed, we analyzed the network’s
activity following sequences of up to 8 identical transient stim-
uli, with six different stimulus durations ranging from 0.05 to
0.3 s. We found for the intermediate stimulus duration of 0.15 s
that not only was a unique, reliably different activity state pro-
duced following each of the eight successive stimuli, but also
all 8 states were uniquely produced by that particular stimulus

duration and distinct from any states produced by any num-
ber of successive stimuli with either longer or shorter durations
(Figure 6A).

An integrator would also respond to the product of amplitude
and number of stimuli, or amplitude and duration of a single
stimulus. However, the randomly coupled network produces dis-
tinct responses to trains of a few high-amplitude stimuli and
many low-amplitude stimuli, as well as to intermediate combina-
tions when all combinations have the same product of amplitude
and number (Figures 5C,D). Moreover, when analyzing the net-
work’s activity following sequences of up to eight transient stimuli
of constant duration, with seven different amplitudes (in the
range 0.5–2.0) we found a very low likelihood for sequences
with different amplitudes to be confused with each other and
all 8 states following stimuli of intermediate amplitudes to be 90
or 100% correctly identified by both number and amplitude of
stimuli (Figure 6B).

Figure 6C further indicates the distinctiveness of network
response to stimuli of different amplitudes versus of different
durations. Following a single transient stimulus, each of five dif-
ferent stimulus amplitudes in the range 1.0–2.0 produces either
3 or 4 different activity states that depend on stimulus duration.
These states are both distinct from each other and distinct from
any state produced by another stimulus amplitude (Figure 6C).
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FIGURE 5 | A randomly connected network with depressing synapses

produces distinctive responses to stimulus duration, amplitude and

number of repetitions. (A) Mean network response, with color indicating
firing rate of each cell-group, following the 6th of a series of 0.05 s
stimulations (row 1), the 3rd of a series of 0.1 s stimulations (row 2), the 2nd
of a series of 0.15 s stimulations (row 3) and a single 0.3 s stimulus, such that
all stimulus combinations produce 0.3 s of total current (amplitude 1.5,

σ = 0.002). (B) Confusability matrix between the four types of stimulus
combination of (A), indicating the network’s response is distinct to each
stimulus combination. (C) Mean network response as in (A) to series of 8, 6
4, and 4 stimuli respectively of different amplitudes 0.75, 1.0, 1.5, and 2.0
(such that the product is constant at 6.0). Each stimulus has duration of
0.25 s, σ = 0.002. (D) Confusability matrix between responses to the four
stimulus combinations of (C) demonstrates the responses are distinct.

We finally produced a 6 × 3 × 3 array of stimuli with any
combination of number (N = 1 − 6), duration (T = 0.1 s, 0.2 or
0.3 s) and intensity (I = 1, 2, or 3) of applied current pulses. We
assessed how network activity depended on these stimulus com-
binations. Figure 6D demonstrates that for a large number (27)
of these stimulus combinations, the network activity is reliably
propelled into a distinct state, unique to that single combination
of duration, amplitude and number of stimuli. Since the stimuli
are all constant, equal currents to all excitatory cell-groups in the
network, the evolution of activity states depends entirely on the
random cross-connections between cell-groups and the temporal
dynamics of intra-group and inter-group synaptic transmission.

NETWORKS WITHOUT DEPRESSING SYNAPSES
When synaptic depression is removed from these networks—and
static release probability is optimally tuned to allow for multi-
ple stable activity states—the counting behavior of the network
disappeared (Figures 7A,C). That is, successive stimuli simply
reproduced the same state. The number of states produced by
different durations and amplitudes of stimuli was reduced from
7–8 to 2–4 (Figures 7B,D). Also, under the same low-noise con-
ditions as the networks shown in Figures 1–6, the reliability
of responses to identical stimuli was greatly reduced. In fact,

with constant amplitude and varying duration, no states were
distinctly produced by a single subset of stimuli.

In summary, it is short-term depression in the recurrent
connections of bistable groups that produces itinerancy in the
network states. Such itinerancy with consecutive stimuli enables
the network to possess a counting behavior and to produce
numerosity-tuned cells. The same synaptic depression imparts a
preferred stimulus amplitude and duration for activation of a cell-
group, increasing the number and reliability of amplitude-specific
and duration-specific states.

DISCUSSION
Bistability relies upon positive feedback, which can arise from
cell-intrinsic currents (Hounsgaard et al., 1984; Rinzel, 1985;
Booth and Rinzel, 1995) or from network feedback (Kleinfeld
et al., 1990; Camperi and Wang, 1998; Wang, 1999, 2001;
Koulakov et al., 2002). Synaptic facilitation is a positive feedback
mechanism in circuits of reciprocally connected excitatory cells,
since the greater the mean firing rate, the greater the effective con-
nection strength, further amplifying the excitatory input beyond
that produced by the increased spike rate alone. This property
of synaptic facilitation enhances the stability of memory states
and renders them more robust to distractors (Itskov et al., 2011).
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FIGURE 6 | A randomly connected network with depressing synapses

produces distinct responses to multiple stimulus features.

(A) Confusability matrix between the network’s activity states following 1–8
transient stimuli of one of six durations from 0.05 s to 0.30 s (48 stimulus
combinations in total). 15 combinations are perfectly distinct.
(B) Confusability matrix between the network’s activity states following 1–8
transient stimuli of one of seven amplitudes from 0.5 to 2.0 (56 stimulus
combinations in total). 17 combinations are perfectly distinct.
(C) Confusability matrix between the network’s activity states following a

single transient stimulus of one of eight durations from 0.05 s to 0.4 s and
one of five amplitudes from 1.0 to 2.0 (32 stimulus combinations in total).
Although no individual combination is perfectly distinguished from all others,
18 distinct states are apparent, with the majority of states responding to a
single amplitude and two durations. (D) Confusability matrix between the
network’s activity states following 1–6 transient stimuli of one of three
durations (0.1 s, 0.2 s, 0.3 s) and one of three amplitudes (1.0, 1.5, 2.0). 23
stimulus combinations are perfectly distinguished and over 25 distinct activity
states are produced.

Other forms of positive feedback, such as depolarization-induced
suppression of inhibition (DSI), which depends on activity in the
post-synaptic cell, can similarly produce robustness in recurrent
memory networks (Carter and Wang, 2007).

Conversely, depressing synapses in a self-exciting circuit pro-
duce negative feedback, by reducing the effective synaptic strength
of the outputs of the most active cells. Such negative feedback
reduces the stability of the attractor states produced by positive
feedback. This effect has been demonstrated in a system known
as the ring attractor, an example of a perfect integrator (Song and
Wang, 2005), which in the absence of dynamic synapses can pro-
duce a “bump” of population activity in a marginal state. Once the
bump has formed at a given location on the “ring” it can remain at
that location so form the basis of a spatial memory. However, the
stationary “bump” can be rendered unstable by synaptic depres-
sion and be replaced by one of two possible moving “bump”
states with fixed velocity (York and van Rossum, 2009). Such an

effect is similar to that produced by intrinsic adaptation currents
within the excitatory neurons of the ring attractor, which result
in a pitchfork bifurcation as the single stationary state is replaced
by two oppositely directed constant velocity states, whose abso-
lute velocity increases as the underlying conductance increases
(Ben-Yishai et al., 1997; Hansel and Sompolinsky, 1998; Laing
and Longtin, 2001; Tegnèr et al., 2002).

In the randomly connected circuits that we simulate, synap-
tic depression in strong recurrent excitatory synapses also has
the same effect on these excitatory cells as an adaptation cur-
rent. Following the initial burst of excitatory input, the dynamic
weakening of synaptic strength while vesicles need to be replaced
causes a reduction in post-synaptic excitatory input, which affects
the post-synaptic cell just as would an activity-dependent intrin-
sic inhibitory current. Thus, it is possible that synaptic depression
could produce similar results to that of an adaptation current
in successful models of binocular rivalry based on bistability
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FIGURE 7 | A random recurrent network without depressing

synapses shows no counting behavior and weakly tuned amplitude

selectivity. (A,B) Post-stimulus firing rates of each group of neurons in
response to (A) repetitions of an optimal-strength stimulus and (B) a

single stimulus of varying amplitude. (C,D) Confusability matrix indicated
how distinguishable the network responses are for the successive
repetitions of the same stimulus (C) or for a single stimulus of
different amplitudes (D).

between groups of neurons (Moreno-Bote et al., 2007; Theodoni
et al., 2011).

A randomly connected network of bistable neurons was shown
to produce a diversity of neural responses (Rigotti et al., 2010)
with neurons possessing mixed selectivity to conjunctions of
stimulus features. In that work, different combinations of stim-
uli or inputs produced the different resulting distributions of
stable network activity, allowing for appropriate responses in cog-
nitive tasks. Here, we show that with the addition of depressing
synapses, a similar network produces a diversity of responses to
different dynamic features of a single stimulus of equal strength
to all cells.

The randomly connected network responds differently from
neural integrators, whether continuous (Seung, 1996; Miller et al.,
2003; Song and Wang, 2005) or discrete (Koulakov et al., 2002;
Goldman et al., 2003). For an integrator, increased signal ampli-
tude affects the system in qualitatively the same manner as
increased signal duration. The reason for the difference is that
integrators are designed to have a one-dimensional sequence of
stable fixed points—or a continuous line of fixed points repre-
senting a marginal phase (Ben-Yishai et al., 1995), sometimes
called a line attractor (Seung, 1996)—whereas the randomly con-
nected network is inherently of high dimensionality (Rigotti et al.,
2010). Thus, even when an integrator either inherently (Compte
et al., 2000; Song and Wang, 2005) or through its connections
to a second output layer (Verguts and Fias, 2004), produces

non-monotonic, “peaked” tuning curves, the responses to num-
ber, duration and stimulus amplitude are not separable. That is,
an integrator’s activity following a given number of counts of one
stimulus is identical to that following more counts of a weaker
stimulus, or of a shorter duration stimulus—of course, in many
situations other than counting, such integration is the desired
network response (Zhang, 1996; Samsonovich and McNaughton,
1997; Romo et al., 1999; Seung et al., 2000; Song and Wang, 2005).

In many experiments analyzing numerosity coding, both
behavioral (Merten and Nieder, 2009) and neural (Nieder and
Miller, 2003) responses produce two features suggestive of log-
arithmic coding. First, errors are skewed, with a longer tail
toward stimulus values higher than the stimulus producing peak
response. Second, the standard deviation of number estimates—
here calculated via the trial-to-trial variability in the network’s
estimate of stimulus number for each fixed actual number of
stimuli—scales linearly with number of stimuli, a scaling known
as Weber’s Law (Weber, 1851). Our network does not exhibit the
observed skew in neural responses, in particular because there is a
tendency when errors are made, for the random attractor states
visited to be more like the first attractor state (so an incorrect
response of “one” is the most common). However, if we incor-
porate trial-to-trial variability in the level of noise (Figure 2C)
then a Weber scaling is observed—errors become more likely, lin-
early with increasing number. Thus, the information pertaining
to the encoded number, as contained within the distributed

Frontiers in Computational Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 59 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Miller Separating stimulus features with depression

representation of these networks, degrades in the expected man-
ner, but it is likely a separate “readout” network of cells is needed
to produce all the features observed in neural recordings. Such a
“readout” network could also combine the different representa-
tions of number arising from stimuli of different properties into
a single “pure number” representation—that is, it would produce
pattern completion after this initial step of pattern separation.

Recent experiments have demonstrated associative forms of
short-term plasticity (Brenowitz and Regehr, 2005; Erickson et al.,
2010), which is more powerful, since it can be synapse-specific
rather than cell-specific, so has greater information carrying
capacity. Such associative-STP has been shown to be capable of
temporarily coupling together specific pairs of bistable neural

groups, so could form the basis for memory of sequences of dis-
crete items (Botvinick and Watanabe, 2007; Miller and Wingfield,
2010).

In summary, we have shown that depression can destabilize
discrete activity states and in so doing enables the network activ-
ity to change through repetitions of identical stimuli. Therefore,
such networks could be of value in providing a basis for count-
ing and for memory of sequences (Botvinick and Plaut, 2006;
Botvinick and Watanabe, 2007). Indeed, our ongoing work sug-
gests that memories of discrete sequences could be maintained
in a network, which combines such effects of synaptic depression
(Figures 1–2) with associative short-term plasticity (Erickson
et al., 2010; Miller and Wingfield, 2010).
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