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Efficient path planning and navigation is critical for animals, robotics, logistics and
transportation. We study a model in which spatial navigation problems can rapidly be
solved in the brain by parallel mental exploration of alternative routes using propagating
waves of neural activity. A wave of spiking activity propagates through a hippocampus-like
network, altering the synaptic connectivity. The resulting vector field of synaptic change
then guides a simulated animal to the appropriate selected target locations. We
demonstrate that the navigation problem can be solved using realistic, local synaptic
plasticity rules during a single passage of a wavefront. Our model can find optimal
solutions for competing possible targets or learn and navigate in multiple environments.
The model provides a hypothesis on the possible computational mechanisms for optimal
path planning in the brain, at the same time it is useful for neuromorphic implementations,
where the parallelism of information processing proposed here can fully be harnessed in
hardware.
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AUTHOR SUMMARY
Humans and animals can quickly and reliably solve spatial
navigation and path planning tasks. However, neural mecha-
nisms underlying these processes are not completely understood.
Discovery of, so called, place cells—the hippocampal cells getting
activated whenever an animal enters a certain spatial location—
gave rise to the idea that the hippocampus contributes to the
creation of internal, neural representations of the environment.
Here we demonstrate that spatial navigation can rapidly be solved
in the hippocampus-like neural network by parallel mental explo-
ration of alternative routes. A possible biological mechanism to
implement parallel exploration is through propagating waves of
neural activity spreading across the entire network representing
a given environment. We present a model, where such waves of
spiking activity alter synaptic connectivity through spike-timing-
dependent plasticity and create a vector field, which can guide
an animal through the environment to selected target locations.
In a set of computational experiments we demonstrate that plan-
ning can be solved during a single wavefront passage through the
network. Moreover, the model is capable of suggesting an opti-
mal solution for multiple competing targets, and it can embed
multiple environments for trajectory planning.

INTRODUCTION
One of the central problems for neurobiology is to understand
the computational effectiveness of the brains of higher animals.
Brains rapidly carry out extraordinary feats of visual scene analy-
sis or problem solving through thinking on “wetware” that is tens
of millions times slower than modern digital hardware. Part of the
explanation is brute-force anatomical parallelism.

In this paper we develop a model of parallel computational
processing in the context of path planning and spatial navigation.
We propose that spatial navigation can be solved through simul-
taneous mental exploration of multiple possible routes. A typical
mental exploration task for an animal might involve knowing an
extensive terrain containing a few water sources, being motivated
(being thirsty) to seek the nearest water source. Hopfield (2010)
recently described a way that serial mental search for a useful
route could be done by a moving clump of activity and synapse
modification in a hippocampus-like neural network 1. We show
here that a best path can rapidly be found by parallel search in the
same kind of network, but by a propagating wave of spiking activ-
ity. The process of path planning and navigation, as proposed in
our model, consists of the following steps: (1) expanding waves
of neural activity are initiated from the place cells correspond-
ing to selected target location(s); (2) the propagating waves alter
synaptic connectivity within the network through spike-timing-
dependent plasticity and create a directed synaptic vector field
(SVF) converging on the goal locations; (3) this vector field is
used by an animal to navigate toward targets; (4) whenever a new
planning process is necessary, all synapses are reset to the baseline
state and waves of activity can be initiated from the new target
locations.

Can animals employ such parallel mental exploration to solve
novel problems? Indeed can humans do so? Recent electrophysiol-
ogy experiments demonstrated existence of expanding, traveling
waves of neural activity in the hippocampus, associated with

1We use the term “clump of activity” to refer to a localized neural activity of a
cluster of place cells representing nearby spatial locations.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 98 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2013.00098/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=FilipPonulak&UID=71918
filip.ponulak@braincorporation.com
filip.ponulak@braincorporation.com
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ponulak and Hopfield Parallel mental exploration

theta-oscillations (Lubenov and Siapas, 2009; Patel et al., 2012),
as well as with much faster sharp wave ripples (Ellender et al.,
2010), yet, no link between such waves and spatial planning has
been shown so far.

One of the major roles of theory is to elucidate interest-
ing consequences and possibilities inherent in our incomplete
experimental knowledge of a system. The fact that hippocampus-
like neural substrate can support parallel mental exploration, as
explored here, is such a possibility. New experimental paradigms
could easily test for parallel mental exploration in rats. These
ideas also form the basis for novel neuromorphic circuits in engi-
neering, which could be used to implement effectively certain
Artificial Intelligence algorithms such as those based on the idea
of a wave-front propagation (Dorst and Trovato, 1988; Dorst
et al., 1991; LaValle, 2006) by taking advantage of the true par-
allelism of the neuromorphic hardware systems (Boahen, 2005;
Misra and Saha, 2010).

RESULTS
We consider like (Hopfield, 2010) a network of excitatory “place”
cells for a very simple model animal. Through experience in an
environment, each cell has learned synaptic connections from a
sensory system (not specified here) that make it respond strongly
only when the model animal is near a particular spatial loca-
tion. These response place fields are our modeling equivalent
of the response place fields observed in the rodent hippocam-
pus (O’Keefe and Dostrovsky, 1971). For display purposes, the
activity of each place cell can be plotted at the spatial location
of the center of the receptive field corresponding to that place
cell. In such a display there is a localized activity clump sur-
rounding the actual spatial position of the model animal. When
the animal moves, this activity region follows the location of
the animal. If an animal wanders throughout an environment
over an extended time, the synaptic plasticity will result in exci-
tatory synaptic connections being made only between cells that
are almost simultaneously active (Hebb, 1949). If the exploration
process is not systematically directional and is extensive, connec-
tions will on average not have directionality. The CA3 region of
the hippocampus has such intra-area excitatory connections with
the requisite spike-timing-dependent plasticity, or STDP (Amaral
and Lavenex, 2006).

The fundamental neural network to be studied is thus a sheet
of place cells, each having excitatory connections to the others
with centers within its receptive field footprint, but not to dis-
tant neurons. Experimental support for the existence of such
connections (direct or indirect) comes from the coordinated
phase-change-like response of place cells, trained in two envi-
ronments, experiencing a visual environment that mixes the two
environments (Wills et al., 2005).

The model neurons considered in our study are of the
integrate-and-fire type with a short dead-time and spike-
frequency adaptation (implementation details are provided in the
Methods section at the end of the paper).

We investigate whether and how the described setup can
implement parallel search for optimal pathways in the envi-
ronment represented by the neural network. Because we rely
on simulations of a system whose mathematics we cannot fully

analyze, it is sensible to present a line of argument that develops
insight about expected behaviors. Consider a simplified model
comprising of a line of neurons, each reciprocally connected to its
two nearest neighbors (cf. Figures 1A,B). With specific parameter
settings, a single spike can initiate an activity pattern that consists
of a pair of spikes marching from the initiation site toward the
ends of the line at constant speed, one in each direction (Aertsen
et al., 1996). In a system with intrinsic neuronal adaptation, there
is a dead time before another pair can be propagated in this same
region.

A similar phenomenon can be observed also in a two-
dimensional sheet of neurons with recurrent local connections
over a small but extended region. In an example presented in
Figures 2A,B, the synaptic connection strengths are chosen so
that a few pre-synaptic cells must spike almost simultaneously
to fire the post-synaptic cell. Seeded with a few approximately
synchronized firings of nearby cluster of neurons, a propagating
circular wavefront of activity is observed in which each neuron
fires only once (Kumar et al., 2008). A second wavefront cannot
be initiated in a region that the initial wavefront has traversed
until the adaptation has decayed (cf. Figures 2C,D). Note, that
although in our model we consider a single-spike activity, the
basic activity events propagated through the network may in prin-
ciple also consist of short bursts of spikes, which is biologically
more realistic in the context of the hippocampal cell activity.

Propagating wavefronts can have profound effects on synaptic
modifications through STDP. Consider again a one-dimensional
network as illustrated in Figure 1. Any non-symmetric STDP
rule will produce, in one dimension, synaptic change patterns
that display whether the “front” of activity that went by was
going toward the left or toward the right. Normal or “forward”
STDP which enhances synapses at which the pre-synaptic spike
comes before the post-synaptic spike will result in rightward-
going synapses being stronger than leftward-going synapses if the
wavefront passes moving to the right (Figure 1A). “Reverse” or
“anti-” STDP which enhances synapses at which the pre-synaptic
spike comes after the post-synaptic spike (Bell et al., 1997; Kampa
et al., 2007; Roberts and Leen, 2010) will result in leftward-going
synapses being stronger than rightward-going synapses if the
wavefront passes moving to the right (Figure 1B). The same basic
idea intuitively extends to two dimensions, where STDP results in
synaptic change that can be interpreted as a vector field (in the fol-
lowing we shall call it a synapse vector field or SVF), showing the
orientation of the propagating wavefront that caused the synap-
tic change. In all our simulations we use reverse STDP induced by
propagating spike wavefronts that creates an SVF pointing toward
the center (initial point) of the waves. Our use of reverse STDP is
motivated by certain conceptual and technical advantages of this
approach over regular STDP, as it will be described later in the
paper.

SIMPLE PATH PLANNING PROBLEM
Consider for definiteness the “T” shape environment shown in
Figure 2A. We presume that by exploring the environment, each
neuron has acquired a place field such that it is driven strongly
only when the simulated animal is near the place field cen-
ter and the drive to the cell falls off smoothly away from that
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FIGURE 1 | Synaptic vector field formation. (A,B) Illustration of the
synaptic strength changes in a one-dimensional network altered by “causal”
STDP (A) and “anti-causal” STDP (B) after a neural activity was propagated
from the neuron k in the directions denoted by the arrows. The connections
are shown as arcs with the direction of connection denoted by little dots
representing synapses. Stronger connections are represented by the thicker

lines. Left panels are the schematic illustrations of the synaptic weight
changes �w as a function of the time lag �t between the post and
presynaptic spikes, for STDP (A) and anti-STDP (B). (C) Due to the
asymmetry in the strength of connection from- and to- any particular neuron
in the network, the mean neural activity observed in the network is shifted
with respect to the input current distribution.

location. For display purposes, in all figures the cells are arranged
so that whatever property of the cell is being plotted, its (x,y)
plot location is the location of its place field center. The recep-
tive fields considered in our experiments are assumed to have
Gaussian shapes and to cover 25–50 cells in their footprints in
a simulation using a network with 2000 place cells. In such a
setup, if an animal explores an environment, synapses with simple
STDP will form strong connections between neurons with simi-
lar place fields, i.e., between neurons that are close together. To
this point, the general approach is like that previously used in
Hopfield (2010).

Imagine that the simulated animal, in exploring an environ-
ment, finds a target T, such as a source of water, to which it may
later want to return. Let the dendrites of the place cells in the
vicinity of T become connected to axons from an “exciter” which,
when activated, can briefly drive these place cells to fire. Such
activation will result in an outgoing wave of single spike activity
emanating from T as center as illustrated in Figure 2A (where the
cyan field represents the T location). This wave will spread until
every neuron has fired an action potential. As noted before, the
next wavefront is possible only after the neural adaptation fades
away. Also, to prevent runaway, we use a global inhibitory mech-
anism, where inhibition is proportional to the network activity,
resulting in a balanced excitation-inhibition (for more details we
refer to the Methods section).

The propagating wave and the asymmetric synaptic plasticity
implicitly define a vector field, which represents the local direc-
tion of the wavefront, i.e., the vector is normal to the wavefront
and points in the direction of propagation. We should define what
is meant by “shortest path” or more generally “optimal path”
for present purposes. While the synapse vector field is defined
only at the discrete locations of place cell centers, the synapses
themselves will be used to control the continuous motion of an
animal in real space. The discreteness of the place cell represen-
tation will contribute fine-scale noise in the actual physical path.
The optimality we are interested in is macroscopic optimality—
for example, choosing the right way to go around an obstacle. The
physical pathlength contribution introduced by jitter from the
discreteness of the neural representation is not of interest. Before
the single-spike activity wave was initiated, all directions were
equivalent, and the SVF was zero everywhere. Afterward there is
a local directionality, because the timing of pre-post spike pairs
depends on the spatial separation of the pairs projected on the
direction of wavefront propagation. Sample SVFs that result from
the anti-STDP rule are shown in Figures 3A–D. Here the vector
fields are illustrated using directed arrows originating from the
preferred locations of each place cell in the network. The direction
and the length of each arrow represent, respectively, the direc-
tion and the strength of the vector field in a given location (see
Methods for details).
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FIGURE 2 | Wavefront propagation and neuronal adaptation. Illustration
of a wavefront propagation in a network of synaptically connected place
cells for two different environments (A,B). Cyan fields are the initiation
points of the wavefronts. Red dots are the action potentials that occurred
in a time window of 0.002 s centered at the times indicated. Plots (C,D)

show color maps of the average level of a neural adaptation in the
particular regions of the network after a single wavefront passage up to
the states illustrated in the right-far plots in (A,B), respectively. Brighter
colors in these maps represent lower excitability of the neurons at the
corresponding locations.

The SVF can be used for finding the shortest pathway to the
location being the source of the propagated wave. Intuitively, since
the first wave to arrive at your position comes via the fastest path,
if you simply backtrack, always going backward along this vector
field, you will reach the target by the shortest path. In either case,
the synapse vector field contains the information necessary to find
the shortest route to the target. It is merely a question of following
the vector field forward (anti-STDP) or backward (STDP).

OBTAINING MOTOR COMMANDS FOR FOLLOWING THE SYNAPTIC
VECTOR FIELD
For illustrating an idea of how the SVF can be used for guiding
an agent (a simulated animal or a robot) movement, we return
to the one-dimensional case (Figure 1C). In 1 dimension, if the
propagating wavefront has passed by locations k through (k-n)
while moving leftward, and the anti-STDP rule has been applied,
rightward-directed synapses [e.g., (k-1) → k] are strengthened
more than leftward ones (k → (k-1)). Before this process, if the
animal was located at a particular location in space, a bump of
place cells would be active, symmetrically located around that
location. In the presence of the asymmetric synapse modifica-
tion, the bump of activity is biased and no longer centered on
the actual physical location (Figure 1C; cf. Levy, 1989; Blum and
Abbott, 1996). This bias can be converted into a motor command
proportional to the bias and pointing toward the direction of a
wavefront passage.

Precisely the same problem occurs in earlier work on
a hippocampus-like model of actions based on “thinking”
(Hopfield, 2010). In that model there were two clumps of activ-
ity, one representing the present position of the animal and the
other representing where the animal thought it should be a short
time later. The difference between the locations of these two
clumps was used to produce motor commands that moved the
animal toward the desired future location. The model was fully
implemented with spiking neurons.

Since the task of generation of motor command is not the
major focus of our paper, here we use a simplified approach.
Namely, we assume that a receptive field corresponding to the
present animal location is activated by applying tonic excitation to
the corresponding place cells and then any place cell firing a spike
causes a pulse of force moving an agent toward the preferred
location of that cell. The asymmetry in the weight configura-
tion around the receptive field results in a higher probability of
firing of those adjacent place cells that are located along a direc-
tion of a vector field. As a consequence an agent moves to a
spatial new location along the optimal pathway. The details of
the algorithm are provided in the Methods section at the end of
the paper.

Sample movement trajectories resulting from applying the
described procedure to a simulated animal are shown in
Figures 3E,F (see also Movies S1 and S2 in Supplementary
materials). These trajectories result from the SVFs illustrated
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in Figures 3A,C and Figures 3B,D, respectively. In particular,
Figure 3F illustrates the shortest path aspect of the available
information—because the target is located above the midline,
the wavefront arrives at the branch containing the animal at S
from above before the wavefront from below (cf. Figures 2B, 3B).
Neural adaptation prevents the wavefront arriving from below
from penetrating this region. Thus, the SVF leads to a route from
S to T going upward.

Notwithstanding the fact that the algorithm used here is not
providing details on the possible neural implementation of action
execution, it is important to emphasize that the actions are trig-
gered by individual spikes and hence each spike contributes to
the agent behavior change. The average population activity pat-
tern determines the mean movement trajectory along the vector
field, whereas the particular spikes add some stochasticity to the
behavior (reflected, e.g., in a small trial-to-trial variability of the
movement pathways observed in Figures 3E,F). Such stochastic-
ity has some advantage in certain situations. For example, it may

FIGURE 3 | Synaptic vector field and spatial navigation. (A,B) Synaptic
vector fields resulting from the wavefront initiated at point T and
propagated as illustrated in Figures 2A,B, respectively. (C,D) The insets
show details of the vector fields around the bifurcations in the simulated
mazes. (E,F) Typical movement trajectories observed in the considered
models resulting from the vector fields from (A,B), respectively. The
trajectories begin in points “S” and end in the target locations “T.” For
additional results see also Movie S1 in supplementary materials.

be useful for avoiding local minima, or for selecting one choice
when several alternatives have equal probability.

NAVIGATION IN AN ENVIRONMENT WITH MULTIPLE TARGETS AND
VALUES
Several different relevant targets might be simultaneously avail-
able in an environment. For simplicity, the case when all targets
have the same intrinsic value is first considered. Figure 4A shows
the SVF that results when single spike propagating circular waves
simultaneously originated at three targets. Because the single-
spike wavefront cannot propagate into a region that another
wavefront has recently traversed, any subregion is therefore tra-
versed by only a single wavefront, the one that arrives first, and is
thus closest to its source. Within that subregion, the vector field is
the same as it would have been if only the source responsible for
the traversing wave had been present. The three subregions of the
three possible targets of Figure 4A are shown in Figure 4B (com-
pare to Movie S2 in the Supplementary materials). Which target is
nearest, and thus should be navigated to, depends on the current
location of the agent. The same figure illustrates the paths fol-
lowed for three possible initial agent locations. Note that the SVF
is defined everywhere, independent of the location of the agent
when the wavefront is generated.

When multiple targets are present, an optimal choice will
involve balancing the cost due to the length of a path and the
reward that will result if that path is followed. For a single tar-
get, the net reward due to following a path of length L is R–CL,
where C is the cost per unit length of following any path, and
optimizing net reward simply minimizes L over the set of possible
paths. When multiple targets of equal value are present, the same
net reward expression applies, but the set of relevant paths over
which a minimum is sought includes paths to each possible tar-
get. Accordingly, if the targets all have equal value, the described
procedure selects the target that can be reached by the shortest
possible route.

FIGURE 4 | Navigation in a system with multiple targets. (A) Synaptic
vector field created in the network with targets in locations Tl, T2, T3. (B)

Typical movement trajectories observed in the system for the initial agent
locations as indicated by spots Sl, S2, S3. The path selection and the path
shapes are determined by the shape of the vector field and by the initial
agent location’s. The vector field has three basins of attraction
corresponding to the particular targets—the bounds of the basins of
attraction are indicated by the gray dotted lines. For additional results see
also Movie S2 in supplementary materials.
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Now suppose that different possible targets Tk, k = 1, have
different rewards Rk. When all wavefronts propagate with the
same velocity, it is useful to think in terms of times rather than
lengths. Rk then can be seen as an effective shortening of the
time to navigate to a reward. A simple way to implement it is
to initiate wavefronts first at the target locations corresponding
to greater rewards and later at the locations with lower rewards.
The introduction of these differential delays represents the value
differentials between the various targets. These delays shift the
boundaries of the regions such as those of Figure 4B in a way that
represents the differing values of the target. The optimal relative
initiation times can be learned on the basis of maximizing the
term (Rk–CL). For any winning target, the path followed to that
target is the same as would have been used if that target alone were
present.

DEALING WITH NOISE
Noise can adversely affect the ability of the network to propagate
a wavefront in the ideal fashion to set up the desired synaptic
field. Figure 5 illustrates what can happen when noise is severe.
Spurious single spikes are generated, and spikes can fail to occur.
When spurious spikes cluster, they can serve as initiation sites for
new circular waves centered at locations where there is no target.
In addition, spurious and absent spikes cause irregular wavefront
propagation or even wavefront extinction.

The major noise issues concern setting up the SVF. Once it is
set up, the motor control system effectively averages over the vec-
tor field in a small region, and noise in following the SVF is not a
major issue.

Having a large system is the first defense against noise. As the
system size grows, the number of neurons making synapses onto
a particular cell, which must be simultaneously active to initiate
a spike in that cell, can be increased, and the likelihood of spu-
rious single spikes decreases. The likelihood of a spatial cluster
of spurious spikes being large enough to trigger a new wavefront
is also reduced. There is considerable latitude for exploiting the
large number of cells available in real neurobiology.

There are also cellular means to suppress the effect of noise.
Set the threshold for spike generation at some particular level,

and consider the ability of N cells connected to this one to trig-
ger it to spike when a passing wavefront goes by. There will never
be exact synchrony in the firing of the presynaptic cells, so while
N cells firing may typically be required to fire the cell, less than
N may also sometimes do so, and more than N may fail to fire
it. Reliable wavefront propagation is enhanced by any biophysi-
cal effect that sharpens this threshold on N. One way to sharpen
this threshold is by determining whether a particular neuron in
a network is excited by spikes coming from a small number of
neurons being unusually effective (for example because of noise),
or by a larger number of neurons with typical effectiveness. A
method of making this distinction can be implemented in a bio-
logically realistic way by using supra-linear spatial summation,
a phenomenon observed in biological neural circuits (Nettleton
and Spain, 2000; Urakubo et al., 2004). In our work we use a sim-
ple phenomenological model of such a supra-linear integration
that favors weak excitation from multiple inputs over strong exci-
tation from a few inputs. This is achieved through a non-linear
summation of synaptic input currents to the neuron, such that the
effectiveness of presynaptic spikes is increasing with a number of
simultaneously active inputs to the neuron (see Methods section
for details). Although, in this algorithm the appropriate setting of
the neuron activation threshold is still important, it is no longer
a critical factor for the problem at hand. With this approach
more emphasis is put on how many presynaptic neurons are
active simultaneously, rather than how strong the particular con-
nections are. In this way the algorithm works better than the
threshold algorithm for networks with greater heterogeneity of
synaptic connection strengths.

NAVIGATION IN MULTIPLE ENVIRONMENTS
When a rat is familiar with multiple environments, a particular
hippocampal neuron can have place fields in more than one envi-
ronment, with no apparent coordination between them (Bostock
et al., 1991; Wilson and McNaughton, 1993). We also therefore
investigate whether our network model can learn and effectively
perform navigation in multiple environments when each neuron
has a place field in each environment. When the place cells in
one-environment and place cells for a second environment are

FIGURE 5 | Effects of noise on wavefront propagation. (A) A single
wavefront is initially started from the point T. Noise results in spurious single
spikes or missing spikes. When spurious spikes cluster, they can serve as
initiation sites for new circular waves centered at locations where there is no

target. In addition, spurious and absent spikes cause irregular wavefront
propagation or even wavefront extinction as illustrated in (B,C). Network
activity shown at times as indicated. The noise is modeled by injecting spike
currents to randomly selected neurons at random time steps.
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uncorrelated, the synaptic connections needed in both environ-
ments can be simultaneously present. If the number of neurons is
sufficiently large, when the sensory signals come from one envi-
ronment there is little crosstalk between the representations of
both environments, and the presence of the second set of synapses
simply inserts a modest level of noise. One can similarly anticipate
that single spike wavefronts can be initiated and will propagate
in any particular environment when multiple environments are
known. The wavefronts will produce a vector field that can later
be used to guide the animal in this particular environment. This
is a significant extension, for without it each neuron needs to be
specific to a single environment, which would be both inefficient
and not in correspondence with biology.

Consider a network that is supposed to operate on two dif-
ferent environments as illustrated in Figure 6. Due to their
shapes we call these environments “A” and “∞.” While in the
rat many place cells would be specific to one environment, such
specificity reduces the crosstalk between the environments, and
de-emphasizes the crosstalk effect we wish to evaluate. Here,
however, we assume that each place cell represents the animal’s
locations in both environments.

A spike generated in any cell will produce excitatory postsy-
naptic potentials in all its neighbor cells in one environment and
all its neighbor cells in another environment. As in the previous
experiment, the model parameters are set such a single spike can-
not cause action potentials in the postsynaptic neurons. As before,
supra-linear summation helps to promote stable propagation of
the existing wavefronts, and to prevent single, isolated spikes from
producing new wavefronts.

Consider a network activity caused by the simultaneous exci-
tation of a certain set of the topologically nearby cells in the
environment “A.” When a plot is made with each cell located at the
preferred location it represents in environment “A,” the dynamics
of this neural activity will be seen as a wave propagated through
the network (Figure 6A, left). The same activity observed from
the perspective of the “∞” environment (that is by reorganizing
the network by putting place cells at the locations they represent
in the “∞” environment) would appear as a random network
activity (Figure 6A, right). Since the spikes observed in the “∞”
environment appear sparse, they are unlikely to initiate a wave-
front in this representation. Similarly, at any particular moment
while a wavefront in the “A” environment is propagating, the
synaptic connections representing the “∞” environment intro-
duce drive to neurons that should not be driven at that moment.
Occasionally such neurons can produce crosstalk-induced spu-
rious spikes (cf. solitary spikes in the left panel in Figure 6A,
occurring far away from the wavefront).

Figures 6B–D illustrates that at the level of two environments
and around 2000 place cells, there is little effect of crosstalk
on the ability to function in each environment as though the
other did not exist. Figure 6B (left) shows that the SVF induced
by a wavefront initiated at T (cf. Figure 6A, left) develop as
expected, representing a flow back toward the target from all
points in the “A” environment. Figure 6B (right) shows the SVF
for the same synaptic changes, but calculated for the place cell
locations in the “∞” environment. Here the vectors point in ran-
dom directions because there is no spatial organization to the

FIGURE 6 | Synaptic vector field formation in multiple environments.

(A, left) Wavefront propagation in environment “A” short time after the
activity wave initiation at the target T. (A, right) The same activity pattern as
in (A, left), but displayed in the “∞” environment plotting representation.
(B, left) Synaptic vector field resulting from the propagation of a wavefront
illustrated in (A, left). Note a single attractor corresponding to the location T,
that is the center of the wavefront. (B, right) The synapse vector field due
to the same synapse changes as in (B, left), but calculated using the
positions of the neurons in the “∞” environment. (C,D) The same plots as
for (A,B) except that the wavefront has been initiated at target T in the
“∞” environment. All results are qualitatively like those in (A,B), except
that the roles of the two environments are reversed. Synaptic vector fields
in plots (B,D) are visualized using the same normalization factor (arrow
scale) for both environments.

synapse change in this representation. The same kind of result
is obtained when the wavefront is initiated in the “∞” environ-
ment as in Figures 6C,D with the roles of the two environments
reversing. In each case the vector field created by the single-spike
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wavefront successfully navigates an animal from a starting
point in the given environment to the target as illustrated in
Figure 7.

DISCUSSION
The problem of planning and executing a complex motion over a
protracted time-period which will optimally take an autonomous
agent from its present location and configuration to a desired
target location and configuration is common to both animal
behavior and robotics. In its simplest manifestation there is only a
single target, a single known environment, and a short or fast path
is preferred over a longer or slower one. The trajectory planning
must accommodate the physical constraints posed by the environ-
ment. Additional complexities might include the simultaneous
presence of multiple targets, possibly of different intrinsic val-
ues, terrain which affects the value of trajectories in a non-trivial
fashion, and multiple environments.

The neurally-inspired network presented in our work has been
shown to solve the planning problem in several steps. First, in
an exploratory phase it learns an environment by developing a
set of “place” cells whose locations reflect all possible trajectory
boundaries due to kinematic constraints or constraints in the
behavior arena. It develops in this exploration process intercon-
nections between all pairs of places that can be visited in temporal
contiguity, and thus can be possible candidates for a section of
a trajectory. Second, given the expected set of synaptic connec-
tions, the excitation of a target location (or locations) initiates a
wavefront of single spike- or single burst activity that propagates
outward from the initiation site(s). The wave propagation process
is terminated when a wavefront reaches the present location of the
agent. The passage of such a wavefront produces synapse modifi-
cation pattern that can be described as a vector field. The desired
trajectory is simply the path along the SVF from the present loca-
tion to the (or a) target. Since the SVF lines are produced by an
expanding circular wavefront, they converge when followed back-
ward toward a source, and thus provide stable guidance for going
to a target location.

The full extent of the parallelism available in our concept is
perhaps best illustrated in Figure 4. The system simultaneously
selects the closest target and the best route to that target from

FIGURE 7 | Navigation in multiple environments. Sample movement
trajectories in the environment “A” (left panel) and “∞” (right panel)

resulting from the synaptic vector fields shown in (left) and (right),
respectively. Three different trials for each environment are illustrated.
The trajectories start in the S locations and end in the T locations.

a single propagation of the exploration wave. Conventionally,
a best path would be found for each target sequentially, using
a serial algorithm to rate possible paths, and a choice of tar-
get then made between these optimal single-target paths. The
conceptualization of the parallel search method and the demon-
stration by simulation that best trajectories can be followed in
neuromorphic simulation are the major accomplishments of this
paper.

NETWORK ANALYSIS
As mentioned before, the goal of our paper was to present a con-
cept of parallel exploration through propagating waves of neural
activity and STDP-altered SVFs. We have illustrated our concept
in a set of simulations, but we have not attempted to quantify our
results. An interesting extension of our work thus would be to
perform an analysis of the properties of our system. Interestingly,
such an analysis has recently been offered for the network pro-
posed in (Hopfield, 2010), which is of the same type and topology
as the one considered in our work. Indeed, Monasson and Rosay
(2013) provided an indepth theoretical analysis of the dynamics
and storage capacity of that network as a function of such param-
eters as: network size, level of neural activity, level of noise, or size
of place cells. Specifically, using the statistical mechanics tools, the
authors analysed conditions necessary for the network to learn
multiple maps (environments). The storage of a map manifests
itself through the fact that the neural activity is localized, and
acquires a clump-like shape in the corresponding environment.
Remarkably, according to the analysis performed by the authors,
a moderate level of noise can slightly increase the capacity storage
with respect to the noiseless case. However, when the number of
environments or the noise are too high the neural activity can-
not be localized any longer in any one of the environments. For
high noise, the activity, averaged over time, becomes uniform over
space. For high loads the activity is not uniform, but is delo-
calized with spatial heterogeneities controlled by the cross-talks
between the maps. The paper provides quantitative results for the
transition between these states. The authors also analyse storage
capacity of the network, that is a maximum number of environ-
ments for which a stable representation of a given environment
can still be retrieved, as a function of network size and topology.
For the network of the type considered in (Hopfield, 2010), and
so also in our work, the storage capacity is proportional to the
network size and is estimated to be of the order of 10−3 bits per
synapse (for the 2 dimensional space representation and under
the optimal conditions). Interestingly, these results are consistent
with an earlier analysis for a network with a similar topology
but with a different neuron type given in Battaglia and Treves
(1998).

RELATED MODELS
The wave-propagation concept has first been introduced by Dorst
and Trovato as an efficient parallel method for path planning
(Dorst and Trovato, 1988; Dorst et al., 1991) and since then
has widely been used in robotics and computer science (LaValle,
2006). The wave-front methods are essentially the same as
exhaustive or heuristic versions of a classical A∗ search algorithm
(Dijkstra, 1959; Hart et al., 1968) of whose optimality is proven.
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Several neural models for spatial navigation using the concept
of propagating waves have been proposed so far (for reviews
see, e.g., Lebedev et al., 2005; Qu et al., 2009). However, only a
few models addressed a question on how the propagating neu-
ral activity can be transformed into an appropriate configuration
of synaptic connectivity able to later guide an agent to a target
location (Roth et al., 1997; Gorchetchnikov and Hasselmo, 2005;
Qu et al., 2009; Ivey et al., 2011). To the best of our knowledge,
our model is the first one to demonstrate that biologically plausi-
ble, temporally asymmetric synaptic plasticity rules can achieve
this goal. Also, most of the previous models assumed multiple
trials for learning a complete set of optimal paths for every new
selected target location. In contrast, in our model, once an agent
becomes familiar with an environment, a single passage of an
activity wavefront through the network is sufficient to create a
SVF guiding an animal from any possible location in the experi-
enced environment to a target location. Interesting enough, such
an ability of animals to rapidly replan routes if the starting and
goal points are changed to new, random locations within a known
environment has recently also been observed experimentally
(Pfeiffer and Foster, 2013).

BIOLOGICAL RELEVANCE
Parallel exploration as proposed in our model requires mech-
anisms that support stable propagation of expanding waves of
neural activity throughout the network. Conditions for such sta-
ble propagation of spiking activity in biological neural circuits
have been examined both theoretically (Diesmann et al., 1999;
Kumar et al., 2008, 2010) and experimentally (Reyes, 2003; Wu
et al., 2008; Nauhaus et al., 2012). Recent electrophysiological
results suggest existence of expanding waves of neural activity
in the hippocampus during, so called, sharp wave ripple (SWR)
episodes (Ellender et al., 2010). Sharp wave ripples are brief high-
frequency bursts of neural activity observed during sleep or at
awake rest (Buzsaki, 1986). Hippocampal SWRs are frequently
accompanied by sequential reactivation of place cells occuring in
the same- or reverse temporal order as previously experienced
during behavior, but replayed at a compressed time scale (Pavlides
and Winson, 1989; Wilson and McNaughton, 1994; Foster and
Wilson, 2006). Interestingly, reactivation patterns observed in the
awake animals are not always just a simple function of experi-
ence (Gupta et al., 2010), and have also been reported to represent
trajectories never directly or fully experienced by an animal, sug-
gesting a possible role of the awake SWRs in planning, navigation
or decision making (Pastalkova et al., 2008; Buhry et al., 2011;
Foster and Knierim, 2012; Singer et al., 2013). These results point
to the awake-state SWRs as a possible biological candidate pro-
cess for parallel mental exploration as required in our model.
Moreover, it has been suggested that the SWRs provide optimal
conditions for the activation of synaptic plasticity processes, such
as STDP (Sadowski et al., 2011)—which, again, is consistent with
our assumption that a propagating wave of neural activity should
be able to modify connectivity within the network in order to
create structured SVFs.

The SVFs are in turn used in our model to guide behavior.
Indeed we assume that the movement of an agent (an animal)
is guided by the activity of places cells surrounding the present

agent location. Therefore, the problem is to generate motor forces
which will bring into better alignment two “bumps” of neural
activity, one coming from the sensory system representing the
actual location of the agent, and the other clump of neural activity
having a location biased by the modified synapses. In our paper,
this problem is solved by a mathematical algorithm (cf. Methods).
However, neurophysiological experiments suggest that the same
problem can also be solved by a biological neural network, for it
is isomorphic to the problem of moving the two eyes so that the
image of one bright spot is centered on both fovea (Ohzawa et al.,
1990, 1997). A relatively inefficient but fully neural solution to
this two-bump problem was given in (Hopfield, 2010).

As mentioned already, generation of directed connections for
SVFs requires asymmetric STDP rules. Such asymmetry in the
STDP learning windows has been found in the synaptic connec-
tions between hippocampal cells, first in cultured cells (Bi and
Poo, 1998) and more recently also in slice preparations (Aihara
et al., 2007; Campanac and Debanne, 2008).

“Anti-” or “reverse-” STDP, in which a pairing of a pre-
synaptic spike that precedes a post-synaptic spike decreases the
strength of a synapse (Bell et al., 1997; Kampa et al., 2007), was
used in our model to produce the SVF. There are two important
reasons for why “normal” (or “pro”) STDP cannot be used in the
model. If parameters are set in the fashion of (Hopfield, 2010) so
that a clump of activity, once initiated by sensory input, is stable
when sensory input is removed, that clump of activity will move,
following the vector field. Thus, when the “anti” sign is used, the
agent can rehearse mentally the chosen trajectory from its present
location to the chosen goal. It could even, with slight elabora-
tion, communicate a sequential list of way points. Such a natural
behavior of mental rehearsal in sequential order from the starting
point is not available with “pro” STDP, for the clump of activity in
this case moves away from the target. Initiating a clump of activity
at the target location does not create an equivalent in reverse order
because the vector field diverges from that point. Another advan-
tage of using anti-STDP over STDP is apparent for navigation
in the presence of neural noise or external perturbation (physi-
cal forces pushing the agent away from the original path). When
using anti-STDP, flow field lines converge when looking toward
the source of the expanding circular wavefront that generated the
field. When following in this direction, nearby vector field lines all
converge toward the same destination, so noise is attenuated by
the following process and has little effect. When following away
from a source, as would be the case for normal STDP, vector field
lines diverge, the effect of a noise error is amplified, and effects of
noise accumulate.

Our model assumes that whenever a new planning process is
necessary, all synapses are reset to the baseline state and waves of
activity can be initiated from the present target locations to cre-
ate new SVFs. There are several candidate phenomena observed
in the nervous system that could potentially realize the neces-
sary resetting mechanism. One hypothesis, that seems to have
both theoretical and experimental support, is that the popula-
tion bursts during sharp wave ripples could serve this task by
desynchronizing neurons through STDP (Mehta, 2007; Lubenov
and Siapas, 2008). If this is the case indeed, the SWR episodes
in our model would need to serve both tasks: memory erasing
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(hypothetically during the synchronious activation of popula-
tions of neurons) and formation of new memories (during the
reactivation). To the best of our knowledge though, no such
double-function of the SWR has been reported in the experimen-
tal literature so far. Another hypothetic mechanism for resetting
synaptic connectivity in the hippocampus is through the neuro-
modulators. For example Bouret and Sara (2005) point to the role
of noradrenaline in reorganizing the network structure in a way
necessary for memory erasing.

We recognize that not all mechanisms proposed in our work
have experimental support from the studies on hippocampus.
Hence, biological relevance of our model remains hypothetical.
Nevertheless, we believe our approach is useful as a conceptual
model, laying grounds for efficient parallel neural computation
for navigation and path planning.

OUTLOOK
Our model can be usefully expanded in many ways. As mentioned
before, different costs can be associated with the particular path-
ways or spatial locations through the uneven distribution of place
cells and/or uneven distribution of strength of synaptic connec-
tions. This will affect the speed and the shape of the particular
wavefronts, and consequently will determine the boundaries of
the basins of attraction and best path within each basin.

Giving an animal the ability to actively control the speed
of the wavefront propagation through the different regions of
the network would provide a way to encode certain features of
the environment in the path planning algorithm. Imagine that
there is a cost associated with a certain path, e.g., an animal
has to go through a “hazardous” area. This cost can be rep-
resented in the network through relatively weaker or “shorter”
connections between neurons along this path. As a consequence,
a wavefront will have a lower velocity when propagating through
the place cells associated with this path, making the choice of
this pathway less likely. Another possible way to dynamically
control the local speed of the wavefront propagation as a func-
tion of environmental features, is by enabling interactions of
the mental map considered in our present model with other
mental maps, each one encoding for different features of the
same environment. In this case, mental selection of particu-
lar path planning criteria (for example, “find the shortest/the
fastest/the safest path”) would activate interactions between the
“path planning map” and the appropriate feature maps. These
interactions could be implemented through the local excitatory or
inhibitory feedback loops between the “path planning” map and
the selected “feature maps,” triggered by the propagating wave-
front and resulting in the local changes of neuronal excitability,
and so of the wavefront propagation speed in the “path planning
map.”

In our model we use place cells distributed uniformly, having
a single spatial scale, and a simple place field in each of several
separate environments. None of these are literally true in the hip-
pocampus. However, by being an oversimplified idealization, it
has allowed an exploration of rapid computational possibilities in
a network that perhaps over-represents space, and seems a profli-
gate use of neurons. An interesting extension of our work could be
a hierarchical model, where space (or more generally memories)

would be represented by different groups of neurons at different
levels of abstraction.

Several recent studies suggest that the hippocampus can
encode memories at multiple levels of “resolution,” from a
detailed rendition of specific places or events within a single expe-
rience, to a broad generalization across multiple environments
or experiences (Steinmetz et al., 2011; Komorowski et al., 2013).
Indeed, when we think about our own experience, we seem to
be using a context-dependent switching between different rep-
resentations of space. For example, when we plan to drive from
our present location to another place in a town, we typically only
focus on specific points in space when decisions about further
route need to be taken (e.g., “turn left or turn right”)—at this
point we typically don’t think about the details of a highway we
drive on, but rather on “when and where to turn or what exit to
take.” To the contrary, when we need to change a lane on a high-
way, we quickly switch to the “high-resolution” local map and we
use a spatial map of our surround to navigate between other cars
and objects. A similar mechanism could be used in an extension
of our model to increase efficiency of the implementation and to
reduce the demand on resources (number of neurons), without
compromising performance and robustness of computation.

From the application point of view our neural model can be
extended to the path planning problems in systems with more
than two dimensions or in tasks with extra constraints, such as,
e.g., non-holonomic navigation, arm movement planning. Our
model, as a particular implementation of the wavefront expan-
sion algorithm, can also be used for solving variety of optimality
problems from other domains than motor control (Dorst et al.,
1991; LaValle, 2006).

METHODS
The place cell models considered in the paper have been sim-
ulated using adapting leaky integrate and fire neurons. The
dynamics of the neuron models between spikes are defined by the
following formula:

τm
dum(t)

dt
= − (um(t) − ur)

+ Rm(isens(t) + isyn(t) + ins(t) − iinh(t) − iCa(t)),
(1)

τCa
diCa(t)

dt
= − iCa(t), (2)

where um(t) is the membrane potential, τm = CmRm is the mem-
brane time constant, Cm = 1 nF and Rm = 20 M� are the mem-
brane conductance and resistance, respectively, ur = 0 mV is the
membrane potential at rest, isens(t) is the sensory input, isyn(t) is a
sum of the currents supplied by the particular excitatory synapses
entering the given neuron, ins(t) is the non-specific background
current modeled as a gaussian process with zero mean and vari-
ance 5 nA , iinh(t) is the global inhibitory current, iCa(t) represents
a neuron-specific inhibitory current that could be caused by
calcium-activated potassium channels in real neurons.

The neuron produces an instantaneous action potential when
um(t) reaches a threshold of 10 mV, and then um(t) is reset to 0
and held at that value for 2 ms to produce an absolute refractory
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period. Each action potential produced by the neuron allows for
a momentary burst of calcium (Ca2+) ions to flow into the cell
(through high-potential Ca2+ channels) and increments iCa(t)
upward. Calcium ions also leak out, with a characteristic time τCa

usually set at 1–5 s. Because iCa(t) and the internal Ca2+ ion con-
centration of the neuron are proportional, the adaptive effect can
be written in terms of the variables iCa(t), and the cellular inter-
nal Ca2+ concentration is needed only to understand a possible
mechanism of spike-frequency adaptation. The timescale of adap-
tation is set by the size of increment to iCa(t) that occurs when a
neuron spikes.

For the calculation of the total synaptic currents isyn(t) injected
into the particular neurons we use a supra-linear spatial summa-
tion model (Nettleton and Spain, 2000; Urakubo et al., 2004). The
model favors a near simultaneous activation of a neuron from
multiple presynaptic neurons over the activation from a single
neuron. This approach is supposed to decrease the probability of
initiating random wavefronts arising from isolated spikes in the
noisy network. The model for supralinear summation used in our
simulations is described by the following equation:

isyn(t) = asyn = tanh

⎛
⎝bsyn

∑
j

H
(
ij(t)

)⎞⎠∑
j

wj(t)ij(t), (3)

where ij(t) is the synaptic current of the j-th input; wj(t) is the
synaptic strength of the j-th input; H(x) is the step function
[H(x) = 1 for x > 0 and H(x) = 0 for x = 0]; asyn and bsyn are
the positive constants. The particular synaptic currents ij(t) rise
instantaneously and decay exponentially with a 25 ms time con-
stant. The supralinear summation function given by Equation 3
is illustrated in Figure 8.

Sensory currents isens(t) for each place cell are modeled as
having an isotropic Gaussian form around the center of the recep-
tive field for that cell, with the same width and strength for each
neuron. When modeling multiple environments, each cell has a
receptive field in each environment, assigned randomly.

It is assumed that the modeled network contains a set of
inhibitory interneurons whose function is to limit the total activ-
ity of the network. Because the inhibitory feedback is assumed
to be global, and because this essential function is computation-
ally trivial, its effect is modeled in a continuous fashion and using
global variables rather than by using spiking interneurons. Hence
the dynamics of inhibitory population are given by the following
equations:

τe
die(t)

dt
= −ie(t) + ae

∑
j

∑
f

δ
(

t − t
f
j

)
. (4)

{
Ainh(t) ∝ (ie(t) − Ie0) if ie(t) > Ie0,

Ainh(t) = 0, otherwise.
(5)

The variable ie(t) represents the input current to the inhibitory
population from all excitatory cells in the network, whereas
Ainh(t) reflects the activity of the inhibitory population.
According to (4) the current ie(t) decays with a time constant τe

and is incremented by ae by each individual spike fired at time

FIGURE 8 | lllustration of the supralinear and linear summation. The
supralinear function is given by Equation 3. The linear summation function
is defined by: isyn(t) = �j wj ij (t). Here, for the supralinear function we
took asyn = 10, bsyn = 0.05, and for both functions we assumed
wj ij (t) = 1 for all j.

t
f
j (with f -being the label of the spike) by any excitatory neuron

j in the network. The parameters τe and ae are positive and con-
stant; a Dirac function δ(.) is defined as: δ(t) = 0 for t �= 0 and∫

δ(t)dt = 1. According to (5) the population activity Ainh(t) is
proportional to the current ie(t) with a firing threshold Ie0. Given
the activity Ainh(t), the global inhibitory feedback iinh(t) to every
excitatory neuron in the network is assumed:

iinh(t) = ainhAinh(t), (6)

where ainh is a binary gating variable. The gating variable ainh

is set to 1, and accordingly the inhibition is active, during
the network exploration or during the navigation task; whereas
ainh = 0 and the inhibition is deactivated during the wavefront
propagation.

A fully connected network with excitatory connections has
been assumed in all simulations, with all network connections
being initially silent. A typical size of the simulated networks var-
ied from 2000 to 4000 place cells in the particular experiments.
The simulations were carried out using an Euler integration of
the differential equations and a 0.2-ms time step.

SYNAPTIC PLASTICITY
Synaptic connections have been altered according to the STDP
model described by the following equation [cf. Kempter et al.
(1999)]:

dwji(t)

dt
= a + d

⎡
⎣Si(t)

∞∫
0

aij(s)Sj(t − s)ds + Sj(t)

∞∫
0

aji(s)Si(t − s)ds

⎤
⎦,

(7)
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where wji(t) is the synaptic coupling from neuron i to neuron
j, a < 0 is the activity-independent weight decay, Si(t) and Sj(t)
are the pre- and postsynaptic spike trains, respectively. A spike
train is defined as: S(t) = �f δ

(
tf − t

)
, where tf is the f -th fir-

ing time. The terms aij(s) and aji(s) are the integral kernels, with
s being the delay between the pre-and post-synaptic firing times(

s = t
f
i − t

f
j

)
. The kernels aij(s) and aji(s) determine the shape

of the STDP learning window. In our model we use exponential
functions given by (8) to describe the STDP curve, however, other
shapes are also possible.{

aji(−s) = +Aji · exp
(
s/τji

)
if s ≤ 0,

aij(s) = −Aij · exp
(−s/τij

)
if s > 0,

(8)

Here, Aji, Aij are the amplitudes and τji, τij are the time con-
stants of the learning window. In our model we assume that
Aji > Aij >0 and τji = τij > 0. The parameter d in (7) controls
the polarity of the STDP process and can be linked to the concen-
tration of specific neuromodulators known to be able to change
the polarity of the synaptic plasticity in biological synapses (Seol
et al., 2007). For simplicity, in our model d = {−1, 0, 1}. We
assume that during the environment exploration phase d = 1,
and consequently the synaptic connections undergo STDP with
a positive net effect (because Aji > Aij). During the wavefront
propagaton phase: d = −1 and accordingly the synaptic connec-
tions are altered by the reversed STDP rule. No synaptic plasticity
is assumed during the movement execution phase (d = 0).

SYNAPTIC VECTOR FIELD ILLUSTRATION
In Figures 4, 5, 8 we present sample SVFs created by the propa-
gating activity wavefronts. These vector fields are illustrated using
directed arrows originating from the preferred locations of each
place cell in the network. The direction and the length of each
arrow represent, respectively, the direction and the strength of the
vector field in a given location. Here we describe an algorithm
used to illustrate the vector field.

For each neuron ni in the network consider a set Nji of all neu-
rons nj on which ni makes direct synaptic projections. Now for
the neuron ni we define a vector ri(t):

ri(t) =
∑

j

wji(t)
(
xj − xi

)
/
∑

j

wji(t), (9)

We assume that the vector ri(t) begins in the preferred location
xi of place cell ni and ends in a center of gravity of the preferred
locations xj of the neighboring place cells nj ∈ Nji, weighted by
the corresponding connection strengths wji(t).

EXPLORATION ALGORITHM
An exploration procedure was used to establish a set of synaptic
connections appropriate to the topology of a particular envi-
ronment, based on earlier work (Hopfield, 2010). The trajectory
followed was a noisy straight line with constant speed, with a
directional persistence length of the same scale as the largest
dimension of an environment. The trajectory made a specu-
lar bounce when it encountered a wall. During this exploration
the place cells had sensory inputs according to their spatial

receptive fields. Place field centers were assigned on a reg-
ular grid, with Gaussian noise around those locations. Pre-
post synaptic spike pairs were accumulated for each intra-place
cell synapse during the exploration. The potential for synapse
change was evaluated over these spike pairs with a weight-
ing function dwji(t)/dt = exp

(−|ti − tj|/τe
)

and used to select
which synapses should be established. In the equation, wji(t)
is the strength of the synaptic equation from a presynaptic
neuron i to a postsynaptic neuron j; ti and tj are the fir-
ing times of the pre- and postsynaptic neuron, respectively;
τe is the learning time constant. When the exploration is fin-
ished, each place cell j was given incoming synapses of the
same size to the set of m neurons with the largest values of
weights wji.

This procedure is insensitive to the details. Since any trajec-
tory could be traversed in either direction, it will yield virtually
the same set of synapses over a large range of parameters and
variations in the form of S, as long as there is a net positive area
under the curve S, and the exploration is extensive. The resulting
connection matrix is similar to that which would be achieved by
connecting each place cells to its m nearest neighbors.

NAVIGATION ALGORITHM
Once a vector field is created, a simple motor control algorithm is
applied for the animal navigation. The algorithm is performed in
the following steps:

1. A receptive field corresponding to the present animal loca-
tion is activated by applying tonic excitation to the corre-
sponding place cells

2. A weak global, activity-dependent inhibition (cf. Equations
4–6) is applied to suppress random spikes resulting from
the background noise or from crosstalk between different
environment representations.

3. Every spike observed in the network is supposed to act as an
instantaneous attractor causing a pulse of force moving the
animal toward the preferred location of the active place cell:

F(t) = aF

∑
j

∑
f

δ
(

t
f
j − t

) (
xj(t) − xa(t)

)
(10)

H(xa)ẍa + c(xa, ẋa, Fext) − F = 0. (11)

Equation 10 defines the force vector F(t) caused by spikes gen-
erated by place cells active at time t. Equation 11 describes the
dynamics of the animals movement in the physical world. Here
xa(t), x′

a(t) and x′′
a (t) are, respectively, the location, velocity and

acceleration of the animal’s center of mass (for clarity we omit-
ted the symbol t in Equation 11); xj—is the preferred location of

the place cell nj; as before, t
f
j is the firing time of the f -th spike in

neuron nj; δ(.) is the Dirac function; aF is the constant gain, Fext

denotes all possible external forces acting on the animal, H is the
inertia matrix and c is a bias force (Craig, 2004).
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Movie S1 | Path planning and navigation in a network of place cells using

a wavefront expansion concept. This movie is related to Figure 3 and

illustrates two processes: (1) path planning and (2) navigation. In the first

phase—path planning—a wavefront is initiated at the place cells

representing the navigational target B. The wavefront propagating through

the network modifies synaptic connections and creates a SVF with a

single attractor at the location B. Red dots are the action potentials. A

simulated animal is initially located at point A. Activation of the place cells

at A through the passing wavefront triggers the second phase of the

process—the navigation. In this phase, the place cells with receptive

fields covering the current animal location receive strong excitatory

currents from sensory inputs. These cells are indicated in the movie by

green dots. The current animal location is denoted by the yellow circle.

The stimulated cells fire and in turn excite neighboring cells. Due to the

SVF the active cells excite most strongly these neighbors that are located

along an optimal pathway toward the target. A simple motor control

algorithm (Equations 10, 11) is used to move the animal toward the

locations represented by the firing cells, up to the target location.

Movie S2 | Path planning and navigation in a system with multiple

targets. This movie is related to Figure 4. Three wavefronts are initiated

simultaneously at the place cells representing target locations B1, B2, B3.

The expanding waves create SVFs with centers corresponding to the

points of the wavefront initiation. The wavefronts inhibit each other

effectively. The points where the wavefronts meet define borders of the

basins of attractions of the particular SVFs. Red dots flashing on the

screen represent action potentials. A simulated animal is initially located

at point A. Activation of the place cells at A through the passing wavefront

triggers the second phase of the process—the navigation. In this phase,

the place cells with receptive fields covering the current animal location

receive strong excitatory currents from sensory inputs. These cells are

indicated in the movie by green dots. The current animal location is

denoted by the yellow circle. The stimulated cells fire and in turn excite

neighboring cells. Due to the SVF the active cells excite most strongly

these neighbors that are located along an optimal pathway toward the

nearest target. A simple motor control algorithm (Equations 10, 11) is used

to move the animal toward the locations represented by the firing cells, up

to the target location.
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