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The activity of cortical neurons is determined by the input they receive from presynaptic
neurons. Many previous studies have investigated how specific aspects of the statistics
of the input affect the spike trains of single neurons and neurons in recurrent networks.
However, typically very simple random network models are considered in such studies.
Here we use a recently developed algorithm to construct networks based on a quasi-fractal
probability measure which are much more variable than commonly used network models,
and which therefore promise to sample the space of recurrent networks in a more
exhaustive fashion than previously possible. We use the generated graphs as the
underlying network topology in simulations of networks of integrate-and-fire neurons in
an asynchronous and irregular state. Based on an extensive dataset of networks and
neuronal simulations we assess statistical relations between features of the network
structure and the spiking activity. Our results highlight the strong influence that some
details of the network structure have on the activity dynamics of both single neurons
and populations, even if some global network parameters are kept fixed. We observe
specific and consistent relations between activity characteristics like spike-train irregularity
or correlations and network properties, for example the distributions of the numbers of
in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that
it is possible to estimate structural characteristics of the network from activity data. We
also assess higher order correlations of spiking activity in the various networks considered
here, and find that their occurrence strongly depends on the network structure. These
results provide directions for further theoretical studies on recurrent networks, as well as
new ways to interpret spike train recordings from neural circuits.

Keywords: cortical networks, microstructure, integrate-and-fire neuron, multifractal network generator,

asynchronous irregular state

1. INTRODUCTION
The influence of single neuron properties as well as global net-
work parameters on the population dynamics of neurons has been
subject of a large number of studies (Brunel, 2000; Vogels et al.,
2005; Kumar et al., 2008; Benayoun et al., 2010; Mongillo et al.,
2012). Often, a simple paradigm to assign connections between
neurons is assumed, like Erdös-Rényi random graphs, or all-to-all
connectivity. Given such a network structure, additional param-
eters like the synaptic weights or the external input are varied,
and effects on quantities like network oscillations, spike train
irregularity or activity correlations are studied.

The influence of structural properties of neural networks on
their dynamics has only recently begun to receive increased atten-
tion. One example is the study of neural dynamics at the scale
of cortical regions (Bullmore and Sporns, 2009). On the level of
individual neurons, the effects of a more realistic spatial arrange-
ment have also been addressed in a number of studies. Realistic
connection probabilities between layers were shown to reproduce
measured rate distributions (Potjans and Diesmann, 2012). The
correlations in large-scale networks with distance dependent con-
nectivity were studied in Yger et al. (2011), and a large variety
of spatio-temporal activity patterns were described in Voges and

Perrinet (2009, 2012), where the spectrum of network topologies
was also extended to networks with patchy connections.

However, on small scales, specific connectivity that cannot be
inferred from the spatial positioning of the neurons alone is con-
ceivable and has also been detected in experiments. The observed
deviations from random structure include the abundance of spe-
cific network motifs (Song et al., 2005), distributed cell assemblies
(Perin et al., 2011) or subnetworks of neurons with high firing
rates (Yassin et al., 2010). These kinds of variations in the topol-
ogy are usually described in the context of graph theory (Rubinov
and Sporns, 2010). The dynamical implications of network struc-
ture on bursting activity have been explored in Gaiteri and Rubin
(2011) and Mäki-Marttunen et al. (2011). The influence of motifs
with two connections on the ability of excitatory networks to syn-
chronize was analyzed in Zhao et al. (2011), and their effects on
correlations in a linear framework in Hu et al. (2013). In Roxin
(2011) it was shown that broadly distributed in- and out-degrees
can promote oscillations in networks of integrate-and-fire neu-
rons, and the effect of clustered connections was examined in
Litwin-Kumar and Doiron (2012). Here, we want to study the
effects of general variations in local connectivity in a recurrent
network in an approximately asynchronous and irregular state
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(Brunel, 2000). This paradigm is motivated by the experimental
finding of small correlations and irregular activity in many areas
of the brain (Softky and Koch, 1993; Ecker et al., 2010; Cohen
and Kohn, 2011; Barth and Poulet, 2012) and is commonly used
in theoretical studies on the dynamics of recurrent networks of
spiking neurons (Kumar et al., 2008; Renart et al., 2010; Yger et al.,
2011) as a model of cortical activity.

One approach to analyze the effect of a particular network
characteristic is to choose a specific parameterized network
model, where this characteristic can be varied, to single out its
effect on the dynamics. A common problem is to find a model that
leaves the remaining properties of the network unchanged. As we
have shown in Cardanobile et al. (2012) it is often the case that,
by the construction principle of a specific network model, artifi-
cial dependencies between various network properties arise, such
that, as a result, they cannot be varied independently. This com-
promises the generality of the results obtained with such models.
Additionally, it is unclear if a certain network model captures all
features observed in real networks. For example hubs, cluster-
ing or communities in networks all might have cooperating or
competing effects on a certain dynamic property.

In this study, an alternative approach was applied. Rather than
varying a specific network property, a large number of different
networks was generated, their properties asserted (as measured
by common statistical measures used in graph theory) and rela-
tions to dynamical properties established by means of numerical
simulations. The rationale is that in this way the interplay of var-
ious network properties can be examined without the need to
construct a specific model for each of them. A tool that is able
to generate networks which vary with respect to a large num-
ber of common graph-theoretical measures is the multifractal
network generator described in Palla (2010). A relatively dense
connectivity (we use an average connection probability of 0.1)
as well as directed connections can easily be realized, making
the model suitable for the study of neural networks. The gen-
erated network ensemble is very variable with respect to many
of the statistics commonly used to describe the properties of a
neocortical network, like degree distributions and correlations,
clustering, modularity and motif distributions. Also, only a small
number of links between different network properties are intro-
duced (Cardanobile et al., 2012). As networks are constructed on
the level of the connectivity matrix, the nodes are not embedded
in a metric space and no distance measure is applicable. These
networks are thought to represent a local network of neurons
residing in a about a cubic millimeter of the cortex. In such net-
works neurons might potentially form connections to any other
neuron (Kalisman et al., 2005).

To assess the effects on the network dynamics, the generated
networks were employed as the synaptic connectivity matrix of a
neural network in a specific activity regime. To select this activ-
ity regime, parameters were adapted to generate asynchronous-
irregular activity in a network of leaky integrate-and-fire neurons
(LIF) in a random network (Brunel, 2000). This approach is nec-
essarily restricted to a specific setting of both neuron and global
network parameters and has, therefore, the character of a case
study in this dimension. However, it enables the identification
of the set of features or combinations of features that affect the

network dynamics most strongly without the strong restrictions
on structure implicitly used by simple network models. Because
the full connectivity matrix of large neural networks is currently
not accessible to experiments, such a general approach is nec-
essary to evaluate the importance of network structure and will
be helpful to determine relevant quantities as well as to interpret
their values, once they become available.

2. METHODS
2.1. NETWORK GENERATION
We created a total number of 2500 networks with 12, 500 nodes
each, using the multifractal network generator for the genera-
tion of the networks (Palla, 2010) . In short, connections between
nodes are established on the basis of a rugged probability func-
tion p(x, x′) defined over the interval [0, 1] × [0, 1]. Each node i is
assigned a random continuous index xi ∈ [0, 1]. A directed con-
nection between two nodes is realized with probability p(xi, xj).
The probability function is constructed in the following way: A
function p1 is initiated by dividing [0, 1] × [0, 1] into a number
of m2 rectangles, using m divisions on each the x- and the y-axes
(constructed from m − 1 random uniformly drawn boundaries
∈ (0, 1)). The value of p1 in each rectangle is a constant ran-
domly chosen from [0, 1]. In the next step, p2 is determined,
by replacing each rectangle with an appropriately scaled version
of the initial measure p1, multiplied by the constant value of p1

within this rectangle. This procedure is iterated k times. In each
step, each rectangle of the current measure is multiplied by the
initial measure p1. We used m = 2 and k = 4 and normalized the
resulting pk to an average value of 0.1. Due to the randomized ini-
tial conditions and the ensuing procedure, each network results
from a radically different probability measure which determines
its statistical properties, see Figure 1A for a specific realization.
One way to characterize a network is by the distribution of in-
and outgoing connections (in- and out-degrees) across nodes,
Figure 1B. Here, the expected out-degree of a node with index
xi is proportional to the integral of the probability measure over
the vertical direction,

∫
p(xi,y)dy. Consequently, along with the

probability measure, degree distributions, correlations between
degrees and other statistics are highly variable across networks.
A constant measure p1 results in a random network of Erdös-
Rényi type. Note that in this study we do not impose a symmetry
condition on p1 and generate directed networks, in contrast to
Palla (2010).

2.2. NETWORK SIMULATIONS
We simulated networks of current-based LIF neurons in an asyn-
chronous irregular state, with parameters similar to the ones in
Brunel (2000). The membrane potential Vi of neuron i evolves
according to the differential equation

τm
dVi

dt
= −Vi +

∑
j

Jijsj(t − d) + Jextsext(t).

The time constant of the membrane potential is denoted by τm,
synaptic weights Jij were set depending on the presynaptic neu-
ron type and the connectivity matrix constructed as described
in section 2.1. If the membrane potential exceeded a threshold
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FIGURE 1 | Properties of the network ensemble. (A) Sample for a
probability function that can be used to generate networks. (B) Scatter plot of
out-degrees vs. in-degrees of single nodes for a network realization (1000
nodes) resulting from the probability measure in (A) as well as degree
distributions. (C) Comparison of histograms of selected features over 500

network realizations for different network models. The ensemble realized by
the multifractal network generator (mng) shows a much larger variability in
comparison to random networks or small world networks in most features.
(D) Matrix of Pearson correlation coefficients among graph features across
network realizations.

Vth, a spike was emitted and the membrane potential was set to a
reset potential Vr , where it was kept fixed for a refractory time tr.
Synaptic currents were described as delta-functions, such that the
input currents resulting from presynaptic spike trains were given

by sj(t) = ∑
τ δ(t − t

j
τ). For all connections, a constant synaptic

delay d was used.
Supra-threshold external input to each neuron was provided

by a spike train sext(t) with a coupling weight Jext and spike times
modeled as a Poisson process with rate νext = 2Vth/(Jextτm). A
randomly chosen fraction of 20% of the neurons were inhibitory.
As the synaptic weights of these neurons were stronger by a fac-
tor −5, networks were inhibition dominated. In combination
with strong external input this evokes stable asynchronous and
irregular firing in random networks. Simulations were conducted
using the NEST simulator (Gewaltig and Diesmann, 2007). The
first second of the simulated time was discarded, so that the net-
work activity could reach a steady state. Numerical values of all
simulation parameters are summarized in Table 1.

2.3. MEASURES OF FEATURES
We use a variety of features commonly applied in the literature
to characterize both the structure of the network and the activity
of the simulated spike trains. They are summarized in Tables 2,
3. For a quantity a, we denote by std (a[i])i the empirical stan-
dard deviation (over nodes or time bins i), by corr(a[i], b[i])i the
Pearson correlation coefficient, and by 〈a[i]〉i the mean across the
index i. The Fourier transform of a function f [t] is denoted by
FT(f [t]). Only scalar values were chosen as features. Mean, stan-
dard deviation and correlations of features across networks will be
examined in sections 3.1 to 3.3. The variation of characteristics

Table 1 | Simulation parameters.

Parameter Symbol Value

Number of neurons N 12, 500

Number excitatory neurons NE 10, 000

Number inhibitory neurons NI 2500

Average connection probability p̄ 0.1

Excitatory weight JE 0.1 mV

Inhibitory weight JI −0.5 mV

Ratio excitation to inhibition g 5

Membrane time constant τm 20 ms

Refractory time τr 2 ms

Synaptic delay d 1.5 ms

Threshold potential Vth 20 mV

Reset potential Vr 10 mV

Equilibrium voltage EL 0 mV

Weight of external inputs Jext 0.1 mV

Rate of external inputs νext 20 kHz

Simulation time tsim 11 s

Small bin size for spike counts �s 5 ms

Large bin size for spike counts �l 100 ms

Frequency range power spectrum fmin, fmax 0.1 Hz, 1000 Hz

of individual nodes within a single network realization will be
addressed in section 3.4.

A variety of quantities has been found to influence the
dynamics of networks (Boccaletti et al., 2006). In many appli-
cations, the statistics of node degrees (numbers of incoming
and outgoing connections) are of interest, as real networks often
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Table 2 | Network features.

Description Definition Abbreviation

Adjacency matrix Aij

In-degree d+(i) = ∑
j Aij

Out-degree d−(j) = ∑
i Aij

Standard deviation of in-degrees std
(
d+[i])i std(ID)

Standard deviation of out-degrees std
(
d−[j])j std(OD)

Correlation between in- and out-degree corr(d+[i], d−[i])i IOD

Directed clustering coefficient cc(i) = [(A + AT )3]ii
2([d+ + d−][d+ + d− − 1]) − 2[A2]ii

Average clustering coefficient
〈
cc[i]〉i cc

Standard deviation of clustering coefficients std
(
cc[i])i std(cc)

Spectral radius of A ρ(A) SR

Fraction of recurrent connections

∑
ij AijAji∑

ij Aij
FR

Postsynaptic neurons of i i ′

Correlation out-degree vs. postsynaptic out-degree corr(d−[i], 〈d−[i ′]〉i ′ )i POC

Number of excitatory, inhibitory inputs d+
I [i], d+

E [i]
Local excitation-inhibition ratio gloc(i) = g

d+
I [i]NE

d+
E [i]NI

exhibit heavy-tailed degree distributions (Barabási and Albert,
1999). As the mean degree in our networks is fixed, we use the
standard deviation of in-degree and out-degree distributions as
graph features. To assess degree correlations, we furthermore con-
sider the correlation between the out-degree of a node with the
out-degrees of its postsynaptic neurons, as well as the correlation
between the in- and the out-degree. These are two independent
measures of degree correlations in directed networks accounting
for slightly different properties than for example the assortativ-
ity index proposed in Newman (2002). Since the introduction of
the small world network model (Watts and Strogatz, 1998), the
clustering coefficient has been an equally prevalent measure. To
evaluate the influence of clustering, we use the directed clustering
coefficient (Fagiolo, 2007), as well as the fraction of realized bidi-
rectional connections in networks. Also, spectral properties of a
network have often been used as an indicator for the dynamics of
a system, for example to assess the tendency to synchronize (Atay
et al., 2006). Here, we use the spectral radius, that is the modulus
of the largest eigenvalue of the connectivity matrix, as a feature.
To classify the input of an individual neuron, we will use the local
ratio of its excitatory and inhibitory input.

In order to measure properties of the network activity, we use
the following descriptors: the simplest features concern the mean
and variance of the observed firing rates. As a number of neurons
possibly receive a surplus of inhibitory input and remain silent, we
also included mean and variance of the active, observable popu-
lation. To capture the ubiquitous irregularity in spike trains, we
use the coefficient of variation of the individual neurons’ inter-
spike intervals. For a quantification of the amount of synchrony,
we measure spike count correlations in pairs of neurons, both for
short and for long bin sizes. Alternatively, the oscillations in the
population activity can be captured by the power spectrum of the
combined spike trains. A comparable measure for network real-
izations with different firing rates was obtained by subtracting

the constant offset of the spectrum and normalizing the peak
at frequency zero to 1. We used the integral over the normal-
ized power spectrum as a scalar measure (see Table 3 for details).
Finally, we measure the maximum degree of higher-order cor-
relations that can be detected in the observed activity using an
algorithm proposed in Staude et al. (2010b), with parameters α =
5% (significance level) and mmax = 4 (cumulants of the popula-
tion activity up to order 3 are used). In short, it is tested whether
groups of neurons have a tendency to spike together beyond what
can be expected from the correlations among smaller sub-groups.
The largest group size that can significantly be inferred in the
given dataset is returned.

In Figure 1C the variability of the network features in the
chosen network ensemble is demonstrated by comparison of
the resulting feature distributions with the ones from alterna-
tive network models. The feature distributions of both random
and small world networks are generally much narrower, indi-
cating that different network realizations within these ensembles
are much more alike in their statistical properties. Only spe-
cific network features, like the clustering coefficient are varied
substantially. These other networks had the same number of
nodes and the same expected number of connections: in random
networks, each connection was established with a probability
p = 0.1. Small world networks were based on a ring structure
where each neuron was connected to its pN nearest neigh-
bors. Subsequently, outgoing connections were rewired with a
constant probability uniformly chosen from the interval [0, 1]
for each network, thus interpolating between fully random and
ring networks. We quantify statistical relations between features
with the empirical Pearson correlation coefficient across network
realizations. In panel (D), the correlations between structural
features are depicted. Several network properties are correlated
for the ensemble of networks under consideration. This can be
due to either mathematical relations among the corresponding
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Table 3 | Activity features.

Description Definition Abbreviation

Spike times of neuron i t i
τ

Spike train of neuron i si (t) = ∑
τ δ(t − ti

τ)

Number of spikes of i during the simulation ni

Inter spike intervals ISIiτ = ti
τ+1 − ti

τ

Coefficient of variation CV[i] =
std

(
ISIiτ

)
τ〈

ISIiτ
〉
τ

Mean CV
〈
CV[i]〉i CV

Standard deviation of CV std
(
CV[i])i std(CV)

Spike count of neuron i in bin number τ of size � ci
τ(�)

Highest order of detectable higher-order correlations See text HOC

Mean count correlation for small/large bin size
〈
corr(ci

τ[�s,l ], cj
τ[�s,l ])τ

〉
i �=j

CCCs/l

Standard deviation of count correlation std
(
corr(ci

τ[�s/l ], cj
τ[�s/l ])τ

)
i �=j

std(CCCs/l)

Mean spike rate
〈

ni

tsim

〉
i

rate

Standard deviation of the rate std
(

ni

tsim

)
i

std(rate)

Mean of rates, neurons with rate > 0
〈

ni

tsim

〉
i :ni >0

rate+

Standard deviation rate, neurons with rate > 0 std
(

ni

tsim

)
i :ni >0

std(rate+)

Population activity S(t) = ∑
i si (t)

Normalized power spectrum P(ω) = (|FT[S(t)]|2 − 〈
S(t)

〉
t

)
/
(〈

S(t)
〉2
t tsim

)
Integrated spectral power of population activity

∫ fmax
fmin

P(ω)dω Spec

quantities, which are valid for graphs in general, or to the spe-
cific algorithm used here to generate networks. Nonetheless, as
described in Cardanobile et al. (2012), the features in the ensem-
ble accessible to the fractal network generator exhibit both a
greater variability and a greater independence from each other in
their variation than in the more traditional network models.

The correlation coefficients provide a good basis to assess
mathematical relations between features. Strictly speaking, the
correlation coefficient is a measure for the strength of a linear
relationship between variables. Because of that, it is possibly not
sufficient to detect interesting non-linear relations. To rule out
non-linear dependencies, we also calculated the maximum infor-
mation coefficient (MIC) using the toolbox MINE (Reshef et al.,
2011). It turned out that no new relations were discovered by this
alternative measure, which was introduced as a means to detect
non-linear relations in large sets of variables (data not shown).

3. RESULTS
3.1. VARIATION OF STATISTICS
The variation of the selected descriptors due to the variation of
network structure is summarized in Table 4. The numbers were
extracted from the ensemble of networks implicitly defined by
the fractal network generator. These distributions should not be
confused with the distributions of node and link properties of
individual networks that are the basis for some network fea-
tures. The variability of most of the structural features (bottom
of the table), as measured by their coefficient of variation across
networks, is reasonably large, underlining once more the broad
range of different networks that can be generated. Many standard

Table 4 | Variability of features across networks.

Feature Mean Std. dev. CV = Std. dev./Mean

CV 0.41 0.074 0.18

std(CV) 0.2 0.023 0.12

CCCs 0.018 0.011 0.61

std(CCCs) 0.028 0.0029 0.1

CCCl 0.0074 0.0042 0.57

std(CCCl) 0.1 0.012 0.12

rate 41 6.5 0.16

std(rate) 30 5.2 0.17

rate+ 47 10 0.22

std(rate)+ 27 3.1 0.11

Spec 0.015 0.011 0.73

HOC 81 81 1.00

std(OD) 480 400 0.84

std(ID) 470 410 0.87

IOD 0.12 0.86 7.5

POC 0.072 0.85 12.0

FR 0.13 0.072 0.54

SR 1300 250 0.2

cc 0.13 0.058 0.44

std(cc) 0.015 0.023 1.5

algorithms used to synthesize networks do not generate such
variable ensembles (Cardanobile et al., 2012).

The variability is generally somewhat lower for the features
describing network activity. The median of the CVs for the
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distributions of structural features is 0.85, cf. Table 4, while it is
0.18 for the activity features. Nonetheless, very different activity
regimes are realized. Figure 2 shows examples for the activity of
three selected network realizations (cf. Figure 3C). While an asyn-
chronous and irregular state is realized in some networks (middle
column), there are also networks with strongly correlated spike
trains (right) or very regular activity with high firing rates (left).
Accordingly, the population activity differs strongly, both in mean
and variance (bottom). The distributions of activity features vary
in shape, see Figure 3A for examples. Nonetheless, their mean
and variance can provide a good indication for their variation
across networks. Remarkably, due to the synchronous activity in
some networks, higher-order correlations of very high degrees
can be detected. Hence, relatively large populations of neurons
show indications of collective spiking. As for the pairwise spike
count correlations, this depends strongly on the network real-
ization. Our result suggests, however, that correlations of high
order are a standard feature in recurrent networks, provided a
sufficiently large population of neurons is observed.

In summary, even for identical global input, the activity exhib-
ited by a network depends strongly on its structure. Yet, not all
activity features are equally affected, as is indicated by the spec-
trum of the population activity, Figure 3B. While the absolute
power, measured by the integrated power spectral density, varies

across orders of magnitude, the shape, characterized by two peaks,
remains similar for networks of high and low spectral power.

3.2. RELATIONS BETWEEN ACTIVITY STATISTICS
The values of features describing network activity are not inde-
pendent. The scatter plot of CV (spike train irregularity) vs. CCCs

(correlations on a short timescale) in Figure 3C shows that in all
networks with regular spike trains (low CV), correlations are also
small. This means that a state of full synchrony (synchronous reg-
ular state) with low CV and high correlations is not realized. In
contrast, in networks with large CV, both high and low correla-
tions can be observed in different networks, suggesting that there
is more variety in irregular states due to a more variable struc-
ture. As firing rates, indicated in color, tend to be higher in more
regular states, it is apparent that the decrease of correlations or,
equivalently, population fluctuations, for regular activity is not
due to a general decrease of activity. Rather, irregular activity is
only realized in networks with relatively low average rate.

The various dependencies between different activity features
are summarized by a matrix of cross-correlation coefficients,
computed across all networks in our ensemble, Figure 3D. Some
of these relations are easily explainable. For example, the spectral
power Spec is closely related to the strength of count correla-
tions CCCs,l. Other relations are much less obvious: the widths

FIGURE 2 | Spike train raster plots for three network examples.

Columns: Activity in three different sample networks. Top row: Raster plots
of activity of 500 randomly chosen neurons, sorted according to their firing

rate. Middle row: Enlarged view of a smaller number of spike trains. Bottom

row: Population activity of all neurons in bins of 5 ms demonstrates
differences in total population activity and fluctuations.
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FIGURE 3 | Activity measures. (A) Distribution of key statistical
measures for activity across networks demonstrates the variety of
realized activity patterns. Vertical red lines indicate corresponding values
for a sample random network. (B) Power spectrum of population activity
is similar across realizations. Black: Average across all networks. Shaded
region shows sample average ± relative error calculated from standard
deviation. Blue: Average across 2% of all networks with highest
integrated power spectrum. Red: Average across 2% of networks with

lowest integrated power spectrum. (C) Scatter plot of CV as a measure
of spike train irregularity and CCCs, which quantifies the average
pairwise correlation, for all networks. Colors indicate mean rate. Black
symbols correspond with examples shown in Figure 1. The variations of
these features are strongly correlated. (D) The matrix of correlations
between all activity characteristics, computed for the sample of
networks considered in this study, reveals the various dependencies
between statistical measures.

of the distributions of correlation coefficients and CVs, std(CCC)

and std(CV), appear to be less dependent on the values of other
features. The mean values of rates, of the CV (of the interspike
interval distribution), and correlations are, however, tightly inter-
linked: CCCs,l (as well as other measures for correlations) is
negatively correlated to the mean rate, but positively to the CV
(see also panel C). The CV on the other hand, is negatively cor-
related with both the rate and its standard deviation. However,
if only active neurons are considered, the negative correlation is
much stronger with rate+ than with std(rate+). Some insight on
this complex system of mutual dependencies can be gained by
an inspection of the relations to the underlying properties of the
network structure.

3.3. RELATIONS BETWEEN NETWORK AND ACTIVITY
The matrix of correlation coefficients between activity features
and structural features is displayed in Figure 4A. In panel (B),
scatter plots of some features are singled out. As has been noted
previously (Roxin, 2011), the width of the degree distributions
strongly affects the activity. It appears that a high standard devi-
ation for the in-degree implies low coefficients of variation. To
understand this effect, the relation between std(ID) and the firing
rates can be consulted: Strong correlations between std(ID) and

the mean across all firing rates, and across rates of active neu-
rons only, as well as std(rate) can be observed. A high variance
in the in-degrees causes a large fraction of silent neurons with
a high degree of inhibitory input as well as a fraction of neu-
rons with correspondingly higher firing rates. Consequently, the
variance of the firing rates is large. If only the active fraction
is considered, the mean firing rate is more, and the rate vari-
ance less strongly correlated to std(ID), suggesting that high firing
rates induce low coefficients of variations in a network. However,
there are also other factors. It can be observed that for a given
rate, the CV is higher, if a positive correlation between in-degrees
and out-degrees in the network exists. To study the origin of
these effects more closely, the relation between rate and CV of
single neurons is discussed in section 3.4 below. The standard
deviation of the out-degree std(OD) is strongly related to the
strength of count correlations. This is not surprising, as a large
out-degree variance corresponds to a large number of divergent
motifs (Zhao et al., 2011; Hu et al., 2013). The relation appears
to be stronger for networks with low mean rate. Additionally,
std(OD) is related to the presence of higher-order correlations
measured by HOC. The measures for degree correlations, POC
and IOD, by themselves are apparently less important as a predic-
tor for activity. Positive in-out-degree correlations strongly affect
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FIGURE 4 | Relations between activity and network structure.

(A) The matrix of correlation coefficients summarizes the effects of
variations in network structure on spike train activity. (B) Scatter plots
of selected pairs of features provide further information about the
dependencies of various features (see main text). Colors indicate
value of a third feature. (C) Dendrogram obtained after hierarchical

clustering of the features. The distance measure is based on the
correlation matrix. The level of the u-link indicates the distance
between its children clusters (Jones et al., 2001). For illustration
purposes, clusters that merge at a distance of 0.4 or larger are
plotted in different colors. Clusters can be interpreted as families of
features that are closely related.

the mean rate only. This is very similar to the impact of the spec-
tral radius of the network. Both quantities can to some degree
be interpreted as measures how well activity in the network is
propagated.

The clustering coefficient of a network also has implications
for the network dynamics. It is only weakly related to the strength
of correlations. In fact, high clustering coefficients can be due
to a high out-degree variance, but also to a high in-degree vari-
ance (see Figure 1), and only high values of std(OD) induce
high correlations. However, both the mean and the variance of
the distribution of clustering coefficients are strongly related to
count correlations on small timescales, CCCs, but not on large
timescales, as the correlation to CCCl is weak. Note, however, that
CCCs and CCCl are correlated, cf. Figure 3. Finally, correlations
of high order occur in networks of irregularly spiking neurons
with rather low rates.

To provide an overview on the web of dependencies among the
different features, the result of a hierarchical clustering algorithm
on the matrix of feature correlations is shown in panel Figure 4C.
As the distance measure between features a and b, we used
1 − corr(a, b), which is 1

2 the squared Euclidean distance of the
normalized variables, derived from the covariance as a bilin-
ear product. It lies between 0 and 2 for perfectly correlated and
perfectly anti-correlated variables, respectively. The quantitative
results depend on the clustering algorithm as well as on the mea-
sure that is used to define the distance between clusters (here, the
minimum distance between pairs of features belonging to each
cluster was used), but the diagram illustrates a typical classifica-
tion. For example, a group of features related to high firing rates
can be distinguished, including the in-degree variance, the spec-
tral radius and various measures related to clustering (light blue
and red cluster). On the other hand, measures of correlations, the
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out-degree variance and the CV make up a second group (green
cluster).

3.4. FEATURES WITHIN NETWORKS
So far, we have only considered population statistics, as the mean
and standard deviation across all nodes in a given network. In
individual network realizations, also the statistics of the single
neurons can be analyzed in order to elucidate the mechanisms
leading to the activity of the full network. Here, we consider the
relationship between rate and CV.

As networks are very heterogeneous, the activity statistics of
single neurons vary strongly, Figure 5. The two networks in pan-
els (A,B) represent typical examples with low and high average
CV. More precisely, networks ranked number 450 and 2100
according to their CV are displayed. In both networks, the CVs
of individual neurons decrease with increasing rate, mirroring
the relationship between CV and rate on the network level. The
CV-rate curves are very similar in both cases. Hence, differences

in mean CV can be related to the rate distribution within the
network: a large number of neurons with high rates, and therefore
low CVs lead to a low average CV (top panels in A and B). Note
that silent neurons do not contribute to the average CV. Neurons
differ in their activity due to differences in the input they receive.
A larger ratio of inhibition gloc in their population of presynaptic
neurons causes both a larger CV and a smaller rate. Equally, for a
given ratio of inhibition, a larger in-degree increases the CV, but
decreases the rate (middle and bottom panels in Figures 5A,B).

This behavior can be related to the behavior of isolated LIF
neurons receiving noisy input current. For gloc > 4, the input is
effectively inhibitory. As a result, a larger in-degree reduces the
mean input and hence the rate. However, due to the larger num-
ber of afferents, the input variance increases, leading to more
irregular spikes and a higher CV. The relationship between CV
and rate is not unambiguous in LIF neurons, but depends on
both mean and variance of the input current. In Figure 5C the
simulated rate of a single LIF neuron is plotted against its CV,

FIGURE 5 | Statistics of individual nodes. (A) (Top) Scatter plot of
rates vs. CVs across neurons in a single network with low average CV.
Colors indicate the value of the in-degree of neurons. Histogram:
distribution of rates in the network. (Middle) Corresponding scatter plot
of CVs vs. excitation/inhibition ratio gloc of the single neurons as well
as distribution of gloc. (Bottom) Scattered rates vs. gloc. (B) Same as
(A), but for network with high average CV. (C,D) Relation between
mean firing rate and CV of a single LIF neuron, depending on mean μ

and standard deviation σ of voltage fluctuations. The parameters μ, σ

denote the mean and standard deviation of the free membrane
potential due to input currents. (C) Contours for constant μ and
increasing σ (higher rates for higher σ ). (D) Same data, but contours
drawn for constant σ and increasing μ (higher rates for higher μ). The
shape of the CV-rate dependency in neurons within networks [top
panels in (A,B)] suggests that high firing rates result from an increase
in input mean rather than variance.
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while the properties of the input current are varied. Here, μ, σ

denote the expected membrane potential fluctuations that would
result in a LIF neuron without spike threshold with correspond-
ing current input. If the mean input current is held fixed and
only its variance is changed, the CV increases with increasing rate.
In contrast, if the variance is held fixed and the mean is varied,
the CV decreases with increasing rate, panel (D). Consequently,
higher rates (resulting in lower CVs) are due to a larger mean
input instead of a higher input variance in the recurrent network,
as only a rate increase due to a higher mean input reproduces the
observed relationship between firing rate and CV.

3.5. PREDICTING STRUCTURE FROM ACTIVITY
Considering the relations between structural features and fea-
tures of the dynamics, it is a natural question to which degree
the structure can be determined by the observed properties of the
activity. In order to test if the chosen activity features are suffi-
cient to classify the structure of the underlying graph, we used a
linear regression of the values of the structural features based on
the values of the activity features across all network realizations.
The results are depicted in Figure 6. The scatter plots of the pre-
dicted values by means of the optimal regression coefficients vs.

FIGURE 6 | Prediction of structural features on the basis of activity

measures. (A) Examples for the result of a linear regression across all
network realizations on the basis of all 12 activity measures considered
here (see Table 3). Scatter plot of the predictions from the linear regression
against the exact values obtained from the connectivity matrix. (B) R2

values as a measure for the goodness-of-fit of the linear prediction for the
full set of structural features (averaged across different divisions in 5-fold
cross-validation). Due to the strong dependencies uncovered in the
ensemble of networks, structural features can be reasonably well predicted
from activity, with the exception of degree correlations.

the actual values demonstrate the differences between the features
(panel A). As the standard deviation of the out-degrees affects a
variety of activity features, cf. Figure 4, the linear predictions are
reasonably accurate. In contrast, the feature IOD, which hardly
affects most of the chosen activity variables directly, cannot be
predicted as well. As a measure for the goodness-of-fit of the
linear regression model, the coefficients of determination, or R2

values, are plotted in panel (B). They denote the fraction of the
variance that is explained by the linear model, and are equal to
the squared correlation coefficient between data and linear pre-
diction. As it turns out, only the degree correlation measures IOD
and POC cannot be predicted, while other structural features are
well approximated even by this fairly elementary predictor.

4. DISCUSSION
We studied the effects that variations in the network topology can
have on the activity of a population of leaky integrate-and-fire
neurons. A better understanding of the effects various local net-
work properties have on the dynamics of the system is an impor-
tant step toward linking the dynamics of individual neurons to the
functional potential of neural populations. Nonetheless, this issue
is only beginning to be addressed in the literature. A problem
that has only received a limited amount of attention is the inter-
dependence of different aspects of network structure. While the
inference of individual connections in networks from spike trains
of integrate-and-fire neurons has been studied for example in
Shandilya and Timme (2011) and Pernice and Rotter (2013), we
are interested in the effects of connectivity statistics on the overall
activity. Here, instead of concentrating on a particular feature of a
network, we described the dependencies between various aspects
in a broad ensemble of simulated networks. Various dependencies
between the different features could be found from correlation
coefficients across realizations. Although the distributions of fea-
tures varied strongly and individual quantitative relations can in
principle be non-linear and, thus, may potentially not be reflected
well by correlations coefficients, we found that non-linear mea-
sures like the maximum information coefficient (Reshef et al.,
2011) did not suggest additional relationships and thus resulted
in qualitatively similar results.

The parameters chosen for our simulations induce a state of
irregular firing with low pairwise correlations in random net-
works through the interplay of supra-threshold external input
and inhibition dominance. This activity state arises robustly for
strongly simplified as well as more complex neuron models (van
Vreeswijk and Sompolinsky, 1996; Brunel, 2000; Kumar et al.,
2008). As our results show, it is nonetheless sensitive to the statis-
tics of network connections. This is the case even in a regime well
away from any phase boundaries to oscillatory or regular activity
states. The similarity of the behavior of different neuron mod-
els in a fluctuation driven asynchronous irregular state suggests
that relations between features observed in the specific situation
analyzed are not sensitive to details of the neuron model or spe-
cific parameters. However, for example oscillatory states might
be affected in a different manner by variations in the network
structure or the neuron model.

Of the various aspects of network structure that are used in
the study of networks, some of it in neuroscience, we selected a
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number characterized by relatively low computational complex-
ity and motivated by experimental observations, as well as their
potential effects on dynamics. The influence of some of these net-
work features on the activity has already been analyzed in specific
scenarios, while others have received less attention.

The distribution of degrees is one of the standard descriptors
used for networks. We observed that the distribution of node
degrees has a strong effect on the dynamics. The variance of out-
degrees influences the strength of spike train correlations. A large
out-degree variance tends to imply strong pairwise and higher-
order correlations, as well as a strong power spectrum of the pop-
ulation activity. In contrast, a large variance in the in-degree leads
to a broad distribution of firing rates with a high mean, combined
with a large fraction of inactive neurons. The influence of broad
degree distributions on the emergence of oscillations in recur-
rent networks was studied in Roxin (2011). In mixed networks
of excitatory and inhibitory neurons, a broad in-degree distribu-
tion induces oscillations, but not a broad out-degree distribution.
An important difference in Roxin (2011) is that only the degree
distribution of the excitatory population was varied, while in the
current study no difference was made with respect to the type
of the neurons. In Zhao et al. (2011) it was noted that the vari-
ance of degree distributions is directly related to the occurrence
of convergent or divergent motifs. The effects of these motifs, as
well as chain motifs, for the tendency of networks to synchronize
were analyzed. It was found that only chain and convergent motifs
affect this tendency in purely excitatory networks. In contrast, in
Hu et al. (2013), a strong effect of divergent and chain motifs on
correlations was reported on the basis of a linear approximation,
depending on the type of the participating neurons, consistent
with the view that divergent motifs correspond to a large amount
of shared input within the network, which induces correlations
(Shadlen and Newsome, 1998). Contrary to commonly used alter-
native network models, many of the sampled networks possess
strong degree correlations, cf. Figure 1C. In fact, one of the conse-
quences of our sampling procedure is that relatively few networks
with uncorrelated degree statistics are found. Nonetheless, the
effect of degree correlations is not too striking in our simulations.
Positive degree correlations increase the firing rate, but are only
weakly related to different dynamical properties. In contrast, in
Pernice et al. (2011) degree correlations constrained to the exci-
tatory subnetwork induced strong correlations in a linear neuron
model. In Zhao et al. (2011), degree correlations in purely excita-
tory networks similarly were shown to increase synchrony. Hence,
not only overall degree statistics, but also the specificity between
different populations are important factors. These results indicate
that for the generation of an asynchronous network state by exter-
nal input combined with recurrent inhibition, the homogeneity
of input and output across neurons seems to be an important
prerequisite. The experimentally observed broad distribution of
firing rates (Barth and Poulet, 2012) can still be realized in these
networks, if the non-linear transfer function of neurons is taken
into account (Roxin et al., 2011).

The effects of the clustering of neural connections on dynam-
ical properties have been studied in the context of distance
dependent connectivity, as in the small world model (Roxin,
2004). However, clustering can arise not only as a consequence of

distance dependent connections, but can also be a sign of assem-
blies defined by a characteristic unrelated to the spatial position
of neurons. An increased fraction of reciprocal connections and
evidence for clustering in local networks has been reported in
Markram (1997); Song et al. (2005), and Perin et al. (2011). Both
for the fraction of reciprocal connections and the clustering coef-
ficient, we observed a relation to the average firing rate as well as
to the variance of correlations on short timescales, a phenomenon
that has been analyzed in Kriener et al. (2009). Reciprocal connec-
tions have also been shown to enhance non-normal amplification
(Hennequin et al., 2012). If excitatory neurons are organized into
clusters, slow rate transients can be observed (Litwin-Kumar and
Doiron, 2012). A feature that seems accessible to an exploratory
analysis, as the one conducted here, is the frequency of connectiv-
ity motifs, for example in three-neuron subnetworks, that has also
been studied in experiments (Song et al., 2005). It is, however, dif-
ficult to delineate the effects of individual motifs, as the numbers
of different motifs especially with larger numbers of connections
are strongly correlated among themselves as well as with the clus-
tering within the network. Interestingly, the biological results in
Song et al. (2005), Figure 4, suggest an over-representation of
divergent, but not of convergent motifs in rat visual cortex, con-
sistent with the assumption of a small in-degree variance, and
accordingly high irregularity in neural spike trains. Another inter-
esting feature would be the numbers of specific motifs consisting
of excitatory as well as inhibitory connections. An example is the
feed-forward inhibition circuit, which was reported to affect the
dynamic range of networks (Pouille et al., 2009) as well as to pro-
mote the propagation of synchrony (Kremkow et al., 2010) and
to enable gating of signals (Vogels and Abbott, 2005). A study
about the influence of motifs of this kind will also have to vary
the connectivity specific to the type of a neuron.

We also found that activity features are correlated amongst
each other. For example, large correlations appear only in net-
works with high CV. Therefore, although the individual distribu-
tions of activity features are broad, not every arbitrary combina-
tion of activity features (for instance a regular-synchronous state)
can be realized for our present parameter settings.

The activity in individual networks showed that some rela-
tions can be attributed directly to single neuron properties.
For instance, the property that the activity of neurons with
higher rates is more regular in our networks means that net-
works with higher average firing rates have a smaller average
CV. Hence, the relation between in-degree variance and CV
ultimately arises from the setting of supra-threshold external
input combined with recurrent inhibition. Previous studies have
already related the activity of individual neurons to their input
statistics (Hamaguchi et al., 2011). There, CV-rate curves of sin-
gle neurons where attributed to changes in the external input
and used to infer global parameters of the local network. Our
results suggest that the variations across neurons under station-
ary conditions could be used alternatively. The consideration of
additional features of the activity distribution can potentially be
used to gather information about supplementary structural char-
acteristics. However, one has to keep in mind that the effects
of topology can also depend strongly on dynamical properties
of the single neurons as well as on the global activity regime.
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For the first time, to our knowledge, our study assesses the
presence of higher-order correlations (HOC) in large recurrent
networks of neurons. In retinal recordings of about 100 neurons
interaction parameters up until the order five in a maximum
entropy model were used to describe activity patterns (Ganmor
et al., 2011). The studies (Macke et al., 2011; Yu et al., 2011) found
evidence that HOC are shaped by the amount of common input
that neurons receive. Using a novel statistical hypothesis test based
on the cumulants of the population spike count (Staude et al.,
2010b), we found that in networks of 12,500 cells, the highest sig-
nificant order of HOC, as measured by the minimal order of joint
cumulants between single spike trains needed to explain activity
statistics, ranges up to about 500, with a mean of 81 (cf. Figure 3A
and Table 4). The relation between the maximum-entropy model
and the cumulant based concepts of HOC is discussed in Staude
et al. (2010a).

Apart from the network characteristics considered here, there
are many potentially more complex topologies to be analyzed.
We have not considered the modularity of our networks (Leicht
and Newman, 2008). The presence of hierarchical connectivity

can also affect the dynamics (Müller-Linow et al., 2008; Jarvis
et al., 2010; Kaiser and Hilgetag, 2010). As our networks are not
embedded in space, no distance between neurons can be defined,
and consequently effects of the distance dependence of neural
connections which can lead to spatial patterns like propagating
waves (Roxin, 2004; Voges and Perrinet, 2009, 2012), are not taken
into account. Especially the connectivity between excitatory and
inhibitory connections was not changed independently so that
further effects related to this feature remain to be explored.
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