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Information processing in the brain is thought to rely on the convergence and divergence
of oscillatory behaviors of widely distributed brain areas. This information flow is captured
in its simplest form via the concepts of synchronization and desynchronization and related
metrics. More complex forms of information flow are transient synchronizations and
multi-frequency behaviors with metrics related to cross-frequency coupling (CFC). It is
supposed that CFC plays a crucial role in the organization of large-scale networks and
functional integration across large distances. In this study, we describe different CFC
measures and test their applicability in simulated and real electroencephalographic (EEG)
data obtained during resting state. For these purposes, we derive generic oscillator
equations from full brain network models. We systematically model and simulate the
various scenarios of CFC under the influence of noise to obtain biologically realistic
oscillator dynamics. We find that (i) specific CFC-measures detect correctly in most cases
the nature of CFC under noise conditions, (ii) bispectrum (BIS) and bicoherence (BIC)
correctly detect the CFCs in simulated data, (iii) empirical resting state EEG show a
prominent delta-alpha CFC as identified by specific CFC measures and the more classic
BIS and BIC. This coupling was mostly asymmetric (directed) and generally higher in the
eyes closed (EC) than in the eyes open (EO) condition. In conjunction, these two sets of
measures provide a powerful toolbox to reveal the nature of couplings from experimental
data and as such allow inference on the brain state dependent information processing.
Methodological advantages of using CFC measures and theoretical significance of delta
and alpha interactions during resting and other brain states are discussed.

Keywords: cross-frequency coupling, the virtual brain, bispectrum, bicoherence, simulation, resting state, full brain

model, connectome

INTRODUCTION

“Almost all biological systems exhibit significant non-linear
behavior” (Sigl and Chamoun, 1994). The non-linear nature
is imminent in electrophysiological brain activity as measured
by Electroencephalography (EEG) or Magnetoencephalography
(MEG; Elbert et al., 1994; Birbaumer et al., 1995; Miiller et al.,
2003a; Allefeld et al., 2009) and results in characteristics such as
multistability, bifurcations, deterministic chaos, and multiscale
behaviors. Even at rest (in the absence of an explicit task), the
human brain shows temporally coherent activity (Deco et al,
2008, 2009; Ghosh et al., 2008) of a surprising degree of com-
plexity. This so-called “resting state” activity and its underlying
coupling dynamics can be captured at different scales (from a
single cortical area to multiple cortical areas and whole brain
dynamics) and frequencies using both neuroimaging techniques
(fMRI and PET) and EEG/MEG recordings (Biswal et al., 1995;
Greicius et al., 2003; Miiller et al., 2003a,b; Damoiseaux et al,,
2006; Venables et al., 2009). Moreover, the EEG (and MEG) is a
complex signal containing different frequency components inter-
acting with each other. Classic power spectral analyses based on
(fast) Fourier Transform (FFT) or different time-frequency trans-
forms (e.g., wavelet, Hilbert, or Gabor transform) display ampli-
tude modulations within the defined frequencies across time.
Corresponding complex transformations of the signal provide
information about phase changes but they fail identifying the
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relationships among different frequencies or frequency compo-
nents. However, it is the cross-frequency coupling (CFC) between
different frequency bands that has been hypothesized to be the
carrier mechanism for the interaction of local and global pro-
cesses and hence being directly related to the integration of
distributed information. In the early 1960s, bispectral analysis
was first introduced by geophysicists (cf. Sigl and Chamoun,
1994) to study the interfrequency coupling of geophysical sig-
nals. These algorithms have then been used also in neurosciences,
especially during the last decade in the EEG literature (Sigl and
Chamoun, 1994; Witte et al., 2000; Hagihira et al., 2001; Schack
et al., 2001a,b, 2002; Miller et al., 2004; Isler et al., 2008).

DIFFERENT TYPES OF CROSS-FREQUENCY COUPLING (CFC)

Recently, Jensen and Colgin (2007) described different forms
of cross-frequency interactions: (i) power to power, (i) phase
to phase, (iii) phase to frequency, and (iv) phase to power.
There is an increasing evidence that the last type of CFC, so-
called phase-amplitude modulation, occurs very often and was
found both in animals and humans in the entorhinal and pre-
frontal cortices, in the hippocampus, and distributed cortical
areas (Mormann et al., 2005; Cohen, 2008; Osipova et al., 2008;
Tort et al., 2008, 2009, 2010; Cohen et al., 2009a,b; Colgin et al.,
2009; Axmacher et al., 2010a,b; Voytek et al., 2010). According to
this CFC, “gamma oscillations might emerge at a particular phase
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of the theta cycle and thereby recruit cell assemblies involved
in processing at that time” (Jensen and Colgin, 2007). Bruns
and Eckhorn (2004) investigated also cross-frequency amplitude
modulations by means of envelope-to-envelope and envelope-to-
signal correlations using subdural electrodes in epileptic patients
during a visual delayed-match-to-sample task. They found a
pronounced task-related increase of the gamma-delta envelope-
to-signal correlation (with a correlational delay of 40 ms) between
superior and inferior occipital visual areas possibly reflecting a
short-term memory encoding process. In contrast, envelope-to-
envelope correlation showed event-, but not task-related changes
of intra-areal and no changes of inter-areal coupling (Bruns
and Eckhorn, 2004). De Lange et al. (2008) investigated cross-
frequency amplitude correlation during motor imagery and
found interactions between central and precentral alpha/beta
oscillations and occipito-parietal gamma oscillations. In addition
to the mentioned above cross-frequency (CF) modulations, Witte
etal. (2008) described two more CFC types: envelope to frequency
and frequency to frequency. In the data-based EEG burst simula-
tions using coupled Duffing oscillators, the authors (Witte et al.,
2008) found strong envelope-envelope and envelope-frequency
CEC in the delta (0.5-2.5Hz) and the alpha (7-11 or 8-12Hz)
bands and quadratic coupling using bicoherence (BIC) between
delta and alpha bands.

THETA-GAMMA OSCILLATORY COUPLING

Neurophysiological evidence suggests that oscillations in theta
and gamma band are simultaneously modulated during percep-
tion and memory (Jensen and Colgin, 2007; Colgin et al., 2009;
Tort et al., 2009). Recently, more and more evidence suggests that
corresponding CFC between these frequency bands plays a crucial
role in this and other processes, e.g., neuronal computation, com-
munication, and learning (Schack et al., 2002; Schack and Weiss,
2005; Canolty et al., 2006; Jensen and Colgin, 2007; Cohen, 2008;
Tort et al., 2008, 2009; Doesburg et al., 2009; Canolty and Knight,
2010; Kendrick et al., 2011). In the study of Schack et al. (2002),
increased power in the theta and the gamma frequency bands was
accompanied by strong phase coupling by means of cross- BIC
between theta frequency at Fz and gamma frequency at F3 and
Fp1, respectively, for memorizing number words. The suggestion
that this is an amplitude modulation of gamma oscillations by
slow frequency oscillations (e.g., theta) was supported by coher-
ence analysis between the envelope of gamma frequencies and
the raw EEG. In another study of Schack and Weiss (2005), the
CFCbetween theta and gamma oscillations was investigated using
n:m phase synchronization algorithms based on Gabor expan-
sion function. Besides the higher spectral power, phase locking
and 1:1 phase synchronization measured by phase locking index
(PLI) and phase coherence (PC) in both the theta and the gamma
frequency bands, successful encoding of nouns was also accom-
panied by increased CFC or 1:6 phase synchronization at selected
electrodes (within the time interval of 200-250 ms) and between
them (within the time intervals of 250-350 and 400-500 ms).
A phase to power CFC between theta and gamma oscillations
was also reported in epilepsy patients during a continuous word
recognition paradigm in the rhinal cortex and hippocampus.
Interestingly, the theta-gamma CFC in the rhinal cortex was more
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pronounced for correct rejections than for hits, while this CFC
pattern in the hippocampus was inversely more pronounced for
hits than for correct rejections (Mormann et al., 2005). Using
intracranial recordings in human epilepsy patients, Axmacher
et al. (2010a) showed (i) that simultaneous maintenance of mul-
tiple items in working memory is accompanied by theta-gamma
phase-amplitude CFC in the hippocampus, and (ii) that mainte-
nance of an increasing number of items is associated with modu-
lation of beta/gamma power by lowering theta frequency phase.
In other words, modulating influence of the lower theta phase
on the beta/gamma activity provides for higher working mem-
ory load. Recently, Belluscio et al. (2012) found that theta-gamma
phase-amplitude modulation in the CA1 region of rat hippocam-
pus was accompanied by theta-gamma phase-phase modulations,
atleast for slow (30-50 Hz) and midfrequency (50-90 Hz) gamma
oscillators.

DELTA-THETA/DELTA-ALPHA OSCILLATORY COUPLING

AND OTHER CFCs

Besides the cross low-frequency/high-frequency coupling (e.g.,
theta-gamma), there is evidence (Lakatos et al., 2005; Schack
et al., 2005; Cohen, 2008; Isler et al., 2008) that CFC exists also
between the low-frequency bands (e.g., delta-theta, delta-alpha,
and theta-alpha). Isler et al. (2008) reported increase in power
and coherence in the delta band elicited by novel sounds in an
auditory novelty oddball task accompanied by CFC measured by
BIC for delta-theta (1:3) and delta-alpha (1:4) relationships in
widespread fronto-central, right parietal, temporal, and occipital
regions. At the same time, globally synchronized delta oscilla-
tions were phase coupled in terms of cross-bicoherence (¢BIC)
to theta oscillations in central regions and to alpha oscillations
in right parietal and posterior regions. Using CF m:n phase syn-
chronization index (PSI), Schack et al. (2005) found an increase
in upper alpha-theta phase synchronization between right poste-
rior and left anterior sites in a memory scanning task. The authors
suggested that this CFC reflects the interplay between the cen-
tral executive functions (theta) and the reactivation of long-term
memory codes in short-term memory (upper alpha). In a com-
petitive decision-making task Cohen et al. (2009b) found that
alpha and beta amplitude in human medial frontal cortex was
modulated by delta and theta phase; the strength of this modu-
lation differed also between losses and wins, suggesting that this
CF phase-amplitude coupling might reflect a coding mechanism
of feedback valence information.

Recently, Lakatos et al. (2005) introduced a hypothesis about
the “hierarchical” organization of EEG oscillations suggesting
that the amplitude of the oscillations at characteristic frequency
is modulated by the oscillatory phase at lower frequency. In par-
ticular, they found that delta (1-4 Hz) phase modulates theta
(4-10Hz) amplitude, and theta modulates gamma (30-50 Hz)
amplitude in primary auditory cortex of awake macaque mon-
keys (Lakatos et al., 2005). Interestingly, in full-term newborns,
n:m phase synchronization between two delta rhythms (1-1.5 and
3.5-4.5 Hz) was reported (Wacker et al., 2010).

Osipova et al. (2008) reported also about phase to power CFC
between alpha and gamma MEG oscillations during rest with
eyes closed (EC). Interestingly, there was no peak in the gamma
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frequency band and gamma activity was only evident when stud-
ied in relation to the alpha phase. In another MEG study (Palva
et al., 2005), marked cross-frequency n:m phase synchrony was
found among oscillations with frequencies from 3 to 80 Hz. In
particular, enhanced CF phase synchrony among alpha, beta,
and gamma frequency oscillations was present during continuous
mental arithmetic tasks demanding the retention and summa-
tion of items in the working memory. This enhancement of CF
phase synchrony is considered as a candidate mechanism for
the integration of spectrally distributed processing (Palva et al.,
2005). Gamma amplitude modulation (40-80 Hz) by the phase
of the alpha band oscillations (8—12 Hz) was found in the nucleus
accumbens of human patients undergoing deep brain stimula-
tion surgery during a simple reward task (Cohen et al., 2009a).
Recently, it was provided evidence that posterior alpha oscil-
lations (8-13 Hz) constitute a mechanism for prioritizing and
ordering unattended visual input. This mechanism is suggested
to be based on alpha-gamma phase-amplitude CFC, whereby
gamma amplitude-modulated activity that is phase locked to the
alpha-phase keeps competing unattended representations apart in
time (Jensen et al., 2012). In a study with implanted subdural elec-
trocorticographic grids in two patients with intractable epilepsy
performing different visual and non-visual tasks (Voytek et al.,
2010), it was found that high gamma amplitude (80-150 Hz) is
modulated in a non-visual task by anterior frontal theta phase and
in a visual task by the occipital alpha phase. Thus, the modulation
of high gamma activity through theta and alpha phase varied in
these patients as a function of brain area and task modality. The
fact that high-frequency power can be modulated by the phase
of multiple brain rhythms simultaneously provide evidence that
CFC may constitute a mechanism for selection between commu-
nicating cell assemblies (Canolty and Knight, 2010; Voytek et al.,
2010).

INFORMATION FLOW WITHIN AND BETWEEN CELL
ASSEMBLIES

Beginning 1920s, Karl Lashley started with his historical works
about memory traces (engrams) in cerebral cortex and showed
that distribution of active and inactive synapses can be an evi-
dence for learning processes (Lashley, 1924, 1931). Lashley’s
student, D. O. Hebb, developed his so-called Theory of Cell
Assemblies (Hebb, 1949) on the basis of the Lorente de No’s
concept of reverberatory circuits. These circuits have been consid-
ered as the mechanism of activity maintenance after the stimulus
effect was reversed. Besides the properties of fast firing and exci-
tation persistence, cell assemblies can be considered as “closed
systems” oscillating synchronously at different frequencies with
strong information flow within each cell assembly and much
smaller information flow between them. In order to prevent
“the transition from an ‘Einfall’ to an ‘Anfall’ (transition from
an idea to a seizure) in an excitatory neuronal network or, as
Braitenberg poetically states, to ‘discover and isolate ideas ...}
reinforce ideas, ‘and keep them separately’ (Braitenberg and
Schiiz, 1991, p. 205)” (cited by Birbaumer et al., 1995, p. 451), cell
assemblies must possess their own automatic threshold control.
Separate cell assemblies communicate with each other to integrate
single information flows and ideas into a common network or
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thinking process. In terms of dynamic systems, these metaphoric
descriptions can be rephrased as convergence or divergence of
flows in state space allowing for a full dynamic description (Jirsa
and Kelso, 2005; Perdikis et al., 2011). One of the mechanisms
underlying such an integration or communication between dif-
ferent cell assemblies might be the CFC, allowing accurate timing
between different oscillatory rhythms, selective and dynamic con-
trol of distributed functional cell assemblies (cf. Canolty et al.,
2010), and promotion of different dimensions of brain integra-
tion (Varela et al., 2001; Buzsaki and Draguhn, 2004; Allen et al.,
2011).

CROSS-FREQUENCY MEASURES
BISPECTRUM AND BICOHERENCE
Bispectral analysis is an advanced signal processing technique
based on high-order statistics (HOS). This technique, analyz-
ing multiplicative connections between two rhythms, generating
a third frequency component, and quantifying quadratic non-
linearities and deviation from normality, may be used to inves-
tigate non-linearities within the signal [in the case of bispectrum
(BIS) or bicoherence (BIC)] or between the signals [in the case
of cross-bispectrum (cBIS) or cross-bicoherence (¢BIC)] arising
from inter-frequency coupling within and between the signals,
respectively (Sigl and Chamoun, 1994; Schack et al., 2002; Miller
et al., 2004; Isler et al., 2008).

BIS is a higher-order extension of power spectral estimation.
A conventional power spectrum decomposes the power of a time
series over frequency. In contrast, the BIS decomposes the third
moment (skewness) of a time series over frequencies. Specifically,
BIS estimates the relationship between oscillatory components
of the signal or more precisely between the oscillations at two
basic frequencies, f; and f,, and a harmonic component at the
frequency f; + f,. The BIS incorporates both phase and power
information, and can be calculated for each frequency triplet (f},
fr,and fi + f2). The estimated BIS can be used to detect asymmet-
ric non-linearities in a time series and to detect phase coupling
between frequency components. But because the magnitude of
the BIS is influenced by the amplitude of the signal, it is not a
pure measure of the degree of phase coupling. Instead, normal-
ized BIS called BIC can be used for this purpose. BIC is defined as
aratio of the BIS to the square root of the real triple product com-
puted from the power spectrum (see Methods); thus, the ratio
is independent of signal amplitude and BIC is, therefore, con-
sidered as a pure measure of the degree of phase coupling (Sigl
and Chamoun, 1994; Schack et al., 2002). BIC ranges between
0 and 1, with 0 indicating no phase coupling and 1 indicating
complete phase coupling between two frequency components. All
this is also true for cross-BIS (¢BIS) and cross-BIC (¢BIC) with
the difference that the CFC in this case is estimated between two
signals.

OTHER SPECIFIC CFC ESTIMATES

Taking into account the main characteristics of the signal(s), six
different CFC measures may be obtained: (i) power to power, (ii)
phase to phase, (iii) phase to power, (iv) power to frequency, (v)
phase to frequency, and (vi) frequency to frequency (cf. Jensen
and Colgin, 2007). These CFC measures reflect different aspects
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of CFC, which are schematically presented in Figure 1. Together
with BIC and BIS, these CFC measures give a relatively com-
plete picture about cross-frequency interdependencies within and
between the signals.

Power to power CFC indicates how amplitude modulations in
one frequency depend on amplitude modulations in the other fre-
quency (compare envelopes of signals X and Y1 in Figures 1A,B,
respectively). This type of CFC was developed to investigate cou-
pling between different high-frequency oscillations (e.g., beta,
gamma) showing similar (low-frequency) amplitude modula-
tions (Bekisz and Wrobel, 1999; Bruns et al., 2000; Bruns and
Eckhorn, 2004). The advance of this technique consist in detect-
ing not only coupling between different frequencies but also
coupling within the same frequency, which could not be found
using conventional coherence measures because of large temporal
or phase jitter (Bruns et al., 2000).

Phase to phase CFC is a measure for n:m synchronization and
shows the degree of the true phase coupling between the frequen-
cies within and between the signals (compare phases of signals X
and Y2 in Figures 1A,C, respectively; the phase relation is 1:3 in
this case). This type of CFC is a pure phase coupling measure and
is amplitude-independent. This so-called n:1m synchrony indicates
phase locking on 7 cycles of one oscillation to m cycles of another
oscillation (Rosenblum et al., 1996; Tass et al., 1998). As men-
tioned by Rosenblum and colleagues (Rosenblum et al., 1996),
“the phenomenon of phase synchronization is a characteristic fea-
ture of autonomous continuous-time system.” In this regard, the
phase synchronization and especially the cross-frequency phase
synchronization is an excellent candidate for neural temporal
coding supporting dynamic information flow in the brain.

Phase to power CFC reflects amplitude modulations in one
frequency (normally in the high frequency, e.g., signal Y3 in

A
B
Power to power
X-Y1 Y1 W\/\}
C
Phase to phase
D
Phase to power
X-Y3 Y3 WV\/\‘
E

Phase to frequency
X-Y4

Power to frequency
X-Y5

G

Frequency to frequency

Y5-Y6 Y6

FIGURE 1 | Different types of the cross-frequency coupling. (A) Signal X
at a given constant frequency fluctuating in the amplitude over time (red line).
(B) Power to power CFC: Signal Y7 at about 5 times higher frequency than in
the signal X showing slow amplitude modulations over time like signal X (red
line). (C) Phase to phase CFC: Signal Y2 showing 3:1 phase to phase
coupling with signal X. One oscillation period of signal X corresponds to three
periods of signal Y2. (D) Phase to power CFC: Signal Y3 with fast amplitude
modulations, which are related or coupled with the phase of the signal X.

(E) Phase to frequency CFC: Signal Y4 with frequency modulations, which

S=2 )

S=SE2=17 )
=1 £

N\
WY

are coupled with phase changes of signal X. (F) Power to frequency CFC:
Signal Y5 with frequency modulations, which are coupled with the slow
amplitude modulations of signal X (red line). (G) Frequency to frequency
CFC: Signal Y6 with slower frequency modulations than in the signal Y5. The
different types of CFC are not mutually exclusive (ref. Jensen and Colgin,
2007). It can be seen for instance, that slow amplitude modulations of Signal
X are coupled not only with the amplitude changes of the signal Y7 but also
with frequency changes of signals Y5 and Y6, which are at the same time
coupled in their frequency modulations.
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Figure 1D) dependent on the phase of the other frequency
(low frequency, e.g., signal X in Figure 1A). Besides the previ-
ous CFC, the phase to power coupling is the most commonly
used or the best-studied type of coupling (e.g., the mentioned
above theta-gamma CFC). Like the cross-frequency phase syn-
chronization, also the phase to power CFC is a good candidate
for the neural temporal coding, with the difference that (and
especially when) specific amplitude modulations (normally high-
frequency modulations, e.g., gamma) of one oscillation take
place in specific time windows or phase state of another oscilla-
tion (normally low-frequency oscillation, e.g., theta). Moreover,
in terms of neural coding, it can be considered as an inte-
gration mechanism between the two types of coding (i.e., rate
and temporal code), whilst amplitude modulations represent
the rate coding and phase course reflects the temporal coding.
Furthermore, in some cases (e.g., Hebbian learning), when fir-
ing rate decreases or will be replaced by temporally more accurate
firing, it will be considered as transforming a rate code into a
temporal code (Mehta et al., 2002). As recently shown (Jensen
et al., 2012), the phase of ongoing alpha oscillation, inhibiting
neuronal processing, modulates neuronal excitability in form of
gamma activity in the way that neural firing and corresponding
gamma amplitude modulations occur during the falling phase
of alpha oscillation. So, it is assumed that “alpha activity pro-
vides a clocking mechanism that controls neuronal processing
reflected by activity in the gamma band” (Jensen et al., 2012,
p. 200).

Power to frequency CFC indicates changes in the frequency
induced by changes in the amplitude of the signal or envelope
(compare envelope of signal X and frequency modulations of
signal Y4 in Figures 1A,E, respectively). This type and also the
next two types of CFC, where frequency is one of the interaction
components, have been poorly investigated until recently. We can
only refer to the study of Witte et al. (2008), where this type of
CFC was addressed. Instantaneous frequency (IF) is defined in
this case as the phase changes in time (see Methods for details).
As observable in Figure 1, these signal modulations or coupling
types cannot be detected by other CFC measures but they seem
to play a crucial role in the systems with high dynamic changes,
which can only be explained by frequency/phase entrainment
(Witte et al., 2008). Furthermore, amplitude-frequency modula-
tions can be attributed to so-called auto resonance, when change
in the drive frequency causes a corresponding change in the
oscillation amplitude, which leads to entrainment or sustained
phase locking of the driving and the oscillator frequency (Witte
et al., 2008). It is also well known that the frequency modula-
tion as compared with the amplitude modulation allows a higher
dynamic range of the information signal and is less suscepti-
ble to interference or disturbances. However, these aspects of
the information processing have not been investigated well in
neurosciences until now.

Phase to frequency CFC indicates changes in the frequency
induced by the phase of the signal (compare phase of signal X
and frequency modulations of signal Y5 in Figures 1A,F, respec-
tively). This type of CFC can also have a high scientific relevance
adding further important information regarding CF interaction
as these aspects have not been studied until now.
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Frequency to frequency CFC reflects changes in the one fre-
quency range induced through changes in the other frequency
range (compare frequency modulations of signals Y5 and Y6 in
Figures 1EG, respectively). Also this type of CFC can provide
additional information about interacting systems or cell assem-
blies and extend our understanding of the cross-frequency neural
communication.

SIMULATION DATA: REDUCED OSCILLATORS FROM FULL
REALISTIC BRAIN NETWORKS

To test and validate the CFC measures, we phenomenologically
derive the mathematical form of generic oscillator equations from
a full brain network. The purpose of this derivation is to motivate
the influences of certain structural and architectonic elements of
full brain networks on generic oscillator equations and then solely
discuss the latter in the context of our simulations. Full brain
network models comprise neural population models at each net-
work node modeling the activity of a brain region. The nodes are
connected via large-scale connectivity matrices, the so-called con-
nectome. Traversing the scale of description from the full brain
network to reduced oscillator models will impose constraints on
the choice of the parameters. The parameters will in general not
be freely adjustable, but will interdepend and lie on so-called
manifolds in parameter spaces. The manifolds are hypersurfaces
that constrain the possible combinations of parameters. For the
purposes of this study, we keep the parameters unconstrained
and choose a specific parameter combination capable of gener-
ating a dynamic behavior regarding its CFC. A phenomenological
modeling of this sort will allow us to introduce noise into the
model system and generate more realistic situations, which we
can then put to the test using our battery of CFC measures.
We lose, however, the possibility to interpret the parameters in
the reduced model physiologically. Marder and Goaillard (2006)
pointed out that such parameter manifolds may comprise sur-
prisingly large ranges and may be shaped in a complex manner.
As a consequence, sometimes the use of average parameters may
not only be a bad approximation, but may indeed provide incor-
rect results, since the average parameter values may actually not
be on the constraining manifold and hence display a different
dynamic behavior (than those on the manifold). This evidence
demonstrates that the fitting of models for specific parameters
is only of limited value, rather the determination of parameter
ranges and the respective manifolds in the parameter spaces is
asked for. In the subsequent discussion, we will demonstrate how
the phenomenological oscillator models are motivated from the
large-scale brain network. We then freely change the parameters
to generate various types of CFC relevant for the discussion in this
article.

The network nodes of a full brain network are neural mass
models typically derived from neuron interactions using a mean-
field approach. Common assumptions in mean-field modeling
are that explicit structural features or temporal details of neu-
ronal networks (e.g., spiking dynamics of single neurons) are
irrelevant for the analysis of complex mesoscopic dynamics,
and the emergent collective behavior is only weakly sensitive to
the details of individual neuron behavior (Breakspear and Jirsa,
2007). Basic mean field models capture changes of the mean
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firing rate (Brunel and Wang, 2003), whereas more sophisti-
cated mean field models account for parameter dispersion in
the neurons and the subsequent richer behavioral repertoire of
the mean field dynamics (Assisi et al., 2005; Stefanescu and
Jirsa, 2008, 2011; Jirsa and Stefanescu, 2011). These approaches
demonstrate a relatively new concept from statistical physics that
macroscopic physical systems obey laws that are independent
of the details of the microscopic constituents they are built of
(Haken, 1983). These and related ideas have been exploited in
neurosciences (Kelso, 1995; Buzsaki, 2006). Thus, our main inter-
est lies in deriving the mesoscopic laws that drive the observed
dynamical processes at the macroscopic scale in a systematic
manner.

In the framework of “The Virtual Brain” (TVB,
www.thevirtualbrain.org) we develop full brain network
models by incorporating biologically realistic large scale cou-
pling of neural populations at salient brain regions that is
mediated by long-range neural fiber tracts as identified with
diffusion tensor imaging (DTI) based tractography together with
mean-field models as local node models. Various mean-field
models are available in TVB, reproducing typical features of
mesoscopic population dynamics (see Sanz Leon et al.,, 2013,
for details). Each network node is governed by its own intrinsic
population dynamics in interaction with the dynamics of all
other network nodes. This interaction happens through the
connectivity matrix via specific connection weights obtained
from DTI and time delays due to signal transmission delays.
The general evolution equation (see Jirsa, 2009) captures these
architectonic features through a stochastic integral-differential
equation of a network of connected neural populations derived
from mean field approaches using coupled neurons. Noise
plays a crucial role for the brain dynamics, and hence for brain
function (McIntosh et al., 2010), and is typically introduced
additively where the type of noise and its spatial and temporal
correlations can be specified independently. Though the evo-
lution equation in TVB captures all the relevant features of
connectivity and neural mass modeling, it is far from obvious
how to systematically control the actual nature of the CFCs
systematically and independently within the framework of
TVB. Different network parameter manipulations will affect
various forms of CFC in a non-unique manner. Hence, to allow
for a systematic discussion of a generative evolution equation
with and without noise, but still sufficiently motivated by the
original TVB philosophy, we follow the steps of Jirsa (2009),
where the full brain network equation comprised full local
connectivity, but only one long-range two-point connection
with signal transmission delay. Jirsa (2009) considered the effects
of the time delay explicitly, which we will though ignore here
(equivalent to the assumption of the time delay being small
with regard to the time scale of the oscillator dynamics). Jirsa
(2009) reduced this model system to two non-linearly coupled
oscillators with state variables, x; (¢) and x,(t) and performed a
linear stability analysis of their equilibrium state. Here, we are
interested in their non-linear oscillatory behavior and hence take
a modified approach as follows: we preserve all non-linearities
in the original non-linear oscillator equations as described by
Jirsa (2009) and formally decompose the state variables x; (¢)
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and x,(t) into their amplitudes, r;(¢) and r,(¢) and phases, ¢ ()
and @(¢). Then we perform a Taylor decomposition in the
amplitudes and a Fourier decomposition in the phases to obtain
the following set of equations:

() =ri() =Y ayrt (1) — Y bijum sin(ngi(t) —me;(0)ri(t)
j

J,n,m

Gi() =1+ Y cr(0) = D dijum sin(ng;(t) — me;(1)) (1)

J Jon,m

where we kept only the leading orders of terms in phase and
amplitude as relevant for our discussion. Here, we used a gen-
eral formulation of the coupled phase-amplitude equations for
an arbitrary number N of oscillators with indices i,j = 1,..., N
and where n,m =0, ..., are the orders of the Fourier expan-
sions of the fully non-linear oscillator equations in (Jirsa, 2009);
w; is the oscillation frequency and ajj, bjjum, ¢j» and djju, are
constant coefficients. All parameter values are defined in the
Methods. The latter coefficients can be expressed in principle
through the architectural elements including connectivity, sig-
moidal response function and local neural node dynamics, but
these expressions will be generally complicated and not unique.
As we here choose the parameters freely (see Methods below),
all terms absent in Equation 1 can be considered to have been
set to zero. In the stochastic version, the above equations con-
tain linearly added white Gaussian noise. We used the Euler
Maruyama algorithm to solve the equations (Kloeden and Platen,
1992).

METHODS

SIMULATION DATA

To test the validity and performance of the different types of
CFC, we applied different CFC measures to simulated data. The
parameter choice for each instance of CFC was motivated only by
considerations from non-linear dynamics theory (see for instance
Strogatz, 1994) with the intent to maximize a desired CFC effect.
No consideration was given to potential co-dependencies of coef-
ficients in Equation 1 on the same structural substrate (connec-
tivity, or others). The eigenfrequencies for all simulations were
o] = 327 and w; = 3271/5. The other parameter choices have
been selectively made for the various forms of CFC:

e Power to power: amplitude modulations in one frequency
depend on amplitude modulations in the other frequency.
Parameters: a1 = aj2 = ay = 1, all others are zero.

e Phase to phase: phases are directly interdependent. Parameters:
ajl = ay = 1,dy15 = —170, dy151 = —42, all others are zero.

e Phase to power: amplitude modulations in the high frequency
depend on the phase of the small frequency. Parameters: a;; =
ay; = 1, b0 = —15, all others are zero.

e Power to frequency: changes in the frequency induced by
changes in the amplitude of the signal or envelope. Parameters:
aj; = ax = 1, ¢ = 0.9, all others are zero.

e Phase to frequency: changes in the frequency are induced by the
phase of the signal. Parameters: a;; = ax; = 1, djp01 = —22m,
all others are zero.
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Figure 2 displays the two oscillators of the five CFC types and
a case of uncoupled oscillators. The left column illustrates the
time series in absence of noise, the right column in presence
of noise. Frequency to frequency coupling was omitted in this
presentation, since it has a particularity compared to the other
forms of coupling, that is the notion of frequency is not in a
unique relation with the amplitudes, r(¢) and r,(¢), and phases,
¢1(¢) and ¢@y(t). The frequency can be computed in various
ways and will introduce a new state variable, which, by defini-
tion, will change the nature of the dynamic system and does

not fall into the framework we have developed in Equations 1.
For these reasons we choose to omit the discussion of this
coupling here.

EEG RECORDING DURING RESTING STATE

Participants

All participants were volunteers and were recruited through
announcements on Saarland schools (Gymnasiums) and Saarland
University. For participation in the study, all subjects were paid
7.5 Euro per hour. All the subjects were right-handed, had no

Without Noise
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FIGURE 2 | Simulated data representing different types of CF
interactions in absence and in presence of noise. (A) Power to power
modulation. (B) Phase to phase modulation. (C) Phase to power modulation.

A Power to power

B Phase to

With Noise

phase

0

(D) Phase to frequency modulation. (E) Power to frequency modulation.
(F) Uncoupled oscillators. The left column displays the time series in absence
of noise, the right column in presence of noise.
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reported history of head or neurological disorders, and none
were on medication. The sample consisted of twenty young adults
(mean age = 23.2, SD = 1.4, age range = 20-25 years, 5 females).

Procedure

The EEG measurement began with a 3-min relaxation phase
[1.5 min with EC and 1.5 min with eyes open (EO)]. Instructions
for the resting states were given on the computer display and were
presented as follows: “A cross will be shown in the middle of the
screen for a minute and a half. Please focus on the cross and relax”
[for the EO condition] and “Keep your EC for a minute and a half
and relax” [for the EC condition]. The rest phases were then fol-
lowed by the auditory oddball task. The data of the task condition
will not be presented here.

EEG recordings and analyses

The EEG was recorded from 58 Ag/AgCl electrodes using an
elastic cap (Electrocap International) with a sampling rate of
500Hz in a frequency band ranged between 0.5 and 100 Hz.
The left mastoid was used as a reference and the right mas-
toid was recorded as an active channel. The data were also
re-referenced off-line to an average of the left and right mas-
toids for further analysis. The electrodes were placed according
to the international 10-10 system. For data analyses, only 21
electrode locations from the 10-20 system were used to avoid
volume conduction effects between electrode sites located close
together. Vertical and horizontal electrooculogram (EOG) was
recorded for control of eye blinks and eye movements. The EEG
recordings were high pass filtered at 1 Hz and corrected for eye
movements using the Gratton and Coles algorithm (Gratton
et al,, 1983). Blink artifacts were rejected based on gradient
criterion, i.e., maximal allowed voltage step (50 wV), and dif-
ference criterion, i.e., maximal allowed absolute difference of
two values in the segment (200 LV), and also by visual inspec-
tion. The EEG was down-sampled to 250 Hz and segmented
based on division in equal sized non-overlapping segments of
4096 ms length (1024 data points) for the rest intervals with
EC and EO.

Spectral power and coherence, bispectrum and bicoherence
Spectral power was calculated using the fast Fourier transform
(FFT) according to the following equation:

N-1 )

> X, (k) exp (%nkf)

k=0 :
X(H) =

N (2)
where N is the number of frequency bins and f; is the sampling
rate. The FFT of the signals was calculated using 256 frequency
bins with 0.98 Hz frequency resolution. We used a 128 point
Blackman window, with 75% overlap. This procedure was also
used for calculation of coherence and bispectral measures. Before
calculation, EEG time series were normalized or adjusted to a zero
mean value in order to exclude from analysis any signal offset
arising from electrode half-cell potentials.

Spectral coherence between two time series at a certain fre-
quency was calculated using the complex FFT according to the
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following equation:

52 ()
)= S sm )

where Sxy (f) = Sx (f) - S} (f) is the cross-spectrum for the
channels X and Y, and Sxx (f and Syy (f)are respective auto-
spectra.

The single-sided BIS of a univariate time series was computed
using the FFT-based method according to the following equation:

BIS (fons fu) = |(X () - X (fa) - X" (fos + 1))

where < - > denotes averaging or the expectation value, X(f)
is the Fourier transform of the time series X;, and X*(fi + f2)
indicates the complex conjugate of X(f; + f>). In the case of the
¢BIS, calculating CFC between two electrodes, the triple product
is defined as:

BIS (fons fu) = (X (fn) - Y (fa) - Y* (fon + )|

When calculating BIC (CFC within one electrode or channel) or
¢BIC (CFC between two electrodes or channels), the BIS and the
¢BIS are normalized by the real triplet product:

X (o) - X (Fr) - X" (o + o))

3)

(4)

(5)

BIC (fun. fn) = (6)
JG) X G 1x G+
and
i) — KO YO Gl
S G ¥ G 1Y G 1))
correspondingly.

It can be seen that ¢BIS and ¢BIC are asymmetric measures that
means that ¢BISxy(f1, f2) # ¢BISyx (f1, f2) and also ¢BICxy(fi,
f2) # ¢BICyx(f1, f2). We used this property of the ¢BIS and ¢BIC
to estimate directedness of the coupling, which is given when
the information flow from one electrode to another electrode
at the frequency f; is much stronger than the information flow in
the inverse direction at the frequency f. If the information flow
is similar or equal in both directions the coupling is defined as
bidirectional.

In contrast to spectral power, (cross-)BIS depends like spectral
coherence on both amplitude of the signal(s) and the degree of
phase coupling between the frequencies, whereas BIC (¢BIC) is a
pure measure of the phase coupling.

Specific cross-frequency coupling measures based on the Hilbert
transform

As mentioned in the introduction, CFC can be at least of six dif-
ferent forms or types: (i) power to power, (ii) phase to phase,
(iii) phase to power, (iv) power to frequency, (v) phase to fre-
quency, and (vi) frequency to frequency. We present here only
the first five CFC-measures, the frequency to frequency CFC will
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be omitted here. In the literature, different terms for CFC will
be used in synonymous order, e.g., power to power = envelope-
to-envelope = amplitude-to-amplitude or phase to power =
phase-to-envelope = phase-to-amplitude etc. We decided to use
the term “power” in all the cases to avoid misunderstandings or
confusions.

To investigate these types of CFC, we used two different
approaches: (i) based on calculation of PSI as described by Cohen
(2008) for phase-amplitude coupling, and (ii) based on calcula-
tion of correlation coefficient between different cross-frequency
components as described by Bruns and Eckhorn (2004) for
envelope-to-envelope. Phase to phase CFC (or n:m phase syn-
chronyzation) was calculated as described elsewhere (Tass et al.,
1998; Rosenblum et al., 1999; Schack et al., 2005; Schack and
Weiss, 2005; Witte et al., 2008). In addition, we extended the
Cohen-algorithm for calculation of power to power CFC. All
these algorithms were adapted and applied on the basis of Hilbert
transform as described by Cohen (2008) and were calculated both
within the signals (X or Y) and between them (XY).

At the first step, the epoch of the raw EEG data were band
pass filtered in 16 different frequency ranges (fc [fiow — fupl: (1)
2Hz [0.5-3.5Hz]; (2) 3Hz [1-5Hz]; (3) 4Hz [2-6 Hz]; (4) 5Hz
[3-7Hz]; (5) 7Hz [4.5-9.5Hz]; (6) 8Hz [5-11Hz]; (7) 9Hz
(6-12 Hz); (8) 10 Hz [6-14 Hz]; (9) 11 Hz [7-15Hz]; (10) 12 Hz
[8-16Hz]; (11) 14Hz [10-18 Hz]; (12) 18 Hz [14-22 Hz]; (13)
24 Hz [20-28 Hz]; (14) 28 Hz [24-32 Hz]; (15) 36 Hz [32—40 Hz];
(16) 70 Hz [65-75Hz]) and then applied to the complex Hilbert
transform. The instantaneous power and phase time series were
extracted from the transformed data.

On the basis of instantaneous phases extracted from the
Hilbert-transformed raw EEG signals given as: ®x(f,, t) =
arg[ox (fin, t)] and @y (fy,, t) = arg[dy(fy, 1)], correspondingly,
the n:m phase synchronization between two oscillations at the
center frequencies f,, and f, were determined. The generalized
phase difference (A®) according to #n - f,, = m - f, was calcu-
lated by:

ADx (fn, fu, t) =n- Ox (fin, t) —m- Px (fu, 1),
mod27 (within the electrode) (8)

ADxy (fu, fu, t) =1+ Px (fin, t) —m- Py (fu, 1),
mod2m (between the electrodes) (9)

The n:m PSI was then defined by:

PSIx (fonr for 1) = ‘<ei~A<I>x(fm,fn,t)> =1

(within the electrode) (10)
Pﬂﬂwm,ﬂ,0:’@A¢M@MN»Lj: /=1
(between the electrodes) (11)

where < - > denotes the averaging across time, in contrast to
usual methods determining phase synchronization across trials.
At the second step, the power time series were normalized,
detrended, or mean subtracted to remove DC-component and
then also applied to the complex Hilbert transform. In this
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way, instantaneous phase of power time series was extracted.
These time series were then used to determine power to power
and phase to power coupling. For these purposes, PSI was cal-
culated according to Equation 10 or 11 from instantaneous
phases of power time series for calculation of the power to
power CFC, and from instantaneous phase of the raw signal
and instantaneous phase of normalized power time series, for
calculation of the phase to power CFC (for details, see Cohen,
2008).

Power to power CFC was also investigated using correla-
tion method (Bruns and Eckhorn, 2004; Witte et al., 2008). For
this purpose, the correlation between the CFC components was
calculated by the following equation:

k k
5 (AL () - AP ()
k k
VE Gner) - B ()
where k is the number of data points in the segment,
® _ W 0 ® _
Ay (fn©) = ay’ (fn. ) — ax (fin. t) Ay (fu 1) =
ag() 0 T) —ag() 4, ) denote normalized CFC components
of the signals X and Y at the center frequencies f,, and f,,
2
correspondingly, and Eg() (f 1) = (Ag() (fins 'E)) and

E;k) (f1)=2 (Ag‘) (for 'c))2 are corresponding energies in the
segment. Time series or CFC components were normalized by
subtracting the ensemble or segments’ means from correspond-
ing instantaneous CFC-values. For determination of power to
frequency and phase to frequency CFCs, IF of the bandpass-
filtered signal component was determined using instantaneous
phases as a derivative IF(#;) at the sample point f; approximated
by the difference equation:

Pg() (fm,fn, t) = ’ (12)

and

IF (f, t) ~ I1Ph (f, t,'+1) — IPh (f, t,'_l) (13)

g1 —ti—1

where IPh (f, ti41) and IPh (f, tj _ ) are instantaneous phases of
the signal at the time points #; 4 1 and #;_ |, correspondingly. The
different CFC components were applied to the Equation 12 to
determine CFCs within and between corresponding time series.
All the CFC measures were determined across time within
the segments and then averaged across segments. Before aver-
aging, the measures (correlation coefficients and also PSIs) were
normalized using Fisher-Z or tangent hyperbolicus transform:

(14)

1 1
Z, = arctan h (r) = Eln (1 + r)
—r

where r is the correlation coefficient or the PSI value.

Statistical evaluation

To determine whether CFC is greater than would be observed by
chance, we used surrogate data test. For this purpose we generated
surrogate data through a random permutation of phases of the
time series (“phase shuffling”) of all EEG epochs at all considered
channels and then calculated the corresponding synchronization

July 2013 | Volume 7 | Article 78 | 9


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Jirsa and Mller

Cross-frequency coupling in brain networks

measures between all possible electrode pairs of these surrogate
data. Thereafter, we applied a bootstrapping procedure with 1000
resamples of the coupling measures gained from the surrogate
data set and determined the threshold as the bootstrapping mean
plus the confidence interval at a significance level of p < 0.0001.
Only coupling values larger than the threshold value were consid-
ered for representation of data. In the case of simulated data, the
threshold was determined in the same way with the difference that
the surrogate data of the two simulated signals were generated
100 times.

For cross-frequency representations and statistical evaluation
of the EEG data, we chose a most representative electrode pair
(e.g., Fpl and O2 in case of bispectral measures). In the case of
spectral power and spectral coherence, we used the same elec-
trodes (Fpl and O2) to ensure the comparability. In the case of
both spectral and bispectral measures, we divided the frequency
spectrum into the four frequency bands: delta (2-4 Hz), theta
(5-7Hz), alphal (8-10Hz), and alpha2 (11-13 Hz) and calcu-
lated power or coupling values within these frequency bands or
between them. Spectral power was statistically evaluated using
a Two-Way repeated measures ANOVA with two within-subject
factors Eyes (EC and EO) and Electrodes (Fpl and O2). Because
the spectral coherence is a symmetrical measure, a One-Way
repeated measures ANOVA with the within-subject factor Eyes
(EC and EO) was calculated for the electrode pair Fp1-O2. A Two-
Way repeated measures ANOVA with two within-subject factors
Eyes (EC and EO) and Electrodes (Fpl and O2) was calculated
for BIS and bicoherence. In the case of ¢BIS and ¢BIC within
the same frequency pairs (e.g., delta-delta, theta-theta, alphal-
alphal, and alpha2-alpha2), we used in this ANOVA the factor
Electrode Pair (Fp1-O2 and O2-Fpl) instead of Electrodes. For
¢BIS and ¢BIC between different frequencies (e.g., delta-theta,
theta-alphal, alphal-alpha2, etc.), a Three-Way repeated mea-
sures ANOVA with three within-subject factors Eyes (EC and
EO), Electrode Pair (Fp1-O2 and O2-Fpl) and Frequency (e.g.,
delta-theta vs. theta-delta) was used.

In the case of the specific CFC measures, separate ANOVAs
were calculated for frequency components showing significant
CEC in the corresponding grand averages. So, power to power
CFC showed significant coupling in the frequency range between
5 and 14 Hz and concerns, above all, neighboring frequencies.
We calculated then Two-Way repeated measures ANOVA with
two within-subject factors Eyes and Frequency, where factor
Frequency have had different levels: 7, 8, 9, 10, 11, and 12 Hz. We
chose also a most representative electrode pair for corresponding
CECs. In the case of the power to power CFC, these electrodes
were Fpl and F3.

Greenhouse—Geisser epsilons were used in all ANOVAs for
non-sphericity correction when necessary.

RESULTS

SIMULATION DATA: ILLUSTRATION OF TWO COUPLED OSCILLATORS
From Figure 2, it is apparent from the juxtaposition of the iden-
tical system simulated with and without noise that the effect
of noise may either obscure or enhance certain types of CFC.
For instance, the phase to power CFC shows itself clearly in
absence of noise, but is difficult to recognize while noise is present
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(Figure 2C). The phase to phase CFC expresses itself clearer in the
presence of noise (Figure 2B), because the two oscillator signals
always return to the same phase coupling despite much vari-
ability otherwise. On the other hand, in absence of noise, there
is no relative phase change after a transient, which renders an
evaluation difficult and demands further investigation via CFC
analysis. The CFC algorithms were, at first, applied to simulation
data. The results of two coupled oscillators representing differ-
ent types of CFCs are presented in Figure 3. The power to power
CFC (Figure 3A) could be gathered with both specific CFC algo-
rithms applied for this type of CFC (s. Methods for details).
In both algorithms, there is smearing across frequencies, cover-
ing 2—-4 Hz of the low-frequency oscillator and 7-14 Hz of the
high-frequency oscillator (we present here only results calculated
using the Cohen-algorithm). BIS and BIC showed a peak for the
2-10Hz CF interaction. More clearly it can be seen in the bis-
pectrum. Phase to phase CFC (Figure 3B) was registered more
precisely indicating highest coupling for 2—10 Hz phase to phase
relation, as simulated in the data. BIS and BIC also indicate this
CF interaction but showed also an additional delta-to-delta CFC
peak. Interestingly, the phase to phase coupling could be found
not only for this type of CFC, but also for other types as well as
in the case of uncoupled oscillators indicating that the phase to
phase relation that was initially fixed in the model system was not
disturbed sufficiently by the present noise. This issue is impor-
tant and needs to be recognized: the CFC measures discussed here
evaluate covariations of various orders, which are influenced by
the degree of non-linearity and noise. The multifrequency behav-
iors and frequency smearing resulting from their influence are
a real part of the signal and do not require corrections, since
these phenomena are deviating from intuitive expectations based
on linear oscillator theory (such as constant angular frequency
across the range of phases for instance). The phase to power CFC
(Figure 3C) has also been gathered with the algorithm applied
for this type of CFC. There was also smearing across frequen-
cies, covering 2—4 Hz of the low-frequency oscillator and 3-18 Hz
of the high-frequency oscillator. BIS and BIC were also able to
show the delta to alpha (2-10Hz) CF interaction. In the case
of phase to frequency CFC simulation (Figure 3D), there was
indeed a significant CF interaction between the frequencies (2
and 10Hz) but the CFC was higher for 3 to 7-11Hz and 4 to
10-14 Hz CF interaction. Interestingly, phase to power CFC mea-
sure showed here strong coupling within the delta band (2—4 Hz)
and also between delta und beta (14, 18, 24, and 28 Hz) fre-
quencies. This coupling seems to be a byproduct of phase to
frequency simulation. BIS and BIC showed a CFC between the
low frequencies (between 1 and 8 Hz). Additionally, BIC showed
a delta-beta CFC (2-5 to 24-28 Hz). The power to frequency CFC
(Figure 3E) has also been gathered with the algorithm applied for
this type of CFC but the coupling is highest at somewhat higher
frequency components (14 and 18 Hz instead of 10 Hz). BIS and
BIC were not able to capture this CFC and showed their peaks in
the low frequency range between 1 and 4 Hz. The fact that BIS
and BIC were not able to capture the phase to frequency and the
power to frequency CF interactions is apparently due to the fre-
quency modulations in the high-frequency signal disturbing the
primary frequency ratio between the signals. Thus, these types
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FIGURE 3 | Cross-frequency coupling in simulated data assessed using
specific CFC-measures, cross-bispectrum, and cross-bicoherence. (A)
CFC for simulated signals with power to power modulation. The assessed
coupling covers the CF interaction between 2 and 4 Hz of the
low-frequency oscillator and 7 and 14 Hz of the high-frequency oscillator.
Bispectrum and bicoherence show a peak for the 2-10Hz CF interaction,
which is more clearly seen in the bispectrum. (B) CFC for simulated
signals with phase to phase modulation. The 2-10 Hz phase to phase
relation is detected, as simulated in the data. Bispectrum and bicoherence
also indicate this CF interaction but show also an additional delta-to-delta
CFC peak. (C) CFC for simulated signals with phase to power modulation.
The assessed coupling covers the CF interaction between 2 and 4 Hz of
the low-frequency oscillator and 3 and 18 Hz of the high-frequency
oscillator. Bispectrum and bicoherence indicate the 2-10 Hz CFC. (D) CFC
for simulated signals with phase to frequency modulation. The CF

interaction between the simulated frequencies (2 and 10Hz) is shown.
However, the CFC is higher for 3 to 7-11 Hz and 4 to 10-14 Hz CF
interaction. Bispectrum and bicoherence showed a CFC between the low
frequencies (between 1 and 8Hz). Additionally, bicoherence showed a
delta-beta CFC (2-5 to 24-28Hz). (E) CFC for simulated signals with
power to frequency modulation. The coupling is smeared between 2 and
5Hz for low-frequency oscillator and 9 and 18 Hz for high-frequency
oscillator. Bispectrum and bicoherence were not able to capture the power
to frequency CF interactions and showed only peaks in the low-frequency
range (1-4 Hz). (F) CFC for simulated uncoupled oscillators. Phase to phase
CFC at the main simulated frequencies (2 and 10 Hz) is displayed indicating
that the phase to phase relation that was initially fixed in the model
system was not disturbed sufficiently by the present noise. Bispectrum
indicates a CF interaction between 1 and 4Hz and 8 and 14 Hz, and
bicoherence—between 1 and 4Hz and 10 and 13 Hz.

of CF interactions can only be captured by specific CFC mea-
sures taking into account frequency modulations. In the case of
the uncoupled oscillators (Figure 3F), there was a phase to phase
CFC, as mentioned above, at the main simulated frequencies (2
and 10 Hz) but this coupling was not as strong as in the case of
phase to phase simulation and showed also a slight smearing in
the high frequency (9-11 Hz). In addition, BIS showed a CF inter-
action between 1-4 and 8-14Hz, and BIC—between 1-4 and
10-13 Hz. In other words, there is CFC around the frequencies
initially fixed in the model system that were not disturbed suffi-
ciently by the present noise or noise provides a diffusion of CF
relations.

RESTING STATE EEG WITH EYES CLOSED AND EYES OPEN

We calculated at first spectral power and coherence to show
that manipulation of the rest conditions (EC vs. EO) was in
line with the literature about the resting state. Grand averages
(across subjects) for the spectral power and coherence under
the EC and the EO conditions are shown in Figure4 for two
selected electrodes (Fpl and O2). As expected, the alpha spec-
tral power was strongest at occipital than at frontal site [alphal:
F. 19) = 24.7, p < 0.0001; alpha2: F1, 19 = 52.8, p < 0.0001]
and stronger in EC than in EO condition [alphal: F(;, 19) = 51.5,
p < 0.0001; alpha2: F(;, 19y = 7.1, p < 0.05]. Statistical analyses
showed also lower delta power in the EC as compared with EO
condition [F(1, 19y = 10.5, p < 0.01], above all at the occipital
site [F(1, 199 = 51.3, p < 0.0001]. In addition, coherence in the
alpha frequency band was higher in the EC than in the EO con-
dition [alphal: F(1, 19y = 15.9, p < 0.001; alpha2: F(;, 19) = 13.7,
p < 0.01].

BISPECTRUM AND BICOHERENCE OF THE RESTING STATE EEG DATA

Results (grand averages across subjects) of BIS and BIC for
two electrodes (Fpl and O2) as well as ¢BIS and ¢BIC between
these electrodes are presented in Figures 5, 6. BIS and also ¢BIS
showed strong synchronization within the delta and alpha fre-
quency bands as well as a CFC between them. In contrast, BIC
and also ¢BIC showed strong coupling peak in the alpha fre-
quency band. Due to the fact that ¢BIS and ¢BIC are asymmetrical
measures, we displayed corresponding diagrams for both the
coupling from Fpl to O2 and from O2 to Fpl. It can be seen
that (a) the cross-electrode coupling patterns are different for
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the frontal-to-occipital (Fp1-O2) and occipital-to-frontal (O2-
Fpl) directions, and (b) there is a strong asymmetry in the
delta-alpha CFC, especially in the case of the ¢BIS, which is
also different for these two pairs of electrodes and eyes con-
ditions. In Figure7, we mapped the significant connections
between the electrodes within the delta (2Hz) and the alpha
(10 Hz) frequency bands and between them (2-10 and 10-2 Hz,
separately) for ¢BIS and ¢BIC measures. The connection is, in
this case, unidirectional if only one of the two connections is
above the threshold and bidirectional if both connections are
above the threshold. The threshold corresponds to the signifi-
cance level determined using surrogate data (see Methods), if
there are only few significant connections, in the other case, to
maintain visibility, we displayed only about 30% of all signifi-
cant connections. In comparison to simple coherence measure,
there are very strong larger-scale connections with predominantly
posterior-to-anterior direction, especially in the case of 10Hz
or 10-2 Hz. The direction of the coupling within the delta fre-
quency (2 Hz) or in the case of the delta-to-alpha (2-10 Hz) CFC
is inverse, especially in the EO condition, or mixed (anterior-
to-posterior and posterior-to-anterior), especially in the EC
condition.

The coupling within the alpha frequency was stronger during
EC as compared to EO, at least for lower alpha [BIS: F1, 19) =
19.7, p < 0.001; BIC: F(1, 19y = 21.7, p < 0.001; ¢BIS: F(1, 19) =
27.5,p < 0.0001; cBIC: F(1, 19y = 18.7, p < 0.001]. cBIS for these
two electrodes (Fpl to O2 and O2 to Fp1) in the delta frequency
band was inversely higher in EO as compared with EC condition
[¢BIS: Fa, 199 =57,p < 0.05].

Statistical analyses of the ¢BIS for the different cross-frequency
relations revealed significant interaction Cross-Electrode x
Cross-Frequency for delta-alphal [cBIS: F(i, 19y = 13.6, p <
0.01], delta-alpha2 [cBIS: F(i, 19y = 26.8, p < 0.0001], theta-
alphal [cBIS: F(1, 199 = 9.1, p < 0.01], and theta-alpha2 [cBIS:
Fa, 199 = 13.3, p < 0.01] indicating stronger CFC from low to
high frequency when going from frontal (Fp1) to occipital (02)
site and inversely stronger CFC from high to low frequency when
going from occipital (O2) to frontal (Fpl) site. In the case of
¢BIC, as shown by significant interaction Eyes x Cross-Electrode
x Cross-Freqeuncy for delta-alphal [cBIC: F(;, 19y = 19.0, p <
0.001] and for delta-alpha2 [cBIS: F(1, 19y = 6.1, p < 0.05] fre-
quency relations, the direction of coupling is mostly from low to
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FIGURE 4 | Grand averages of the spectral power and coherence of the
two selected electrodes, and corresponding coherence maps. (A) Grand
average of spectral power at the frontal electrode (Fp1). (B) Grand average of
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coherence between the electrodes (Fp1 to O2). (D) Grand average of spectral
coherence links above the threshold across all the electrodes for the delta
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(2 Hz) and the alpha (10 Hz) frequencies. All the diagrams and brain maps are
displayed separately for eyes closed (EC) and open (EO). Clear 10-Hz peaks
are displayed in spectral power and spectral coherence, which are stronger at
occipital than at frontal site and stronger in EC than in EO condition. Brain
maps display strong connections within frontal and occipital sites both for
delta (2 Hz) and alpha (10 Hz) frequency.

high frequency and is going from O2 to Fpl in the EC condi-
tion and inverse in the EO condition. The CFC within the alpha
frequency band (alphal-to-alpha2) showed higher coupling in
the EC condition than in the EO condition: ¢BIS: F(;, 19) = 11.2,
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p < 0.01; cBIC: F(1, 19y = 9.8, p < 0.01. The same is true also
for theta-alpha CFC: theta-alphal [cBIS: F(;, 19y = 7.0, p < 0.05;
cBIC: F(1, 19) = 4.4, p < 0.05] and theta-alpha2 [cBIS: F(1, 19) =
9.9,p < 0.01; cBIC: F(;. 19) = 11.8, p < 0.01].
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FIGURE 5 | Grand averages of the bispectrum at the selected electrodes
(Fp1 and 02) and cross-bispectrum between them. (A) Grand average of
the bispectrum at the frontal electrode (Fp1). (B) Grand average of the
bispectrum at the occipital electrode (02). (C) Grand average of the
cross-bispectrum between the electrodes (Fp1 to 02). (D) Grand average of

the cross-bispectrum between the electrodes (02 to Fp1). All the diagrams
are displayed separately for eyes closed (EC) and open (EO). Bispectrum and
also cross-bispectrum showed strong synchronization within the delta and
alpha frequency bands as well as a CFC between them. The coupling is
mostly stronger in EC than in EO condition.

RESTING STATE EEG CAPTURED USING SPECIFIC CFC MEASURES
Power to power was determined using two different algorithms,
which both gave similar results. We restrict our presentation
to the algorithm based on calculation of PSI for amplitude-
modulated signals (see Methods for details). Furthermore, there
were no significant phase to frequency modulations.

Power to power CFC for two selected electrodes (Fpl and F3)
is displayed in Figure 8 and showed strong coupling between sin-
gle frequencies within the delta, theta, alpha, and beta frequency
bands; the strongest CFC lay in the frequency range between 5
and 14 Hz and concerns, above all, neighboring frequencies, e.g.,
theta-to-alpha, alpha-to-alpha, and alpha-to-lower beta coupling.
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This coupling between the selected electrodes (Fp1 to F3) was also
higher in the EC as compared with EO condition: theta-alpha
[7 to 8-12Hz: F(;, 199 = 10.2, p < 0.01] and alpha-alpha [8 to
9-12Hz: F(1, 19y = 9.4, p < 0.01]. The brain maps showed strong
connections (e.g., 812 Hz coupling) within anterior and poste-
rior regions but large-scale connections are attenuated (compare
also Bruns and Eckhorn, 2004). Due to the fact that the coupling
between the electrodes was mostly bidirectional, the arrows are
omitted in the brain maps. It is also visible that the coupling in
the EC condition is mostly stronger than in the EO condition, and
that only few centro-parietal and parieto-occipital connections
were stronger in the EO as compared to the EC condition.
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FIGURE 6 | Grand averages of the bicoherence at the selected
electrodes (Fp1 and 02) and cross-bicoherence between them. (A)
Grand average of the bicoherence at the frontal electrode (Fp1). (B) Grand
average of the bicoherence at the occipital electrode (02). (C). Grand
average of the cross-bicoherence between the electrodes (Fp1 to 02).

(D) Grand average of the cross-bicoherence between the electrodes (02
to Fp1). All the diagrams are displayed separately for eyes closed (EC) and
open (EO). Bicoherence and also cross-bicoherence showed strong
coupling peak within the alpha frequency band. This coupling is mostly
stronger in EC than in EO condition.

Phase to phase CFC for electrodes O2 and Fpl is presented in
Figure 9 and was strongest within and between delta and theta
frequencies. The CFC between delta and alpha frequencies was
moderate and also related to connections going from posterior to
anterior. For the selected pair of electrodes, there were no signifi-
cant differences between the resting state conditions (EC vs. EO).
The difference brain maps (EC-EO and EO-EC) showed that, at
least the half of connections were stronger in the EO condition
than in the EC condition.

Phase to power CFC for electrodes O2 and Fpl is displayed in
Figure 10. This CFC was related only to the delta phase, which
was coupled with amplitude modulations in the other higher
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frequency bands. Brain maps for 2-10 Hz CFC showed that this
mostly larger-scale coupling is strongest when going from poste-
rior to anterior brain regions. For the selected pair of electrodes,
the difference between the resting state conditions (EC vs. EO)
was not significant. On the other hand, as depicted in the dif-
ference brain map (EC-EO), all connections in the EC condition
were stronger than in the EO condition.

Power to frequency CFC for two selected electrodes (Fpl
and F3) is displayed in Figure 11 and showed strong coupling
between single frequencies within the delta, theta, alpha, and
beta frequency bands; the strongest CFC lay in the frequency
range between 3 and 14 Hz and concerns, above all, neighboring
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FIGURE 7 | Grand average brain maps of the cross-frequency and
cross-electrode coupling within the same frequency and between the
different frequencies. (A) Grand average of the connections about the
threshold at the frequency of 2 Hz. (B) Grand average of the connections
about the threshold at the frequency of 10 Hz. (C) Grand average of the
connections about the threshold for cross-frequencies from 2 to 10 Hz. (D)
Grand average of the connections about the threshold for cross-frequencies
from 10 to 2 Hz. All the diagrams are displayed separately for eyes closed
(EC) and open (EOQ), and separately for cross-bispectrum (cBIS) and
cross-bicoherence (cBIC). Blue color indicates low coupling and red color
indicates high coupling. The arrows indicate the dominance or direction of
the coupling. Strong largerscale connections with predominantly
posteriorto-anterior direction, especially in the case of 10Hz or 10 to 2 Hz,
are displayed. The direction of the coupling within the delta frequency
(2Hz) or in the case of the delta-to-alpha (2-10 Hz) CFC is inverse,
especially in the EO condition, or mixed (anteriorto-posterior and
posteriorto-anterior), especially in the EC condition.

frequencies, e.g., theta-to-alpha, alpha-to-alpha, and alpha-to-
lower beta coupling. In addition, power to frequency modulations
switch their polarity dependent on frequency components: power
to frequency coupling is positive when modulating frequency is
higher than modulated frequency and negative when modulating
frequency is lower than modulated frequency. The brain maps
showed strong negative (e.g., 7-12Hz coupling) and positive
(e.g., 12-7 Hz coupling) connections within anterior and poste-
rior regions but large-scale connections are attenuated. Due to the
fact that the coupling between the electrodes was mostly bidirec-
tional, the arrows are omitted in the brain maps. The topology
of negative and positive coupling between these two frequen-
cies is similar. Probably, processes underlying these two different
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modulations (7 Hz power to 12Hz frequency modulation and
12 Hz power to 7 Hz frequency modulation) are the same. It is
also visible that the coupling in the EC condition is stronger than
in the EO condition at frontal sites, and that centro-parietal and
parieto-occipital connections were stronger in the EO as com-
pared to the EC condition. The statistical analysis of the coupling
between the selected electrodes (Fp1 to F3) showed no significant
differences between EC and EO conditions.

DISCUSSION

The aim of the study was to introduce and to test different CFC
measures on the simulated and the resting state EEG data. Our
results showed that the CFC-measures mostly correctly detect the
nature of CFC in the simulated data and display different coupling
dynamics in the experimental EEG data. Our resting state data
showed delta-alpha CFC in terms of ¢BIS and ¢BIC as well as other
specific CFC measures (e.g., phase to phase or phase to ampli-
tude). This coupling, which was generally higher in the EC than
in the EO condition, was mostly located within the frontal and the
parieto-occipital regions, and most important these regions were
connected through lager-scale coupling with different coupling
direction (anterior to posterior or inverse).

CFC OF SIMULATED DATA

We generated oscillatory time series from non-linearly coupled
dynamic systems whose mathematical skeleton was derived from
large-scale brain network equations, but its parameters were
freely chosen to maximize the effects of CFC. We systemati-
cally modeled and simulated the various scenarios of CFC under
the influence of noise to obtain biologically realistic oscillator
dynamics. We successfully showed that (i) specific CFC-measures
mostly correctly detect the nature of CFC under noise condi-
tions, (ii) BIS and BIC also detected the delta-to-alpha CFC in
simulated data. In conjunction, these two sets of measures hence
provide a powerful toolbox to reveal the nature of couplings from
experimental data.

RESTING STATE WITH EYES CLOSED AND EYES OPEN

Using different CFC measures, we found cross-frequency mod-
ulations concerning amplitude, phase, and frequency changes in
the EEG signals during rest. The strongest CFC during rest both
with EO and EC was found within and between the delta and
the alpha frequency bands but also theta and beta frequencies
were involved into cross-frequency interactions. Different CFC
measures showed different cross-frequency synchronization or
coupling patterns indicating that different neural mechanisms
are at work. Power to power modulations indicate CFC between
closer frequencies within the delta, theta, and alpha frequency
bands. This coupling was also mostly symmetric or bidirectional.
As for power to power modulations, also power to frequency
CFC was found to be strong within the delta, theta and espe-
cially alpha frequency band but in contrast to former power to
frequency modulations were broader and include beside delta-
to-theta and theta-to-alpha also delta-to-alpha modulations. In
addition, power to frequency modulations switch their polar-
ity dependent on frequency components: power to frequency
coupling is positive when modulating frequency is higher than
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coupling at the selected electrodes and between them. (A) Grand (EC-EQ). In the brain maps (D), blue color indicates low coupling and
average of the cross-frequency coupling at the electrode 02. (B) red color indicates high coupling. The arrows indicate the dominance

Grand average of the cross-frequency coupling at the electrode Fp1. or direction of the coupling. Note: X- and Y-axes represent frequency

(C) Grand average of the cross-frequency coupling between the components not the frequency bins. The coupling is strongest within

electrodes O2 and Fpl. (D) Grand average of the connections about and between delta and theta frequencies. The CFC between delta and
the threshold for cross-frequencies coupling 2-10Hz. All the diagrams alpha frequencies is moderate and related to connections going from

and brain maps are displayed separately for eyes closed (EC) and posterior to anterior regions.
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coupling at the selected electrodes and between them. (A) Grand average
of the cross-frequency coupling at the electrode O2. (B) Grand average of the
cross-frequency coupling at the electrode Fp1. (C) Grand average of the
cross-frequency coupling between the electrodes 02 and Fp1. (D) Grand
average of the connections about the threshold for cross-frequencies
coupling 2-10 Hz. All the diagrams and brain maps are displayed separately
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between these conditions (EC-EO). In the brain maps, blue color indicates
low coupling and red color indicates high coupling. The arrows indicate the
dominance or direction of the coupling. Note: X- and Y-axes represent
frequency components not the frequency bins. This CFC is related only to
the delta phase, which was coupled with amplitude modulations in the other
higher frequency bands. Brain maps for 2-10 Hz CFC display largerscale
coupling, which is strongest when going from posterior to anterior brain
regions. These connections are stronger in the EC than in the EO condition.
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FIGURE 11 | Grand averages of the power to frequency
cross-frequency coupling at the selected electrodes and between
them. (A) Grand average of the cross-frequency coupling at the
electrode Fp1. (B) Grand average of the cross-frequency coupling at the
electrode F3. (C) Grand average of the cross-frequency coupling between
the electrodes Fp1 and F3. (D) Grand average brain maps with the
connections about the threshold for cross-frequency coupling 7-12 Hz. All
the diagrams and brain maps are displayed separately for eyes closed
(EC) and open (EO), and separately for the difference between these
conditions (EC-EO). In the brain maps, blue color indicates low coupling

and red color indicates high coupling. Due to the fact that the coupling
between the electrodes was mostly bidirectional, the arrows are omitted.
Note: X- and Y-axes represent frequency components not the frequency
bins. The strongest CFC lays in the frequency range between 3

and 14 Hz and concerns, above all, neighboring frequencies, e.g.,
theta-to-alpha, alpha-to-alpha, and alpha-to-lower beta coupling. The
coupling switches their polarity dependent on frequency components:
power to frequency coupling is positive when modulating frequency is
higher than modulated frequency and negative when modulating
frequency is lower than modulated frequency.

modulated frequency and negative when modulating frequency
is lower than modulated frequency. We showed that the topology
of negative and positive coupling between two different frequen-
cies (e.g., 7-12Hz or 12-7 Hz) is similar. This finding leaves us
to believe that processes underlying these two different modu-
lations (7 Hz power to 12 Hz frequency modulation and 12 Hz
power to 7 Hz frequency modulation) may probably be the same,
or at least of the same nature. As for power to power CFC,
power to frequency CFC is mostly bidirectional and short-range.
Thus, CFC measures are able not only to describe the long-range
synchronization or coupling but complete our understanding of
short-range coupling involved in local networks.

Interestingly, BIS which is considered in the literature as a
pure amplitude CFC measure was able to detect the delta-alpha
relations that were absent in the specific power to power mea-
sure but could be found using power-to-phase or phase to phase
measures. In addition, the coupling found using bispectral analy-
ses was asymmetric, i.e., there was directionality in the coupling.
Interestingly, the coupling found by BIC was very strong within
the alpha band (like the amplitude-to-amplitude CFC) and mod-
erate or even absent regarding the delta-alpha relations. BIS and
BIC measure, in contrast to specific measures, the non-linear
quadratic coupling, whereas the relation between amplitude and
phase in this coupling is not always clear. The fact that we found
clear delta-alpha BIS peak in the phase to phase simulated data
confirms our statement: BIS reflects not only amplitude but also
phase modulations. Whether the power to frequency CFC plays
here a role and what its influence is that remains to be seen.

Another interesting point is that delta-alpha CFC is above all
related to large-scale connections going from anterior to posterior
in the case of 2 Hz modulation of alpha and is rather inverse if
CFC modulation is 10-2 Hz as shown in the ¢BIS and partially in
the cBIC. Interestingly, if in the case of 10-2 Hz frequency mod-
ulation, posterior-to-anterior CFC is predominantly in both EC
and EO conditions, in the case of 2-10 Hz frequency modula-
tion, the CFC is anterior-to-posterior in the EO condition but
rather inverse or mixed (posterior-to-anterior and anterior-to-
posterior) in the EC condition. This different direction of the
delta-alpha (or alpha-delta) CFC is apparently contingent on the
locations of delta and alpha generators. It is well-known that
delta oscillations are generated anterior, whereas alpha oscilla-
tions have posterior and also anterior origin (Michel et al., 1992;
Tsuno etal., 2002; Canuet et al., 2011). Apart from the direction of
the coupling, localization of delta and alpha frequency generators
at anterior and posterior sites allows the explanation of the larger-
scale coupling, which is detectable using different CFC methods,
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especially if alpha oscillations are involved. Interestingly, this
larger-scale coupling was found also within the alpha frequency,
and this coupling has predominantly posterior-to-anterior direc-
tion indicating the influence of the alpha-frequency generators on
the other brain regions. This larger-scale coupling is especially
strong in the EC condition, when alpha oscillations are much
more pronounced, and may be related to the inhibitory function
of alpha oscillations reported in the literature (Klimesch et al.,
2007; Jensen and Mazaheri, 2010; Mathewson et al., 2011).

In addition, we also found differences in the CFC when com-
pared EC with EO conditions. Mostly, CFC was stronger in the
EC condition as compared with EO condition. Decrease in spec-
tral alpha power (also called alpha depression) during rest with
EO compared to rest with EC, also shown in our study, is a
well-known phenomenon (see Klimesch, 1999, for a review).
Normally, alpha depression in the EO condition is associated
with brain activation caused by increased external stimulation
through the opening of the eyes or visual input (Klimesch, 1999).
It can be seen that this brain activation through opening the eyes
reduces also spectral coherence and CFC, and evokes different
CEC patterns between the different electrode sites and frequen-
cies indicating that there are different processes at work. Besides
the long-range connectivity also short-range connectivity reduces
in general its strength and alters its topology through opening
the eyes. Interestingly, the short-range connectivity, as shown by
power to power and power to frequency CFC, is higher in EC than
in EO above all frontally but higher in EO than in EC parieto-
occipital indicating higher segregation during EC at frontal sites
and higher segregation during EO at parieto-occipital sites. These
short-range CFC patterns probably describing local synchroniza-
tion complement our knowledge about the local networks, which
are usually delineated by synchronization at single frequencies.

METHODOLOGICAL: ADVANTAGE OF USING CFC MEASURES

AND ITS LIMITATIONS

The interaction between different frequencies investigated here
adds another dimension in understanding complex neural
dynamics of the frequency-specific neuronal networks. Neuronal
cell assemblies oscillating synchronously at different frequencies
provide an efficient basis for integrative processes in the brain
(Buzsdki and Draguhn, 2004). Separate cell assemblies commu-
nicate with each other to integrate single information flows into
a common network. Non-linear dynamic system theory teaches
us that time-scale separation, that is frequency separation in this
context, offers a natural means in non-linear systems to separate
information flows. Then CFC, allowing accurate timing between
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different oscillatory rhythms, may be one of the mechanisms
underlying the re-integration of these separated information
flows, or, said differently, allowing for a communication between
different cell assemblies (Klimesch et al., 2008; Sauseng et al.,
2008; Canolty et al., 2010). As we have shown, CFC measures
(especially BIS and BIC) in comparison to the classical coherence
measure describe well the large-scale coupling. Due to the fact
that BIS and BIC as well as the phase to amplitude CFC measure
are asymmetric, they can provide the information about the cou-
pling directionality, even though they make no statement about
causality that is the direction of the information flow. In addition,
BIS and BIC reflect non-linear coupling between different oscil-
lations both within and between the different electrodes. Here,
we have clearly shown that the different CFC measures provide
different insights about the cross-frequency interaction. These
outcomes or synchronization patterns should be considered not
as alternative but rather as complementary to each other. All these
interaction patterns found by different CFC measures exist simul-
taneously in biological signals (including neuroimaging signals
such as neuroelectric or neuromagnetic measurements) and thus
give us a more complete picture about information processing in
the brain.

THEORETICAL: SIGNIFICANCE OF DELTA AND ALPHA INTERACTIONS

As reported earlier, Isler et al. (2008) found CF delta-alpha mod-
ulations in terms of BIC in widespread fronto-central, right
parietal, temporal, and occipital regions, and also between them.
This CFC found in an auditory novelty oddball task was inter-
preted as a neural mechanism for the orienting response. In
the study of (Cohen et al., 2009a), delta-alpha phase to ampli-
tude CFC found in a competitive decision-making task was
suggested to reflect a coding mechanism of feedback valence
information. Our resting state data showed delta-alpha (and also
alpha-delta) CFC in terms of (cross-) BIS and (cross-) BIC as
well as other specific CFC measures (e.g., phase to phase or
phase to amplitude). This coupling is mostly located within the
frontal and the parieto-occipital regions, and most important
these regions are connected through lager-scale coupling pro-
viding direct communication between different cell assemblies
located in these regions. Thereby, this coupling is asymmetric
mostly from the parieto-occipital to frontal regions, especially
during rest with EC, whereas in the rest condition with EO the
direction of coupling, especially delta-to-alpha (2-10 Hz) can be

inverse. As mentioned above, delta and alpha oscillations have
different origin: whereas delta oscillations are generated anterior,
alpha oscillations have posterior and, to some extent, also ante-
rior origin (Michel et al., 1992; Tsuno et al., 2002; Canuet et al.,
2011). Following Steriade and Timofeev (2003), delta oscilla-
tions are generated by neocortical and thalamo-cortical networks.
Enhanced oscillatory activity in the delta frequency range during
cognitive tasks is often considered as an indicator of attentional
task demands (Harmony et al., 1996; McEvoy et al., 2001) and
of syntactic language processing (Roehm et al., 2004). Strong or
synchronized alpha activity is associated with cortical deactiva-
tion or inhibition, whereas strongly desynchronized alpha activity
reflects a state of high excitability (Klimesch, 1999; Klimesch et al.,
2007, 2008). Larger amplitudes of synchronized alpha activity
typical for rest state with EC are associated with a brain state of
reduced information processing (Pfurtscheller and Lopes da Silva,
1999; Pfurtscheller, 2001) and are consistent with the concepts
of “idling” or “nil working” (Adrian and Matthews, 1934). Alpha
activity covers a wide range of different cognitive functions and is
strongly involved in memory processes, whereby pronounced ERS
(event-related synchronization) was observed during retention
but strong ERD (event-related desynchronization) during retrival
(Klimesch, 1999; Jensen et al., 2002; Schack and Klimesch, 2002;
Sauseng et al., 2005; Klimesch et al., 2007). The envelopes of var-
ious frequency bands of neuroelectric activity are correlated with
the hemodynamic signals as measured in Bold fMRI giving rise to
ultraslow intermittent spontaneous coherent fluctuations in the
absence of an explicit task (Biswal et al., 1995; Greicius et al., 2003;
Miiller et al., 2003a,b; Damoiseaux et al., 2006; Deco et al., 2009;
Venables et al., 2009). Large-scale brain modeling efforts demon-
strated the stochastic nature of the spatiotemporal fluctuations
(Deco et al., 2008, 2009; Ghosh et al., 2008). The delta-alpha CFC
found in our study during resting state allows supposing that this
CF interaction capturing the intrinsic network dynamics might
play a crucial rule in information exchange and its integration.
Furthermore, there is neurophysiological evidence that resting-
state networks undergo profound reorganization from childhood
to old age (Miiller and Lindenberger, 2012).

ACKNOWLEDGMENTS

The research reported herein was supported by the Brain Network
Recovery Group through the James S. McDonnell Foundation
and the FP7-ICT BrainScales, and by the Max Planck Society.

REFERENCES

Adrian, E. D., and Matthews, B. H. C.
(1934). The Berger rhythm: poten-
tial changes from the occipital lobes
in man. Brain 57, 355-385. doi:
10.1093/brain/57.4.355

Allefeld, C., Atmanspacher, H., and
Wackermann, J. (2009). Mental
states as macrostates emerging from
brain electrical dynamics. Chaos 19,
15102. doi: 10.1063/1.3072788

Allen, E. A, Liu, J, Kiehl, K.
A., Gelernter, J., Pearlson, G.
D., Perrone-Bizzozero, N. I

et al. (2011). Components of

Frontiers in Computational Neuroscience

cross-frequency  modulation  in
health and disease. Front. Syst.
Neurosci. 5, 1-16. doi: 10.3389/
fnsys.2011.00059

Assisi, C., Jirsa, V., and Kelso, J. (2005).
Synchrony and clustering in het-
erogeneous networks with global
coupling and parameter dispersion.
Phys. Rev. Lett. 94, 018106. doi:
10.1103/PhysRevLett.94.018106

Axmacher, N., Cohen, M. X,, Fell, J.,
Haupt, S., Diimpelmann, M., Elger,
C. E., et al. (2010a). Intracranial
EEG correlates of expectancy and
memory formation in the human

hippocampus and nucleus accum-
bens. Neuron 65, 541-549. doi:
10.1016/j.neuron.2010.02.006

Axmacher, N., Henseler, M. M., Jensen,
O., Weinreich, L., Elger, C. E., and
Fell, J. (2010b). Cross-frequency
coupling  supports  multi-item
working memory in the human
hippocampus. Proc. Natl. Acad.
Sci. U.S.A. 107, 3228-3233. doi:
10.1073/pnas.0911531107

Bekisz, M., and Wrobel, A. (1999).
Coupling of beta and gamma
activity in cortico- thalamic sys-
tem of cats attending to visual

www.frontiersin.org

stimuli. Neuroreport 10, 3589-3594.
doi: 10.1097/00001756-199911260-
00023

Belluscio, M. A., Mizuseki, K., Schmidt,
R., Kempter, R., and Buzsaki, G.
(2012).  Cross-frequency  phase-
phase coupling between 6 and
vy oscillations in the hippocam-
pus. J. Neurosci. 32, 423-35. doi:
10.1523/JNEUROSCI.4122-11.2012

Birbaumer, N., Flor, H., Lutzenberger,
W., and Elbert, T. (1995).
Chaos and order in the human
brain.  Electroencephalogr.  Clin.
Neurophysiol. Suppl. 44, 450-459.

July 2013 | Volume 7 | Article 78 | 22


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Jirsa and Miller

Cross-frequency coupling in brain networks

Biswal, B., Yetkin, F. Z., Haughton,
V. M., and Hyde, J. S. (1995).
Functional ~connectivity in the
motor cortex of resting human
brain using echo-planar MRIL
Magn. Reson. Med. 34, 537-541.
doi: 10.1002/mrm.1910340409

Braitenberg, V., and Schiiz, A. (1991).
Anatomy of the Cortex. Statistics and
geometry. Berlin: Springer.

Breakspear, M., and Jirsa, V. (2007).
“Neuronal dynamics and brain
connectivity,” in Handbook of Brain
Connectivity, eds A. R. McIntosh
and V. K. Jirsa (Berlin: Springer),
3-64. doi:  10.1007/978-3-540-
71512-2_1

Brunel, N., and Wang, X.-J. (2003).
What determines the frequency of
fast network oscillations with irreg-
ular neural discharges. I. Synaptic
dynamics and excitation-inhibition
balance. J. Neurophysiol. 90, 415-30.
doi: 10.1152/jn.01095.2002

Bruns, A., and Eckhorn, R. (2004).
Task-related coupling from high- to
low-frequency signals among visual
cortical areas in human subdu-
ral recordings. Int. J. Psychophysiol.
51, 97-116. doi: 10.1016/j.ijpsycho.
2003.07.001

Bruns, A., Eckhorn, R., Jokeit, H.,
and Ebner, A. (2000). Amplitude
envelope correlation detects cou-
pling among incoherent brain sig-
nals. Neuroreport 11, 1509-1514.
doi: 10.1097/00001756-200005150-
00028

Buzsaki, G. (2006). Rhythms of the
Brain. New York: Oxford University
Press.

Buzsédki, G., and Draguhn, A. (2004).
Neuronal oscillations in cortical
networks. Science 304, 1926—1929.
doi: 10.1126/science.1099745

Canolty, R. T,, Edwards, E., Dalal, S. S.,
Soltani, M., Nagarajan, S. S., Kirsch,
H. E., et al. (2006). High gamma
power is phase-locked to theta oscil-
lations in human neocortex. Science
313, 1626-8. doi: 10.1126/science.
1128115

Canolty, R. T., Ganguly, K., Kennerley,
S. W, Cadieu, C. E, Koepsell,
K., Wallis, J. D., et al. (2010).
Oscillatory phase coupling coordi-
nates anatomically dispersed func-
tional cell assemblies. Proc. Natl.
Acad. Sci. U.S.A. 107, 17356-17361.
doi: 10.1073/pnas.1008306107

Canolty, R. T, and Knight, R. T.
(2010). The functional role of cross-
frequency coupling. Trends Cogn.
Sci. 14, 506-515. doi: 10.1016/j.tics.
2010.09.001

Canuet, L., Ishii, R., Pascual-Marqui, R.
D., Iwase, M., Kurimoto, R., Aoki,
Y., et al. (2011). Resting-state EEG
source localization and functional

Frontiers in Computational Neuroscience

connectivity in schizophrenia-like
psychosis of epilepsy. PloS ONE
6:27863. doi:  10.1371/journal.
pone.0027863

Cohen, M. X. (2008). Assessing tran-
sient cross-frequency coupling in
EEG data. J. Neurosci. Methods 168,
494-499. doi: 10.1016/j.jneumeth.
2007.10.012

Cohen, M. X., Axmacher, N., Lenartz,
D., Elger, C. E., Sturm, V., and
Schlaepfer, T. E. (2009a). Good
vibrations: cross-frequency cou-
pling in the
accumbens during reward process-
ing. J. Cogn. Neurosci. 21, 875-889.
doi: 10.1162/j0cn.2009.21062

Cohen, M. X, Elger, C. E., and
Fell, J. (2009b). Oscillatory activ-
ity and phase-amplitude coupling
in the human medial frontal cor-
tex during decision making. J. Cogn.
Neurosci. 21, 390-402. doi: 10.1162/
jocn.2008.21020

Colgin, L. L., Denninger, T., Fyhn, M.,
Hafting, T., Bonnevie, T., Jensen,
O, et al. (2009). Frequency of
gamma oscillations routes flow of
information in the hippocampus.
Nature 462, 353-357. doi: 10.1038/
nature08573

Damoiseaux, J. S., Rombouts, S. A. R.
B., Barkhof, F, Scheltens, P., Stam,
C. J., Smith, S. M., et al. (2006).
Consistent resting-state networks
across healthy subjects. Proc. Natl.
Acad. Sci. U.S.A. 103, 13848-13853.
doi: 10.1073/pnas.0601417103

Deco, G., Jirsa, V., McIntosh, A. R.,
Sporns, O., and Kétter, R. (2009).
Key role of coupling, delay, and
noise in resting brain fluctuations.
Proc. Natl. Acad. Sci. US.A. 106,
10302-10307. doi: 10.1073/pnas.
0901831106

Deco, G., Jirsa, V. K., Robinson, P. A.,
Breakspear, M., and Friston, K. J.
(2008). The Dynamic brain: from
spiking neurons to neural masses
and cortical fields. PLoS Comput.
Biol. 4:35. doi: 10.1371/journal.pcbi.
1000092

De Lange, E. P, Jensen, O., Bauer, M.,
and Toni, I. (2008). Interactions
between posterior gamma
frontal alpha/beta oscillations dur-
ing imagined actions. Front. Hum.
Neurosci. 2:12.

Doesburg, S. M., Green, J. ],
McDonald, J. J., and Ward, L.
M. (2009). Rhythms of conscious-
ness: binocular rivalry reveals
large-scale  oscillatory — network
dynamics mediating visual per-
ception. PLoS ONE 4:e6142. doi:
10.1371/journal.pone.0006142

Elbert, T., Ray, W. J., Kowalik, Z. J.,
Skinner, J. E., Graf, K. E., and
Birbaumer, N. (1994). Chaos and

human nucleus

and

physiology: deterministic chaos in
excitable cell assemblies. Physiol.
Rev. 74, 1-47.

Ghosh, A., Rho, Y., McIntosh, A. R.,
Kotter, R., and Jirsa, V. K. (2008).
Cortical network dynamics with
time delays reveals functional con-
nectivity in the resting brain. Cog.
Neurodyn. 2, 115-120. doi: 10.1007/
s11571-008-9044-2

Gratton, G., Coles, M. G., and
Donchin, E. (1983). A new method
for off-line removal of ocular

Electroencephalogr. ~ Clin.
Neurophysiol. 55, 468-484. doi:
10.1016/0013-4694(83)90135-9

Greicius, M. D., Krasnow, B., Reiss,
A. L., and Menon, V. (2003).
Functional connectivity in the rest-
ing brain: a network analysis of the
default mode hypothesis. Proc. Natl.
Acad. Sci. U.S.A. 100, 253-258. doi:
10.1073/pnas.0135058100

Hagihira, S., Takashina, M., Mori,
T., Mashimo, T., and Yoshiya, I.
(2001). Practical issues in bispectral
analysis of electroencephalographic
signals. Anesth. Analg. 966-970.
doi: 10.1097/00000539-200110000-
00032

Haken, H. (1983). Synergetics: An
introduction: Nonequilibrium Phase
Transitions and Self-Organization in
Physics, Chemistry, and Biology. New
York, NY: Springer-Verlag.

Harmony, T., Fernandez, T., Silva, J.,
Bernal, J., Diaz-Comas, L., Reyes,
A., et al. (1996). EEG delta activity:
an indicator of attention to inter-
nal processing during performance
of mental tasks. Int. J. Psychophysiol.
24, 161-171. doi: 10.1016/S0167-
8760(96)00053-0

Hebb, D. O. (1949). The Organization
of Behavior: A Neuropsychological
Theory. New York: Wiley.

Isler, J. R, Grieve, P. G,
Czernochowski, D., Stark, R. I,
and Friedman, D. (2008). Cross-
frequency phase coupling of brain
rhythms during the orienting
response. Brain Res. 1232, 163-172.
doi: 10.1016/j.brainres.2008.07.030

Jensen, O., Bonnefond, M., and
VanRullen, R. (2012). An oscillatory
mechanism for prioritizing salient
unattended stimuli. Trends Cogn.
Sci. 16, 200-6. doi: 10.1016/j.tics.
2012.03.002

Jensen, O., and Colgin, L. L. (2007).
Cross-frequency coupling between
neuronal oscillations. Trends Cogn.
Sci. 11, 267-269. doi: 10.1016/].tics.
2007.05.003

Jensen, O., Gelfand, J., Kounios, J., and
Lisman, J. E. (2002). Oscillations in
the alpha band (9-12 Hz) increase
with memory load during retention
in a short-term memory task. Cereb.

artifact.

www.frontiersin.org

Cortex 12, 877-82. doi: 10.1093/
cercor/12.8.877

Jensen, O., and Mazaheri, A. (2010).
Shaping functional architecture
by oscillatory alpha activity: gat-
ing by inhibition. Front. Hum.
Neurosci. 4:8. doi: 10.3389/fnhum.
2010.00186

Jirsa, V. K. (2009). Neural field dynam-
ics with local and global con-
nectivity and time delay. Philos.
Trans. A Math. Phys. Eng. Sci. 367,
1131-1143. doi: 10.1098/rsta.2008.
0260

Jirsa, V. K., and Kelso, J. A. S. (2005).
The excitator as a minimal model
for discrete and rhythmic move-
ment coordination. J. Motor Behav.
37, 35-51. doi: 10.3200/JMBR.37.1.
35-51

Jirsa, V. K., and Stefanescu, R. A.
(2011). Neural population modes
capture biologically realistic large
scale network dynamics. Bull. Math.
Biol. 73, 325-343. doi: 10.1007/
s11538-010-9573-9

Kelso, J. A. S. (1995). Dynamic Patterns:
the Self-Organization of Brain and
Behavior. Cambridge, MA: MIT
Press. doi: 10.1046/j.1365-2869.
2002.00288.x

Kendrick, K. M., Zhan, Y., Fischer, H.,
Nicol, A. U., Zhang, X., and Feng, J.
(2011). Learning alters theta ampli-
tude, theta-gamma coupling and
neuronal synchronization in infer-
otemporal cortex. BMC Neurosci. 12:
55. doi: 10.1186/1471-2202-12-55

Klimesch, W. (1999). EEG alpha and
theta oscillations reflect cognitive
and memory performance: a review
and analysis. Brain Res. Brain Res.
Rev. 29, 169-195. doi: 10.1016/
50165-0173(98)00056-3

Klimesch, W., Freunberger, R., Sauseng,
P, and Gruber, W. (2008). A short
review of slow phase synchroniza-
tion and memory: evidence for con-
trol processes in different memory
systems. Brain Res. 1235, 31-44. doi:
10.1016/j.brainres.2008.06.049

Klimesch, W., Sauseng, P, and
Hanslmayr, S. (2007). EEG alpha
oscillations: the inhibition-timing
hypothesis. Brain Res. Rev. 53,
63-88. doi: 10.1016/j.brainresrev.
2006.06.003

Kloeden, P. E., and Platen, E. (1992).
Numerical Solution of Stochastic
Differential ~ Equations.
Springer.

Lakatos, P., Shah, A. S., Knuth, K.
H., Ulbert, I, Karmos, G., and
Schroeder, C. E. (2005). An oscilla-
tory hierarchy controlling neuronal
excitability and stimulus pro-
cessing in the auditory cortex.
J. Neurophysiol. 94, 1904-1911. doi:
10.1152/jn.00263.2005

Berlin:

July 2013 | Volume 7 | Article 78 | 23


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Jirsa and Mller

Cross-frequency coupling in brain networks

Lashley, K. S. (1924). Studies of cere-
bral function in learning. VI. The
theory that synaptic resistance is
reduced by the passage of the nerve
impulse. Psychol. Rev. 31, 369-375.
doi: 10.1037/h0070668

Lashley, K. S. (1931). Mass action
in cerebral function. Science 73,
245-254. doi: 10.1126/science.73.
1888.245

Marder, E., and Goaillard, J. M. (2006).
Variability, —compensation  and
homeostasis in neuron and network
function. Nat. Rev. Neurosci. 7,
563-574. doi: 10.1038/nrn1949

Mathewson, K. E., Lleras, A., Beck, D.
M., Fabiani, M., Ro, T., and Gratton,
G. (2011). Pulsed out of awareness:
EEG alpha oscillations represent a
pulsed-inhibition of ongoing corti-
cal processing. Front. Psychol. 2:15.
doi: 10.3389/fpsyg.2011.00099

McEvoy, L. K., Pellouchoud, E., Smith,
M. E. and Gevins, A. (2001).
Neurophysiological signals of work-
ing memory in normal aging. Brain
Res. Cogn. Brain Res. 11, 363-76.
doi: 10.1016/S0926-6410(01)
00009-X

McIntosh, a R., Kovacevic, N., Lippe, S.,
Garrett, D., Grady, C., and Jirsa, V.
(2010). The development of a noisy
brain. Arch. Ital. Biol. 148, 323-37.

Mehta, M. R,, Lee, A. K., and Wilson,
M. A. (2002). Role of experience
and oscillations in transforming a
rate code into a temporal code.
Nature 417, 741-746. doi: 10.1038/
nature00807

Michel, C. M., Lehmann, D., Henggeler,
B., and Brandeis, D. (1992).
Localization of the sources of EEG
delta, theta, alpha and beta fre-
quency bands using the FFT dipole
approximation. Electroencephalogr.
Clin. Neurophysiol. 82, 38—44. doi:
10.1016/0013-4694(92)90180-P

Miller, A., Sleigh, J. W., Barnard,
J., and Steyn-Ross, D. A. (2004).
Does bispectral analysis of the elec-
troencephalogram add anything but
complexity. Br. J. Anaesth. 92, 8-13.
doi: 10.1093/bja/aeh003

Mormann, E, Fell, J., Axmacher, N,
Weber, B., Lehnertz, K., Elger, C.
E., et al. (2005). Phase/amplitude
reset and theta-gamma interaction
in the human medial temporal lobe
during a continuous word recogni-
tion memory task. Hippocampus 15,
890-900. doi: 10.1002/hipo.20117

Miiller, V., Birbaumer, N., Preissl, H.,
Braun, C., Mayer-Kress, G., and
Lang, E (2003a). Effects of hydra-
tion and hyperventilation on corti-
cal complexity. Exp. Brain Res. 150,
341-355.

Miiller, V., Preiffl, H., Lutzenberger,
W., and Birbaumer, N. (2003b).

Frontiers in Computational Neuroscience

“Komplexitit und Hirndynamik,” in
Neurobiologie der Psychotherapie, ed
G. Schiepek (Stuttgart; NewYork:
Schattauer), 58-79.

Miiller, V., and Lindenberger, U. (2012).
Lifespan differences in nonlinear
dynamics during rest and auditory
oddball performance. Dev. Sci. 15,
540-56. doi: 10.1111/j.1467-7687.
2012.01153.x

Osipova, D., Hermes, D., and Jensen,
0. (2008). Gamma power is phase-
locked to posterior alpha activity.
PLoS ONE 3:7. doi: 10.1371/journal.
pone.0003990

Palva, J. M., Palva, S., and Kaila,
K. (2005). Phase synchrony among
neuronal oscillations in the human
cortex. J. Neurosci. 25, 3962-3972.
doi: 10.1523/JNEUROSCI.4250-04.
2005

Perdikis, D., Huys, R., and Jirsa, V.
(2011). Complex processes from
dynamical  architectures ~ with
time-scale hierarchy. PLoS ONE
6:¢16589. doi:  10.1371/journal.
pone.0016589

Pfurtscheller, G. (2001). Functional
brain imaging based on ERD/ERS.
Vision Res. 41, 1257-1260. doi:
10.1016/S0042-6989(00)00235-2

Pfurtscheller, G., and Lopes da Silva, E.
H. (1999). Event-related EEG/MEG
synchronization and desynchro-
nization: basic principles. Clin.
Neurophysiol. 110, 1842-57. doi:
10.1016/S1388-2457(99)00141-8

Roehm, D., Schlesewsky, C. A. M,
Bornkessel, 1., Frisch, S., and
Haider, H. (2004). Fractionating
language comprehension via fre-
quency characteristics of the human
EEG. Neuroreport 15, 409-412.
doi: 10.1097/00001756-200403010-
00005

Rosenblum, M., Pikovsky, A., and
Kurths, J. (1996). Phase synchro-
nization of chaotic oscillators.
Phys. Rev. Lett. 76, 1804—1807. doi:
10.1103/PhysRevLett.76.1804

Rosenblum, M., Pikovsky, A., Schafer,
C., Tass, P, and Kurths, J. (1999).
Phase synchronization: from the-
ory to data analysis. Neuroinform.
Neural Model. 4, 279-321. doi:
10.1016/S1383-8121(01)80012-9

Sanz Leon, P., Knock, S. A., Woodman,
M. M., Domide, L., Mersmann,
J., McIntosh, A. R., et al. (2013).
The
of primate brain network dynam-
ics. Front. Neuroinform. 7:10. doi:
10.3389/ninf.2013.00010

Sauseng, P., Klimesch, W., Doppelmayr,
M., Pecherstorfer, T., Freunberger,
R., and Hanslmayr, S. (2005). EEG
alpha synchronization and func-
tional coupling during top-down
processing in a working memory

Virtual Brain: a simulator

task. Hum. Brain Mapp. 26, 148-55.
doi: 10.1002/hbm.20150

Sauseng, P, Klimesch, W., Gruber,
W. R,, and Birbaumer, N. (2008).
Cross-frequency phase synchro-
nization: a brain mechanism of
memory matching and attention.
Neuroimage 40, 308-317. doi:
10.1016/j.neuroimage.2007.11.032

Schack, B., and Klimesch, W. (2002).
Frequency characteristics of evoked
and oscillatory electroencephalic
activity in a human memory
scanning task. Neurosci. Lett. 331,
107-10. doi: 10.1016/S0304-3940
(02)00846-7

Schack, B., Klimesch, W., and Sauseng,
P. (2005). Phase synchronization
between theta and upper alpha
oscillations in a working mem-
ory task. Int. J. Psychophysiol. 57,

105-114. doi: 10.1016/j.ijpsycho.
2005.03.016
Schack, B.,  Rappelsberger, P,

Vath, N., Weiss, S., Moller, E.,
Griessbach, G., et al. (2001a).
EEG frequency and phase cou-
pling during human information
processing. Methods Inf. Med. 40,
106-111.

Schack, B., Witte, H., Helbig, M.,
Schelenz, C., and Specht, M.
(2001b). Time-variant non-linear
phase-coupling analysis of EEG
burst patterns in sedated patients
during electroencephalic burst sup-
pression period. Clin. Neurophysiol.
112, 1388-1399. doi: 10.1016/
S1388-2457(01)00577-6

Schack, B., Vath, N., Petsche, H,
Geissler, H. G., and Moller, E.
(2002). Phase-coupling of theta-
gamma EEG rhythms during short-
term memory processing. Int. J.
Psychophysiol. 44, 143-163. doi:
10.1016/S0167-8760(01)00199-4

Schack, B., and Weiss, S. (2005).
Quantification of phase synchro-
nization phenomena and their
importance for verbal ~mem-
ory processes. Biol. Cybern. 92,
275-287. doi: 10.1007/s00422-005-
0555-1

Sigl, J. C., and Chamoun, N. G. (1994).
An introduction to bispectral anal-
ysis for the electroencephalogram.
J. Clin. Monit. 10, 392-404. doi:
10.1007/BF01618421

Stefanescu, R. A., and Jirsa, V. K.
(2008). A low
description of globally coupled
heterogeneous neural networks of
excitatory and inhibitory neurons.
PLoS Comput. Biol. 4:¢1000219. doi:
10.1371/journal.pcbi. 1000219

Stefanescu, R., and Jirsa, V. (2011).
Reduced representations of het-
erogeneous mixed neural networks
with synaptic coupling. Phys. Rev. E

dimensional

www.frontiersin.org

83, 026204. doi: 10.1103/PhysRevE.
83.026204

Steriade, M., and Timofeev, 1. (2003).
Neuronal plasticity in thalamo-
cortical networks during sleep and
waking oscillations. Neuron 37,
563-576. doi: 10.1016/50896-6273
(03)00065-5

Strogatz, S. H. (1994). Nonlinear
Dynamics Chaos:  with
Applications to Physics, Biology,
Chemistry, and Engineering. New
York: Perseus Books Publishing.

Tass, P., Rosenblum, M. G., Weule, J.,
Kurths, J., Pikovsky, A., Volkmann,
J., et al. (1998).
n:m phase locking from noisy
data: application to magnetoen-
cephalography. Phys. Rev. Lett.
81, 3291-3294. doi: 10.1103/
PhysRevLett.81.3291

Tort, A. B. L., Komorowski, R.,
Eichenbaum, H., and Kopell, N.
(2010). Measuring phase-amplitude
coupling between neuronal oscil-
lations of different frequencies.
J. Neurophysiol. 104, 1195-1210.
doi: 10.1152/jn.00106.2010

Tort, A. B. L., Komorowski, R. W,,
Manns, J. R., Kopell, N. J., and
Eichenbaum, H. (2009). Theta—
gamma coupling increases during
the learning of item—context associ-
ations. Proc. Natl. Acad. Sci. U.S.A.
106, 20942-20947. doi: 10.1073/
pnas.0911331106

Tort, A. B. L., Kramer, M. A, Thorn, C.,
Gibson, D. J., Kubota, Y., Graybiel,
A. M., et al. (2008). Dynamic
cross-frequency couplings of local
field potential oscillations in rat
striatum and hippocampus during
performance of a T-maze task.
Proc. Natl. Acad. Sci. U.S.A. 105,
20517-20522. doi: 10.1073/pnas.
0810524105

Tsuno, N., Shigeta, M., Hyoki, K.,
Kinoshita, T., Ushijima, S., Faber,
P. L., et al. (2002). Spatial orga-
nization of EEG activity from
alertness to sleep stage 2 in old and
younger subjects. J. Sleep Res. 11,
43-51. doi: 10.1046/j.1365-2869.
2002.00288.x

Varela, F. J., Lachaux, J.-P., Rodriguez,
E., and Martinerie, J. (2001). The
brainweb: phase large-scale integra-
tion. Nat. Rev. Neurosci. 2, 229-239.
doi: 10.1038/35067550

Venables, N. C., Bernat, E. M., and
Sponheim, S. R. (2009). Genetic
and disorder-specific aspects of
resting state EEG abnormalities
in schizophrenia. Schizophr. Bull.
35, 826-839. doi: 10.1093/schbul/
sbn021

Voytek, B., Canolty, R. T., Shestyuk,
A., Crone, N. E., Parvizi, J., and
Knight, R. T. (2010). Shifts in

and

Detection of

July 2013 | Volume 7 | Article 78 | 24


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Jirsa and Miller

Cross-frequency coupling in brain networks

gamma phase—amplitude coupling
frequency from theta to alpha over
posterior cortex during visual tasks.
Front. Hum. Neurosci. 4:9. doi:
10.3389/fnhum.2010.00191
Wacker, M., Putsche, P, and Witte,
H. (2010). “Time-variant analysis
of linear and non-linear phase
couplings of and between fre-
quency components of EEG burst
patterns in full-term newborns,”
in Conference Proceedings of the
International Conference of IEEE
Engineering in Medicine and Biology
Society, (Buenos Aires), 1706-1709.

Frontiers in Computational Neuroscience

Witte, H., Schack, B., Helbig, M.,
Putsche, P., Schelenz, C., Schmidt,
K., et al. (2000). Quantification
of transient quadratic phase cou-
plings within EEG burst patterns in
sedated patients during electroen-
cephalic burst-suppression period.
J. Physiol. Paris 94, 427-434. doi:
10.1016/S0928-4257(00)01086-X

Witte, H., Putsche, P., Hemmelmann,
C., Schelenz, C., and Leistritz, L.
(2008). Analysis and modeling
of time-variant amplitude-
frequency couplings of and between
oscillations of EEG bursts. Biol.

Cybern. 99, 139-157. doi: 10.1007/
s00422-008-0245-x

Conflict of Interest Statement: The
authors declare that the
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

research

Received: 19 February 2013; paper pend-
ing published: 29 March 2013; accepted:
26 May 2013; published online: 03 July
2013.

www.frontiersin.org

Citation: Jirsa V and Miiller V (2013)
Cross-frequency coupling in real and
virtual brain networks. Front. Comput.
Neurosci.  7:78.  doi: 10.3389/fncom.
2013.00078

Copyright © 2013 Jirsa and Miiller.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and repro-
duction in other forums, provided
the original authors and source are
credited and subject to any copyright
notices  concerning any  third-party
graphics etc.

July 2013 | Volume 7 | Article 78 | 25


http://dx.doi.org/10.3389/fncom.2013.00078
http://dx.doi.org/10.3389/fncom.2013.00078
http://dx.doi.org/10.3389/fncom.2013.00078
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Cross-frequency coupling in real and virtual brain networks
	Introduction
	Different Types of Cross-Frequency Coupling (CFC)
	Theta-Gamma Oscillatory Coupling
	Delta-Theta/Delta-Alpha Oscillatory Coupling and Other CFCs
	Information flow within and Between Cell Assemblies
	Cross-Frequency Measures
	Bispectrum and Bicoherence
	Other Specific CFC Estimates

	Simulation Data: Reduced Oscillators from Full Realistic Brain Networks
	Methods
	Simulation Data
	EEG Recording During Resting State
	Participants
	Procedure
	EEG recordings and analyses
	Spectral power and coherence, bispectrum and bicoherence
	Specific cross-frequency coupling measures based on the Hilbert transform
	Statistical evaluation


	Results
	Simulation Data: Illustration of Two Coupled Oscillators
	Resting State EEG with Eyes Closed and Eyes Open
	Bispectrum and Bicoherence of the Resting State EEG Data
	Resting State EEG Captured Using Specific CFC Measures

	Discussion
	CFC of Simulated Data
	Resting State with Eyes Closed and Eyes Open
	Methodological: Advantage of Using CFC Measures and its Limitations
	Theoretical: Significance of Delta and Alpha Interactions

	Acknowledgments
	References


