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Human locomotion has been described as being generated by an impulsive (burst-like)
excitation of groups of musculotendon units, with timing dependent on the biomechanical
goal of the task. Despite this view being supported by many experimental observations
on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a
low-dimensional set of time-delayed excitation primitives) can be used as input drive for
large musculoskeletal models across different human locomotion tasks. For this purpose,
we extracted, with non-negative matrix factorization, five non-negative factors from a
large sample of muscle electromyograms in two healthy subjects during four motor
tasks. These included walking, running, sidestepping, and crossover cutting maneuvers.
The extracted non-negative factors were then averaged and parameterized to obtain
task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used
to drive a subject-specific musculoskeletal model of the human lower extremity. Results
showed that the same set of five impulsive excitation primitives could be used to predict
the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint
moments (i.e., NRMSE = 0.18 ± 0.08, and R2 = 0.73 ± 0.22 across all tasks and subjects)
without substantial loss of accuracy with respect to using experimental electromyograms
(i.e., NRMSE = 0.16 ± 0.07, and R2 = 0.78 ± 0.18 across all tasks and subjects). Results
support the hypothesis that biomechanically different motor tasks might share similar
neuromuscular control strategies. This might have implications in neurorehabilitation
technologies such as human-machine interfaces for the torque-driven, proportional control
of powered prostheses and orthoses. In this, device control commands (i.e., predicted
joint torque) could be derived without direct experimental data but relying on simple
parameterized Gaussian-shaped curves, thus decreasing the input drive complexity and
the number of needed sensors.

Keywords: EMG-driven modeling, musculoskeletal modeling, lower extremity, multiple degrees of freedom,

muscle dynamics, muscle synergy

INTRODUCTION
Human movement is the result of the coordinated excitation of
musculotendon units (MTUs), which actuate multiple joints in
the upper and lower extremities. Because of the inherent redun-
dant nature of the human neuromuscular system, multiple MTU
excitation patterns can result in the same joint moment, posi-
tion, and motion (Tax et al., 1990; Buchanan and Lloyd, 1995).
When performing a motor task, the neural drive to MTUs defines
the specific excitation patterns among the many possible solu-
tions. Understanding the mechanisms underlying an individual’s
excitation patterns is an open question in current movement
neuroscience and biomechanics. This is fundamental for under-
standing human locomotion and for the development of novel
neurorehabilitation technologies.

The neural drive, or excitation, to MTUs is ultimately deter-
mined by action potential trains generated from pools of alpha
motor neurons that innervate specific MTUs (Farina and Negro,
2012). Surface electromyography (EMG) indirectly reflects the

neural excitation to MTUs and can be easily recorded during
human movement. For this reason, EMG signals recorded from
the major lower extremity muscle groups have been used to
directly drive open-loop forward dynamics simulations using
models that are accurate, physiological, and anatomical represen-
tations of the human neuromusculoskeletal system (Lloyd and
Besier, 2003; Sartori et al., 2012a,c).

It has been shown that the multi-muscular EMG patterns
observed during motor behaviors have a lower dimensionality
with respect to the number of muscles and associated MTUs
(D’Avella et al., 2003; Bizzi et al., 2008). Therefore, the EMG exci-
tation patterns can be expressed using a low-dimensional set of
MTU excitation primitives (XPs). In human locomotion, the XPs
have been consistently observed to be sequential and minimally
overlapped impulses (burst-like) of excitation (Ivanenko et al.,
2004, 2006; Cheung et al., 2005; Bizzi et al., 2008). Therefore,
human locomotion has been interpreted as being generated by
an impulsive excitation of groups of MTUs, with the timing
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dependent on the biomechanical goal of the task (Ivanenko et al.,
2005). The association between XP timing and task performance
was also particularly evident in (Oliveira et al., 2013).

Based on this experimental evidence, in this study we propose
the use of a low-dimensional set of single-impulse, Gaussian-
shaped XPs to drive a physiologically accurate, subject-specific
musculoskeletal model of the human lower extremity (Sartori
et al., 2012a). Within the musculoskeletal model, the XPs operate
as an impulsive controller, where the onset of an XP corresponds
to the recruitment of the associated muscles and MTUs.

Although the use of single-impulse, Gaussian-shaped curves
was previously supported by experimental evidence from human
locomotion studies (Ivanenko et al., 2006), this current study is
not focussed on any speculation on the physiological nature of
human locomotion excitation patterns. Rather, the use of single-
impulse curves in this study has the purpose of exploiting actual
primitives of excitations having simple mathematical formaliza-
tions. The combination of these single-impulse curves allows
generation of more complex multi-impulse excitation inputs and
MTU recruitment patterns that might emerge from human loco-
motion tasks, which have been often observed in the literature
(Davis and Vaughan, 1993; Ivanenko et al., 2006; Clark et al.,
2010).

Previous studies have used low-dimensional sets of multi-
impulse curves within musculoskeletal models of the human
lower extremity for the purpose of assessing the mechanical role
of muscles during human locomotion (Neptune et al., 2009;
McGowan et al., 2010; Allen and Neptune, 2012). Furthermore,
other studies assessed and explored the conceptual idea of mus-
cle synergies in relation to the biomechanics of human and animal
movement (Zajac et al., 2002; McKay and Ting, 2008; Fregly et al.,
2012b; Kutch and Valero-Cuevas, 2012; Ting et al., 2012).

The present study, however, addresses a number of questions
that have not been considered in the current literature. One
main hypothesis is that a low-dimensional controller of single-
impulse XPs could be designed to be generic to subjects and
motor tasks, but sufficiently selective to drive a subject-specific
musculoskeletal model of the human lower extremity. This would
allow coordinating large groups of MTUs and subsequently pre-
dicting joint moments about multiple degrees of freedom (DOFs)
in the lower extremity during a variety of motor tasks that are
substantially different to each other. It is also hypothesized that
the use of a subject-generic, task-generic, low-dimensional XP set,
as opposed to a subject-specific, task-specific, high-dimensional
EMG set, does not lead to substantial loss of joint moment pre-
diction accuracy in the driven musculoskeletal model. This view
would pose the problem of how to differentiate the model’s out-
puts across movements, since the same impulsive controller is
used as input drive across different tasks and subjects. In this sce-
nario, it is hypothesized that the model’s outputs (i.e., MTU forces
and resulting joint moments) are differentiated across movements
by the experimental joint kinematics input to the model. This is
subsequently used to estimate somatosensory information such
as the instantaneous MTU kinematics (Sartori et al., 2012c) and
update the MTU force and resulting joint moment estimates (see
Methods Section) (Lloyd and Besier, 2003; Sartori et al., 2012a).
It is worth noting that the experimental joint kinematics input

might, in fact, differ from the kinematics that would be obtained
by converting the model’s predicted joint moments into joint
position. Therefore, within our methodology, the experimen-
tal joint kinematics operates as an error correction factor that
accounts for somatosensory information (i.e., MTU kinematics)
and compensates for the static behavior and simplified structure
of the generic XP-based controller. Therefore, prediction discrep-
ancies are not compensated for by a task-specific, subject-specific
impulsive controller but rather by joint kinematics information.

Addressing these questions not only would offer further indi-
rect evidence of the theoretical correctness of the human loco-
motion control scheme previously proposed in the literature
(Ivanenko et al., 2005, 2007; Lacquaniti et al., 2012), but would
also support the hypothesis that a variety of human locomotion
tasks, substantially different from each other, may share a simi-
lar neuromuscular control scheme of impulsive nature. Finally, it
would provide a novel musculoskeletal model of human locomo-
tion that (1) could be operated in an open-loop forward dynamics
way without using numerical optimization to match the exper-
imental joint moments, (2) could be therefore executed at low
computational cost (see Results Section), and (3) could pro-
duce movement-specific joint moment estimates even if driven
by subject-generic and task-generic XPs.

The main advantage of the proposed approach is that, once
an XP set has been defined, no EMG recordings are needed
for the model operation. This might have substantial implica-
tions in the development of novel neurorehabilitation technolo-
gies. In this scenario, our proposed XP-driven musculoskele-
tal model can be operated at low computational costs for
the real-time prediction of an individual’s neuromusculoskeletal
dynamics and for the subsequent development of neuromus-
cular human-machine interfaces for powered prostheses and
orthoses control. In this, MTU activation and joint moments
can be predicted in real-time solely from the low-dimensional
XP set and three-dimensional joint kinematics without loss of
accuracy with respect to using EMG signals. This would substan-
tially decrease the input drive complexity as well as the number
of needed sensors on the wearable robot, thus increasing the
system robustness.

In this paper, the proposed XP-driven modeling methodol-
ogy is presented and validated with a direct comparison to the
previously presented EMG-driven modeling method (Lloyd and
Besier, 2003; Sartori et al., 2012a).

MATERIALS AND METHODS
The procedure comprised four steps: (1) collecting human move-
ment data using motion capture technology, (2) modeling and
simulating the recorded human movement, (3) determining a
low-dimensional set of XPs, and (4) calibrating and executing the
musculoskeletal model of the human lower extremity.

HUMAN MOVEMENT DATA COLLECTION
Two healthy men (age: 28 and 26 years, height: 183 and 167 cm,
mass: 67 and 73 kg) volunteered for this investigation and gave
their informed, written consent. The project was approved by the
Human Research Ethics committee at the University of Western
Australia.
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The motion data acquired from the two subjects were static
anatomical trials, functional calibration trails, and the actual
dynamic gait trials. During all trials, the three-dimensional loca-
tion of retro-reflective markers placed on the subjects’ body was
recorded (250 Hz) using a 12-camera motion capture system
(Vicon, Oxford, UK). During the dynamic trials, ground reac-
tion forces (GRFs) and EMG signals were collected (2000 Hz)
synchronously with the marker trajectories using an in-ground
force plate (AMTI, Watertown, USA), and bipolar electrodes
with a telemetered EMG system (Noraxon, Scottsdale, USA),
respectively.

The dynamic trials were eight repetitions of four motor
tasks including fast walking (FW, 1.3 ± 0.25 m/s), running
(RN, 2.5 ± 0.5 m/s), sidestepping (SS, 2.0 ± 0.35 m/s), and
crossover (CO, 1.9 ± 0.15 m/s) cutting maneuvers. Each trial
included the full stance phase of gait of the subjects’ right
leg. The CO and SS tasks were straight running with change
of direction to the right and left respectively. In these, the
direction change was performed by having the right leg in
contact with the floor and going through the full stance
phase. In all tasks, velocities were measured by tracking the
speed of the trunk markers during the stance phase. The
four motor tasks were chosen because (1) they required the
production of large joint moments about the six considered
DOFs including: hip flexion-extension (HipFE), hip adduction-
abduction (HipAA), hip internal-external rotation (HipROT),
knee flexion extension (KneeFE), ankle plantar-dorsi flexion
(AnkleFE), and ankle subtalar flexion (AnkleSF), and (2)
because they reflected different MTU recruitment strategies
and contraction dynamics. This permitted us to investigate
whether the proposed methodology could use a simple XP
set to predict joint moments produced about the six con-
sidered DOFs while accounting for different MTU operation
strategies.

EMG data were collected from 16 muscle groups including:
hip adductors (add), gluteus maximus (gmax), gluteus medius
(gmed), gracilis (gra), tensor fasciae latae (tfl), lateral ham-
strings (latham), medial hamstrings (medham), sartorius (sar),
rectus femoris (recfem), vastus medialis (vasmed), vastus lat-
eralis (vaslat), gastrocnemius medialis (gasmed), gastrocnemius
lateralis (gaslat), peroneus group (per), soleus (sol), and tib-
ialis anterior (tibant). Both GRFs and marker trajectories were
low-pass filtered with a fourth-order Butterworth filter. Cut-off
frequencies (between 2 and 8 Hz) were determined by a trial-
specific residual analysis (Winter, 2004). EMGs were processed
by band-pass filtering (30–450 Hz), then full-wave rectifying, and
low-pass filtering (6 Hz).

From the collected dynamic trials, two distinct datasets were
created; one for the calibration of the musculoskeletal model and
the other for the validation. For each subject, the calibration
dataset included two repeated trials of the four motor tasks (i.e.
FW, RN, SS, and CO). A different dataset was used to validate the
calibrated musculoskeletal model on each subject and included
six repeated novel trials for the four considered motor tasks. None
of the trials in the validation dataset were included in the calibra-
tion dataset. Therefore, there was no common data between the
two datasets.

MOVEMENT MODELING
Using the software OpenSim 1 (Delp et al., 2007), a generic
model of the human musculoskeletal geometry2 was scaled to
match the individual subject’s anthropometry. This was done
based on the experimentally measured marker positions recorded
from the static standing poses, and the location of the hip, knee
and ankle joint centers as well as knee flexion-extension axis
determined using the functional calibration trials (Besier et al.,
2003b). During the scaling process, virtual markers were cre-
ated and placed on the musculoskeletal geometry model based on
the position of the experimental markers. The OpenSim Inverse
Kinematics (IK) algorithm (Delp et al., 2007) solved for joint
angles that minimized the least-squared error between exper-
imental and virtual markers. The joint moments that needed
to track the IK-generated angles were obtained using Inverse
Dynamics (ID) and Residual Reduction Analysis (RRA) (Delp
et al., 2007). The joint moments produced by this pathway were
called “the experimental” moments. The alternative pathway to
estimate joint moments was by the XP-driven and EMG-driven
models (Sartori et al., 2012a).

The estimates produced by our proposed methodology can
be directly compared to previously proposed works in the lit-
erature (Besier et al., 2009; Winby et al., 2009; Krishnaswamy
et al., 2011; Sartori et al., 2012a,b; Hamner and Delp, 2013).
Furthermore, Figure A1 compares our derived experimental joint
moments to those available in the literature (Winter, 1983,
2004; Liu et al., 2008; Hamner et al., 2010). The normalized
root mean squared error and correlation coefficients assumed
values that ranged between 0.1–0.3 and 0.89–0.98 respectively
(see Validation Procedure Section). During walking, our derived
experimental joint moments had peak values of comparable mag-
nitude between the hip extension in the early stance and the
ankle plantar flexion in the late stance. This differed to what
reported in (Winter, 2004; Liu et al., 2008) in which the peak
hip extension moment was smaller than the peak ankle plan-
tar flexion moment. However, it is worth stressing the fact that
the use of an ankle joint with oblique axes, like that used in
our proposed work, directly coupled ankle plantar-dorsi flex-
ion with ankle subtalar flexion (Kirby, 2001; Yamaguchi et al.,
2009). The effect of this coupling on the ankle plantar-dorsi
flexion moments is less pronounced in ankle joint models with
orthogonal axes (Winter, 2004) or in models in which the
ankle subtalar flexion is constrained to the anatomical neutral
position (Liu et al., 2008).

MUSCLE EXCITATION PRIMITIVE
To identify the muscle XPs, a two-step process was used based on a
previously described non-negative matrix factorization (NNMF)
technique (Lee and Seung, 2001). First, the muscle-specific EMG
linear envelopes were normalized in time and with respect to the
peak processed EMG values obtained from all trials (Ivanenko
et al., 2004; Gizzi et al., 2011). In this way, each muscle for each
trial and motor task was equally represented in the final muscle

1OpenSim release 2.2.0 available from: https://simtk.org/home/opensim
2Available from: https://simtk.org/home/nmblmodels/
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weighting computation and results reflected only changes in tim-
ing. The normalized linear envelopes computed from all dynamic
trials in the validation dataset collected from the two subjects
were then combined into an m × n matrix, where m indicates the
number of muscles and n the number of trial frames × number
of trials × number of subjects. That is, each row was associ-
ated to a muscle, which concatenated the muscle’s EMG data
from all trials and subjects. The NNMF was then applied to the
m × n matrix with a number of non-negative factors identified
together with their associated weightings (see Results Section).
The extracted, experimental non-negative factors were linearly
combined with their associated weightings to produce an m × n
matrix of reconstructed EMGs and then compared to the original
EMG matrix. The agreement between the two matrices was then
quantified by least squares errors. The NNMF was then iterated
within an optimization procedure by adjusting the non-negative
factors until they minimized the least squared error between
experimental and reconstructed EMG data. In this procedure
the dimensionality of the non-negative factor set was increased
until the accuracy of the reconstructed EMG data exceeded a pre-
defined threshold. This was assessed by means of the Variation
Accounted For (VAF) index, which was defined as VAF = 1 –
SSE/TSS, where SSE (sum of squared errors) represented the
unexplained variation and TSS (total sum of squares) was the
total variation of the EMG data. A minimal VAF value of 80%
was the threshold to be exceeded in this study to consider the
reconstruction quality as satisfactory (Gizzi et al., 2011). This
resulted in a matrix of five non-negative factors (i.e. 5 × n non-
negative factor matrix) that accounted for 89% of the variability
in the EMG data. In this, each muscle group had five associ-
ated weighting factors. These determined how much each of the
five non-negative factors contributed to the excitation of a spe-
cific muscle group. The weightings were then normalized to the

highest weighting value: W̄j,i = Wj,i

max(W1,i,W2,i,W3,i,W4,i,W5,i)
, where

Wj,irepresented the jth weighting (1 ≤ j ≤ 5) for the ith muscle
group (1 ≤ i ≤ 16), whereas W̄j,i was the resulting normalized
weighting (i.e., 0 ≤ W̄j,i ≤ 1).

In the second step, from the 5 × n non-negative factor matrix,
each non-negative factor that was associated to a specific trial
and subject was isolated based on the frames associated to the
specific trial. This allowed removing the discontinuities existing
between two adjacent non-negative factors. Then, the extracted
trial-specific non-negative factors were averaged across trials.
The five trial-averaged non-negative factors were then fitted with
five Gaussian-shaped single-impulse curves (see Results Section),
which represented the XPs that were used to drive the proposed
XP-driven musculoskeletal model:

g(t) = h · e
− (t−b)2

2·c2 − s (1)

where t is the time frame and h, b, c, and s were the function
parameters defining the Gaussian curve peak height, the position
of the center of the peak, the width of the curve bell, and the ver-
tical shift respectively. The function parameters were identified
using a simulated annealing optimization algorithm (Goffe et al.,
1994) that minimized the root mean squared error with respect
to each of the five average non-negative factors.

MUSCULOSKELETAL MODELING
The XP-driven musculoskeletal model (Figure 1) was developed
from our previously described EMG-driven model of the human
lower extremity (Lloyd and Besier, 2003; Winby et al., 2009;
Sartori et al., 2012a,c). The following of this section provides
a description of the XP-driven modeling workflow as well as a
description of the model components.

In the proposed XP-driven modeling workflow, a five-
dimensional impulsive controller (i.e. made of five XPs, Figure 2)
defined, a priori, an initial recruitment scheme for 34 MTUs
in the human lower extremity. The properties of the recruit-
ment scheme were preserved across subjects and motor tasks
including the relative position and peak amplitude of one
XP with respect to another and the MTUs recruited by each
XP. The five XPs were only time-scaled (i.e. stretched or
compressed) to match the length of the stance phase across
movements. A closed-loop calibration step (Figure 1E, also
see below in this section) was then performed to identify a
number of musculoskeletal model parameters, which varied
non-linearly across subjects because of anatomical and phys-
iological differences (Sartori et al., 2012a). In this step, the
impulsive controller was further refined to determine a finer
mapping between the low-dimensional set of XPs and the high-
dimensional set of MTU-specific activations (Figure 1B) that best
described the MTU-specific activation strategies across the four
selected tasks.

The calibrated XP-driven model was then validated on the
same motor tasks selected for calibration (i.e. FW, RN, SS, and
CO) but using a novel set of trials (see the Human movement data
collection Section). During the validation step, the calibrated XP-
driven model operated as an open-loop predictive system, which
did not use numerical optimization to track the experimental
joint moments, and therefore operated at low computational
cost (see Results Section). The MTU-specific activations and the
resulting joint moments were directly determined as a function of
the five XPs and the three-dimensional joint kinematics, i.e. there
was no need to record further EMG data.

The proposed model’s structure comprised five main com-
ponents (Figure 1): Musculotendon Kinematics, Musculotendon
Excitation-to-Activation, Musculotendon Dynamics, Moment
Computation, and Model Calibration.

The Musculotendon Kinematics component (Figure 1A) used
MTU-specific multidimensional spline functions to produce
instantaneous estimates of MTU length �mt , and three-
dimensional moment arms r as a function of joint angles (Sartori
et al., 2012c)3.

The Musculotendon Excitation-to-Activation component
(Figure 1B) mapped the five XPs into the 34 MTU-specific
activations. The five XPs were initially associated to the 16 muscle
groups from which the EMG data were recorded. In this, if a
muscle group had an associated weighting factor greater than 0.4
on one of the five XPs, then the muscle group was considered to
be associated to that specific XP that defined its initial excitation
(Neptune et al., 2009). With respect to (Neptune et al., 2009),

3Code and documentation are freely available from: http://code.google.com/
p/mcbs/
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FIGURE 1 | The schematic structure of the excitation primitive

(XP)-driven musculoskeletal model. It comprises five components:
(A) Musculotendon Kinematics, (B) Musculotendon Excitation-to-Activation,
(C) Musculotendon Dynamics, (D) Moment Computation, and (E) Model
Calibration. The XP-driven model is initially calibrated using the Model
Calibration component. After calibration the model is operated in open-loop.
The Musculotendon Excitation-to-Activation component is used to map the
initial five-dimensional XP set to the 34 individual MTU activations.

Subsequently, MTU force and the resulting moments are determined as a
function of MTU activation and experimental three-dimensional
musculotendon kinematics (i.e., calculated using Inverse Kinematics),
without tracking experimental joint moments. Joint moments are predicted
with respect to six degrees of freedom: hip flexion-extension (HipFE), hip
adduction-abduction (HipAA), hip internal-external rotation (HipROT), knee
flexion-extension (KneeFE), ankle plantar-dorsi flexion (AnkleFE), and ankle
subtalar-flexion (AnkleSF).

our proposed cut-off criterion differed in the fact that weightings
and primitives were extracted from the matrix concatenating all
EMG linear envelopes from all subjects and trials (see Muscle
Excitation Primitive Section). Therefore, NNMF generated a
single set of weightings that applied to all subjects’ trials. In
(Neptune et al., 2009), NNMF was individually applied to each
subject. This created subject-specific weightings, which were
then averaged prior to the application of the 0.4 cut-off criterion.
In our proposed methodology, if a muscle group had more
than one associated XP, then the average across the XPs was
calculated and used as the muscle group initial excitation. Muscle
weightings allowed arranging muscles groups into seven modules
(see second test results in Results Section). A module included all
muscle groups with a weighting greater than or equal to 0.4 on
the same XP. All MTUs from all muscle groups within a module
received the same initial XP. The XPs were also assigned to
MTUs for which experimental EMG data could not be recorded
and included the gluteus minimus, iliacus, psoas, and vastus
intermedius. In this allocation, two MTUs that shared the same
innervation and contributed to the same mechanical action were
assumed to be in the same module and have therefore the same

initial XP (Kahle and Frotscher, 2002; Ivanenko et al., 2006).
Therefore, the XP that was assigned to both the rectus femoris
and the sartorius (module 2 in Figure 2A) was also assigned to
the iliacus and psoas. The vastus medialis and vastus lateralis XP
(module 3 in Figure 2A) was assigned to the vastus intermedius,
and the gluteus medius XP to the gluteus minimus (also module 3
in Figure 2A). These assignments were motivated by anatomical
and functional information on the MTUs, assuming that the
dimensionality computed from a smaller set of MTUs could
be applied to the entire set. Furthermore, if the XPs were the
reflection of the spinal circuitry dynamics then the XPs must
apply to all lower extremity MTUs whether or not experimental
EMGs were available for a specific MTU. This mapping enabled
us to use the low dimensional set of XPs to excite a larger number
of MTUs than those for which experimental EMG data were
available. It is worth noting that this mapping is, in general,
not entirely described by the muscle group weightings extracted
from the available experimental EMG data using NNMF. This is
because experimental EMGs do not directly reflect the activity of
deeply located MTUs. For this reason, muscle group weightings
were not used to linearly combine XPs together. This allowed us
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FIGURE 2 | Non-negative factors, muscle weightings, muscle modules,

and associated parameterized Gaussian excitation primitives (XPs). (A)

Muscle modules (i.e., M1–M7) show how the weightings (i.e., black and gray
bars) of the XPs contribute to the excitation of groups of muscles. Black bars
show the weightings with a value greater than 0.4. (B) The five non-negative

factors extracted from each motor trial (trial-specific non-negative factors) are
averaged across trials (trial-averaged non-negative factors), which enabled
parameterized Gaussian excitation primitives (XPs) to be created. The
reported data are from the stance phase with 0% being heel-strike and 100%
toe-off events.

to account for the impulsive nature of the MTU recruitment. The
transformation from the XP (i.e. applied to a group of MTUs) to
the MTU-specific activation (i.e., applied to a single MTU only)
is discussed below.

Each XP that was assigned to a group of MTUs was pro-
cessed by a critically damped second order recursive filter, which
simulated the individual MTU twitch response to the initial XP
excitation (Thelen et al., 1994; Lloyd and Besier, 2003):

u(t) = α · x(t − d) − β1u(t − 1) − β2u(t − 2) (2)

where x(t) was the XP at time t, u(t) was the MTU-specific post-
processed XP, α was the MTU-specific gain coefficient, and β1,
and β2 were the MTU-specific recursive filtering coefficients. The
term d was the electromechanical delay. This was set to 10ms
based on previously reported experimental results (Nordez et al.,
2009) and it was treated as a global parameter as previously
suggested (Heine et al., 2003).

The resulting u(t) signal was then further processed using the
non-linear transfer function in Equation 3 (Lloyd and Besier,
2003; Buchanan et al., 2004). This accounted for the non-linearity

between the MTU excitation and force, reflecting the saturation
at high levels of the motor unit recruitment in generating force
(Lloyd and Besier, 2003; Buchanan et al., 2004; Farina and Negro,
2012):

a(t) = eAu(t) − 1

eA − 1
(3)

where A was the non-linear shape factor, which was constrained
to −3 < A < 0, with 0 being a linear relationship (Lloyd and
Besier, 2003). The resulting MTU-specific activation, a(t), repre-
sented the ultimate control input to the MTU contractile compo-
nent. Note that this transformation adjusted the timing (Equation
2) and shape (Equations 2 and 3) of the XPs for each MTU
individually. This is important to account for the different activa-
tion timing emerging from different motor tasks (Ivanenko et al.,
2005).

In the EMG-driven model, the EMG linear envelopes were
directly used to drive the musculoskeletal model. As previously
described, EMG linear envelopes were normalized with respect
to the peak processed EMG values obtained from the entire set
of recorded trials (Sartori et al., 2012a,b). In this scenario, a dedi-
cated EMG linear envelope was associated with each muscle group
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individually, with all MTUs within a muscle group receiving the
same EMG pattern (Sartori et al., 2012a). This accounted for the
different excitation dynamics across muscle groups as opposed
to when using XPs, which excited multiple muscle groups simul-
taneously. Therefore, the excitation-to-activation transformation
(Equations 2 and 3) could be treated as a global transformation
that applied equally to all MTUs. That is, the same values for the
filtering coefficients and the shape factor were used for all MTUs
in the model. In this context, the deeply located iliacus and psoas
MTUs were not driven by EMG signals. As a result, only their
passive force contribution was modeled using the Musculotendon
Dynamics component (Figure 1C, see below) by setting the MTU
activation to zero (Sartori et al., 2012a).

In the Musculotendon Dynamics component (Figure 1C), each
MTU was modeled as a Hill-type muscle model. In this, the
muscle fibers had generic force-velocity f (vm), force-length pas-
sive fP(lm), and active fA(lm) curves, which were normalized to
maximum isometric muscle force (Fmax), optimal fiber length,
and maximum muscle contraction velocity (Zajac, 1989). The
tendon dynamics was modeled using a non-linear force-strain
function f (ε) normalized to Fmax (Zajac, 1989). Using biome-
chanical parameters from (Delp et al., 1990; Lloyd and Buchanan,
1996, 2001), the MTU force Fmt was calculated as a function of
a(t), fiber length lm and fiber contraction velocity vm:

Fmt = Ft = Fm cos(φ(t))
= [

a(t)fA(lm)f (vm) + fP(lm)
]

Fmax cos(φ(t)) (4)

where Ft and Fm were the tendon and fiber force, and ϕ(t) the
pennation angle. During the process of MTU force estimation,
lm and vm were determined at each time point while ensuring
equilibrium between Ft and Fm in Equation 4 (Lloyd and Besier,
2003).

The Moment Computation component (Figure 1D) estimated
the joint moments MX as the sum of the product of rX and Fmt ,
for each X DOF, i.e.,HipFE, HipAA, HipROT, KneeFE, AnkleFE,
and AnkleSF.

The Model Calibration component (Figure 1E) determined
the values for a set of parameters that vary non-linearly
across subjects and cannot be determined experimentally or
from literature (Winby et al., 2008). Parameters were varied
within predefined boundaries to ensure MTUs always operated
within their physiological range (Lloyd and Besier, 2003).
Parameters were adjusted using a simulated annealing algo-
rithm (Goffe et al., 1994) until the objective function fE =
(EHipFE + EHipAA + EHipROT + EKneeFE + EAnkleFE + EAnkleSF)

was minimized equally for each DOF. Each DOF error term
(EHipFE, EHipAA, EHipROT, EKneeFE, EAnkleFE, EAnkleSF) was the
sum of the root mean square differences between the predicted
and experimental joint moments calculated over the eight
calibration trials recorded for a specific subject.

During calibration, two MTU-specific activation-filtering
coefficients in the Musculotendon Excitation-to-Activation
component (Figure 1B) were adjusted, while being constrained
to realize a stable positive solution and a critically damped impul-
sive response for the recursive filter (Equation 2) (Lloyd and
Besier, 2003). In this, the two adjusted parameters determined

the final value of α, β1, and β2 in Equation 2. The MTU-specific
global shape factor parameter A (Equation 3) was also altered
between −3 and 0 to account for the non-linear EMG-to-force
relationship (Lloyd and Besier, 2003; Buchanan et al., 2004;
Winby et al., 2009).

In the Musculotendon Dynamics component, 11 muscle
strength coefficients were calibrated to scale the MTU-specific
Fmax to match the person’s strength, while maintaining the force
generating capacity across MTUs. Strength coefficients were var-
ied between 0.5 to 2 and gathered MTUs in 11 groups according to
their functional action including uniarticular hip flexors, uniar-
ticular hip extensors, hip adductors, hip abductors, uniarticular
knee flexors, uniarticular knee extensors, uniarticular ankle plan-
tar flexors, uniarticular ankle dorsi flexors, biarticular quadri-
ceps, biarticular hamstrings, and biarticular calf muscles. Muscle
tendon slack length lts , and optimal fiber length lmO were also
adjusted so that lts = initial value ± 5% and lmO = initial value ±
2.5% with initial values obtained using the methodology pre-
sented in (Winby et al., 2008).

VALIDATION PROCEDURE
The validation comprised four tests to assess the XP-driven
model prediction ability and to compare it to the EMG-driven
model prediction ability. Furthermore, one additional test was
performed to assess the XP-driven model computation time.

In the four prediction tests, the subject-specific calibrated XP-
driven and EMG-driven models were operated in open-loop, (i.e.
without using optimization to track the experimentally recorded
joint moments) on each individual motor trial performed by
each subject. In this, both the XP-driven and EMG-driven models
predicted a(t), and MX solely using the parameterized XPs, or
experimental EMGs respectively, and the three-dimensional joint
angles. The models’ outputs were then time-normalized using
a cubic spline and the similarity between the predicted and the
experimental variables was quantified using the coefficient of
determination R2 (i.e., square of the Pearson product moment
correlation coefficient) and the normalized root mean squared
deviation NRMSD:

NRMSD =

√
1
N

N∑
i=1

(
X̂i − Xi

)2

max(X̂, X) − min(X̂, X)
(5)

where X and X̂ referred to the two variables being compared,
which were (1) the predicted and experimental joint moments,
(2) the a(t) produced using the EMG-driven model and the
XP-driven model, or (3) the experimental and parameterized
XP curves. Furthermore, N referred to the number of points
in the considered curves. In our proposed study, these metrics
identified acceptable results for values of NRMSD and R2 being
0.0 ≤ NMRSD ≤ 0.3 and 0.7 ≤ R2 ≤ 1.0. This criterion was
based on the results previously proposed in the literature that
used EMG-driven methodologies (Besier et al., 2003a; Lloyd and
Besier, 2003; Buchanan et al., 2004, 2005; Winby et al., 2009;
Manal et al., 2011; Shao et al., 2011).

For the only purpose of displaying results in a concise way, in
some cases, the time-normalized models outputs from the same
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motor task were averaged across trials and/or across subjects. This
produced ensemble average curves for the predicted a(t), and MX

as well as for the matching experimental joint moments M̂X .
The first test examined the five non-negative factors that were

extracted from the experimental EMG data as well as the five
XPs that were parameterized using Equation 1. The agreement
between the jth experimental non-negative factor (g

j
exp, 1 ≤ j ≤

5) and the corresponding jth parameterized XP curve (g
j
par, 1 ≤

j ≤ 5) was then quantified using the R2 and the NRMSD coef-
ficients. Furthermore, for the ith muscle group (1 ≤ i ≤ 16), the
value of the five associated normalized weightings W̄j, i (1 ≤ j ≤
5) was analyzed. If W̄j, i was greater than 0.4, then the jth XP was

associated to the ith muscle group. Because EMG linear envelopes
were normalized to the peak processed EMG values on a trial
basis, it was expected that the amplitude of the final XPs did
not affect the final muscle weighting distribution based on the
employed 0.4 cut-off criterion. However, in order to assess this
directly, an additional set of weightings was computed. In this, the
weighting factors Wj, i (with 1 ≤ j ≤ 5, and 1 ≤ i ≤ 16) extracted
from NNMF were first multiplied by the amplitude peak of the
associated XP and then normalized as previously described in the
Muscle Excitation Primitive Section. The two muscle weighting
sets were then directly compared.

The second test assessed whether the MTU activations (i.e.
resulting from the XP-to-activation mapping, Equations 2 and
3) predicted by the XP-driven model were similar to the MTU
activations predicted by the EMG-driven model. Because the
XP-driven model was calibrated on an individual to best match
the variety of MTU and joint dynamics observed over all four
calibration tasks (i.e., FW, RN, SS, and CO), it was expected
that the MTU activations resulting from this task-generic XP-
to-activation mapping well matched the EMG-driven MTU acti-
vations on average over the four motor tasks. However, because
the XP-to-activation mapping was preserved across tasks, it was
expected a lesser favorable matching with EMG-driven MTU
activations across each individual trial.

The third test compared the joint moment prediction accu-
racy of the XP-driven and EMG-driven models. This assessed
whether our proposed methodology could use a task-generic
XP-to-activation mapping to predict task-specific joint moments
simultaneously produced about the six considered DOFs.

The fourth test assessed whether the XP-driven musculoskele-
tal model was able to reproduce the similar variability observed
in the joint moments predicted by the EMG-driven model as
well as in the joint moments experimentally recorded. This ques-
tion arises from the consideration that our proposed model is
driven by the same set of XPs, which are only scaled in time to
match the length of the trial-specific stance phase. A positive out-
come of this test would give further confidence that the use of a
subject-generic, task-generic, and low-dimensional XP set would
not decrease the ability of the musculoskeletal model to pro-
duce movement-specific outputs and would not imply substantial
loss of predictive ability with respect to using EMG recordings
as an input to the model. Furthermore, this would imply that
the predicted joint moment variability was the direct reflection
of the predicted MTU kinematics which is the only model input
that varies across trials as a function of the three-dimensional

joint angles. Finally, this would support the hypothesis that
dynamically different movements could emerge from the same
locomotion program decoded in the spinal circuitries. For this
purpose, we calculated and compared the standard deviation
curves extracted from the joint moments predicted using the XPs
and the EMG data as well as from those experimentally recorded.

In the fifth test the XP-driven musculoskeletal model calibra-
tion and execution time were examined. Calibration time was
calculated as the time needed to calibrate the model on the eight
calibration trials of each subject. Execution time was calculated
as the average time needed to repeatedly compute one time point
from all DOF joint moments 1000 times. Tests were performed on
an 8 GB RAM Intel i7 CPU. If fast execution times were obtained
from this test, it would imply the possibility of applying our pro-
posed methodology for the on-line control of powered prostheses
and orthoses.

RESULTS
In the first test (Figures 2, A2, Tables 1, A1), the five experimen-
tally extracted non-negative factors, and muscle group weightings
accounted for the 89% of the experimental EMG data variability.
Muscle groups were apportioned into seven modules according
to the dominant weightings (Table 1). The NNMF (Figure 2A)
revealed that the non-negative factor 1 was mostly responsi-
ble for the excitation of add (W1 = 0.77), medham (W1 = 1),
latham (W1 = 0.64), and gra (W1 = 1). For the remaining mus-
cle groups W1 ranged from 10−5 to 0.17. The non-negative factor
2 was mostly responsible for the excitation of recfem (W2 = 1),
sar (W2 = 1), and tfl (W2 = 1). For the remaining muscle groups
W2 ranged from 10−5 to 0.26. The non-negative factor 3 was
mostly responsible for the excitation of gmax (W3 = 1), gmed
(W3 = 1), tfl (W3 = 0.92), vaslat (W3 = 1), and vasmed (W3 =
1). For the remaining muscle groups W3 ranged from 10−5 to
0.33. The non-negative factor 4 was mostly responsible for the
excitation of gaslat (W4 = 1), gasmed (W4 = 1), per (W4 = 1),
sol (W4 = 1), and tfl (W4 = 0.55). For the remaining muscle
groups W4 ranged from 10−5 to 0.13. The non-negative factor
5 was mostly responsible for the excitation of add (W5 = 1), gra
(W5 = 1), and tibant (W5 = 1). For the remaining muscle groups
W5 ranged from 10−5 to 0.3. The only muscle groups that received
excitation from more than one XP were add, gra, and tfl. The
alternative muscle weighting set, which we computed account-
ing for the XP peak amplitude (see Muscle Excitation Primitive
Section), resulted in the same XP-to-MTU distribution that was
obtained from the muscle weighting set that did not account for
the XP peak amplitude. Figure A2 and Table A1 directly compare
the values from the two muscle weighting sets. The parameterized
XPs well fitted the experimental non-negative factors with R2 val-
ues ranging from 0.74 to 0.94, and NRMSD values ranging from
0.0003 to 0.25 (Figure 2B). Table 1 also summarizes how the five
parameterized XPs were assigned to the 16 muscle groups and to
the MTUs within and how these were apportioned into the seven
muscle modules.

In the second test (Figures 3, 4, Table A2) the MTU-specific
activations predicted by the XP-driven model closely matched the
activations predicted using the EMG-driven model on average
on all subjects and tasks (Figure 3). For this analysis the iliacus
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Table 1 | Muscle modules and their allocated excitation primitives (XP) to the 16 muscle groups and associated musculotendon units.

Muscle modules and excitation primitives (XP) used Muscle groupings in the modules Musculotendon units

Module 1 using XP1: medial hamstrings biceps femoris short head (bfsh), biceps
femoris long head (bflh)

lateral hamstrings semimembranosus (semimem),
semitendinosus (semiten)

Module 2 using XP2: rectus femoris recfem
sartorius sar
No experimental EMG psoas
No experimental EMG illiacus

Module 3 using XP3: gluteus maximus gmax1, gmax2, gmax3
gluteus medius gmed1, gmed2, gmed3,
No experimental EMG gluteus minimus (gmin1, gmin2, gmin3)
vastus lateralis vaslat
vastus medialis vasmed
No experimental EMG vastus intermedius (vasint)

Module 4 using XP4: gastrocnemius lateralis gaslat
gastrocnemius medialis gasmed
peroneus peroneus longus (perlong), peroneus

brevis (perbrev), peroneus tertis (perter)
soleus sol

Module 5 using XP5: tibialis anterior tibant

Module 6 using (XP1+XP5)/2: hip adductors adductor magnus (addmag1, addmag2,
addmag3), adductor longus (addlong),
adductor brevis (addbrev)

gracilis gra

Module 7 using (XP2+XP3+XP4)/3: tensor fasciae latae tfl

and psoas MTUs were not considered due to lack of experimental
EMG data available. The R2 coefficient on the average MTU
activations assumed values below 0.7 (i.e. between 0.07 and
0.67) for six MTUs only. For the remaining 26 MTUs, the R2

coefficient assumed higher values that ranged from 0.8 and 0.99.
Similarly, the NRMSD coefficient on the average MTU activa-
tions assumed values above 0.3 (i.e. from 0.31 to 0.45) for five
MTUs only. For the remaining 27 MTUs the NRMSD coefficient
assumed smaller values that ranged between 0.057 and 0.25.
Table A2 reports the detailed values from all MTUs for the R2

and NRMSD coefficients averaged across trials and subjects (i.e.
results depicted in Figure 3). The proposed XP-driven model was
also able to predict the activation of deeply located MTUs such
as psoas and iliacus for which experimental EMG data were not
available. In this, the ability of the XP-driven model to match, on
average, the EMG-dependent MTU activation generated on the
four motor tasks gives further confidence that the XP-dependent
activations predicted for the deeply located MTUs may also
be a reliable reflection of their average physiological behavior.
However, further experimental validation is needed in this
context. Figure 3 also shows that the XP-driven MTU activations
assumed smaller variability (i.e. standard deviation range) with
respect to the EMG-driven MTU activations. This is because of
the use of a task-generic XP-to-activation mapping, which does

not allow reproducing the whole range of the task-specific MTU
activation patterns observed when using EMG data as input to
the model. In this scenario, Figure 4 depicts the specific case of a
representative MTU, i.e. the peroneus brevis. For this, R2 ranged
from 0.58 to 0.98 while NRMSD ranged from 0.12 to 0.46 across
subjects and tasks. Similar results were found for all remaining
MTUs. Table A2 also reports the subject-specific R2 and NRMSD
values for all MTUs averaged across all trials within each motor
task and for each subject individually.

In the third test (Figure 5, Tables A3, A4), the XP-driven
model predicted joint moments produced about the six lower
extremity DOFs during the four motor tasks with comparable
performance to the EMG-driven model (Figure 5). The NRMSD
coefficient between predicted and experimental joint moments
ranged from 0.048 and 0.46 when the EMG-driven model was
used, whereas it ranged from 0.082 and 0.42 when the XP-driven
model was employed. The R2 coefficient between predicted and
experimental joint moments ranged from 0.2 to 0.99 when the
EMG-driven model was used, while it ranged from 0.3 to 0.98
when the XP-driven model was used. Table A3 reports the full
range of subject-specific and task-specific R2 and NRMSD val-
ues observed between the XP-driven model predictions and the
experimental measurements. Table A4 reports the full range of
subject-specific and task-specific R2 and NRMSD values between
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FIGURE 3 | Predicted musculotendon unit (MTU) activations. The
ensemble average (filled lines) and standard deviation (dotted lines)
activation curves are depicted for the 34 MTUs included in the
musculoskeletal model. Data are averaged across all trials and subjects.

MTU names are defined as in Table 1. MTU activations are reported
both from the estimates obtained from XP-driven and EMG-driven
musculoskeletal models. The reported data are from the stance phase
with 0% being heel-strike and 100% toe-off events.

FIGURE 4 | Predicted musculotendon unit (MTU) activations. The
ensemble average (filled lines) and standard deviation (dotted lines)
activation curves are depicted for the peroneus brevis MTU. Data are
averaged across all trials within each motor task performed by the
two subjects individually. Motor tasks included fast walking (FW),

running (RN), crossover (CO), and sidestepping (SS) cutting maneuvers.
Activations are reported both from the estimates obtained from
XP-driven and EMG-driven musculoskeletal models. The reported data
are from the stance phase with 0% being heel-strike and 100%
toe-off events.

the EMG-driven model prediction and the experimental mea-
surements. The weakest prediction accuracy was observed both
in the XP-driven and EMG-driven models for the moments about
HipAA during FW and to the moments about AnkleSF during CO
and SS.

In the fourth test (Figures 5, 6, Table 2), the upper and
lower standard deviations (SDs) of the joint moments predicted
using the XP-driven model assumed similar values to those pre-
dicted using the EMG-driven model and to those experimentally
recorded. Figure 5 displays joint moment standard deviations
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FIGURE 5 | Predicted and experimental joint moments. The
ensemble average (filled lines) and standard deviations (dotted lines)
curves are depicted for the predicted (i.e. XP-driven and EMG-driven)
and experimental (i.e., Reference) joint moments about six degrees
of freedom (DOFs) including: hip flexion-extension (HipFE), hip
adduction-abduction (HipAA), hip internal-external rotation (HipROT),

knee flexion-extension (KneeFE), ankle plantar-dorsi flexion (AnkleFE),
and ankle subtalar-flexion (AnkleSF). Results are shown for four
motor tasks including: fast walking (FW), running (RN), side-stepping
(SS), and cross-over (CO) cutting maneuvers. The reported data are
from the stance phase with 0% being heel-strike and 100% toe-off
events.

task-wise, resulting from averaging across the subjects’ performed
trials within each specific task. Figure 6 and Table 2 report
joint moment standard deviations subject-wise, resulting from
averaging across all trials and tasks performed by each subject
individually.

The SD similarity observed between the XP-driven and the
EMG-driven model estimates was within acceptable ranges. The
R2 coefficients were always greater than 0.65 whereas the RMSD
coefficients where always less than 0.26, about all DOFs, both
across motor tasks (Figure 5) and subjects (Figure 6 and Table 2),
and both for the upper and lower SDs. This gives further confi-
dence that the use of our proposed XP-driven model can repro-
duce similar output variability both across subjects and tasks with
respect to the use of experimental EMG recordings as an input to
the musculoskeletal model.

Across tasks (Figure 5), the SD similarity observed between
the XP-driven model estimates and the experimental data, had
less favorable R2 and RMSD values that were observed about
the AnkleSF during CO (i.e. R2 = 0.53 and RMSD = 0.4, upper
SD) and SS (i.e. R2 = 0.01 and RMSD = 0.5, upper SD), and

during FW about HipAA (i.e. R2 = 0.26 and RMSD = 0.36,
lower SD), and KneeFE (i.e. R2 = 0.38 and RMSD = 0.22, upper
SD). In the remaining cases, the R2 coefficients were always
greater than 0.7 whereas the RMSD coefficients where always
less than 0.21.

Across individuals (Figure 6 and Table 2), subject 1’s R2

and RMSD coefficients were always greater than 0.69 and
always less than 0.31, respectively. Less favorable values were
obtained for subject 2 about AnkleSF (i.e. R2 = 0.13 and
RMSD = 0.48, lower SD) and HipAA (i.e. R2 = 0.12 lower
SD and RMSD = 0.31 upper SD). This may also explain
the less favorable results from CO, SS, and FW about the
same DOFs obtained when analyzing data task-wise (Figure 5).
In the remaining cases, the R2 coefficients were always
greater than 0.73 whereas the RMSD coefficients where always
less than 0.19.

The fifth test revealed that the average calibration time for
the XP-driven model was 21 h and 24 min. However, the cali-
brated open-loop models executed fast. The average open-loop
execution time was 20.32 ± 0.2 ms.
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FIGURE 6 | Predicted and experimental standard deviations (SDs).

Upper and lower SDs are reported subject-wise resulting from averaging
across motor tasks. SDs are reported for the experimental joint moments
(i.e., Reference, shaded area) about 6 degrees of freedom (DOFs)
including: hip flexion-extension (HipFE), hip adduction-abduction (HipAA),
hip internal-external rotation (HipROT), knee flexion-extension (KneeFE),

ankle plantar-dorsi flexion (AnkleFE), and ankle subtalar-flexion (AnkleSF).
The SDs are also shown for same joint moments predicted by the
XP-driven and EMG-driven musculoskeletal models (i.e., dotted lines). The
data are averaged across all trials and tasks. The data are reported from
the two subjects over the stance phase, with 0% being heel-strike and
100% toe-off events.

Table 2 | Coefficients of determination (R2) and the normalized root mean squared deviation (NRMSD) between the standard deviations (SD)

of the joint moments measured experimentally and those predicted by the parameterized XP-driven model.

Subject 1 Subject 2

Upper SD Lower SD Upper SD Lower SD

R2 NRMSD R2 NRMSD R2 NRMSD R2 NRMSD

HipFE 0.93 0.11 0.88 0.15 0.89 0.13 0.91 0.16

HipAA 0.86 0.24 0.92 0.21 0.63 0.31 0.12 0.21

HipROT 0.93 0.15 0.96 0.12 0.89 0.18 0.75 0.19

KneeFE 0.98 0.08 0.95 0.13 0.99 0.06 0.76 0.19

AnkleFE 0.96 0.12 0.89 0.19 0.95 0.12 0.96 0.08

AnkleSF 0.95 0.24 0.69 0.31 0.73 0.36 0.13 0.48

DISCUSSION
Despite previous works used low-dimensional sets of impul-
sive curves to drive musculoskeletal models of the human lower
extremity (Neptune et al., 2009; McGowan et al., 2010; Allen
and Neptune, 2012), our proposed study combined muscle mod-
ularity with musculoskeletal modeling with the aim to address
a number of novel questions. Our proposed study showed that
one single low-dimensional set of single-impulse excitation prim-
itives, or XPs, could be found to best fit the variety of muscle
recruitment and excitation patterns observed from two sub-
jects performing motor tasks biomechanically different from each
other (i.e. FW, RN, SS, and CO). Once an XP set was defined, no
further EMG recordings were needed for the model operation.
The XP set determined the structure of a task-generic impul-
sive controller, which could be preserved across all tasks and
subjects. The simplified structure of the task-generic impulsive
controller was compensated by combination with movement-
specific estimates of MTU kinematics. This allowed producing

movement-specific estimates of MTU force and joint moment
with no loss of accuracy with respect to those derived from
experimental EMG data.

The application of the NNMF algorithm to the EMG data set
showed that each XP excited one specific subset of muscle groups
(Figures 2, A2, Tables 1, A1). The only groups that were excited
by more than one XP were the hip adductors, the gracilis, and the
tensor fasciae latae. This scheme of recruitment was determined
based on a 0.4 cut-off criterion on the muscle weightings (see the
Musculoskeletal Modeling Section) and was preserved across sub-
jects and motor tasks, where the XPs were only scaled to match the
stance phase length of each individual motor trial.

The XP-driven musculoskeletal model internal parameters
were then calibrated to match the physiological characteristics of
each subject recruited in the study (see Methods Section). This
also allowed defining a finer non-linear mapping from the ini-
tial XPs to the 34 MTU-specific activations. The nature of this
mapping represented a best fit of the variety of MTU excitation
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patterns observed during the four considered tasks and was spe-
cific to an individual. This was subsequently applied without
further variations during the model validation step (i.e. model
open-loop operation). It is worth stressing the fact that, in the
context of muscle synergies, the XP-to-activation transforma-
tion (Equations 1, 2, and 3) reflects the weightings on the XPs
(Figure 2A) because it allows for changes in the amplitude level
and in the time shifting for a specific XP being refined on a specific
MTU. One benefit of the XP-to-activation transformation is that
it accounts for the dynamics of muscles (i.e. excitation, activation,
and force) and joint (i.e. joint moment) as well as for the demand
of the motor tasks being used for calibration. These factors are
not accounted for by previously proposed dimensionality reduc-
tion methodologies that operate on EMG recording only. These
include NNMF, principal component analysis, independent com-
ponent analysis, or factor analysis.

During validation, the calibrated model was operated in open-
loop on a set of novel trials that were not used during the cali-
bration. However, the novel set of validation trials comprised the
same motor tasks used for calibration (i.e. FW, RN, SS, and CO).
In this process, the proposed model was driven by the five XPs
and by the three-dimensional joint kinematics. In this, numerical
optimization was not employed and experimental EMG data were
not used as input.

Results demonstrated the proposed XP-to-activation trans-
formation (Equations 1, 2, and 3) could properly solve for the
neuromuscular redundancy by predicting a specific MTU activa-
tion solution (among the several possible ones) that well reflected
a best fit of the different EMG-based MTU activation strategies
observed during the four selected tasks (Figures 3, 4, Table A2).
This result gains further importance if we consider that MTUs
were driven by a set of Gaussian-shaped curves that were not lin-
early combined according to the muscle weightings (Figure 2 and
Table 1). This proves that a subject-generic, task-generic, low-
dimensional impulsive controller that recruits groups of MTUs
with timing dependent on the stance phase can predict phys-
iological MTU activation patterns that reflect subject-specific,
task-specific EMG recordings of higher-dimensionality.

Results also showed that the proposed XP-driven model was
able to predict joint moments that matched those experimen-
tally measured from the six selected lower extremity DOFs with
comparable accuracy to that associated to the EMG-driven model
(Figure 5, Tables A3, A4). The ability of matching joint moments
produced during different motor tasks implied that the proposed
methodology was able to account for the different MTU activa-
tion strategies and contractile conditions associated to each motor
task.

Furthermore, results showed that, although the excitation pat-
terns driving the model (i.e. XPs) were the same across tasks
(Figures 3, 4), the patterns of predicted joint moments var-
ied across trials and this variability was in agreement with the
variability observed both in the experimentally measured joint
moments as well as in the joint moments predicted from EMG
data (Figures 5, 6, Table 2). In this, the task-generic excitation
patterns were continuously modulated by the movement-specific
estimates of MTU kinematics (i.e. MTU length and moment
arms, Figure 1A) derived from the experimental joint kinematics

input (Sartori et al., 2012c). This modulation process took place
both in the Musculotendon Dynamics component (Figure 1C)
and in the Moment Computation component (Figure 1D). The
Musculotendon Dynamics component combined MTU activa-
tion with MTU length to compute MTU force (Equation 4). The
MTU force was then combined with the MTU moment arms to
compute MTU moment. Therefore, the computation of MTU
force and moment could be seen as a transformation of the task-
generic MTU activation that accounted for movement-specific
MTU kinematics, thus resulting in movement-specific estimates
of joint moments (i.e. summation of MTU moments about a spe-
cific joint and DOF). This allowed compensating for the static
behavior and for the simplified structure of the single XP-based
controller.

Previous studies proposed analyses of muscles modular-
ity using NNMF during locomotion tasks including walking
(Ivanenko et al., 2005), running, and sidestepping cutting maneu-
vers (Oliveira et al., 2013). In these studies, five non-negative fac-
tors were identified and extracted. These reflected the recruitment
of muscles in the lower and upper extremities. Our proposed
study identified the same number of non-negative factors with
respect to those in the literature (Ivanenko et al., 2005; Oliveira
et al., 2013). However, our study only analyzed lower extrem-
ity muscles and solely during the stance phase. Furthermore, our
extracted set of non-negative factors and weightings reflected the
dynamics of four motor tasks simultaneously (i.e. FW, RN, SS,
and CO) whereas the previously proposed studies (Ivanenko et al.,
2005; Oliveira et al., 2013) analyzed a specific motor task individ-
ually, thus generating a task-specific set of non-negative factors
and weightings. These differences were reflected in dissimilarities
in the timing of the maximum peak amplitude observed across
non-negative factors as well as in the distribution of weightings
across muscles. Our extracted non-negative factors had maxi-
mum peaks localized from about 20% to 80% of the stance phase
(Figure 2). The non-negative factors reported by (Ivanenko et al.,
2005) during walking had the maximum peaks distributed from
about 5% to the end of the stance phase. However, the non-
negative factors 1 and 5 reflected the recruitment of trunk and
arm muscles and their associated peaks were in the transition
from the swing to the stance phase. Higher similarity in the maxi-
mum peak timing was observed in the inner non-negative factors
including non-negative factor 2 (at about 45% and 55% in our
study and in Ivanenko’s et al. respectively), and non-negative fac-
tor 3 (at about 70% in both studies). A similar scenario was
observed in Oliveira et al. (2013) during sidestepping, where non-
negative factors had the maximum peaks distributed throughout
the entire stance phase, with non-negative factors 1 and 5 reflect-
ing the recruitment of the trunk muscles and implementing the
transition across the stance and swing phase. In this, higher sim-
ilarity in the maximum peak timing was observed in the inner
non-negative factors that most reflected the recruitment of lower
extremity muscles. These included non-negative factor 2 in our
study and non-negative factor 3 in Oliveira et al. (2013) both at
about 45% of stance. Furthermore, it also included non-negative
factor 3 in our study and non-negative factor 4 in Oliveira et al.
(2013) at about 70% and 65% respectively. The non-negative fac-
tors reported by Oliveira et al. (2013) during running had the
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maximum peaks distributed throughout the entire stance phase.
In these, the recruitment of the trunk muscles was reflected by
all five non-negative factors. The best similarity in the maximum
peak timing was observed in the non-negative factors that most
accounted for the recruitment of lower extremity muscles. These
included non-negative factor 1 (at about 20% in both studies).
Furthermore, it also included non-negative factor 3 in our study
and non-negative factor 2 in Oliveira et al. (2013) at about 70 and
65% of stance respectively.

Future work is needed to further improve our proposed
methodology. Experimental results showed that the trial-specific
non-negative factors extracted from the different motor tasks had
peaks that were substantially shifted in time depending on the
nature of the task. This was especially evident in the third non-
negative factor (Figure 2B). While the timing of the peaks for the
trial-specific factors extracted from RN, SS, and CO was consis-
tent, the timing of the peak for the trial-specific factors extracted
from FW was anticipated by 30%. Future work is needed to
allow adjusting the peak timing, magnitude, and bell width of
the parameterized XPs during the model execution to implement
the transition across tasks (i.e., RN, CO, and SS). Furthermore,
the XP-to-activation transformation (Equations 1, 2 and 3) will
be modulated across tasks thus allowing better representing the
dynamics of individual movements. Moreover, the parameter-
ized XPs could be, in the future, further modulated in time and
amplitude based on biomechanical events triggering appropriate
muscle reflexes to allow for adaptation to different gait dynamics
and terrains.

The joint moment prediction accuracy tests (Figure 5 and
Tables A3, A4) revealed that both the XP-driven and the EMG-
driven models could not predict a substantial moment contri-
bution about AnkleSF during the CO and SS cutting maneuvers
tasks and about HipAA during FW. This may be explained by the
fact that the MTUs currently included in the model, with AnkleSF
and HipAA moment arms, accounted for the 80 and the 86%
respectively of the total physiological cross sectional area. Future
work should therefore include additional MTUs crossing the hip
and ankle joints. The MTUs in the model with moment arms
about the remaining four DOFs accounted for more than the 90%
of the total physiological cross sectional area.

Our proposed methodology predicted joint moments during
the stance phase only. The main reason for this was that cali-
bration included trials of running, as well as sidestepping and
crossover cutting maneuvers. For these motor tasks the swing
phase occurred partially, or totally, out of the motion capture
volume. Therefore there was an incomplete swing phase data
available for calibration across trials. The second, although much
lesser reason, was that joint moments were estimated using
inverse dynamics, which strongly relies on the magnitude of GRFs
(Delp et al., 2007). During the swing phase of locomotion, the
GRFs are zero, which means the inverse dynamics calculations
become highly sensitive to segmental inertial parameters that are
difficult to measure in vivo. These include the segment mass, the
location of the segment center of mass, and the mass moment
of inertia (Lanovaz and Clayton, 2001; Delp et al., 2007), which
were only scaled linearly to the subject’s size (Delp et al., 2007).
Inverse dynamics measurements of joint moments during the

swing phase may therefore not be reliable and we preferred not to
use these for the model calibration and for the subsequent valida-
tion step. Future work will focus on (1) using better methods for
extracting subject-specific segmental parameters (i.e. using MRI),
and (2) predicting joint kinematics, rather than joint moments,
using full forward dynamics models (Barrett et al., 2007) or non-
parametric methods such as Bayesian filtering (Ko and Fox, 2009).
This will allow extending the analyses presented in this study
to the whole gait cycle thus increasing the applicability of our
proposed methodology.

The present results showed that our proposed methodology
could predict MTU forces and joint moments within the range
of DOFs, tasks, and gait cycle phases (i.e. stance phase) on which
the model was calibrated. However, how the model extrapolates
outside the range of these DOFs, tasks, and gait cycle phases
is currently not know. Furthermore, it is not known whether
or not new ranges of DOFs, tasks, and gait cycle phases would
require updating the Gaussian curves in the impulsive controller
accordingly. This requires an extensive and structured research,
which was beyond the scope of this study. However, this will be
important to be determined as the size of the calibration data
set also affects the speed at which calibration can occur. Indeed,
our proposed XP-driven model relies upon an off-line calibration
procedure that is time consuming. On the other hand, the model
execution was observed to be fast, i.e. in the order of 20ms per
time frame. Future work should focus on the design of more effi-
cient calibration algorithms. The use of MTU models that do not
require an explicit integration of the MTU dynamics equations
could considerably speed up the calibration process without loss
of joint moment prediction accuracy as it was shown in Sartori
et al. (2012b).

This work presented a study on two subjects only. Therefore, it
may not be completely generalizable. However, the proposed XP-
driven musculoskeletal model was scaled and then calibrated to
the actual subjects to account for the subject-specific (1) anthro-
pometry, (2) XP-to-activation mapping, and (3) MTU intrinsic
properties. This allows our methods to be applied across individ-
uals without relying on the existence of specific anthropomorphic
models, while accounting for the individual’s muscle activation
patterns across multiple DOFs. This represents an improvement
in current state of the art methodologies were the recruited sub-
jects were chosen to be of similar build of the anatomical model
(Lloyd and Besier, 2003; Martelli et al., 2011). However, a more
general model validation across a larger number of individuals
will be the subject of future work.

It is important noting that the aim of our proposed work was
not that of addressing all limitations associated to excitation-
driven modeling in one single study. Our aim was to demon-
strate that a single impulsive controller could be used as input
drive to large musculoskeletal models operating in open-loop
across different motor tasks with no loss of accuracy with
respect to using experimental EMGs. This supports the hypoth-
esis that biomechanically different movements could emerge
from the same locomotion program decoded in the spinal cir-
cuitries.

The proposed XP-driven model may have direct implications
in the development of rehabilitation technologies. The proposed
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methodology could be, in the future, further extended to cre-
ate generic XP sets descriptive of larger populations of subjects
and motor tasks. Also, additional XP sets could be specifically
created for different patient populations thus describing MTU
recruitment patterns typically observed in different neurological
or orthopedic conditions. This will give the potential possibility of
extrapolating the generic XP-based impulsive controller to novel
subjects (within a specific population) without needing to record
further EMG data.

The ability of our proposed XP-driven model to predict physi-
ological MTU activations and joint moments, will allow obtaining
accurate predictions of the user’s effort during dynamic move-
ment. This will allow determining how muscles contribute to
modulate joint compliance in locomotion (Rapoport et al., 2003;
Cronin et al., 2011; Heitmann et al., 2011; Pfeifer et al., 2012). It
will allow determining the heat released by muscles and the result-
ing metabolic energy consumption during movement (Sawicki
and Ferris, 2009; Bisi et al., 2011; Krishnaswamy et al., 2011;
Farris and Sawicki, 2012). Furthermore, it will allow determin-
ing the magnitude of reaction forces in the lower extremity joints
(Winby et al., 2009; Lin et al., 2010; Fregly et al., 2012a; Modenese
and Phillips, 2012; Manal and Buchanan, 2013). The ability of
determining these variables will enable a number of applications
in the field of neurorehabilitation technologies including (1) the
design of powered prostheses that modulate joint compliance

according to that modulated in the subject’s contralateral leg, (2)
the design of powered orthoses that can effectively reduce the
energy consumption during locomotion, and (3) the monitoring
and prevention of orthopedic conditions such as osteoporosis and
osteoarthritis. In these scenarios, the proposed XP-driven model
would only need direct recordings of joint angles and estimates
of the gait cycle percentage as input. This would allow decreasing
the input drive complexity and the number of needed sensors,
thus increasing the robustness of the system with respect to the
case requiring real measurements of EMG data.

The availability of the proposed methodology will facilitate the
transition toward the design of human-inspired devices that can
effectively embody the dynamics of the human neuromuscular
control of movement without relying on explicit representations
of task-specific control models.
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GLOSSARY

LIST OF ACRONYMS AND SYMBOLS SORTED WITH RESPECT TO
ORDER OF APPEARANCE IN THE TEXT

MTU Musculotendon units

EMG Electromyography

XPs Excitation primitives

DOFs Degrees of freedom

FW Fast walking

RN Running

SS Sidestepping cutting maneuvers

CO Crossover cutting maneuvers

GRFs Ground reaction forces

HipFE Hip flexion-extension

HipAA Hip adduction-abduction

HipROT Hip internal-external rotation

KneeFE Knee flexion-extension

AnkleFE Ankle plantar-dorsi flexion

AnkleSF Ankle subtalar flexion

add Hip adductors

gmax Gluteus maximus

gmed Gluteus medius

gra Gracilis

tfl Tensor fasciae latae

latham Lateral hamstrings

medham Medial hamstrings

sar Sartorius

recfem Rectus femoris

vasmed Vastus medialis

vaslat Vastus lateralis

gasmed Gastrocnemius medialis

gaslat Gastrocnemius lateralis

per Peroneus group

sol Soleus

tibant Tibialis anterior

IK Inverse kinematics

ID Inverse dynamics

RRA Residual reduction analysis

NNMF Non-negative matrix factorization

m Number of muscles

n The number of trial frames × number of
trials × number of subjects

VAF Variation accounted for

SSE Sum of squared errors

TSS Total sum of squares

Wj,i Muscle weighting

W̄j,i Normalized muscle weighting

t Time

h Gaussian curve peak height

b Position of the center of the peak

c Width of the curve bell

s Vertical shift

g(t) Fitted Gaussian curve

�mt Musculotendon unit length

r Musculotendon unit
moment arm

x(t) EMG linear envelope

u(t) EMG linear envelope
processed by recursive filter

α, β1, β2 Recursive filter coefficients

d Electromechanical delay

a(t) Musculotendon unit
activation

A Shape factor

f(vm) Fiber force-velocity
relationship

fA(lm) Fiber active force-length
relationship

fP (lm) Fiber passive force-length
relationship

Fmax Maximal isometric force

f (ε) Tendon force-strain
relationship

vm Fiber contraction velocity

lm Fiber length

Fmt Musculotendon unit force

Ft Tendon force

Fm Fiber force

ϕ(t) Pennation angle

MX , with X = (HipFE, HipAA, HipROT,
KneeFE, AnkleFE, AnkleSF)

Predicted joint moment with
respect to the degree of
freedom X

fE Calibration objective
function

EX , with X = (HipFE, HipAA, HipROT,
KneeFE, AnkleFE, AnkleSF)

Error term with respect to
the degree of freedom X

lts Tendon slack length

lmO Optimal fiber length

R2 Square of the Pearson
product moment correlation
coefficient

NRMSD Normalized root mean
squared deviation

N Number of frames in a
specific curve

M̂X , with X = (HipFE, HipAA, HipROT,
KneeFE, AnkleFE, AnkleSF)

Experimental joint moment
with respect to the degree
of freedom X

gj
exp Experimental Gaussian

curve

gj
par Parameterized Gaussian

curve

SD Standard deviation
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APPENDIX

FIGURE A1 | Experimental joint moments. Ensemble average curves
are depicted for joint moment derived about three degrees of freedom
(DOFs) including: hip flexion-extension (HipFE), knee flexion-extension
(KneeFE), and ankle plantar-dorsi flexion (AnkleFE) during fast walking

(FW) and running (RN). Joint moment derived in our study (Sartori et al.,
see Methods Section) were compared to data from (Winter, 1983, 2004;
Liu et al., 2008; Hamner et al., 2010). The reported data are from the
stance phase with 0% being heel-strike and 100% toe-off events.
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FIGURE A2 | Muscle weightings comparison. Muscle weightings directly extracted from the non-negative matrix factorization algorithm (i.e., not
accounting for XP peak, Figure 2A) are directly compared to those computed accounting for the excitation primitive (XP) peak amplitude (accounting for XP
peak). Also see Table A1.
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Table A1 | Comparison of muscle weightings normalized with and without accounting for the excitation primitive (XP) peak.

Not accounting for XP peak Accounting for XP peak

XP1 XP2 XP3 XP4 XP5 XP1 XP2 XP3 XP4 XP5

medham 1.00 0.00 0.35 0.00 0.00 1.00 0.00 0.39 0.00 0.00

latham 1.00 0.03 0.01 0.10 0.00 1.00 0.03 0.01 0.08 0.00

recfem 0.00 1.00 0.29 0.00 0.00 0.00 1.00 0.39 0.00 0.00

sar 0.00 1.00 0.00 0.02 0.10 0.00 1.00 0.00 0.01 0.17

vaslat 0.01 0.27 1.00 0.03 0.00 0.01 0.18 1.00 0.02 0.00

vasmed 0.00 0.26 1.00 0.13 0.00 0.00 0.18 1.00 0.07 0.00

gmax 0.18 0.00 1.00 0.14 0.27 0.11 0.00 1.00 0.08 0.30

gmed 0.00 0.00 1.00 0.05 0.37 0.00 0.00 1.00 0.03 0.39

gaslat 0.00 0.06 0.02 1.00 0.00 0.00 0.08 0.05 1.00 0.00

gasmed 0.18 0.00 0.00 1.00 0.00 0.21 0.00 0.00 1.00 0.00

per 0.09 0.00 0.23 1.00 0.00 0.10 0.00 0.38 1.00 0.00

sol 0.00 0.01 0.16 1.00 0.00 0.00 0.01 0.30 1.00 0.00

tibant 0.02 0.00 0.00 0.13 1.00 0.01 0.00 0.00 0.06 1.00

add 0.77 0.32 0.00 0.09 1.00 0.44 0.20 0.00 0.04 1.00

gra 0.63 0.26 0.35 0.00 1.00 0.41 0.16 0.31 0.00 1.00

tfl 0.00 1.00 0.92 0.54 0.16 0.00 0.74 1.00 0.41 0.19

Table A2 | Coefficients of determination (R2) and the normalized root mean squared deviation (NRMSD) between the MTU activations

predicted using the XP-driven and the EMG-driven models.

Subject 1 (R2/NRMSD) Subject 2 (R2/NRMSD) Subjects1, 2

CO SS FW RN CO SS FW RN All tasks

addbrev 0.56/0.39 0.38/0.2 0.01/0.44 0.09/0.38 0.61/0.38 0.23/0.19 0.06/0.31 0.01/0.36 0.72/0.23

addlong 0.07/0.56 0.01/0.47 0.57/0.21 0.1/0.59 0.18/0.43 0.01/0.33 0.01/0.23 0.67/0.39 0.12/0.46

addmag1 0.16/0.38 0.06/0.34 0.48/0.36 0.02/0.38 0.77/0.2 0.39/0.42 0.05/0.59 0.01/0.31 0.42/0.2

addmag2 0.05/0.37 0.41/0.19 0.5/0.35 0.69/0.27 0.48/0.31 0.17/0.24 0.1/0.38 0.37/0.2 0.67/0.18

addmag3 0.41/0.24 0.79/0.32 0.19/0.52 0.69/0.17 0.35/0.39 0.01/0.29 0.1/0.26 0.49/0.33 0.83/0.12

bicfemlh 0.01/0.29 0.46/0.28 0.12/0.37 0.69/0.24 0.04/0.29 0.51/0.24 0.1/0.58 0.57/0.33 0.88/0.15

bicfemsh 0.33/0.4 0.22/0.46 0.07/0.5 0.36/0.5 0.31/0.3 0.05/0.36 0.9/0.33 0.05/0.46 0.03/0.32

gaslat 0.66/0.3 0.61/0.33 0.83/0.14 0.52/0.31 0.85/0.21 0.69/0.28 0.79/0.19 0.97/0.13 0.93/0.17

gasmed 0.77/0.23 0.46/0.37 0.58/0.26 0.9/0.18 0.78/0.22 0.82/0.21 0.92/0.1 0.99/0.17 0.94/0.17

gmax1 0.72/0.23 0.93/0.18 0.38/0.44 0.78/0.2 0.74/0.16 0.88/0.13 0.2/0.53 0.75/0.16 0.99/0.18

gmax2 0.54/0.31 0.76/0.28 0.37/0.47 0.98/0.22 0.74/0.16 0.88/0.12 0.19/0.52 0.76/0.16 0.97/0.23

gmax3 0.88/0.37 0.8/0.37 0.43/0.23 0.39/0.39 0.86/0.12 0.95/0.09 0.14/0.5 0.85/0.11 0.98/0.14

gmed1 0.92/0.28 0.97/0.25 0.01/0.44 0.96/0.14 0.85/0.15 0.66/0.23 0.01/0.44 0.93/0.14 0.98/0.06

gmed2 0.74/0.24 0.94/0.18 0.1/0.46 0.96/0.09 0.66/0.2 0.33/0.3 0.02/0.49 0.73/0.22 0.97/0.11

gmed3 0.77/0.37 0.93/0.33 0.01/0.43 0.96/0.21 0.1/0.37 0.08/0.51 0.16/0.55 0.1/0.35 0.93/0.22

gmin1 0.93/0.27 0.96/0.23 0.2/0.35 0.85/0.19 0.1/0.38 0.1/0.4 0.22/0.54 0.01/0.36 0.84/0.17

gmin2 0.87/0.21 0.97/0.15 0.18/0.39 0.93/0.1 0.76/0.15 0.65/0.23 0.04/0.52 0.78/0.17 0.98/0.09

gmin3 0.85/0.22 0.96/0.16 0.17/0.4 0.89/0.11 0.01/0.39 0.1/0.38 0.21/0.58 0.1/0.47 0.92/0.14

gra 0.04/0.42 0.12/0.4 0.51/0.4 0.1/0.37 0.43/0.63 0.31/0.62 0.02/0.35 0.79/0.57 0.58/0.44

perbrev 0.83/0.27 0.72/0.3 0.92/0.12 0.76/0.25 0.58/0.46 0.81/0.35 0.91/0.15 0.98/0.15 0.94/0.22

perlong 0.84/0.26 0.73/0.29 0.91/0.12 0.78/0.24 0.28/0.31 0.51/0.26 0.66/0.31 0.82/0.21 0.96/0.13

pertert 0.83/0.35 0.8/0.37 0.76/0.27 0.95/0.33 0.33/0.41 0.34/0.4 0.7/0.18 0.84/0.18 0.97/0.28

recfem 0.93/0.24 0.86/0.32 0.08/0.53 0.9/0.28 0.64/0.4 0.78/0.17 0.03/0.54 0.21/0.47 0.88/0.31

sar 0.34/0.29 0.7/0.36 0.02/0.59 0.61/0.33 0.07/0.31 0.9/0.1 0.22/0.48 0.27/0.34 0.93/0.15

semimem 0.28/0.43 0.1/0.29 0.17/0.33 0.2/0.46 0.01/0.43 0.11/0.48 0.04/0.28 0.5/0.51 0.33/0.31

semiten 0.02/0.41 0.82/0.19 0.5/0.28 0.23/0.35 0.78/0.21 0.76/0.24 0.86/0.35 0.56/0.29 0.67/0.2

sol 0.58/0.3 0.62/0.32 0.86/0.13 0.48/0.32 0.78/0.4 0.81/0.38 0.73/0.25 0.88/0.33 0.91/0.26

(Continued)
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Table A2 | Continued

Subject 1 (R2/NRMSD) Subject 2 (R2/NRMSD) Subjects1, 2

CO SS FW RN CO SS FW RN All tasks

tfl 0.92/0.14 0.93/0.19 0.37/0.48 0.68/0.21 0.28/0.41 0.94/0.23 0.58/0.52 0.01/0.41 0.98/0.22

tibant 0.85/0.49 0.89/0.51 0.06/0.25 0.15/0.33 0.22/0.37 0.24/0.41 0.02/0.28 0.1/0.39 0.37/0.22

vasint 0.91/0.2 0.92/0.22 0.03/0.54 0.95/0.17 0.83/0.18 0.84/0.16 0/0.49 0.94/0.17 0.98/0.14

vaslat 0.9/0.25 0.92/0.28 0.04/0.5 0.97/0.14 0.91/0.17 0.91/0.16 0.01/0.5 0.89/0.19 0.98/0.09

vasmed 0.9/0.2 0.9/0.22 0.03/0.54 0.94/0.18 0.81/0.18 0.77/0.16 0.01/0.48 0.93/0.18 0.98/0.15

The R2 and the NRMSD are reported both for (1) the MTU activations averaged over all trials for a certain task and subject and for (2) the MTU activation values

averaged over all trials and subjects.

Table A3 | Coefficients of determination (R2) and the normalized root mean squared deviation (NRMSD) between the joint moments

measured experimentally and those predicted by the XP-driven model.

Subject 1 (R2/NRMSD) Subject 2 (R2/NRMSD)

CO SS FW RN CO SS FW RN

HipFE 0.79/0.17 0.84/0.13 0.8/0.15 0.75/0.17 0.83/0.12 0.87/0.13 0.76/0.16 0.82/0.17

HipAA 0.85/0.2 0.6/0.18 0.3/0.22 0.91/0.16 0.35/0.22 0.41/0.24 0.23/0.26 0.09/0.23

HipROT 0.78/0.23 0.91/0.13 0.86/0.12 0.79/0.18 0.56/0.17 0.73/0.2 0.74/0.15 0.81/0.15

KneeFE 0.96/0.12 0.94/0.1 0.39/0.23 0.91/0.18 0.95/0.08 0.92/0.1 0.62/0.19 0.84/0.17

AnkleFE 0.8/0.25 0.76/0.19 0.96/0.13 0.85/0.16 0.84/0.14 0.94/0.13 0.72/0.2 0.98/0.08

AnkleSF 0.9/0.29 0.36/0.33 0.82/0.14 0.66/0.25 0.35/0.42 0.3/0.57 0.8/0.17 0.91/0.25

Values are reported for joint moment estimates averaged over all trials within a certain task.

Table A4 | Coefficients of determination (R2) and the normalized root mean squared deviation (NRMSD) between the joint moments

measured experimentally and those predicted by the EMG-driven model.

Subject 1 (R2/NRMSD) Subject 2 (R2/NRMSD)

CO SS FW RN CO SS FW RN

HipFE 0.85/0.15 0.81/0.15 0.64/0.19 0.76/0.18 0.8/0.14 0.87/0.13 0.73/0.21 0.86/0.13

HipAA 0.74/0.17 0.8/0.12 0.41/0.23 0.87/0.13 0.34/0.21 0.52/0.2 0.39/0.2 0.26/0.19

HipROT 0.97/0.07 0.89/0.19 0.9/0.15 0.93/0.09 0.53/0.19 0.77/0.18 0.87/0.14 0.88/0.12

KneeFE 0.9/0.15 0.86/0.15 0.64/0.17 0.94/0.11 0.96/0.1 0.93/0.13 0.84/0.18 0.93/0.14

AnkleFE 0.97/0.09 0.94/0.09 0.89/0.1 0.99/0.04 0.91/0.12 0.95/0.09 0.92/0.11 0.94/0.1

AnkleSF 0.82/0.31 0.78/0.16 0.91/0.12 0.93/0.11 0.88/0.34 0.2/0.46 0.78/0.18 0.68/0.26

Values are reported for joint moment estimates averaged over all trials within a certain task.
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