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Critical behavior in neural networks is characterized by scale-free avalanche size
distributions and can be explained by self-regulatory mechanisms. Theoretical and
experimental evidence indicates that information storage capacity reaches its maximum
in the critical regime. We study the effect of structural connectivity formed by Hebbian
learning on the criticality of network dynamics. The network only endowed with Hebbian
learning does not allow for simultaneous information storage and criticality. However, the
critical regime can be stabilized by short-term synaptic dynamics in the form of synaptic
depression and facilitation or, alternatively, by homeostatic adaptation of the synaptic
weights. We show that a heterogeneous distribution of maximal synaptic strengths does
not preclude criticality if the Hebbian learning is alternated with periods of critical dynamics
recovery. We discuss the relevance of these findings for the flexibility of memory in aging
and with respect to the recent theory of synaptic plasticity.
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1. INTRODUCTION
Critical dynamics in neural networks is an experimentally and
conceptually established phenomenon which has been shown to
be important for information processing in the brain. Critical
neural networks have optimal computational capabilities, infor-
mation transmission and capacity (Beggs and Plenz, 2003;
Haldeman and Beggs, 2005; Chialvo, 2006; Shew and Plenz,
2012). At the same time the theoretical understanding of neu-
ral avalanches has been developed starting from sandpile-like
systems (Herz and Hopfield, 1995) and homogeneous networks
(Eurich et al., 2002), but later also including particular struc-
tural connectivity (Lin and Chen, 2005; Teramae and Fukai, 2007;
Larremore et al., 2011). The network structure in the latter cases
was, however, chosen as to support or even to enable criticality,
which points obviously to one of the mechanisms criticality is
brought about in natural systems. There are, nevertheless, other
influences that shape the connectivity structure and weighting.
Most prominently, this includes Hebbian learning, but also home-
ostatic effects or pathological changes. Here we study how such
structural changes influence criticality in neural networks.

While homeostatic plasticity may well have a regulatory effect
that supports criticality, this cannot be said about Hebbian learn-
ing which essentially imprints structure from internally or exter-
nally caused activation patterns in the synaptic weighting of the
network increasing thus the probability of previous patterns to
reoccur. Unless the patterns are carefully chosen to produce crit-
ical behavior, these effects have a tendency to counteract critical
behavior, e.g., by introducing a particular scale that corrupts the
power-law distributions characteristic for critical behavior.

Little is known, in particular, about the influence of critical-
ity on associative memory neural networks. We have chosen this
paradigm of long-term memory as a basis for the present model
because it is very well understood and because it matches the

complexity of models that are typically considered in the study of
criticality. Associative memory networks are able to recall stored
patterns when a stimulus is presented, that is similar to one of the
stored patterns, thus providing a means to implement memory
into a neuronal population. If all goes well, the network state fol-
lows an attractor dynamics toward the correct memory item when
being initialized by a corrupted or incomplete variant of the item
as an associative key. Items are stored as activation patterns that
are implanted in the network by Hebbian learning. This leads to
an effective energy landscape, where the patterns are local minima
and as such attractors of the system dynamics (Hopfield, 1982;
Herz and Hopfield, 1995). We have studied earlier the effect of
dynamical synapses (Markram and Tsodyks, 1996) in associative
memory networks (Bibitchkov et al., 2002), now we are interested
in the criticalizing role of dynamical synapses.

Other work has shown (Levina et al., 2006, 2007b; Levina,
2008; Levina et al., 2009) that dynamical synapses play an impor-
tant role in the self-organization of critical neural dynamics.
Given the importance of the critical regime for information pro-
cessing in the brain and the substantial experimental evidence
that is available to date, there is a need to consider the compati-
bility of these two effects and to identify a way to obtain criticality
and memory storage simultaneously.

We will discuss here an algorithm to achieve compromise
between a critical dynamics that can be seen as exploring the
spaces of neural activation patterns, and the attractor dynamics
that we assume to underlay the retrieval of content from mem-
ory. The present paper continues upon earlier work (Schrobsdorff
et al., 2009; Dasgupta and Herrmann, 2011), where the prelim-
inary simulation results were discussed. In our study for the
first time conclusive numerical representations are presented, sev-
eral learning mechanisms are compared and the capacity limit is
considered.
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2. MATERIALS AND METHODS
2.1. NEURONAL ACTIVITY DYNAMICS IN THE CRITICAL REGIME
We consider a network of N integrate and fire neurons. The mem-
brane potential hi ∈ [0, θ] of a neuron i ∈ {1, . . . , N} is subject to
the dynamics

ḣi = Iextδ
(

t − ti
e

)
+ 1

N

N∑
j = 1

Jijδ
(

t − t
j
sp

)
. (1)

The first term on the right hand side of Equation 1 represents an
external excitatory input of size Iext affecting neuron i at time ti

e.

The second term describes a recurrent excitatory input, where t
j
sp

denotes the arrival time of a presynaptic action potential originat-
ing from neuron j and Jij is the strength (or weight) of the synapse
connecting j to i. Action potentials are generated and delivered
to all postsynaptic neurons when neuron i reaches the membrane
potential threshold θ. After this depolarization, the potential is
reset according to

hi

(
t+sp

)
= hi

(
tsp

) − θ. (2)

The activity dynamics in this model network depends on the
connectivity and the weight matrix J = {

Jij
}

. For a fully con-
nected network with equal weights the activity forms a series
of avalanches that are separated by longer periods of quiescence
(Eurich et al., 2002). An avalanche is triggered when external
input Iext causes a neuron to fire and consists of a number (the
avalanche size L) of successive depolarizations. Because some of
these activations may occur simultaneously, avalanches are also
characterized by their duration (D), i.e., the time from the start
of the avalanche to the firing time of the last neuron that was
activated in this way.

For neural networks of this type a critical synaptic weight
Jcr exists that leads to a scale-free avalanche size distribution
P(L) (Eurich et al., 2002). For more complex networks the crit-
ical value is usually not explicitly obtainable, except for random
(Levina et al., 2007b) or regularly coupled networks (Herz and
Hopfield, 1995). This problem can be circumvented by apply-
ing an adaptive algorithm that adjusts the weights toward their
critical values which do not need to be identical across neurons.
Such an adaptation toward criticality can be obtained in form of
a homeostatic learning rule (Levina et al., 2007a) which locally
regulates the flow of activity from a neuron to its postsynap-
tic partners. Within the branching process approximation (Otter,
1949; Beggs and Plenz, 2003; Levina et al., 2007a; Levina, 2008)
it can be shown that this homeostatic rule causes the network to
become critical such that the activity dynamics in the network
together with the homeostatic regulation forms a self-organized
critical system.

2.2. HOMEOSTATIC REGULATION
Self-organized criticality can be achieved by applying a homeo-
static learning rule at the beginning of each avalanche (Levina
et al., 2007a) according to

Jij = J0
ij + εhom

[
1 − � − N− 1

2

]
. (3)

Here, J0
ij denotes the synaptic weights at the time of avalanche

initiation, � is the number of active neurons in the second time
step of the avalanche, εhom is a learning rate and N− 1

2 a finite
size correction. According to Equation 3 in the limit N → ∞, the
synaptic weights will decrease if � > 1, and increase if � < 1. For
an infinitely large N a stable configuration is obviously obtained
as soon as the triggering neuron causes exactly one other neuron
to fire. This corresponds to a mathematical model of a critical
branching process, that is known to result in a power-law dis-
tribution of the avalanche size. A finite size correction is needed
because avalanches cannot spread to infinity but are rather lim-
ited to a system of N neurons. Such a learning rule resembles the
homeostatic regulation observed in cortical neurons (Abbott and
LeMasson, 1993; Turrigiano et al., 1998), with the important dif-
ference that the neuron does not keep stable its own firing rate,
but that of the postsynaptic population.

2.3. DYNAMICAL SYNAPSES
The empirical observation of criticality in networks of real neu-
rons has initiated a number of alternative explanations by regu-
latory processes interacting with the neuronal activity dynamics.
One mechanism relies on the short-term dynamics of synaptic
efficacies (Tsodyks and Markram, 1996, 1997). Given that synap-
tic resources are limited, high activity of presynaptic neurons will
lead to depletion of these resources and thus to a reduced synaptic
efficacy. In periods of silence or low activity, the synaptic effi-
cacy will then recover toward its maximum value Tmax

ij . We have
modeled this in the following way (Levina et al., 2007b),

Ṫij = 1

τJ

(
Tmax

ij − Tij

)
− uTijδ

(
t − t

j
sp

)
, (4)

where τJ sets the time scale of exponential recovery, t
j
sp is the

presynaptic spike time and u sets the relative amount of resources
used upon spike transmission (Markram and Tsodyks, 1996).
Note that the Tij are not the synaptic weights Jij used in the sense
of the previous section, but are related to Equation 3 by Jij = uTij.
The Tmax

ij can be considered to be equal for all the synapses in
the network and constant in time, but we will later relax this
condition by introducing learning effects on a short time scale.
Intuitively, the stabilizing effect of dynamical synapses in this
model can be understood in the following way: large avalanches
lead to depletion of synaptic resources and thus to series of
smaller events, whereas small avalanches lead to an increase of the
amount of resources in the synapses resulting in larger avalanches
again. Such activity dependent regulation allows for a power-law
distribution of avalanche sizes. A mathematical explanation for
the success of this model is provided by the fact that

〈
uTij

〉 → Jcr

for a wide range of Tmax, i.e., the time-averaged synaptic input
approaches the critical value Jcr of the network with static synap-
tic weights that was defined in section 2.1 (Eurich et al., 2002;
Levina et al., 2007b).

The arrival times ti
e of external inputs of strength Iext in

Equation 1 are determined by a random process that selects neu-
rons at a rate τ and increases their membrane potential. The
characteristic time scale of synaptic recovery τJ is related to the
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time scale of external input τ via τJ = τνN and 1 < ν � N.
Therefore, the synaptic dynamics of this model is composed of
two regimes. In the slow regime, neurons get loaded by exter-
nal input Iext and synaptic resources slowly recover toward their
maximum value Tmax

ij . The activation of a single neuron then
marks the transition to the fast “avalanche regime”, where the
redistribution of neuronal membrane potentials and depression
of resources Tij is so fast that we can safely assume external input
and synaptic recovery processes to be absent.

Irrespective of the particular recipe used to achieve self-
organized criticality in our simulations, we always record Aava

avalanches and calculate the mean squared deviation �γ between
the resulting avalanche size distribution P(L) and the best-
matching power law over the range 1 ≤ L ≤ N/2. Unless �γ is
not less than a specified threshold �γmax, we keep recording
Aava avalanches until the resulting size distribution has converged
toward a power law and this sets the end of the critical regime. The
resulting synaptic weight configuration

{
Jij

}
does then represent

a neural network operating at the critical point. For small net-
work sizes �γ was shown to be as informative about criticality in
the network as a Kolmogorov-Smirnov statistic with Monte-Carlo
generated p-value (Levina, 2008).

2.4. ASSOCIATIVE MEMORY MODEL
So far we have described the dynamics of the neural network in
the critical regime. We now equip the network with the ability to
store a set of patterns and to operate as an associative memory of
these patterns. The patterns are represented by differences among
the synaptic efficacies, and the retrieval of the pattern is under-
stood as an attractor dynamics from a cue toward the pattern.
The cue is a stimulus that causes a neuronal activity pattern near
one of the memorized patterns and once the stimulus has initi-
ated the attractor dynamics, it is expected that the current activity
approaches the memorized pattern even more closely.

Let {ξη}, η = 1, . . . , M, be a set of binary patterns consisting
of pixels ξ

η

i ∈ {0, 1}. The pattern ξη is retrieved if the firing rate of
the neurons with ξ

η

i = 1 is above and of the neurons with ξ
η

i = 0
is below a certain threshold.

We assume a sparse representation, i.e., only a fraction p of the
neurons in a pattern is assumed to be active such that for all η

1

N

N∑
i = 1

ξ
η

i = p. (5)

In order to imprint these M binary patterns on the network
connectivity, a matrix W = {

Wij
}

in a correlational form is
defined as

Wij = 1

p(1 − p) N C

M∑
η = 1

ξ
η

i ξ
η

j

(
1 − δij

)
, (6)

where C is an additional scaling factor which we choose such
that

∑
ij Wij = N. The structure of this matrix is fixed in time

and depends on the specific set of patterns. If we took the
synaptic weight matrix in the same way, i.e.,

{
Jij

} = {
Wij

}
, the

network would exhibit optimal retrieval quality for the stored pat-
terns η (Tsodyks and Feigel’man, 1988; Tsodyks, 1989). However,
this weight configuration cannot be expected to generate criti-
cal avalanche size distributions. In order to combine criticality
and memory, we therefore start with synaptic weights obtained by
homeostatic learning (or dynamical synapses) and then carefully
push the

{
Jij

}
toward the configuration

{
Wij

}
using the learning

rule

Jij(t + 1) = Jij(t) + εhebb
[
Wij − Jij(t)

]
. (7)

Here, Jij(t) and Jij(t + 1) are respectively the old and the new
synaptic strengths and εhebb � 1 is a learning rate. Note that we
do not apply Equation 7 synchronously for all the synapses but
rather in a stochastic manner with update probability p = 1/N
for each synapse

(
i, j

)
. This is done until the synaptic weight

configuration
{

Jij
}

allows for associative recall of the stored pat-
terns as specified below. We will refer to the episode during which
Equation 7 is applied as Hebbian learning.

A modified learning rule is implemented in the case of dynam-
ical synapses, which is given by

Tmax
ij (t + 1) = Tmax

ij (t) + εhebb

[
u−1Wij − Tmax

ij (t)
]
. (8)

Unlike before, Hebbian learning is not applied to the instanta-
neous values of synaptic efficacies

{
Tij

}
but rather to the maximal

efficacies
{

Tmax
ij

}
. Learning of instantaneous efficacies is not rea-

sonable here as the effect of learning would be erased during the
critical episode because the

{
Tij

}
tend to closely recover to their

maximum values and these do not contain information about the
stored patterns. If, however, the

{
Tmax

ij

}
are structured in a way

similar to the optimal memory configuration
{

Wij
}

, the instan-
taneous efficacies

{
Tij

}
will be affected in favor of the memory

configuration too because they recover during episodes of low

network activity toward the
{

Tmax
ij

}
.

Clearly, we need a criterion that sets the end of the Hebbian
learning episode. This criterion can only be based on the retrieval
quality of the current network state, which is discussed in the
following section.

2.5. RETRIEVAL QUALITY
In order to assess the retrieval (or memory) quality in the network
with the configuration of synaptic strengths

{
Jij(t)

}
, we construct

perturbed versions κη = Q ξη of the stored patterns. The operator
Q selects an active and an inactive neuron at random and swaps
their states, thereby keeping the total number of active neurons
unchanged. Ideally, the network will be able to reconstruct the
original ξη from the κη using the information that is implicitly
stored in the connections. Practically, we can only require that the
network produces a state that has less errors than κη, i.e., that is
closer to the stored pattern than the perturbed version.

In discussing these questions, we will use a simplified model
which was chosen mainly in order to be able to relate to results in
Levina et al. (2007b, 2009) as well as in Bibitchkov et al. (2002). In
addition to the use of binary patterns we will assume a noise-free
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dynamics during retrieval and a fixed threshold. The threshold is
optimized for achieving maximal overlap in the next state which,
however, does not imply an optimal retrieval in the convergent
phase (Bibitchkov et al., 2002). More specifically, upon presenting
a perturbed pattern κη, the network activity will switch to a new
configuration Sη given by

Sη

i

(
κη, �

) = sign

⎛
⎝∑

j

Jijκ
η

j − �

⎞
⎠, (9)

with � being some threshold. In what follows, we will refer to
Sη as the retrieved pattern. To quantify the overlap between two
binary patterns ξ and κ we use the correlational measure

o(ξ, κ) = 1

N

∑N
i = 1

[(
ξi − mξ

)
(κi − mκ)

]
σξσκ

, (10)

where mξ and mκ denote the mean activities and σξ and σκ are
the standard deviations, respectively. Perfect overlap is obtained
for identical patterns where we have o(ξ,κ) = 1, while we obtain
o(ξ,κ) = 0 for uncorrelated patterns. Thus, the observation that

〈
o
(
Sη, ξη

)〉
ξ
− 〈

o
(
κη, ξη

)〉
ξ

> �, (11)

where � is a positive value that sets the minimum required
improvement in (average) overlap 〈o (Sη, ξη)〉ξ compared to the
perturbations, provides evidence that the weight configuration{

Jij
}

indeed contains information about the stored pattern ξη. If
the network realized, in contrast, an identical transformation it
would not achieve an improvement of the overlap, but it could
“remember” a pattern for a short time in a kind of short-term
memory. Typically, we will not only consider a single random
perturbation κη per pattern but many, so that Equation 11
becomes

〈〈
o
(
Sη, ξη

)〉
κ

〉
ξ
− 〈〈

o
(
κη, ξη

)〉
κ

〉
ξ

> �. (12)

In a spiking network also temporal averages need to be included in
order to obtain a consistent measurement of the retrieval quality.
According to the simplifying assumptions above, we will con-
sider only small perturbations which consist in the case of a
finite network in single bit swaps. This is done for two reasons.
First, such perturbations are used in order to concentrate on the
threshold-independent effects of the retrieval dynamics. A per-
turbed pattern cannot be corrected by the choice of a standard
threshold value. Second, near the critical capacity, it is sufficient
to study the ability of the network to correct a single error. This is
due to the reduction of the size of the basins of attraction of the
pattern-related attractor states. As soon as the attractor size has
reached zero even an almost correct pattern will typically deterio-
rate with the dynamics (Equation 9). A persistence of a fixed point
state beyond the capacity limit, but without a basin of attraction,
is easily achieved, e.g., by avoiding any update of the neurons
state, but is not interesting in the present context.

Two comments concerning the threshold � in Equation 9
seem to be in order here. First, we choose this threshold such
that the average overlap

〈〈o (Sη, ξη)〉κ
〉
ξ

is maximal. Second, �

may differ from the threshold θ that we use in the critical regime.
We assume that both thresholds are the result of a specific action
of inhibitory neurons, which we, however, do not model here
explicitly.

2.6. OPTIMIZATION TOWARD CONVERGED STATES
In the previous sections we have outlined how the synaptic
weights evolve during the critical and Hebbian learning episodes,
respectively. The critical episode ends as soon as the sampled
avalanche size distribution is close to a power law (see section
2.3), whereas the following phase of Hebbian learning is stopped
as soon as the network exhibits good retrieval quality of the
stored patterns, when perturbations of the latter are presented.
We measure the retrieval quality after each step of Hebbian learn-
ing and stop if the improvement in average overlap is at least
�hebb. For the sake of reduced numerical complexity, we only
consider one single perturbation for each stored pattern, i.e., we
use Equation 11 instead of Equation 12. After Hebbian learning
is over, the network is driven toward the critical regime again,
employing either homeostatic regulation of synaptic weights or
dynamical synapses, respectively. This alternation between the
two episodes may be interpreted as an optimization scheme and
the delicate question is if convergence toward a state is obtained in
the long run, in which the network is critical and retains an asso-
ciative memory of the stored patterns at the same time. In what
follows, we will refer to these states as converged states.

Whether the network is in a converged state is always checked
after the critical episode is finished and before the next round of
Hebbian learning is started. At this point we already know that
the system is operating at the critical point but we still need to
make sure, that the critical episode has not erased memory of the
stored patterns. We therefore rigorously test the retrieval qual-
ity of the network using Equation 12 with a minimum required
improvement of �conv and take the average over np (np 	 1)
perturbations per pattern. Note that in the case of dynamical
synapses, we assess the retrieval quality of Jij = uTmax

ij in the
Hebbian learning phase, whereas we take Jij = uTij to check for
convergence.

A sketch of the optimization strategy is shown in Figure 1 and
the most important steps are summarized in Algorithm 1 for the
case of homeostatic regulation.

Algorithm 1 | General steps of the optimization strategy for the case

of homeostatic regulation (see text for details).

1. Homeostatic learning of synaptic weights (Equation 3) based on TL

avalanches.

2. Recording of Aava avalanches and their sizes L.

3. Calculate mean squared deviation �γ of size distribution P(L) from
best-fit power law; if �γ < �γmax continue, otherwise restart at step 1.

4. Check for convergence using Equation 12 with � = �conv and
averaging over np (np 	 1) perturbations per pattern; if retrieved states
show large enough overlap with stored patterns, network has
converged; if not, continue with step 5.

5. Hebbian learning of synaptic weights using Equation 7; after each
learning step check retrieval quality according to Equation 11 with
� = �hebb; if retrieval quality good enough start at step 1.
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3. RESULTS
3.1. SPECIFICATIONS OF THE MODEL USED IN THE EXPERIMENTS
In this study we always simulate networks of N = 300 neurons.
Other parameters are summarized in Table 1.

At the beginning of each critical phase we sample A0

avalanches without taking them into account in the avalanche size
distribution P(L). This is done to ensure that the size distribution
is not affected by transient dynamics. The sampling of the distri-
bution is an important contribution to the total simulation time
and was the main limitation of the size of the network. Because
in larger networks also larger avalanches need to be considered,
the sampling time for given �γmax increases faster than quadratic
which was the main reason for our choice of the network size.
Smaller networks, however, are less suitable to store small activity
patterns, see section 3.2.

Apart from that, we consider several trials for each number of
patterns M stored in the network, where each trial uses a different
set of M patterns. Unless otherwise stated, data points are aver-
ages over 10 trials for each M and error bars indicate one standard

FIGURE 1 | Schematic representation of the dual optimization

algorithm.

deviation from the mean. Instead of the number M of stored pat-
terns in the network, we will typically use the load parameter,
defined as α : = M/N.

3.2. MEMORY NETWORK
Before we study networks that include mechanisms to bring about
criticality, we first test pure memory networks. We generate a set
of M random binary patterns, calculate the matrix

{
Wij

}
accord-

ing to Equation 6 and set the network connectivity to Jij = Wij.
The memory quality is then assessed by calculating the aver-
age overlap

〈〈o (Sη, ξη)〉κ
〉
ξ

between the retrieved patterns Sη and

the original patterns ξη (see section 2.5 for details). From here
on, we always take the average 〈.〉κ over np = 1000 randomly
generated perturbations κη of each of the M patterns ξη. The
average overlap is close to 1 up to load parameters α ≈ 0.07
(Figure 2A), indicating perfect retrieval quality of the networks.
Around α ≈ 0.11 it drops below 0.982, which marks the overlap
corresponding to an average deviation of one digit from the orig-
inal pattern. Finally, at α ≈ 0.13 and beyond the network does
not yield retrieved patterns anymore that are closer to the original
patterns than the perturbations.

In Figure 2B we show results of a criticality test for pure mem-
ory networks, where we record Aava avalanches and consider the
mean squared deviation �γ of the size distribution P(L) from the
best-fit power law. Although there is no mechanism in these net-
works to bring about criticality in a self-organized way, we always
choose the normalization C in Equation 6 such that 〈Wij〉 cor-
responds to the critical value of the model with fixed synaptic
weights [see section 2.1 and Eurich et al. (2002)]. We find that for
load parameters α � 0.6 the network is critical. Below this value
it is not critical because the coupling matrix

{
Wij

}
is too sparse,

i.e., many entries are 0. Thus, pure memory networks can become
critical but only in a range of load parameters where the quality
of retrieval or memory is already poor. In the following sections
we show that the critical regime and the memory regime can be
brought into agreement by employing the optimization strategy
described in section 2.6.

The simulation time depends essentially on the load of the net-
work, see Figures 3–5. The numerical complexity of an iteration
step depends linearly on M as all patterns are relearned, while the
other parameters on which it depends are kept fixed here.

3.3. COMBINED HOMEOSTATIC AND HEBBIAN LEARNING
We now consider simulations that include homeostatic regula-
tion as a means to bring about criticality in a self-organized way.

Table 1 | Parameters used in the numerical simulations.

General parameters

Parameter N θ p A0 Aava εhebb �γmax �hebb �conv np

Value 300 1.0 0.1 104 106 0.01 0.005 0.035 0.03 1000

Homeostatic plasticity Dynamical synapses

Parameter TL εhom Ie Parameter ν u Ie

Value 103 0.001 0.0067 Value 10 0.2 0.025
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At the beginning, the
{

Jij
}

are initialized by
{

Wij
}

but will be
modified in the course of the alternating episodes of homeo-
static and Hebbian learning, respectively. The most important
finding we arrive at is the existence of converged states in which
the networks are critical and associative memories of the stored
patterns at the same time. The total number of Hebbian learn-
ing steps needed to arrive at these states significantly increases
with load parameter α (Figure 3A), spanning about two orders

of magnitude. In contrast to the pure memory networks stud-
ied before, criticality is already achieved for small values of α

(Figure 3B).
The retrieval quality of the networks in the converged state is

again assessed by considering the average overlap
〈〈o (Sη, ξη)〉κ

〉
ξ

of the retrieved solutions Sη and the original patterns ξη

(Figure 4A). For small values of α the networks are able to recon-
struct the original patterns almost perfectly. However, the overlap

FIGURE 2 | Performance of pure memory networks in terms of retrieval

quality (left) and criticality (right) as a function of the load parameter α.

Synaptic weights are fixed and defined by
{
Wij

}
. There is neither

homeostatic learning nor activity dependent synapses adaptation. (A)

Average overlap between initially stored patterns and corresponding retrieved
patterns. Averages are taken over 10 trials for each α and error bars indicate

one standard deviation from the mean. (B) Mean squared deviation of
obtained avalanche size distributions from the best-fit power law. The blue
dashed line denotes the threshold �γmax = 0.005, below which avalanche
size distributions can be considered critical. The inset shows an example
avalanche size distribution P(L) obtained in the range of critical load
parameters, along with the slope of the best-fit power law (red dashed line).

FIGURE 3 | Results from networks including Hebbian and homeostatic

learning of synaptic weights, respectively, for different values of the

load parameter α. For each value of α data is taken from 10 trials and
error bars mark one standard deviation from the mean. (A) Total number
of steps in Hebbian learning needed to converge to a state that is
both critical and an associative memory of the stored patterns. The
discontinuity near α ≈ 0.03 appears to be due to the finite size of the
basins of attraction: while for low loading ratios α a basin of attraction of

several bits can be achieved, now only a single bit is corrected in the
course of the learning which is faster achievable than before. (B) Average
mean squared deviation �γ from the best-fit power law. Since all data
points lie below the threshold of �γmax = 0.005 (blue dashed line),
avalanche size distributions are critical over the whole range of α. An
example avalanche size distribution P(L) in the converged state is
illustrated in the inset (red dashed line indicates slope of the best-fit
power law).
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FIGURE 4 | Retrieval performance of networks including Hebbian and

homeostatic learning of synaptic weights, respectively, for different

load parameters α. For each α data is taken from 10 trials and error
bars mark one standard deviation from the mean. (A) Average overlap
between initially stored patterns and corresponding retrieved patterns.
Filled circles include results from converged simulations only, whereas
most simulations in the range of open circles did not converge. For

comparison, the overlaps corresponding to an average deviation of
two digits (dotted line) and one digit (dashed line) from the original
patterns are indicated. (B) Average fraction of patterns for which the
networks yield retrieved patterns with deviation less than one and two
digits, respectively. Filled markers again include converged simulations
only and open markers mainly have contributions from simulations that
did not converge.

is less than in case of the pure memory networks. Compared to
the latter, the decrease in retrieval quality also occurs for smaller
α and is more abrupt. The open circles mark the range of load
parameters, where the majority of simulations does not converge
anymore, because the required increase �hebb in overlap during
the Hebbian learning episode is not reached. Instead, the overlap
saturates so that we stop Hebbian learning, add one last excursion
toward the critical regime and finally finish the simulations after
measuring the retrieval quality.

Since
〈〈o (Sη, ξη)〉κ

〉
ξ

only measures the overlap averaged over

all the M patterns stored in a network, we also assess the over-
lap on the level of single patterns. For this reason we consider the
fraction of patterns stored in a network, that can be reconstructed
from perturbed states with a deviation less than a specified num-
ber of digits (Figure 4B). For the range of load parameters α

where the majority of simulations converge, more than 90% of
the retrieved patterns can be reconstructed with an average devi-
ation less than one digit. (Figure 4A). Also, there are practically
no patterns for which the retrieved states deviate more from
the original patterns, than the perturbations themselves. Even in
the range of load parameters where the average overlap strongly
decreases, there is still a small fraction of patterns which is well
“remembered” by the networks.

3.4. SYNAPTIC DEPRESSION
We now turn to the second synaptic regulatory mechanism that
brings about criticality in our networks (see section 2.3). All the
analysis in this part is done along the lines of the previous sec-
tion, so the only essential difference here is that we substitute
homeostatic learning as the mechanism that drives the network
into the critical regime by dynamical synapses. At the beginning

of the simulations, maximal synaptic resources
{

Tmax
ij

}
are set

equal to 1.4 (uN)−1. Due to Hebbian learning however, struc-
ture in the maximal resources will develop in the course of the
simulations.

Also the model networks considered here evolve toward con-
verged states that are critical and an associative memory at
the same time. While the total number of Hebbian learning
steps needed to converge (Figure 5A) is comparable to homeo-
static learning, the agreement of the avalanche size distributions
with scale-free distributions is better for dynamical synapses
(Figure 5B).

Figure 6 addresses the retrieval quality of the converged
network states for the stored patterns. The average overlap〈〈o (Sη, ξη)〉κ

〉
ξ

is again close to optimal for small values of α and

drops below the overlap of perturbed patterns 〈o (κη, ξη)〉ξ at
α ≈ 0.13 (Figure 6A). This is comparable to what was observed
for the pure memory networks in Bibitchkov et al. (2002) so that
the overlap decreases less quickly than for homeostatic regulation.
This might be attributed to the fact that the structure that was

learned into the maximal efficacies
{

Tmax
ij

}
during episodes of

Hebbian learning is not affected during the critical phase, where
only the

{
Tij

}
are changed. Thus, memory is safely stored within

maximal synaptic efficacies.

4. DISCUSSION
In this study we investigated the interplay between criticality and
memory in neural networks. We showed that Hebbian learning
alone destroys criticality even when the synaptic strength is prop-
erly scaled. Applying an optimization procedure that drives the
synaptic couplings either toward the critical regime or toward
the memory state in an alternating fashion, we finally arrive at
a configuration that is both critical and retains an associative
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FIGURE 5 | Results from networks that are influenced by Hebbian

learning and dynamical synapses, for different values of the load

parameter α. For each α data is taken from 10 trials and error
bars mark one standard deviation from the mean. (A) Total number
of steps in Hebbian learning needed to converge to a state that is
both critical and an associative memory of the stored patterns. (B)

Average mean squared deviation �γ from the best-fit power law.
Since all data points lie below the threshold of �γmax = 0.005 (blue
dashed line), avalanche size distributions are critical over the whole
range of α. The inset shows an example avalanche size distribution
P(L) in the converged state and the red dashed line marks the
slope of the best-fit power law.

FIGURE 6 | Retrieval performance of networks including Hebbian

learning and dynamical synapses for different load parameters α. For
each α data is taken from 10 trials and error bars mark one standard deviation
from the mean. (A) Average overlap between initially stored patterns and
corresponding retrieved patterns. Filled circles include results from converged
simulations only, whereas most simulations in the range of open circles did not

converge. For comparison, the overlaps corresponding to an average deviation
of two digits (dotted line) and one digit (dashed line) from the original patterns
are indicated. (B) Average fraction of patterns for which the networks yield
retrieved patterns with deviation less than one and two digits, respectively.
Filled markers again include converged simulations only and open markers
mainly have contributions from simulations that did not converge.

memory. In the following, we will discuss our findings and
possible implications in more detail.

4.1. QUALITY OF CRITICALITY
The mean squared deviation of the avalanche size distributions
obtained in the converged network states from their best-fit power
law was always smaller than the threshold �γmax = 0.005, pro-
viding evidence that the networks indeed operate at the finite-size
equivalent of a critical point (Levina et al., 2007b). Furthermore,
we did not observe oscillatory features in the avalanche size

distributions. This suggests that the network dynamics circum-
vents the attractors (the stored patterns) that were learned into
the network structure. The explanation of this observation is
probably twofold. First, the majority of activity in the networks
consists of small avalanches whose size is smaller than the total
activity in the stored patterns, so that there is not enough overlap
to be attracted toward the stored patterns. Second, even though
larger avalanches have generations of firing neurons with total
activity close to that of the stored patterns, the likelihood that
they come close enough is very small given the many possible
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configurations. Indeed, we found no evidence that avalanches or
their sub-generations come close to any of the stored patterns
at all during our simulations. There are nevertheless traces of
the pattern structures in the avalanches in the sense that a pair
of neurons that is active in the same pattern is also correlated
in the critical spontaneously active network. Likewise, we con-
sider elevated correlations also between subsequent avalanches.
Although these correlations are not unexpected it is interest-
ing that they do not interfere with the criticalization of the
network.

4.2. QUALITY OF MEMORY AND CAPACITY
To assess the (associative) memory quality in the converged state,
we presented perturbed versions of the initially stored patterns
to the networks which resulted in retrieved patterns. The latter
almost never deviate from the original patterns more than the
perturbed states themselves. More importantly, more than 90%
of the patterns are reconstructed with on average less than one
digit deviation from the original patterns. We may therefore con-
clude that the memory quality of the critical networks is very
good. However, a pure memory network which has couplings
equal to

{
Wij

}
and does not operate at the critical point, still per-

forms better in terms of reconstruction from perturbed patterns.
This might be attributed to the fact that the coupling matrices{

Jij
}

obtained in the converged states are not symmetric any-
more, as opposed to

{
Wij

}
. But symmetry of the coupling matrix

is a major prerequisite for good retrieval quality of traditional
Hopfield networks.

4.3. COMPARING HOMEOSTATIC LEARNING AND DYNAMICAL
SYNAPSES

We have considered two mechanisms that can regulate a neu-
ral network toward criticality (and thus making it truly self-
organized critical). Homeostatic learning regulates synaptic
weights until the branching ratio approaches the critical value.
Dynamical synapses on the other hand represent a biologically
more justified regulatory mechanism, where the critical branch-
ing ratio is reached through the interplay of synaptic depression
and recovery. In the latter model, we found that agreement
between criticality and memory can only be achieved if the
maximal synaptic weights are structured by Hebbian learning.
Homogeneous maximal weights in contrast lead to memory loss
during critical episodes because synaptic resources may recover
to their maximal values which carry no information of the stored
patterns anymore.

4.4. MEMORY STORAGE BY DYNAMICAL SYNAPSES
The apparent contradiction between the classical concept of
memory storage by fixed synaptic efficacies which are modifiable
only by persistent high-rate stimulation on the one hand, and the
realization of adaptive filters based on the short-term dynamics
of synaptic resources has been studied already in Tsodyks et al.
(1998), Bibitchkov et al. (2002), and in more realistic models
in Giudice and Mattia (2001) and Romani et al. (2006). While
initially the contradiction between the two modes of operation
has been studied in Bibitchkov et al. (2002), later the benefits
arising from the combination were uncovered. It is interesting

that the formation of memories which imply a strong structural
modification in the context of attractor networks, can even be
enhanced in accuracy if short-term synaptic plasticity is used in
the model. The finding of critical dynamics in such networks both
supports this view and expands it in the sense that a coexistence
of a retrieval state and a critical exploratory state becomes possi-
ble by dynamical synapses. This suggests a solution of one of the
main problems with attractor networks, namely the conditions
for the escape from attractors. While this can be achieved by an
additional dynamics (Horn and Usher, 1989; Treves, 2005), we
have here a form of dynamics that is purely input-driven when an
input is available, while it is exploratory if this is not the case. It
might be interesting to consider networks with correlated patterns
(see Herrmann et al., 1993) where the two effects can become
intertwined.

4.5. PATTERN-RELATED CORRELATIONS IN THE CRITICAL REGIME
One of the main points here is that the critical state serves as
a ground state of the system which is assumed in the absence
of specific external input. But it is, since the completely inactive
state is absorbing in our model, constantly fed by spatially and
temporally homogeneously distributed external noise. A specific
external input has a large overlap with one of the patterns and a
small overlap with all the other stored patterns. This is a neces-
sary condition of the model, which in order to be relaxed requires
a specific modification. We have dealt with such problems in our
previous papers, but assume here uncorrelated patterns. In this
way the overlap between any two patterns is negligible in theory.
In a finite network this is not necessarily the case, but for a limited
number of patterns the overlaps are smaller than the threshold for
the spill-over into any of the other patterns. In a memory network
below the capacity limit, the activity will therefore be confined to
the pattern which is indicated by the input. The dynamics will
thus not be critical. In a critical network on the other hand, we
conjecture that on short time scales avalanches will be correlated
to the existing patterns. Since, however, all neurons and thus all
patterns receive constantly external input now, the avalanches are
not confined to a pattern but will jump into other patterns on
medium time scales.

4.6. IMPLICATIONS FOR AGING AND MEMORY CONSOLIDATION
Although we have not made this explicit here, the memory
test can be formulated as an informational criterion (Rieke
et al., 1997). The evolution of a network state toward a pattern
decreases the distance and thus also the relative entropy as it is
not known which bits are wrong or missing. Interestingly, the
amount of information (however specified) does not improve
when approaching the critical regime. This is contrary to what
could be expected by considering the informational optimality of
critical neurodynamics (Shew and Plenz, 2012), although the sit-
uation there is not comparable to the present attractor dynamics.
The optimality concerns information capacity (Haldeman and
Beggs, 2005) in the sense that at criticality the entropy of the
state space is maximal (Ramo et al., 2007) with respect to a con-
trol parameter, i.e., the state of the network returns only rarely
to states visited earlier. Obviously, this property is detrimental
to the attractor dynamics of a Hopfield model, which pins the
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state near or at a certain memory state. In large networks, the
number of states far away from any memory state is very large
such that for moderate load a critical dynamics is possible. For
low memory load the dynamics stays preferentially inside the pat-
terns (Dasgupta and Herrmann, 2011) but is similarly expected
to have an entropy maximum near criticality in the absence of a
bias toward one of the patterns.

The network considered here can be characterized by the inter-
play between the attractor dynamics in memory retrieval and
critical dynamics that provides optimal exploration of the state
space. In a system like the human brain, where the number of
memories increases for a large part of the personal history, it
seems that there must be eventual a consequence for the flexi-
bility and the ability to explore new patterns (Schrobsdorff et al.,
2009). Considering, however, that the breakdown of memory at
the critical capacity is not likely to be realistic, the conclusion
that cognitive effects of aging can be explained by the effect of
memory-dependent structure in the network on critical dynam-
ics in the network does not immediately follow from the present
model.

Although we could show here that memory storage and crit-
icality are not irreconcilable, our results support a view that
has been adopted by an increasing number of researchers in
the last decade, namely that memory traces are not necessarily
point attractors but more general dynamics objects (Herrmann
et al., 1995; Natschlaeger et al., 2002; Rabinovich et al., 2008).
In these approaches stability of the memories leads to a reduc-
tion of the capacity, but there may be the possibility of an active
stabilization of the memories not necessarily different from the

regulatory mechanism involved in criticalization. The fact that
the mechanism for criticalization in the network needs to be
counterbalanced by a mechanism for consolidation of the memo-
ries, should thus not be surprising, but it would be interesting to
identify mechanisms that achieve both goals at the same time.

5. CONCLUDING REMARKS
We have demonstrated that criticality can be preserved in an
attractor network if both a memory consolidation process and a
mechanism for regulation toward criticality are present. Among
the different mechanisms for the maintenance of a critical regime,
we found that the dynamics of synaptic resources is both biolog-
ically realistic and effective for criticalization, while their effect
on memory capacity is moderate. Other mechanisms are possi-
ble, but are less easily biologically justifiable and have eventu-
ally a disastrous effect on the memory content unless actively
counteracted. It is necessary to consider the present results in
more realistic network models and under more general learn-
ing paradigms in order to understand better their significance
for the natural and pathological development of biological neural
systems.
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