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1. INTRODUCTION

Ising models are routinely used to quantify the second order, functional structure of neural
populations. With some recent exceptions, they generally do not include the influence of
time varying stimulus drive. Yet if the dynamics of network function are to be understood,
time varying stimuli must be taken into account. Inclusion of stimulus drive carries a heavy
computational burden because the partition function becomes stimulus dependent and
must be separately calculated for all unique stimuli observed. This potentially increases
computation time by the length of the data set. Here we present an extremely fast,
yet simply implemented, method for approximating the stimulus dependent partition
function in minutes or seconds. Noting that the most probable spike patterns (which are
few) occur in the training data, we sum partition function terms corresponding to those
patterns explicitly. We then approximate the sum over the remaining patterns (which are
improbable, but many) by casting it in terms of the stimulus modulated missing mass
(total stimulus dependent probability of all patterns not observed in the training data).
We use a product of conditioned logistic regression models to approximate the stimulus
modulated missing mass. This method has complexity of roughly O(LNNpat) where is L
the data length, N the number of neurons and Npat the number of unique patterns in the
data, contrasting with the O(L2N) complexity of alternate methods. Using multiple unit
recordings from rat hippocampus, macaque DLPFC and cat Area 18 we demonstrate our
method requires orders of magnitude less computation time than Monte Carlo methods
and can approximate the stimulus driven partition function more accurately than either
Monte Carlo methods or deterministic approximations. This advance allows stimuli to
be easily included in Ising models making them suitable for studying population based
stimulus encoding.

Keywords: Ising model, stimulus coding, population codes, partition function, multiple unit recordings, network
function

time ¢ can only be influenced by events in the past, at time ' < t.

The role, if any, that spike timing correlations between neurons
play for neural encoding of stimuli remains unclear (Abbott and
Dayan, 1999; Nirenberg et al., 2001; Averbeck and Lee, 2003;
Averbeck et al., 2006; Chelaru and Dragoi, 2008; Jacobs et al.,
2009; Josic et al., 2009). This is often studied by fitting statistical
models to population data and comparing the encoding proper-
ties of models which include correlations, and thus the collective
code, with models that only include the independent stimulus
drive to each neuron. Fitting such correlated models is not trivial.
One extremely successful model which includes both time vary-
ing stimuli and lagged spike timing correlations between neurons
is the cross-coupled Generalized Linear Model (GLM) (Okatan
et al., 2005; Pillow et al., 2008; Truccolo et al., 2010; Gerhard et al.,
2011). This approach fits each neuron’s spikes independently as a
function of stimuli, but also conditioned upon the past spiking
history of all other neurons in the population. The conditional
independence assumption follows from causality, a neuron at

Conditional independence makes fitting coupled GLMs compu-
tationally tractable, since each of the N neurons’s spikes can be fit
separately using efficient iteratively reweighed least squares algo-
rithms (McCullagh and Nelder, 1989; Komarek and Moore, 2003;
Komarek, 2004). As they include both stimuli and time lagged
interactions between neurons, GLMs often provide an extremely
good description of how populations collectively code dynamic
stimuli.

GLMs do not, however, include dependencies between neu-
rons in the same time bin. If time bins are small, on the order
of a millisecond, the conditional independence assumption will
hold. However, for some applications, larger time bins may be
of interest. For example the stimulus might have a slower time
scale, or it might not matter if spikes from two neurons arrive
at a downstream neuron with millisecond precision. Thus one
might be interested in the probabilities of certain patterns or
“code words” across the population with those patterns defined

Frontiers in Computational Neuroscience

www.frontiersin.org

July 2013 | Volume 7 | Article 96 | 1


http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2013.00096/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RobertHaslinger&UID=43460
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DembaBa&UID=86010
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RalfGaluske&UID=31082
http://community.frontiersin.org/people/ZivWilliams/58250
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GordonPipa&UID=4053
mailto:rob.haslinger@gmail.com
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Haslinger et al.

at longer (10 s of ms) time scales. For these larger bin sizes corre-
lations within the same time bin may matter. A standard approach
for fitting second order correlated models where the correlations
are between neurons in the same time bin is the Ising model
(Martignon et al., 2000; Schneidman et al., 2006; Tang et al., 2008;
Roudi et al., 2009b; Ganmor et al., 2011). However, the Ising
model is computationally intensive to evaluate. Ensuring that the
probabilities of all possible code words sum to 1 requires the
explicit calculation of a normalization factor or partition function
obtained by summing terms over all possible code words which
scale as 2. Such normalization is crucial for performing model
comparisons. For example deducing the importance of correla-
tions between neurons by comparing the Ising model goodness of
fit to a model that does not include couplings between neurons. It
is also important for accurately calculating information theoretic
quantities such as entropy.

Various approximate techniques for calculating the partition
function, either involving some type of Monte Carlo impor-
tance sampling (Broderick et al., 2007; Salakhutdinov, 2008) or
deterministic variational approximations such as mean field the-
ories or the Bethe approximation have been developed. However,
Monte Carlo techniques generally require a significant amount
of computation time and variational methods can be inaccurate,
exhibiting significant bias since they provide lower bounds on the
partition function. In part for such reasons, until recently (Tkacik
et al., 2010; Granot-Atedgi et al., 2013), Ising models only mod-
eled the stationary distribution of firing rates and correlations,
despite the fact that stimulus drive is often a much stronger influ-
ence on a neuron’s spike probability than the correlations between
neurons. Although stimulus drive is formally simple to include in
Ising models, such stimulus driven models take an extremely long
time to evaluate, because the partition function must be sepa-
rately recalculated for every unique value of the stimulus observed
in the data. Partition function computation time now potentially
scales as 2V x L where L is the data length (number of time bins).

Here we present a method for quickly (in minutes or less)
and accurately (with low bias and variance) calculating the par-
tition function of stimulus driven Ising models over the entire
length of a data set. This method is based upon a simple obser-
vation: for population spiking data most of the possible patterns
are extremely improbable. Thus their corresponding terms in the
partition function contribute little, rather it is the high probability
patterns, most of which appear in the training data, that domi-
nate the partition function. In general these patterns will be few,
numbering Npa << 2N Therefore we propose to explicitly sum
only these Ny, terms and approximate the remainder of the sum
by estimating the stimulus varying missing probability mass. The
missing mass is the total probability of all patterns that do not
appear in the data and will be small for real neural populations
which spike sparsely. Thus an approximation will be sufficient to
correct the partition function.

We show that the stationary (not stimulus variable) missing
mass can be approximated using simple counting via the Good
Turing estimate (Good, 1953; Orlitsky et al., 2003) and that the
stimulus driven missing mass can be well approximated using a
product of conditioned (upon other neurons spikes in the same
time bin) logistic regression models. The computation time of

Missing mass approximated partition functions

this procedure scales approximately as O(LNNyp,¢). For most data
sets this translates to minutes or seconds, as opposed to Monte
Carlo importance sampling (which can take hours) or naive sum-
mation (which is intractable for large populations). Moreover, as
we demonstrate using both simulated data and in vivo recorded
population data, our method provides extremely accurate esti-
mates of the stimulus modulated partition function, in contrast to
deterministic methods (which can have large bias), often leading
to pattern probability distributions normalized within less than a
tenth of a percent.

2. MATERIALS AND METHODS

Ising models describe the probability of any pattern of spikes &
across neurons as

(1

where h is a fitted parameter vector describing the stimulus drive
to each neuron, and J is a fitted parameter matrix describing the
coupling between neurons (see Appendix A). Since the numerator
is not guaranteed to give a normalized probability distribution
over all possible patterns, an explicit normalization or partition
function Z is introduced.

7 Z 5+ G
5

Z is extremely time consuming to evaluate because involves a sum
over all possible patterns which scale as 2V, The situation is even
worse if the Ising model is stimulus dependent:

2

H5+35TT5

70 3)

P(Gls) =

where fl(s) = {h1(s), ha(s) ... hn(s)} is now a vector of functions
of the stimulus. Explicit functional forms for this vector will be
experiment dependent and we will present several in section 3.
Here we merely note that each element of this vector can often
be written as a linear sum of stimulus dependent basis functions
multiplied by fitted parameters, or equivalently, the multiple of
a stimulus covariate matrix C(s) multiplied by a fitted parame-
ter matrix B, such that h(s) = C(s)B. The crucial point is that if
stimulus drive is included, the partition function Z(s) has to be
evaluated for all unique observed values of the stimulus s. Even if
the parameters h(s) and J are known, a naive evaluation of Z(s)
can take hours or days for an entire data set.

In this paper we present a fast and accurate approximation
for Z(s). Assume for the moment that h(s) and J are known
and we wish to calculate Z(s) given these parameters. The crucial
insight is that while Z(s) involves a sum over all possible patterns,
the patterns that appear in the training data are most probable.
Another way to say this is that patterns with many spikes are
highly improbable, because population spiking tends to be sparse.
Thus Z(s) can be split into two terms.

Z() =X+ Y() = Y FOFHI L3 05315 (g

oT GéT
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where 67 denotes the set of patterns observed in the training data
and G¢r denotes the patterns that are not observed in the training
data. Since in general |o7| << 2N, X(s) will be quick to evaluate
exactly. The goal is to approximate Y (s).

Approximating Y (s) requires estimating the stimulus depen-
dent missing mass, e.g., the total stimulus dependent probability
mass of patterns not observed in the training data.

M(s) =) P(ols) (5)

CT¢T

For the Ising model this is

L h5+3TTS v
M(S) — Z%ﬁ' — (5) (6)
Z X(s)+ Y(s)
and thus Y (s) may be obtained by simple inversion.
M(s)
Y(s) = ——X 7
©) =173, ® ©) )

2.1. GOOD TURING ESTIMATE FOR THE STATIC MISSING MASS

Before considering how the missing mass is modulated by stim-
uli, we discuss how to estimate its average across the stimulus
distribution: M = f P(s)M(s)ds. For moderately sized neuronal
populations M can be evaluated by fitting a stimulus indepen-
dent Ising model and explicitly summing terms analogously to
Equation 4. For larger populations, however, this becomes less
tractable. Fortunately, an unbiased estimate of the stationary
(stimulus independent) missing mass can be obtained using
the Good Turing estimate (Good, 1953; Orlitsky et al., 2003).
Originally developed by Alan Turing during his efforts to crack
the Enigma code (Good, 2000), this estimates the total summed
probability of all patterns not observed in the training data by
counting the unique patterns observed only once in the training
data and dividing this value by the total number of observations
in the training data

_ |60CCLII' 0nce|

M,
GT i3

(8)
This estimator is common in many fields, for example in bio-
logical censuses, where it is used to estimate the probability of
all animal species not observed (Good, 1953; Dornelas et al.,
2013). It is unbiased (Good, 1953) and it can be shown that
tight bounds on the estimated missing mass exist (McAllester and
Schapire, 2000; Berend and Kontorovich, 2012). As we will show
empirically below, the Good Turing estimate is extremely accu-
rate for neuronal population data despite merely requiring simple
counting of training data patterns.

If one uses the Good Turing approximation, then one is assum-
ing that the missing mass is not modulated by the stimulus, i.e.,
M(s) = M = Mgr. This corresponds to assuming that X(s) and
Y(s) covary with the stimulus in the same way. That is: X(s) =
X&(s) and Y (s) = Y£(s) and thus

YE(s) Y

Xe(s) +YE() X+7Y

M(s)

Missing mass approximated partition functions

We call calculation of Z(s) using the Good-Turing missing mass
the Good-Turing Approximation. We emphasize that in cases of
strongly varying stimulus drive, this will likely not be a good
approximation. Specifically, as we will show in the results, using
a constant missing mass corrects for the bias in our estimate of
Z(s), but not the variance. This is because X(s) and Y (s) are com-
prised of different patterns and thus will not necessarily vary
with the stimulus in the same way. That is X(s) = X£x(s) and
Y(s) = Y&y (s) where £x(s) # £y (s) necessarily. We remedy this
in the next section, where we show how to calculate the stimulus
modulated missing mass.

2.2. STIMULUS MODULATED MISSING MASS

The central insights for approximating M(s) are threefold. First,
if the joint probabilities P(o1, 03 ...0nN|s) are known, then the
missing mass can be found by simply summing over patterns
observed in the training data, which are relatively few.

M(s)=1-— ZP(O’], 02...0N|s)

or

(10)

Second, these joint probabilities can be written as products of
conditional probabilities, e.g.,

P(01,05...0N;5) = P(o1|0y...0N39)

(11)

P(03|03...0N3;5)...P(oN|s)

The third insight is that these conditional probabilities can be
approximated using logistic regression models, at least to the
extent required to obtain a good estimate of the stimulus mod-
ulated missing mass and partition function.

Logistic regression has long been used to approximately fit
Ising models because the Ising conditional probabilities are
exactly given by logistic functions, e.g.,

B explhi(s) +23; 2, 0jljiloi
1+ explhi(s) + 2 Zj;éi oiliil

P(G,‘|8j¢,‘; s) (12)

This result is easily found by expanding the sums in the expo-
nent of the Ising model numerator and absorbing all terms which
do not depend upon o; into the partition function (Pawitan,
2001). Independently fitting multiple conditional logistic regres-
sion models (one for each o;) and equating the fitted parameters
with those of the Ising model’s joint distribution is the pseudo like-
lihood approach for Ising model fitting (Besag, 1974, 1975) and
see Appendix A. While this often gives good parameter estimates,

it does not provide a normalized probability distribution. e.g., the
product of the conditionals is not in general normalized.

N
> [1—[ P(0ilGj i; S):| # 1

¢ Li=1

(13)

and full distribution normalization again requires evaluating the
partition function.

However, the product of conditional probabilities in Equation
11 is normalized. Unfortunately, these conditional probabili-
ties are not given by logistic regression models with the same
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parameters as the Ising model. That is

explhi(s) + 20iJjilo;
1 + exp[hi(s) + 20;];i]

P(ailoj; s) # (14)

for an arbitrary coupling matrix J. Formally, this property, that
the marginals of the conditional probabilities do not have the
exact same logistic form with the exact same parameters is called
lack of projectivity (Shalizi and Rinaldo, 2012). In fact, it can be
shown that distributions in the exponential family are, in general,
not projective.

Fortunately, the exact parameters are not required to estimate
the missing mass, merely reasonably accurate estimates of the
conditional probabilities of Equation 11. Therefore we will in fact
estimate these conditional probabilities using logistic regression,
but not require the parameters to match those of the full Ising model
joint distribution. That is, we will fit conditional logistic regression
models

eXp[li(S) +2 Z]#, 0—j1<ji]°'i

1

PcL(0iGj> 3 5) =

but [;(s) # hi(s) and Kj; # Jji necessarily and the subscript “CL”
denotes that these probabilities are given by conditioned (on sub-
sets of neurons) logistic regression models. There are N! possible
orderings of neurons which could be used in Equation 11. Since
neurons with low firing rates will not have sufficient information
in their spike trains to deduce the influence of other neurons upon
them, we order the neurons in Equation 11 by mean firing rate.
That is, we use the lowest firing rate neuron for P(oy|s) and the
highest for P(o1]02 .. .0N; $).

It is important to note that for the purpose of calculating the
missing mass, the fact that /i(s) # h;(s) and Kj; # Jj; is irrelevant.
It is only important that decent estimates of the conditional prob-
abilities be obtained so that they can be used to approximate the
stimulus modulated missing mass using Equations 10 and 11. We
denote this missing mass estimate as Mcp (s). Our procedure for
approximating the stimulus driven partition function Z(s) can be
stated as follows:

1. Identify the set of all unique patterns in observed the training
data and call this set o7. 3

2. Explicitly calculate X(s) = 3 5. 5 +3TJ5,

3. For a population of N neurons, independently fit N
logistic regression models for the conditional probabilities
Pcr (ci|8j> i; 5). (Exact expression given in Equation 15).

4. Use the conditional probabilities Pcy to approximate P(G|s) for
each unique pattern in the training data according to Equation
11 and then approximate the stimulus modulated missing
mass Mcy(s) using Equation 10.

5. Calculate Y(s) = X(s)[McL(s)/(1 — McL(s))] and Zcp(s) =
X(s) + Y(s).

This procedure, which we will refer to as the conditional logis-
tic approximation for Z(s) can accurately estimate the stimulus
driven partition function with error of a few tenths of a percent
if the mean missing mass M is small (a few percent or less). This

Missing mass approximated partition functions

corresponds to populations which spike sparsely, and for which
the number of unique patterns is relatively few (thousands).
Throughout this paper, we quantify error using the distribution
(over stimuli) of the ratio of the estimated Z(s) over the true
partition function Zex,ct(s) (obtained through exact summation).
This ratio is the same for all patterns, i.e., Pexact(0]s)/Pcr(0]s) =
Zc1(5)/ Zexact (s) and gives the stimulus dependent fraction by
which all pattern probabilities are under or over-estimated.
Generally we present the 99% bounds (0.005 and 0.995 quantiles)
of the distribution.

Figure 1 illustrates the effectiveness of the method. Here we
show the error distribution over a time varying stimulus for 3
Ising model simulated, 100 s long data sets (in different rows)
constructed to have missing masses of (1, 2, and 7%). (Details
of the simulations, and further simulated results are given in
section 3 and Figures 3, 4.) We show error distributions for
(1) X(s) only (no correction), (2) the Good-Turing approxima-
tion, and (3) the conditional logistic approximation (in different
columns). Prior to making any corrections [i.e., approximating
Z(s) by X(s)] the error distribution has both high bias and high
variance. 99% bounds are {0.9738, 0.9973}, {0.9577, 0.9980}, and
{0.8723, 0.9649} for the 1, 2, and 7% data, respectively. The
Good Turing correction removes the bias, (means of 1.002, 1.000,
and 1.003, respectively) but the variance (due to the time vary-
ing stimulus) is still large (99% bounds are {0.9820, 1.0059},
{0.9754, 1.0165}, and {0.9352, 1.0345}, respectively). However,
the full conditional logistic correction accounting for stimulus
modulation removes both the bias and the variance (99% bounds
{0.9999, 1.0001}, {0.9938, 1.0009}, and {0.9927, 1.0034}, respec-
tively). The conditional logistic approximation is thus accurate to
within a few tenths of percent even if the missing mass is relatively
large (7%).

In addition to removing both the bias and the variance, our
method also has the advantage of speed. Computation times for
the 1, 2, and 7% data shown in this figure were 27, 37, and 70s
(for 1, 2, and 7% missing mass data, respectively) for the condi-
tional logistic approximation versus 4356, 4277, and 4307 s for a
naive summation over all terms. The increased computation time
for larger missing masses results from there being more unique
patterns. As we show in the next section, the missing mass is
experiment specific and is largely a function of firing rates and
data length, although population size plays a role as well. Many
real neuronal populations, even large ones, spike sparsely and
thus have small missing mass. As we will show in the results, in
such cases our method cut run times of hours or more down to
minutes or seconds.

2.3. COMPUTATIONAL COMPLEXITY

Calculation of the stimulus driven missing mass may be split into
two steps. (1) Fitting the conditional logistic regression models
(step 3 of the above procedure) and (2) Summing terms over each
unique pattern observed in the training data (step 4).

Regarding the first step, logistic regression models can be accu-
rately fit by iteratively reweighed least squares methods (Komarek
and Moore, 2003; Komarek, 2004) in O(LRF) time where L is the
data length (number of time bins), R is the number of covari-
ates being regressed upon (the covariate matrix C(s) is size L X R)
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FIGURE 1 | Three approximations for Z(s). Distributions of Z(5)/Zexact(S) approximation. Right column: conditional logistic approximation. While the
for three 20 neuron simulations with different missing masses (rows). Left Good-Turing approximation corrects the distribution’s bias, the conditional
column: No correction, e.g., X(s). Middle column: Good-Turing logistic approximation is required to eliminate the variance.

and F is the sparsity of the covariate matrix. Here we fit N condi-
tioned logistic regression models. For each of these the covariate
matrix C(s) has two components. The first depends upon the
stimulus (F = 1 except for special cases) and has Ry, covariates
(columns). The second component depends upon the spiking of
other neurons, has sparsity F and has n € 0...N — 1 columns
depending upon which model is being fit. Noting that the total
sparsity of the covariate matrix with n “other neuron” columns is
F(n) = (Rstim + Fn)/(Rgtim + 1), the total computation time for
fitting all N logistic regression models is of order

N-1 N-—-1 Reirn + Fn
L Z[F(n)(Rstim +n)] =1L |:Sum4(Rstim + ”)]
ne0 ne0 Rtim + 1
N-1
=LY (Ryim+ Fn)
n=0

N
A LN[Rgtim + F?] (16)
As the number of neurons N grows, this term scales as
O(LEN?%/2).

Regarding the second step, this involves summing probabil-
ities over all Np, patterns observed in the training data. Each
component of this sum requires multiplying N — 1 conditional
probabilities obtained from the above fitted logistic regression
models. Since this is done at all time points there is also a scal-
ing of L. Thus the second term scales as O(L(N — 1)Npa) ~

O(LNNpyy). The net computational complexity of our algorithm
is therefore

O(LFN?/2) + O(LNNpq) (17)
Since Npat > N and F << 1 (in general) the second term dom-
inates (this is also born out in numerical simulations) and the
complexity of our algorithm is roughly O(LNNpqy).

Npat is the number of unique patterns observed in the data
set. This grows with the population size and data length, but
at a much slower rate than 2N. The rate of growth data is
data dependent but a rule of thumb estimate can be obtained
for a population of Bernoulli neurons each firing with a con-
stant probability p per bin. In any time bin, the probability of
a pattern with K spikes is given by the binomial distribution.
Phino(N, K, p). Averaged over the entire data set of length L, the
number of unique patterns with K spikes is approximately upper
bounded by:

Npat(K) 5 min{N!/(K!/(N = K)!), Poino(N, K, p)L} ~ (18)
The first argument, given by the binomial factor, is a hard upper
bound, i.e., the total number of possible unique patterns with K
spikes. The second term, is an approximate upper bound on the
total number of times a pattern with K spikes is observed in the
data set. Its use in the above Equation is conservative, i.e., it is
assumed that every time a pattern with K spikes is observed it is
a new pattern. An estimate for the total number of patterns that
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would be observed in a population of N neurons with population
mean firing probability p over a data set of length L is then given
by summing the above Equation over all K € 0...N. The num-
ber of patterns that only occur once can be obtained by summing
terms over K when the binomial probability (second argument)
is used for Npa(K), and from this the Good-turing missing mass
can be determined.

Figure 2 shows the number of unique patterns (left) and
Good-Turing missing mass (right) for populations of Bernouli
neurons with different firing rates (5 ms bins) and neuron num-
bers. It should be noted that many experimentally recorded
neural populations have low mean firing rates (<5 Hz) particu-
larly during naturalistic stimuli (Baddeley et al., 1997; Vinje and
Gallant, 2000; Hromadka et al., 2008). The number of patterns
will often remain low, even if the population is large. Still, we
find empirically that even when higher firing rates are present,
the conditional logistic approximation can still attain good results
(see section 3.4).

2.4. EXPERIMENTAL METHODS
Data collection for the rat hippocampal population is discussed
in Barbieri et al. (2004a,b).

In the case of the macaque DLPFC data (unpublished), proce-
dures were approved by the Massachusetts General Hospital inter-
nal review board and were conducted under IACUC-approved
guidelines. Anesthesia was induced with Ketamine, Xylazine, and
Atropine and maintained with Isoflurane at 2%. Multiple silicone
multi-electrode arrays (NeuroNexus Technologies Inc., MI) were
surgically implanted in the monkey under stereotactic guidance
(David Kopf Instruments, CA). Electrode leads were secured to
the skull and attached to female connectors with the aid of tita-
nium miniscrews and dental acrylic. Confirmation of electrode
positions was done by direct visual inspection of the sulci and
gyral pattern through the craniotomy.

A Plexon multichannel acquisition processor was used to
amplify and band-pass filter the neuronal signals (150 Hz 8 kHz;
1 pole low-cut and 3 pole high-cut with 1000x gain; Plexon
Inc., TX). Neural signals were then digitized at 40kHz and

Number Unique Good-Turing

Patterns M 10 Missing Mass
, .
. !
6 )
8

! 50 100 150 200 10 100 150 200
# neurons # neurons

FIGURE 2 | Missing mass as function of population size and firing rate.
Left: Number of unique patterns observed in a population of Bernoulli
neurons with identical firing rates. Right: Good-Turing missing mass for
same Bernoulli populations. 250 s of data discretized at 5ms was used. See
text for derivation. Note that many neural populations have extremely low
<5 Hz mean firing rates, leading to a low number of unique patterns.

Missing mass approximated partition functions

processed to extract action potentials by the Plexon workstation.
Classification of the waveforms was performed using template
matching and principle component analysis based on waveform
parameters. Only single-, well-isolated units with identifiable
waveform shapes and adequate refractory periods were used. The
task involved the presentation of two successive targets on a screen
in front of the monkey. After presentation of the targets, the mon-
keys were given a brief blank screen delay and then a go-cue
indicating that they could move, in sequence, to the remembered
targets. The monkeys were shown multiple such target sequences
over the course of recordings.

The cat data (unpublished) was recorded in Area 18. All
experimental procedures were performed in accordance with the
Society for Neuroscience and German laws for animal protection
and were overseen by a local veterinarian. Anesthesia was initi-
ated by intramuscular injection of ketamine and xylazine and was
maintained after tracheotomy by artificial ventilation with a mix-
ture of N»O (70%), O3 (30%), and halothane (1.2% for surgery
and 0.8% for recording) supplemented with intravenous applica-
tion of a muscle relaxant (pancuronium, 0.25 mg/kg/h) to prevent
eye movements. Recording chambers were positioned over the
midline at AP2 according to Horseley—Clarke.

The cat was visually stimulated with a black and white high
contrast square wave grating of 2.4 cycles per second. The grat-
ing was presented pseudo-randomly in one of eight directions:
0, 45, 90, 135, 180, 225, 270, and 315°, respectively. Note that
in the results we used only four of these directions (0, 90, 180,
and 270) for ease of presentation. Visual stimulation started
with showing a gray screen for 2s followed by one of the four
differently oriented gratings remaining stationary for 2's before
the grating started moving for 4s. Thus, one trial lasted for
8s. However, here we only consider the 4s of each trial dur-
ing which the moving grating was shown (see section 3.4). Spike
data was band pass filtered between 800 Hz and 3.5 kHz and then
digitized at 20 kHz. Subsequently, action potentials were sorted
using template matching procedures for each of the 16 different
electrodes.

3. RESULTS

We present results for both simulated data and experimentally
recorded data sets. For simulated data, we (1) test the conditional
logistic approximation in “small” 20 neuron networks, where the
true partition function can, with some effort, be calculated and
compare with Monte Carlo importance sampling using an inde-
pendent neuron model proposal distribution, see Appendix B and
Bishop (2007); Salakhutdinov (2008). (2) We apply our method
to larger networks where the true partition function can not be
calculated (up to 90 neurons) and show that it agrees with impor-
tance sampling but the result is obtained more quickly and with
less variance.

We then apply the method to three experimentally recorded
data sets from rat hippocampus, macaque DLPFC and cat
Area 18. For “small” (20 neuron) populations we again show
that the conditional logistic approximation is more accurate
and orders of magnitude faster than importance sampling. For
larger populations (41 hippocampal and 39 DLPFC) neurons
the results again agree with importance sampling and again
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are obtained much faster. We also compare to four determinis-
tic approximations [naive mean field, TAP corrected, the Bethe
approximation and a low firing rate approximation presented by
Roudi et al. (2009a)] and find the conditional logistic approxi-
mation to have considerably lower bias and variance than these
deterministic approximations.

All computations were performed using Matlab version 7.9.0
R2009B on a single 3.47 GHz core of a Dell Precision T7500
workstation with 48 GB of RAM. Computation times reference
the calculation of Z(s) (over the entire data set) once the Ising
parameters are known. Parameters were obtained by fitting stim-
ulus driven Ising models via pseudo-likeihood (see Appendix A),
but other methods could be employed and we discuss different
possibilities in the Discussion.

3.1. SIMULATED DATA

Simulated data was generated, via Gibbs sampling, using an “pro-
tocol” consisting of repeated trials 2500 ms long discretized at
5ms (500 bins per trial). Stimulus driven Ising models were
defined such that each neuron had a firing rate that was strongly
variable over each trial but with a 5 Hz mean (see Figure 3A for
an example.) Each neuron n’s stimulus drive term h,,(t) was mod-
eled using a linear sum of local (in time) B-spline basis functions
By, (t) defined on knots spaced at even 100 ms intervals.

M
ha(t) = Y Bu(H)Bn (19)

Missing mass approximated partition functions

The B, (¢) are similar in shape to Gaussians or raised cosines and
tile the trial length. The parameters B,,, control the “height” of
these functions. Thus this functional form is roughly equivalent
to a smoothed PSTH [see Gerhard et al. (2011) and Haslinger
et al. (2012) for further details]. The B, were chosen so that each
neuron had roughly a mean 5 Hz firing rate, corresponding to a
mean firing probability p &~ 0.025 per bin. For reference, h,(t) €
[—6, —2] generally. The symmetric coupling matrix J was chosen
randomly within a range J € [—Jmax, Jmax]- We used seven differ-
ent values of Jmax, 1.€., Jmax € {0.01, 0.05, 0.1, 0.25, 0.5, 1, 1.5}.
Data was simulated for 9 different sized neural populations:
{10, 20, ... 90} neurons and 7 different lengths: 25, 50, 100, 200,
300, 400, and 500 trials.

Figure 3 shows results from simulated networks with 20 neu-
rons (small enough so that Z(s) can be calculated exactly, but
large enough so that the computation time is lengthy). Results
for all 7 maximum coupling values are shown as different col-
ors (see figure legend). Data lengths are generally plotted along
the x axes. All these 20 neuron networks had small Good-Turing
missing masses, less than 5% except for Jmax = 1.5 (Figure 3B).
In Figure 3C we show estimates of Z(s) via both the conditional
logistic approximation (blue) and importance sampling (red)
using 5000 MCMC samples for each time bin. The true value
for Z(s) (calculated via exact summation) is in black. The true
Z(s) and conditional logistic approximation are identical by eye.
The importance sampling is also identical by eye for weak cou-
pling (J = 0.25, upper plot) but visible for the stronger (J = 1)

m=1 coupling in the lower plot. The importance sampling error is
A 2 Example Firing Rate B Good-Turing Missing Mass D ) Z(s) Error for CL Approx Ratio of IS/CL Error
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FIGURE 3 | Simulated 20 neuron populations. Stimulus driven Ising
models with 20 neurons and a repeated trial structure were simulated
for various coupling strengths Jmax and numbers of trials (2500ms long,
5ms bins). Unless otherwise noted, the values for Jmax = {0.01, 0.05, 0.1,
0.25,0.5, 1, 1.5} correspond to the colors blue, green, red, cyan,
magenta, yellow and black, respectively. See text for further details. (A)
Time varying firing rate for an example “neuron.” Red line denotes mean
firing rate. (B) Good-Turing missing masses for different coupling
strengths and trial numbers. (C) Example Z(s) for weak (upper) and
strong (lower) coupling. Blue is the logistic approximation and red was

# trials # trials

obtained via importance sampling. Z(s) calculated by exact summation is
in black and indistinguishable by eye from the blue (logistic
approximation) line. (D) Left: Error of the logistic approximation, defined
using the difference between 1 and the 0.5 or 99.5% quantiles of the
Zc1(S)/ Zexact (S) distribution (see text). Right: Ratio of importance
sampling to logistic approximation error. (E) Left: Computation time for
logistic approximation. Right: Ratio of importance sampling and logistic
approximation computation times. For all couplings and trial lengths, the
logistic approximation has (1) lower error and (2) faster computation time
by at least an order of magnitude.
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larger for stronger coupling because the true Ising distribution
is farther from the independent neuron proposal distribution.

Figure 3D left gives the error of Zcy(s)/Zexact(s) for all cou-
plings and data lengths. As described in the methods, we quantify
error using the 99% bounds (0.005 and 0.995 quantiles) of the
distribution (over stimuli) of this ratio, which is equal to 1 if
there is no error. Here, so as to plot a single number, the plot-
ted error is the maximum of the difference between 1 and either
the 0.005 or 0.995 quantile of the ratio distribution. The error
is small for all simulations, but largest for the highest coupling
levels because stronger coupling results in more unique patterns
and larger missing masses. However, as we show in Figure 3D
right, the error is always smaller than that of importance sam-
pling. Here we show the ratio of the Zjs(s) error to that of Zcp(s).
The importance sampling error is larger by 1 to 2 orders of mag-
nitude. Of course this ratio will go down if more MCMC samples
are used, but that requires more computation time. Figure 3E
left gives the computation time for all coupling strengths and
trials. Computation time increases with both coupling strength
and data length (although sub-linearly) because there are more
unique patterns. However, as shown in Figure 3E right, our con-
ditional logistic approximation is always faster (by 10-60 times)
than importance sampling.

In Figure 4 we consider larger populations where it is not
possible to exactly calculate the stimulus driven partition func-
tion. Instead, we compare our conditional logistic approxima-
tion to importance sampling for different numbers of MCMC

Missing mass approximated partition functions

samples (1000, 2000, 5000, 10,000, 25,000, 50,000) per data point,
denoted by colors (see figure caption) and for different num-
bers of neurons (generally along x axes) ranging from 10 to 90.
We use Jmax = 0.25 and 100 trials but results for other coupling
strengths and data lengths are qualitatively similar. Figure 4A
upper shows the conditional logistic estimated Z(s) in blue and
the importance sampling estimate (5000 MCMC samples) in red
for an 80 neuron population. Figure 4A lower shows the differ-
ence between the importance sampling and conditional logistic
approximations.

The two methods agree very well even though they started
from different “null” distributions. That is, the conditional logis-
tic approximation started using X(s) (calculated using only the
patterns observed in the training data) which is by definition
less than Z(s). In contrast, the importance sampling started
from an independent neuron proposal distribution which had
a higher estimate of Z(s) than the final importance sampling
result (independent neuron approximation for Z(s) not shown
because outside of plot range but see Figures 5-8 for examples).
The fact that the two approximation methods converge onto the
same answer, despite their different starting points lends con-
fidence that both methods give un-biased estimates. However,
the importance sampling estimate is much noisier, distributed
around our conditional logistic approximation. In Figure 4B we
show how the Good-Turing missing mass changes as a function
of neuron number. The increase in pattern number for larger
populations is due to the relatively high population mean firing
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FIGURE 4 | Larger simulated populations. Unless otherwise noted,

Jmax = 0.25 and 100 trials are used. (A) Upper: Z(s) for an 90 neuron
population. Blue: logistic approximation, red: importance sampling. Lower:
ratio of importance sampling over logistic approximation (red). Blue line is
equal to 1 and indicates equality of the two methods. (B) Good-Turing
missing mass and (C) number of unique patterns, for various population
sizes. Note that the 5 Hz population mean firing rate is somewhat high for real
data. (D) Left: Mean bias of ratio between importance sampling and logistic
approximations for Z(s). Right: Error of partition function ratio. Colors refer to
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different numbers of MCMC samples used in importance sampling, i.e., blue,
green, red, cyan, magenta and yellow refer to 1000, 2000, 5000, 10,000,
25,000 and 50,000 samples per time bin. Horizontal dashed line equals 0.01
and indicates a 1% error for the importance sampling method. (E) Left:
Computation time for logistic approximation. Right: Ratio of importance
sampling computation time to logistic computation time. Horizontal dashed
line equals 1. Note that for all simulations where the importance sampling
error was less than 1% the computation time for the importance sampling
was slower than for the conditional logistic approximation.
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rate (5Hz) (Figure 4C). We emphasize that many experimen-
tal data sets (see below) have population mean firing rates less
than 5 Hz.

We next compare to importance sampling for different num-
bers (ranging from 1000 to 50,000) of MCMC samples per time
bin. Figure 4D left shows the mean, over the entire data set,
of the difference between 1 and Zjs(s)/ZcL(s). This difference
is small, usually on the order of 10™* regardless of neuron or
MCMC sample number. This indicates that the bias of the two
methods agrees for all simulations. However, the error (99%
bounds) of Zis(s)/Zcy(s) is always larger than this mean, indi-
cating that importance sampling is always noisier, even for large
numbers of MCMC samples. As more MCMC samples are used,
the error decreases and the two methods converge indicating that
our conditional logistic approximation is accurate. Notably, as
the population size grows, more MCMC samples are required
to obtain as accurate a fit as our conditional logistic approxima-
tion. The dashed line indicates an error of 0.01 (1%). Moreover,
the conditional logistic approximation is always faster if enough
MCMC samples are used to obtain an accurate estimate of Z(s).
Figure 4E (left) gives the conditional logistic computation time
and Figure 4E right gives the ratio of the importance sampling to
conditional logistic computation times. This ratio is always on the
order of 10 or higher if enough MCMC samples are used to have
an error less than 1%.

Finally, in Figure 5 we compare the Good-Turing estimate of
the missing mass with the missing mass as estimated from the
Ising model and via our conditional logistic regression approach.
Figure 5A left shows the difference between the Good-Turing and
Ising estimates for all 20 neuron populations, while Figure 5A
right shows the difference between the conditional logistic and
Ising estimates. When averaged over all stimuli, our conditional
logistic approximation for the missing mass agrees very well with
the exact Ising missing mass for all models. Further, while slightly
less accurate, the Good-Turing estimate is also very good, par-
ticularly when the missing mass is low. Figure 5B compares the
Good-Turing and conditional logistic estimates for all simula-
tions (where for the larger populations, the Ising missing mass
can not be determined exactly). Again, the estimates agree very
well lending confidence that the Good-Turing missing mass is a
good, and fast, approximation for the stimulus averaged missing
mass.

In summary, we tested our missing mass approximation for
a range of population sizes, data lengths and coupling strengths
and compared it to importance sampling using different numbers
of MCMC samples. In all cases the missing mass approximation
was more accurate, and took less computation time if enough
MCMC samples were used to obtain low error. It is possible that
a different importance sampling proposal distribution (perhaps
based upon Gibbs sampling using the Ising model parameters)
would produce more accurate importance sampling estimates.
However, then computation time would drastically increase. For
reference, the Gibbs sampler we used to generate the simulated
data took 10/39s to produce to produce 5000 samples for a
20/90 neuron population while the independent neuron sampler
took 0.02/0.04s. Note that 5000 or more samples are required
per time bin.

Missing mass approximated partition functions
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FIGURE 5 | Comparing different missing mass estimates. (A) Left:
Difference between Good-Turing and exact summation stimulus averaged
missing masses for all 20 neuron simulations. Colors correspond to
maximum coupling strengths as in Figure 3. Right: Difference between
conditional logistic and exact summation missing masses. (B) Scatter plot
of difference between Good-Turing and logistic approximation missing
masses versus the conditional logistic missing mass. Note that this plot
includes results from large populations so exact summation is not possible.
All three estimates closely agree, suggesting that the Good-Turing estimate

is roughly unbiased for neuronal data.

3.2. EXPERIMENTAL DATA

We now demonstrate our method using 3 different data sets: 41
rat hippocampal neurons, 39 macaque DLPFC neurons and 20
cat Area 18 neurons. The hippocampal data was recorded as a rat
explored a circular maze, the DLFPC data was recorded as a mon-
key performed an associative memory task involving repeated
stimulus presentations over trials and trials and the anesthetized
cat data was recorded as a cat was stimulated with 4 different
stimuli consisting of high contrast gratings moving at 4 different
orientations (0, 90, 180, and 270°). As with our simulated results,
stimulus driven Ising models were fit via pseudo likelihood prior
to calculating Z(s).

3.2.1. Rat hippocampus

We used 41 place cells recorded from rat hippocampus as a rat
explored a circular maze. This data is the same as used in Barbieri
et al. (2004a,b) which has discussions of the experiment. 1000 s
of data was used, discretized into 10 ms bins and split into 75%
training and 25% test sets. Place cells code the rat’s position in
space, i.e., the circular enclosure, by firing strongly when the
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rat is in a specific physical location called the cell’s “place field.”
Here we parameterized the rat’s location (stimulus) using a linear
sum of the first 10 Zernike polynomials (Barbieri et al., 2004a).
Zernike polynomials constitute a set of complete basis functions
on the unit disc. Each neuron’s stimulus drive term was therefore
modeled as:

10

ha(® =Y Zn(p(t), 0(D)Bmn;

m=1

(20)

where &, (p(t), 0(¢)) is the m’th Zernike polynomial which is
a function of the rat’s position (stimulus) in polar coordi-
nates s(t) = {p(¢), 6(¢)} and B, are fitted parameters. The
mean firing rate of this population was low (0.8 Hz) but neu-
rons were selective for the rat’s location and fired strongly in
their place fields (mean maximum firing rate 8.6 Hz). Figure 6A
shows ten example single neuron place fields obtained by fit-
ting single neuron logistic regression models (Gerhard et al,
2011; Haslinger et al., 2012) with the above stimulus covariate
matrix.

In Figure6 we consider a subpopulation of 20 neurons
(those with the highest mean firing rates) so that Z(s) can
be calculated by exact summation. This subpopulation exhib-
ited 321/230 unique patterns in the training/test data of which
113/98 appeared only once. The Good Turing missing mass
(calculated from the training data) was 0.0015. In comparison
the missing mass calculated by fitting a stimulus independent
Ising model was 0.0018 and the estimate obtained by averag-
ing the conditional logistic missing mass was 0.0018. Figure 6B

Missing mass approximated partition functions

compares Z(s) over a 100s epoch determined via exact sum-
mation (black), importance sampling (red) and the conditional
logistic approximation (blue). The black and blue lines are iden-
tical by eye. In Figure 6C we show the ratio (with respect to
Z(s)’s exact value) of the importance sampling result for Z(s)
(red) and conditional logistic approximation (blue). We also
show analogous ratios for X(s) (no correction) in green and
the partition function calculated from the independent neu-
ron model used as the importance sampling proposal distribu-
tion (black). Figure 6D shows the distribution of these ratios
over the entire test data set for no correction (upper, green),
importance sampling (middle, red), and the conditional logistic
approximation (lower, blue). The independent neuron distribu-
tion is not shown because it is outside the range of the plots.
Our method is extremely accurate, the mean of the error dis-
tribution is 0.9999 and the 99% quantiles of the distribution
is {0.9989, 1.0002}. In contrast, the importance sampling confi-
dence bounds are {0.9878, 1.0451} although it is also unbiased
(mean = 0.9998).

Crucially, however, the computation time was much faster for
the conditional logistic approximation. It took 8.1s to evaluate
Z(s) for the training data and 7.1 s for the test data. In contrast,
exact summation took 1928 and 607 s for training and test data,
respectively while importance sampling took 1531 and 513's for
training and test data, respectively.

In Figure7 we consider the full 41 neuron population.
The training/test data had 817/551 unique patterns of which
386/113 patterns occurred only once. The Good-Turing miss-
ing mass was 0.0051 while the result from our conditional
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FIGURE 6 | Twenty neuron population from rat hippocampus. (A) Ten importance sampling, green: X(s) e.g., no correction, black: independent
representative single neuron place fields. (B) Z(s) for logistic approximation neuron model. (D) Error distributions for: upper: no correction (X(s)), middle:
(blue) and importance sampling (red). Exact value is in black and importance sampling, lower: logistic approximation. The logistic
indistinguishable by eye from blue. (C) Ratios of various approximations for approximation removes the bias and the variance and is calculated in seconds
Z(s) with respect to exact value. Blue: Logistic approximation, red: (see text for computation times).
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FIGURE 7 | Forty-two neuron population from rat hippocampus. (A)
Z(s) for logistic approximation (blue) and importance sampling (red). (B)
Ratios of various approximations for Z(s) with respect to logistic
approximation. Blue: Logistic approximation (equal to 1 by definition). Red:
importance sampling, green: X(s) e.g., no correction, black: independent
neuron model. (C) Error distributions for: left: no correction (X(s)), right:
importance sampling. The importance sampling result has the same
average bias as the logistic approximation but is noisier. Moreover the
logistic approximation is much faster to calculate (see text).

logistic approximation was 0.0049. Figure 7A shows Z(s) for
both importance sampling (red) and our method (blue). Since
exact summation is not feasible, Figure 7B shows ratios with
respect to the conditional logistic approximation for Z(s). The
blue line is therefore the missing mass divided by itself, equal
to 1 by definition. Red is the ratio of importance sampling
result over the missing mass approximation, green X(s) (no
correction) and black the independent neuron approximation.
Ratio distributions, over all test data stimuli, are shown in
Figure 7C. The importance sampling distribution has mean
0.9999, indicating that importance sampling and the missing
mass approximation have the same bias. Given that the two meth-
ods had different starting points (green and black lines) the fact
that their means agree so well suggests that they are converg-
ing on the correct answer. However, the importance sampling
result is noisier, with 99% confidence bounds of {0.986, 1.027}.
Furthermore, the missing mass approximation is again faster:
46/36 s for training/test data while the importance sampling result
was 1801/605 s, respectively. Exact summation results are not
possible.

Missing mass approximated partition functions

3.3. MACAQUE DLFPC

We used a 39 neuron population recorded in Macaque DLFPC
as the monkey performed an associative memory task where it
viewed two targets in succession and then moved a joystick to
those targets. This task was repeated over 300 separate trials, each
3500 ms long. (Unpublished data, see Experimental Methods and
also Pellizzer et al. (1995) for a similar task structure). Here,
dynamic changes in the network function are produced by the
task structure, i.e., target, delay, second target, movement. To
parameterize this structure we used the time since trial onset
as the stimulus, similar to our simulated data. Thus the time
varying drive to each neuron was again parameterized using a
sum of 4th order B-spline basis functions which tiled each trial.
That is:

38

hn(t) = Z Bm(t)ﬁnm

m=1

(21)

Spline knots were spaced 100 ms apart, resulting in 38 local-
ized (in time) basis spline functions B,(t). The By, are fitted
parameters. The data was discretized into 10 ms bins (350 per
trial) and was again partitioned into 75% (225 trials) train-
ing and 25% (75 trials) test sets. The population mean fir-
ing rate was 2.1 Hz but again individual neuron firing rates
varied strongly, here as a function of time since trial onset
with a mean maximum firing rate (across the population) of
7.2Hz. Figure 8A shows 5 example individual neuron firing
rates.

In Figure8 we consider a sub-population of 20 neurons
with the highest firing rates. Training/test data had a 2011/1079
unique patterns, 1014/573 of which occurred once. The Good-
Turing missing mass was 0.013 while the Ising missing mass
was 0.013 and the mean conditional logistic missing mass was
also 0.013. Figure 8B compares Z(s) over 3 trials (10.5s) as
determined via exact summation (black), importance sampling
(red) and the conditional logistic approximation (blue). The
black and blue lines are again identical by eye. In Figure 8C we
show the ratio, with respect to Zexact(s), for importance sam-
pling (red) and the conditional logistic approximation (blue). We
also show analogous ratios for X(s) (no correction) in green and
for the independent neuron approximation used as the impor-
tance sampling proposal distribution (black). Figure 8D shows
the distribution of these ratios over the entire test data set for
X(s) (upper, green), importance sampling (middle, red), and
the conditional logistic approximation (lower, blue). The inde-
pendent neuron distribution is not shown because it is outside
the range of the plots. Our method is extremely accurate, the
mean of the ratio distribution is 0.9999 and the 99% quantiles
are {0.9992, 1.0003}. In contrast, the importance sampling con-
fidence bounds are {0.9818, 1.0408} although it is also unbiased
(mean = 0.9999).

Again, the computation time was much faster for the condi-
tional logistic approximation. It took 34 s to evaluate Z(s) for the
training data and 21 s for the test data. In contrast, exact summa-
tion took 2020 and 720 for training and test data, respectively
while importance sampling took 1621 and 548 s for training and
test data, respectively.
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In Figure 9 we consider the full 39 neuron population. Here
the training/test data had 4452/2173 unique patterns 2705/1377
of which occurred once. The Good-Turing missing mass was
0.034 and the mean conditional logistic missing mass was
also 0.034. Figure 9A shows Z(s) for both importance sam-
pling (red) and the conditional logistic approximation (blue).
Since exact summation is not feasible, Figure 9B show’s ratios
with respect to the missing mass approximation for Z(s). The
blue line is therefore the missing mass divided by itself, equal
to 1 by definition. The red line is the ratio of the importance
sampling result Zjs(s) over ZcL(s), green X(s) (no correction)
over Zcr(s) and black the independent neuron approxima-
tion over Zcp(s). Distributions of these ratios, over all test
data stimuli, are shown in Figure 9C. The importance sam-
pling distribution has mean 1.0001, indicating that importance
sampling and the missing mass approximation have the same
bias. Given that the two methods had different starting points
(green and black lines) the fact that their means agree so
well suggests that they are converging on the correct answer.
However, the importance sampling result is noisier, with 99%
confidence bounds of {0.9805, 1.0522}. Furthermore, the condi-
tional logistic approximation is again faster: 111/66s for train-
ing/test data while the importance sampling result was 1944/664 s,
respectively.

3.4. CATAREA 18

Finally we present an example using 20 neurons recorded in
Area 18 of an anesthetized cat as a high contrast grating was
shown for 4s in one of 4 different (90° rotated) directions
(unpublished data see Experimental Methods). 21 training trials

from each direction (84 total) were used and 7 test trials (28 total).
Area 18 neurons are known to be highly direction dependent, so
the time varying drive to each neuron was allowed to vary both as
a function of direction and time since stimulus onset. Specifically,
as with the macaque data, we used basis spline expansions (200 ms
knot spacing) as a the function of time since stimulus onset as in
Equation 21. However, the splines were different in each of the 4
directions allowing for directional tuning.

Data was discretized into 5ms bins (800 per trial and direc-
tion). For this data set the mean population firing rate was much
higher (21.4 Hz, highest neuron firing rate = 47 Hz) than in the
two previous examples. As can be seen in Figure 10A, the indi-
vidual neurons firing rates were strongly direction tuned and also
had a strong “on” response at the onset of the grating stimulus.
The high firing rates led to a larger number of unique patterns.
The training/test data had 7018/2013 unique patterns (4547/1422
of which occurred once) and a higher Good Turing missing mass
of 0.071 (conditional logistic missing mass of 0.068) than in our
previous examples.

Despite the larger missing mass, the conditional logis-
tic approximation performed very well as can be seen in
Figures 10B,C which show Z(s) and the ratio of Z(s)/Zexact($),
respectively. The 99% confidence bounds on the error
(Figure 10D) were somewhat larger {0.9654,1.0405} than
in our previous examples. This error appeared to be localized
to the peak of the partition function at stimulus onset, away
from the peak the error was quite small. The peak error resulted
in “tails” in the error distribution which contained a relatively
small proportion of the distribution (Figure 10D bottom).
e.g., the 90% bounds on the distribution were within a percent
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FIGURE 9 | Thirty-nine neuron population from macaque DLPFC. (A)
Z(s) for logistic approximation (blue) and importance sampling (red). (B)
Ratios of various approximations for Z(s) with respect to logistic
approximation. Blue: logistic approximation (equal to 1 by definition). Red:
importance sampling, green: X(s) e.g., no correction, black: independent
neuron model. (C) Error distributions for: left : no correction (X{s)), right:
importance sampling.

{0.9964, 1.0083} and the distribution itself was unbiased (mean =
1.0003). Moreover, these results should be compared to the error
with no correction (99% quantiles {0.4449, 0.9996}, 90% bounds
{0.6376, 0.9973}) the importance sampling error (99% bounds
{0.9651, 1.0598}, 90% bounds {0.9848, 1.0153}). Again the
conditional logistic approximation was quickest (in addition to
being the most accurate) 80/52 s for training/test data compared
to 1407/486 s for importance sampling and 1636/588 for naive
summation.

3.5. COMPARISON WITH DETERMINISTIC APPROXIMATIONS

In addition to importance sampling, numerous deterministic
approximations to the partition function exist (Opper and Saad,
2001). These often provide a lower bound upon the partition
function which, as we demonstrate in this section, this can lead
to highly biased error distributions for Z(s)/Zexact(s) and over-
estimated pattern probabilities. We compared our conditional
logistic approximation to four deterministic approximations of
the partition function: (1) Naive mean field theory, (2) TAP cor-
rected mean field theory, (3) the Bethe approximation fit via
loopy belief propagation, and (4) a “low firing rate” approxima-
tion presented by Roudi et al. (2009a). We describe each of these
approximations and give the main results necessary to apply them

Missing mass approximated partition functions

in Appendix C. We do not provide computation times because
these methods are almost instantaneous (second or less) to
apply.

Figures 11A,B shows Z(s) ratios and error distributions for the
four deterministic approximations applied to the cat Area 18 data
and compares the results to the conditional logistic approxima-
tion. All four approaches severely under-estimate the partition
function. Naive mean field theory performs the worst, followed
by TAP corrected and the Bethe approximation. Moreover, these
variational type approaches produce estimates of Z(s) with high
bias and variance, a result which also holds for the monkey and
rat data sets (Figures 11C-D).

Roudi’s low firing rate approximation proved to be the best
of the deterministic approximations we considered. Yet it still
had a larger bias and variance than the conditional logistic
approximation. This was most acute for the cat data, where it
produced 99% error bounds of {0.4927, 0.9999} (90% bounds of
{0.7124, 0.99951}) and a mean of 0.9404. This should be com-
pared to the 99% conditional logistic bounds of {0.9654, 1.0405}
(90% {0.9964, 1.0083}) and the low bias mean (1.0003) of our
conditional logistic approximation. It should be noted that Roudi
and colleagues explicitly state in Roudi et al. (2009a) that theirs
is a low firing rate approximation. Hence it is not surprising, that
it performs poorly for the cat data which has a population mean
firing rate of 21.4 Hz. In the case of the rat data (Figure 11D),
which has very low firing rates, Roudi’s approximation performs
extremely well. However, in all cases, our conditional logis-
tic approximation provides a more accurate (smaller bias and
variance) estimate of the partition function.

4. DISCUSSION

The Ising model has gained popularity as a way to describe
population spiking in part because it describes the population’s
second order structure (firing rates and pair-wise correlations
between neurons) without making any further assumptions. That
is, it is the maximum entropy (most disordered) distribution
under these second order constraints (Jaynes, 1957; Roudi et al.,
2009b). However, the Ising model does pose some computa-
tional challenges arising from the couplings between neurons
being undirected and instantaneous. This means there is no
closed form which will normalize the probability distribution,
and therefore that normalization has to be accomplished via
explicit summation or some approximate method. In part for
this reason, Ising models generally have not included stimulus
drive (Martignon et al., 2000; Schneidman et al., 2006; Tang
et al., 2008; Roudi et al., 2009b; Ganmor et al., 2011) (but also
see below). Static, non-stimulus-dependent, Ising models, for
which the partition function is constant over the data set, are
difficult enough to evaluate even when Monte Carlo methods
are used. If stimulus drive is included, the partition function
can potentially be different in every single time bin. However,
to study population coding of stimuli, such drive must be
included.

Here we presented a method to quickly (within minutes or
less) calculate the partition function for a stimulus driven Ising
model. This relied upon the fact that most real neural populations
spike sparsely and hence most possible patterns are extremely
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improbable. Thus we only explicitly summed terms correspond-
ing to patterns which appeared in training data and recast the
remainder of the sum in terms of the missing mass. We showed
that for stimulus independent Ising models the missing mass
can be approximated using the Good-Turing estimator, which
relies upon counting patterns (Good, 1953; Orlitsky et al., 2003),
while for stimulus driven Ising models a product of conditional
logistic regression models can be used. We found this condi-
tional logistic approximation to be more accurate than both
deterministic (variational) methods and Monte Carlo importance
sampling.

The partition function is central to statistical mechanics and
machine learning and many techniques for approximating it have
been developed. These generally fall into two classes: stochas-
tic and deterministic. Stochastic methods, such as importance
sampling, tend to be slow but converge reliably to unbiased esti-
mates in the limit of large sample size. Using both simulated
data and 3 experimentally recorded data sets we showed that
our method can calculate the partition function more accurately
than Monte Carlo based importance sampling and can do so
orders of magnitude more rapidly. Deterministic approximations
such as mean field theories, variational methods, and pertur-
bative expansions are extremely fast, but provide lower bounds
on the partition function which can have large bias. We com-
pared our missing mass approximation to four deterministic
approximations: (1) Naive mean field theory, (2) TAP corrected
mean field theory, (3) the Bethe approximation fit via loopy
belief propagation, and (4) a “low firing rate” approximation
presented by Roudi et al. (2009a,b). For all three experimental

data sets, these deterministic approaches produced (at times very)
biased results with higher variance than our conditional logistic
approximation.

The Ising model has traditionally been used to study mag-
netism on crystal lattices. It was initially proposed by Lenz (1920)
and the one dimensional case was solved by his student Ernst Ising
(Ising, 1925). The two dimensional case was solved much later by
Onsager (1944). A good history can be found in Brush (1967).
For magnetism, undirected and instantaneous couplings make
sense, electronic spins do interact in a symmetric and instanta-
neous manner. Moreover, the regularity of the lattice makes it
clear which atoms interact, neighbors and next nearest neigh-
bors. Also translational and rotational symmetries make mean
field methods highly applicable (Opper and Saad, 2001; Nguyen
and Berg, 2012). These considerations make the problem easier in
some respects, and many methods for solving the Ising model rely
upon them (Kotze, 2008; Friel et al., 2009). For example, many
methods improve partition function estimation by utilizing struc-
ture in the connectivity matrix to “cluster” tightly connected spins
(Cocco and Monasson, 2011).

In the case of neurons it is not a priori clear which neu-
rons are interacting, and these interactions are fundamentally
directed, by synaptic contact, and time lagged, by the time it
takes an action potential to propagate down an axon. Still, if one
is interested in correlations between neurons at time scales of
~5-10ms then the Ising model is a very useful statistical frame-
work. It has been used to demonstrate the existence of second
and also higher order correlations between neurons (Martignon
et al., 2000; Schneidman et al., 2006; Tang et al., 2008; Roudi
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et al.,, 2009b; Ganmor et al., 2011). Such studies have conclusively
shown that the activity of many neuronal populations is collec-
tive and that neurons can often not be considered as independent
coders. Ising models have also shown that consideration of cor-
relations can sometimes improve decoders, demonstrating that
correlations may carry useful information (Schaub and Schultz,
2008). Recently, several groups have begun to include time vary-
ing stimulus drive (Tkacik et al., 2010; Granot-Atedgi et al., 2013).
Such efforts are crucial because correlations between neurons
are weak, and most commonly stimuli and neurons’ own auto
structure explain a much greater fraction of the population spik-
ing statistics. We note that the couplings themselves may also be
stimulus modulated. Such modulations are, however, difficult to

detect due to the sparsity of coincidences (between neurons) in
neural spiking. Developing methods for studying stimulus mod-
ulated correlations is an active field of research (Haslinger et al.,
2013).

In order to efficiently fit Ising models, either static or stimulus
driven, it is necessary to use methods that do not require explicit
partition function calculation. Several techniques which use gra-
dient information to maximize the likelihood (or equivalently
minimize the Kullback Leibler divergence) without calculating
the partition function have been developed. Monte Carlo tech-
niques rely upon the fact that gradients, with respect to the
parameters being fit, can be estimated by calculating expectations
with respect to the Ising model distribution (Tkacik et al., 2006;
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Bishop, 2007; Broderick et al., 2007). Since expectations are inte-
grals over a probability distribution, they can be approximated
by Monte Carlo sampling from that distribution and summing.
Mean field methods have been used to perform parameter esti-
mation (Mezard and Mora, 2009; Roudi et al., 2009a,b; Nguyen
and Berg, 2012) although some authors claim them to be inferior
to methods such as pseudo likelihood and minimum probabil-
ity flow, at least for certain data sets (Sohl-Dickstein et al., 2011).
Minimum probability flow establishes deterministic dynamics on
the state space of all patterns and uses coordinate descent based on
these dynamics to fit the Ising model without sampling or parti-
tion function calculation. It is extremely fast and can also be used
for models defined on continuous state spaces (Sohl-Dickstein
and Culpepper, 2012). A third technique, which we used in this
paper, is pseudo-likelihood which determines Ising parameters by
fitting the Ising conditional probabilities which are exactly logistic
regression models. All these methods can be extended to include
stimulus drive.

We emphasize that our missing mass approach for calculating
the partition function does not depend upon the exact method
used to previously fit the Ising model. We chose to use pseudo-
likelihood because (1) logistic regression models are fast to fit if
conjugate gradient methods are used (Komarek and Moore, 2003)
and (2) logistic regression has long been used in the context of
Generalized Linear Models (GLMs) to fit neuronal population
data so the machinery of how to include stimuli (and spike history
if need be) is well developed (Truccolo et al., 2005). Toward this
later point, the Ising conditional probabilities (logistic regression
models) fit in the pseudo-likelihood approach are in fact GLMs
with logit link functions. Thus any effect (stimulus, population
spike history, LFP, etc.) which can be included in a GLM can also
be included in a pseudo-likelihood fit Ising model by subsuming
it into the time varying fields h(s).

Another advantage of pseudo-likelihood which we did not
pursue here, is that it lends itself to fitting sparse (in the inter-
actions) models. Because the neurons are fit independently (but
conditioned on each other), the same L1 regularization (Schmidt
et al., 2007; Pillow et al., 2008) or p-value (Gerhard et al., 2011)
based variable selection techniques that have long been applied
to GLM inference of functional interactions between neurons
(Pillow et al., 2008; Gerhard et al., 2011) can also be applied here.
This was done in Aurell and Ekeberg (2012) and indeed logis-
tic regression has long been known to be effective for Markov
random field edge detection (Schmidt et al., 2007). We also
note that pseudo-likelihood could be used as a initial condition
for either Monte Carlo, or minimum probability flow methods.
Regardless of how stimulus driven Ising models are fit, they must
always be normalized, and that is what we focused on in this
paper.

Normalization is a necessary step for any model which is a
Markov random field, that is, can be represented as an undi-
rected graph. It is not required if the model can be represented
as a directed graph. As an example, an directed graph approach
which has found great application for analyzing neuronal popu-
lations is the Generalized Linear Model (GLM) method (Truccolo
et al., 2005; Pillow et al., 2008; Gerhard et al., 2011) and also see
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Tyrarcha et al. (2013). Here, each neuron’s probability of spiking
is conditioned upon the past spiking of all other neurons in the
population. Causality allows the conditioning to be “one way?,
i.e., a spike at time ¢ is conditioned on the spikes at time ¢’ < ¢
but not vice versa. Hence GLMs can be represented by directed
graphs and each neuron can be fit individually, but conditioned
upon the other neurons’ past spiking histories. However, in order
for the conditional independence assumption to hold, the time
bins must be taken to be small on the order of a millisecond. This
insures that there is no dependence between neurons in the same
time bin.

In essence, our conditional logistic approximation uses a
directed graph model to approximate the probabilities of all pat-
terns not observed in the training data. The assumption is that
since these probabilities are small, errors will roughly average
out when they are summed over all missing mass patterns. The
directed graph model is implicitly defined through the product of
N subset conditioned logistic regression models and this model
is itself normalized over all patterns. However, it is a slightly dif-
ferent model than the true stimulus driven Ising model. and the
probabilities of the two models are not exactly identical. This lack
of equivalence arises because the marginals of the Ising model
(subset conditioned probabilities) do not have the same func-
tional form as the fully conditioned probabilities and are not
exactly logistic regression models, although the fully conditioned
probabilities are. Formally this property that the marginals do
not have the same form as the true conditionals means that
the Ising model is not projective (Shalizi and Rinaldo, 2012).
What we have shown is that for sparsely spiking networks, the
use of logistic regression for the subset conditioned probabili-
ties makes stimulus driven Ising models approximately projective.
Moreover our conditional logistic approximation is extremely
accurate (especially when compared to mean field theories) and
extremely fast (when compared to importance sampling or naive
summation).

The advantages of our approach are speed and by extension,
the ability to quickly calculate Z(s) for larger populations. For our
method, speed is primarily a function of the number of unique
patterns in the data (sparsity), rather than the population size.
When combined with a fast method for estimating the model
parameters (pseudo likelihood or minimum probability flow) the
conditional logistic approximation allows Ising models to be effi-
ciently used for studying population coding in larger populations
as long as they spike sparsely. Fortunately, this is the case for
many neuronal populations, at least under naturalistic condi-
tions. Fundamentally then, our method allows Ising models to be
used to investigate the dynamic function of networks rather than
only their static structure.
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APPENDICES

APPENDIX A: FITTING DRIVEN ISING MODELS VIA
PSEUDOLIKELIHOOD

Pseudolikeihood techniques obtain the parameters of a joint dis-
tribution (such as the Ising model) by fitting a set of conditional
distributions (Besag, 1974, 1975). In the case of the Ising model
(either stimulus driven or not) the conditional distributions are
exactly logistic regression models.

explhi(s) + 23 4, 0jljiloi
1 + exp[hi(s) + 2 Zj;éi oiliil

P(0[Gj 23 5) = (A1)

where the functions h;(s) are generally expanded in basis func-
tions of the stimulus as discussed in the main text. N logistic
regression models are independently fit, one to each neuron’s
spikes. However, it should be emphasized that the model fit to
neuron 7’s spikes is conditioned upon the spikes of the other
N\i neurons. Logistic regression models can be efficiently fit
using iterative reweighed least squares techniques (Komarek and
Moore, 2003; Komarek, 2004). The full computation times for
pseudo-likelihood fitting were 9.5s for the 20 neuron rat data,
40.5s for the 42 neuron rat data, 19.1s for the 20 neuron mon-
key data, 55.7 s for the 39 neuron monkey data and 34.2 s for the
20 neuron cat data.

Combining the parameters of the N logistic regression mod-
els gives the full set of h;(s) and the coupling matrix J. It
should be noted that due to finite data sizes the fitted parame-
ters will have some error, and the fitted coupling matrix J will
not be exactly symmetric. It can be made symmetric by aver-
aging it with its transpose: J < 0.5(J +J ). A second point is
that the above formalism will give a coupling matrix J with all-
to-all connectivity. Although we did not pursue it in this paper,
sparse coupling matrices can be obtained by applying either
p-value or L1-regularization variable selection techniques as dis-
cussed in Gerhard et al. (2011) and Aurell and Ekeberg (2012),
respectively. Still, for all our experimental data, the pseudo-
likelihood fit Ising model had a higher test data log likelihood
than an independent neuron model fit to the same training data
and evaluated on the same test data indicating the presence of
synchrony.

Figure Al gives some examples of fitted parameters. The cou-
pling matrix J (parameters in right column) have an intuitive
meaning in terms of whether neurons exhibit correlated firing
(positive values of J) or anti correlated (negative values). For
example the cat data has mostly positive values for J;; and hence
these neurons exhibit a degree of “synchrony” while the rat spikes
appear to be somewhat anti correlated (mostly negative cou-
plings) and the monkey data has both positive and negative
couplings. J also defines a weighted connectivity graph, which
here exhibits all to all connectivity because we did not, in this
paper, perform variable selection (see above).

In contrast, the fitted parameters quantifying the drive (left
column) have little meaning in and of themselves, they attain their
meaning by being multiplied by functions of the stimulus to pro-
duce the “external field” for each neuron, which is then passed
through the logit function to obtain a firing probability for each

Missing mass approximated partition functions
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FIGURE A1 | Examples of pseudo-likelihood fit parameters. Left column
shows histograms of stimulus drive parameters B,m the right shows
histograms of parameters of the coupling matrix J. Results from 20 neuron
rat, monkey and cat data are shown. See Appendix A for discussion.

neuron. That is, the fields are given by:

M
() = ) Bu()Bum (A2)

m=1

and we have plotted histograms of the fitted parameters § in the
left column. Note that it is not only the fields h,(s) that gov-
ern the firing rate, there is crosstalk with the coupling matrix J.
Still this gives us some insight into why the drive parameters p
are often negative and large, i.e., firing probabilities are small.
The specific shapes of the drive parameter distributions can be
understood in the context of the specific basis functions they are
multiplied by.

For the rat data (upper left) we used a series of Zernike poly-
nomials (Equation 20). The first term of this series is a constant
equal to 1 and the parameters with large negative values are mul-
tiplied by these constants and are largely responsible for the low
firing rates of the hippocampal neurons. The other parameters
peaked around zero are both positive and negative. These multi-
ply higher order Zernike polynomials and govern modulation of
the neurons firing probabilities, about their means, as a function
of the rat’s position. In contrast, the monkey and cat data used
B spline basis functions which depended on the time since trial
onset, and in the case of the cat, grating direction. These splines
are similar in shape to PSTH bins and therefore they are almost
all negative so as to produce negative fields h,(s) and low firing
probabilities. A few parameters are positive because the spline
functions overlap. Fundamentally however, the meaningful quan-
tity is the time varying firing probability, examples of which we
gave in Figures 6, 8, and 10.
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APPENDIX B: PARTITION FUNCTION ESTIMATION VIA
IMPORTANCE SAMPLING

The idea behind importance sampling (Bishop, 2007;
Salakhutdinov, 2008) is to sample from a distribution which is
“close” to the Ising model and use those samples to calculate
the ratio between the Ising partition function and that of the
proposal (sample) distribution. Since correlations between
neurons are weak (generally) we used an independent neuron
model as the proposal distribution. That is, we independently fit
to each neuron 7’s spikes logistic regression models of the form.

efi ()i

indep / _. _
PP (o) = T

(B1)

Here, the f;(s) have the same functional form as the h;(s) of the
Ising model, but may have different fitted parameters. e.g., if, as
in section 3, h;(s) = Zﬁle B (s)Bimi where the By, (s) are basis
functions of the stimulus, then fi(s) = Z%Zl B, (s)a,,,; where
Qi 7 Pmi necessarily.

The independent neuron proposal distribution is the product
of these fitted logistic regression models and can be written as:

indep ef(S).(}
P (G|S) = ZiTep(s) (BZ)
where
. N
Znder(s) = TTa + i) (B3)

i=1

This distribution is very fast to sample from, because each neu-
ron’s spikes can be sampled independently. Denoting this set of
samples as €2 then the Ising partition function is given by

Zising(s) _ Zindep (s) L| Z e(;l(s) —]7(5))-8 +57J5 (B4)

2]
geQ

We note that importance sampling works best if the proposal dis-
tribution is “close” to the distribution being approximated. More
refined techniques such as annealed importance sampling (Neal,
2001) have been developed to deal with this issue but in our
case we found them to provide negligible improvement, perhaps
because the independent neuron distribution is often reasonably
close to the Ising distribution.

APPENDIX C: PARTITION FUNCTION ESTIMATION VIA
DETERMINISTIC APPROXIMATIONS

Many deterministic approximations (such as mean field theories
and other variational methods) replace the Ising distribution with
a product of “simpler” functions which are more easily evaluated.
Such methods are often nearly instantaneous to apply, but provide
only a lower bound upon the partition function which can, as we
demonstrated in the results, be a poor approximation. Practically
speaking, many of these approaches require the solution of a set of
self consistent equations via an iterative procedure. The solution
is then fed into an expression for the partition function. In this

Missing mass approximated partition functions

paper we compared with three variational approaches: (1) Naive
mean field theory, (2) TAP corrected mean field theory and (3)
the Bethe approximation fit via loopy belief propagation. We also
compared with a “low firing rate” approximation presented by
Roudi et al. (2009a) which is obtained via a perturbative expan-
sion. Extensive treatments of mean field theories and the Bethe
approximation can be found in Opper and Saad (2001). Also
see Roudi et al. (2009a,b) for neuroscience geared discussions.
Below we list only the main results necessary to calculate partition
functions.

C.1 "NAIVE" MEAN FIELD THEORY

The simplest form of mean field theory replaces the fluctuations
in the spikes by their mean rate, or in the physics terminology,
their “magnetizations” m;. Usually the mean field Equations are
written in terms of “spins” s; € {—1, 1} rather than in terms of
spikes o; € {0, 1}, and the magnetizations lie within the range
—1 < m; < 1. Therefore, we first transform the parameters h(s)
and J (fit via pseudo likelihood in the {0, 1} convention) to the
{—1, 1} convention. The conversions are easily obtained by writ-
ing down the Ising “energy,” changing variables and collecting
terms to obtain:

hi(s) Jij
2 T 2 2

j#i

hi(s) — bi(s) =
Jij = Jij =

Jij
n (C1)

The self consistent Equations to be solved can then be written as

mi(s) = tanh | h;(s) + Y Jm;(s)
j#i

(C2)

and the partition function (for the {—1,1}) convention is
written as

i

1—m; 1—m;
(5 e ()

+ Y himi(s) + Y Jmi(dmy(s)  (C3)

)

This can then be simply converted back to the {0, 1}
convention via
hi(s) Jij
lOgZMF = 10g3MF + Z —2 + Z Z (C4)
1 1

J

C.2 TAP CORRECTION

The Thouless Anderson and Palmer (TAP) correction to naive
mean field theory (Thouless et al., 1977; Opper and Saad, 2001)
essentially subtracts off the effect (mediated by other spins) of
spin i upon itself. In the neuroscience context, this correction
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comes into play for neurons with high firing rates. The self
consistent Equations have the form:

m;(s) = tanh | b;(s) + Zf}ij[mj(S) —Ji(1 = mf(S))mi(S)]
oy
] ()

and the partition function becomes

1 i 1 i
log 3rap() = — 3 |:< +;n (S)>log< —Hzn (5))

1 —m; 1 —m;
(e ()

+ D hismi) + i
i ij

1
[mi(s)mjc) + 531 = m ) - m}(s))]
(Co)

which is then converted back to the {0, 1} convention in the same
way as with Naive mean field theory. It should be noted that naive
mean field theory and the TAP correction are merely the first two
terms obtained when the Gibbs free energy is expanded in a Taylor
series with respect to the inverse temperature [see chapter 3 of
Opper and Saad (2001)].

C.3 BETHE APPROXIMATION

The Bethe approximation is exact if the couplings have a “tree
like” topology, that is, there are no loops in the coupling matrix J.
In this case, the Ising joint probability density can be factored into
a product of one and two node marginals (Opper and Saad, 2001;
Ricci-Tersenghi, 2012). In cases where there are loops (such as
ours) the Bethe approximation simply ignores this fact. Assuming
that one can estimate the one and two node marginals, then the
partition function can be written as:

10g Zpetne(s) = Y Y bij(0i, ojls)
(ij) € E 01,0
[log(bij(oi, ajls) — hi(s)oi — hj(s)oj — 0jJijoil
+) (1 =g) ) bi(oils)[logbi(sils) — hi(s)ai]

O

(C7)

Missing mass approximated partition functions

In the above the sum over (ij) € E refers to a sum over graph
edges and o; and oj are summed over their possible values of
o; € {0, 1} and g; is the number of edges attached to node (neu-
ron) i. The b;(0ils) and bjj(o;, ojls) are the estimated one and
two node marginal probabilities, usually referred to as “beliefs”
in the literature. These are usually obtained using an iterative
technique called belief propagation (Pearl, 1988; Yedidia et al.,
2003, 2005; Watanabe and Fukumizu, 2009) which is a spe-
cial case of the more general expectation propagation algorithm
for marginal estimation (Minka, 2001). Chapter 3, sections 7-8
of Opper and Saad (2001) written by Jonathan Yedidia gives a
particularly clear and concise discussion of the Bethe approx-
imation and the belief propagation algorithm. Further details
can be found in chapter 22 of Murphy (2012) which gives fur-
ther algorithmic details, addresses issues of convergence when the
graph has loops (loopy belief propagation) and also discusses the
connection with expectation propagation. Although loopy belief
propagation algorithms are known to converge unreliably (Pearl,
1988; Murphy, 2012), we were able in our case to get the algorithm
to converge by using synchronous updates, a “damping factor” of
0.1 and by normalizing the messages to sum to 1 at each itera-
tion. See section 22.2.4 of Murphy (2012) for discussion of these
techniques.

C.4 "LOW FIRING RATE” APPROXIMATION

In Roudi et al. (2009a), Roudi and colleagues derive a perturbative
expansion of the partition function which applies in the low firing
rate limit. After defining the quantity

N
Zy(s) = [+

(C8)
i=1
they show that Z may be approximated by an expansion
Z(s)
-1~ i0;(5)8(s)
Zy(s) § Pt
+ Z [Dijdik + dijdjk + Gik ik
i<j<k
+idikdjk]di(s)8j(s)dk(s) (C9)

where 8;(s) is the stimulus dependent firing probability of neuron
iand ¢;; = ¢?li — 1. Note that (Roudi et al., 2009a) also includes
3rd order coupling terms which we have dropped here because we
only consider pairwise interactions in this paper.
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