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We perceive our surrounding environment by using different sense organs. However,
it is not clear how the brain estimates information from our surroundings from the
multisensory stimuli it receives. While Bayesian inference provides a normative account
of the computational principle at work in the brain, it does not provide information on how
the nervous system actually implements the computation. To provide an insight into how
the neural dynamics are related to multisensory integration, we constructed a recurrent
network model that can implement computations related to multisensory integration. Our
model not only extracts information from noisy neural activity patterns, it also estimates a
causal structure; i.e., it can infer whether the different stimuli came from the same source
or different sources. We show that our model can reproduce the results of psychophysical
experiments on spatial unity and localization bias which indicate that a shift occurs in the
perceived position of a stimulus through the effect of another simultaneous stimulus. The
experimental data have been reproduced in previous studies using Bayesian models. By
comparing the Bayesian model and our neural network model, we investigated how the
Bayesian prior is represented in neural circuits.
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1. INTRODUCTION
We are surrounded by many sources of sensory stimulation, i.e.,
many sights and sounds. Moreover, we can recognize who is
speaking in a conversation even when there are many people and
sounds around us. To perform such recognition, we have to inte-
grate correct pairs of stimuli; the movements of a person’s mouth
and the sound of his/her voice. Thus, it is important to determine
how we judge which pairs of audiovisual stimuli are related and
how we integrate related cues. That is, we must study multisen-
sory integration in order to elucidate how our brains link multiple
sources of information. There is a good example of audiovisual
integration known as the ventriloquism effect in which the per-
ceived location of a ventriloquist’s voice is altered through the
movement of a dummy’s mouth (Howard and Templeton, 1966).
It is also known that the ventriloquism effect can be elicited under
artificial experimental conditions such as a spot of light or a beep
(Bertelson and Aschersleben, 1998; Pavani et al., 2000; Lewald
et al., 2001; Hairston et al., 2003; Alais and Burr, 2004; Wallace
et al., 2004). Several theoretical models based on Bayesian infer-
ence have been proposed to explain the data from psychophysical
experiments on the ventriloquism effect (Körding et al., 2007;
Sato et al., 2007). Although Bayesian inference gives a normative
account as to the computational principle, it does not indicate
how the nervous systems actually implement the computation.

To provide insights into the neuron dynamics related to sen-
sory integration, several studies have constructed neural network
models that implement Bayesian inference (Pouget et al., 1998;

Ma et al., 2006). When stimuli have a common cause, their mod-
els are able to extract encoded information from the activities of
large populations of neurons as reliably as the maximum like-
lihood is able to do (Deneve et al., 1999; Latham et al., 2003).
However, when stimuli have distinct sources, the models cannot
work correctly because they bind cues even when the stimuli do
not have the same source. When the stimuli have distinct causes,
the brain has to estimate the causal structure of the stimuli and
extract information separately from each stimuli. We constructed
a recurrent network model that can implement computations
related to multisensory integration by changing the method of
divisive normalization in the model of Deneve et al. (1999). We
found that our model could estimate not only the locations of the
sources of the stimuli but also the number of sources. By using
computer simulation, we showed that the model accounts for the
data of psychophysical experiments that have been explained by
the Bayesian model. To elucidate how our brains implement a
Bayesian prior distribution, we tried to determine which neural
connectivities represent the prior distribution.

2. MODEL
We constructed a single layer recurrent network consisting of
N = 1000 analog neurons with identical spatial receptive fields.
Here, we will label a neuron, i, by an angle θi and express the fir-
ing rate as a function of θ; therefore, a neural state, ui, describes
the firing rate of the neuron population (including both exci-
tatory and inhibitory neurons) with the preferred angle, i. In
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order to reduce the number of parameters and facilitate analy-
sis of the system’s behavior, we will study a simpler model, in
which the excitatory and inhibitory populations are collapsed into
a single equivalent population. To model a cortical hypercolumn
consisting of a single layer of neurons, we assumed that the pre-
ferred orientations are evenly distributed from −50 to 50 deg and
divided 100 deg into N = 1000 sections, that is, θi = 0.1 × i − 50
deg. The neural state, ui, is determined by inputs, ai, as

ai(t) = hi +
N∑
j

Jijuj(t), (1)

where hi represents an external input and the second term of
the right-hand side of the equation represents a recurrent input.
Using ai, we defined the firing rate ui as

ui(t + 1) = [ai(t)]+
1 + 1

N

∑N
j [aj(t)]+

. (2)

To keep ui positive, we used the threshold linear function [ai]+
([ai]+ = ai if ai > 0, [ai]+ = 0 if ai ≤ 0). To control the gain of
the firing rate ui, we used divisive normalization Carandini et al.
(1997). The interaction in the network turns noisy input into a
smooth hill shape. The cap coordinate of the hill gives an esti-
mate of the orientation. In a previous study, Deneve et al. (1999)
defined a function ui(t) in terms of the square of the input ai

û(t) = ai(t)2

1 + 1
N

∑N
j aj(t)2

. (3)

In order to collapse the excitatory and the inhibitory populations
into a single equivalent population, we assumed that the synap-
tic weight, Jij, is a Mexican-hat-type connectivity: excitations are
given to nearby neurons, inhibitions to distant neurons (Figure 1;
Amari, 1977; Shadlen et al., 1996). We defined:

Jij = M1√
2πσ 2

1

exp

(
−(θi − θj)

2

2σ2
1

)
− M2√

2πσ 2
2

exp

(
−(θi − θj)

2

2σ2
2

)
.

(4)
The parameters σ1, σ2, respectively define the range of the exci-
tatory connection and lateral inhibition. Here, we set M1 =
28, M2 = 10, σ1 = 1.5[deg], and σ2 = 3[deg]. The two features in
our model, i.e., weak normalization and lateral inhibition, make
differences between ours and Deneve’s model, and they enable
our model to reproduce the results of psychophysical experiments
(as discussed in the Results).

Let us consider an external input, h, from either a preceding
layer or from the external world. The external input of neuron i,
hi, is dependent on the orientation encoded in the previous layer
and is Gaussian distributed with mean 〈hi〉 and variance σ2

i . We
define

hi = MV√
2πσ 2

V

exp

(
−(θi − xV )2

2σ2
V

)
+ MA√

2πσ 2
A

exp

(
− (θi − xA)2

2σ2
A

)
+zi,

(5)
where zi denotes noise. We set σ2

i to the mean activity, i.e.,
σ2

i = 〈hi〉, which better approximates the noise measured in the

cortex Shadlen and Newsome (1994). The standard deviations σV

and σA respectively represent the uncertainties of the visual and
audio input. Note that the strength of the input activity, M√

2πσ 2
,

is determined not only by M but also by the uncertainty of the
input, σ, in our model. We assumed that the visual input is more
reliable than the audio input. To investigate the effect of the dif-
ference in uncertainty between visual and audio input, we fixed
MV = MA = 10, σV = 1[deg], and σA = 2[deg]. Thus, the input
strength of visual input is larger than that of audio input, i.e.,

MV√
2πσ 2

V

> MA√
2πσ 2

A

. An example of external input to the network

is given in Figure 2.
Now let us explain xV and xA in Equation 5. xV and xA rep-

resent the input locations of audiovisual stimuli. We assume that
the audio and visual stimuli are Gaussian distributed:

xV ∼ � (SV , σ2
Vx), xA ∼ � (SA, σ2

Ax). (6)

FIGURE 1 | Mexican-hat-type connectivity Jij : excitations are given to

nearby neurons, inhibitions to distant neurons.

FIGURE 2 | Example of input to the network (broken line) and mean

input (solid line).
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A B

FIGURE 3 | Output of network model. (A) Common cause; (B)

independent cause.

A B

FIGURE 4 | Model comparison in the case of independent cause. (A)

Our network model; (B) weak normalization model without lateral inhibition.

We fix σVx = 3 [deg] and σAx = 6.5 [deg]. Here, � (μ, σp) means
a Gaussian distribution with mean μ and standard deviation σ.
The external input, hi, is given in the initial five steps (0 ≤ t ≤ 4).
The noisy input, hi, determines the initial state of ui [ai(0) = hi].
Because of the recurrent connections and neural dynamics (See
Equation 1 and Equation 2), the noisy neural states become a
smooth hill whose peak indicates the estimated position of the
audiovisual stimuli (Figure 3).

3. RESULTS
By using computer simulations, we showed that our network
model can estimate the position(s) of the sources of audiovi-
sual stimuli with a disparity between the stimuli. We found
that while previous models could not reproduce psychophysi-
cal experiments of the audiovisual integration, our results are
consistent with both experimental observations and Bayesian
inference. If the disparity of the input stimuli was small (xA −
xV = 5 [deg]), the stimuli were integrated with a high rate (about
70%) (Figure 3A). If the disparity was large, they were estimated
as distinct stimuli (Figure 3B), something which could not be
reproduced in previous models where the normalization term
in Equation 2 is determined by the square sum Deneve et al.
(1999). We found that in the previous network model, they were
estimated not as distinct stimuli but as a united stimulus for
any spatial disparity. The failure of Deneve’s model to reproduce
the phenomenon is partly the result of the strong divisive nor-
malization they used (Equation 2), because the strong divisive

A B

FIGURE 5 | Frequency of the network model estimating stimuli having

a common cause. (A) Proportion of unity with sensory noise
[xV ∼� (SV , σ2

Vx ), xA ∼� (SA, σ2
Ax )]. (B) Proportion of unity without noise

(SV = xV , SA = xA).

normalization prunes weak multiple input peaks and extracts
the maximum peak. Another reason for the failure of reproduc-
tion is the lateral inhibition between neurons. Figure 4 compares
the models in the case of independent causes. Similarly to the
Deneve’s model, in a weak normalization model without lateral
inhibition, they were estimated not as distinct stimuli but as a
united stimulus for any spatial disparity, as shown in Figure 4B
Marti et al. (2013). Thus, both weak normalization and lateral
inhibition in our model are important for reproducing the results
of the psychophysical experiments on audiovisual integration.

3.1. EFFECT OF SENSORY NOISE
We assumed that information about the orientations of the audio-
visual stimuli from sense organs, xV , xA, are corrupted with sen-
sory noise. This noise makes the output probabilistic (Figure 5A).
If we didn’t add noise, the number of sources would be completely
determined by the spatial disparity D (Figure 5B). Experiments
have shown that people estimate the number of sources stochas-
tically Wallace et al. (2004).

3.2. BIAS
Psychophysical experimental research has reported that when
audiovisual stimuli were estimated as distinct stimuli, the esti-
mated position of the auditory stimuli was away from the actual
position of the auditory input Wallace et al. (2004). To examine
how the perception of common versus distinct causes affects the
estimation of the auditory stimuli position, ŜA, we calculated the
localization bias,

bias = ŜA − SA

SV − SA
. (7)

We performed 500 simulations and averaged the localization bias
for each disparity between the audiovisual stimuli and for each
case, i.e., common and distinct. We compared our model and the
previous model of Deneve et al. (1999). In the previous model,
the stimuli were unified with any spatial disparity (Figure 6A).
The value of the localization bias was nearly 100% with all spatial
disparities. This means their model estimated the audio stimulus
as noise. Our model made estimates about whether stimuli have
a common cause or distinct causes stochastically (Figure 6B).
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When two stimuli were unified, the localization bias was nearly
80%. This indicates that when there was a common cause, the
estimated auditory stimulus would be at a position that was on
average very close to that of the visual stimulus. On the other
hand, in the case of distinct causes, the localization bias took a
negative value and was increasingly negative for smaller dispar-
ities. These results indicate that the estimated auditory position
seems to be pushed away from the location of the visual stimulus,
as was experimentally observed Wallace et al. (2004).

4. BAYESIAN PRIOR IN A NEURAL NETWORK
Bayesian inference is a method of reasoning that combines prior
knowledge about the world with current input data. To be
more precise, from experience we may learn how likely two co-
occurring signals (visual and auditory signals) are to have a com-
mon cause versus two independent causes. Using the Bayesian
prior, a Bayesian inference model integrates those pieces of infor-
mation to estimate if there is a common cause and to estimate
the positions of cues. Previous studies have reported that Bayesian
inference could explain the pattern of localization bias as repro-
duced by our model (Figure 6C) (Körding et al., 2007; Sato
et al., 2007). Considering that our neural network model and
the Bayesian model could explain the same psychophysical exper-
iment, there should be a neural connection in our model that
represents prior information. We searched for the parameter of
our network model that corresponded to the prior information
of the likelihood of sensory integration.

4.1. MULTISENSORY INTEGRATION IN THE NEURAL NETWORK
To simplify the comparison between the network model and
Bayes model, let us consider a case in which we receive sensory
inputs without noise (xV = SV , xA = SA). The distance between
audiovisual stimuli D determines the causal structure in this case
(Figure 5B), and we can determine the integration threshold DNet

0
(the distance within which the auditory and visual signals are
integrated). When DNet

0 is determined, we can calculate the pro-
portion of integration with noise as follows. When the distance
between the audiovisual inputs, xV − xA = Dinput , is lower than
DNet

0 , stimuli integrate. Dinput is drawn from a normal distribu-
tion with mean SV − SA = D, which is the distance between the
original positions of the audiovisual stimuli, and standard devi-

ation
√

σ2
Vx + σ2

Ax, which is the sum of the auditory and visual

noise. Using DNet , we obtain the proportion of integration as a
function of D,

I(D) =
∫ D+DNet

0

D−DNet
0

1√
2π(σ2

Vx + σ2
Ax)

exp

(
− t2

2(σ2
Vx + σ2

Ax)

)
dt.

DNet
0 determines the likelihood of sensory integration. We inves-

tigated the relationship between the parameters of the neural
connection Jij and the Bayesian prior distribution regarding the
integration threshold.

4.2. INTEGRATION THRESHOLD IN BAYESIAN MODEL
Using the Bayesian approach, we can also calculate the integra-

tion threshold D
Bay
0 (distance within which auditory and visual

signals are integrated in the Bayesian view) as follows (Körding
et al., 2007). We determine whether the stimuli originate from the
same source (C = 1) or two sources (C = 2). The perceived loca-
tions of audiovisual stimuli xV , xA are shifted from their original
position using Gaussian noise with standard deviations of σV , σA.
Accordingly, we calculate the probability of C = 1 using Bayes’
theorem (Körding et al., 2007):

p(C = 1|xV , xA)

= p(xV , xA|C = 1)pco

p(xV , xA)
(p(C = 1) ≡ pco)

= p(xV , xA|C = 1)pco

p(xV , xA|C = 1)pco + p(xV , xA|C = 2)
(
1 − pco

) .
When the source locations from the audiovisual signals are uni-
formly distributed in the spatial range [−a/2, a/2], we obtain

p(C = 1|xV , xA) = aq(D)pco

aq(D)pco + 1 − pco
(8)

where

q(D) ≡ 1√
2π(σ2

V + σ2
A)

exp

{
− D2

2(σ2
V + σ2

A)

}
. (9)

We assume that the Bayesian model reports the same source when

p(C = 1|xV , xA) > p(C = 2|xV , xA). We define D
Bay
0 as a distance

D that satisfies p(C = 1|xV , xA) = p(C = 2|xV , xA). As shown in
Equation 8, the Bayesian prior Pco affects the judgment of unity.

We investigated how Pco affects D
Bay
0 (Figure 7).

When the causal structure is defined, we can calculate the opti-
mal estimate of the stimulus position for the cases of C = 1 and
C = 2. When the audiovisual stimuli have independent causes,
the optimal solutions are

x̂V,C=2 = xV , x̂A,C=2 = xA. (10)

When the audiovisual stimuli have a common cause, the optimal
solution is

x̂V, C = 1 = x̂A,C = 1 =
xV

σ2
V

+ xA

σ2
A

1
σ2

V
+ 1

σ2
A

. (11)

We calculated the localization bias using the Bayesian model
(Figure 6C). Here, we fixed Pco = 0.2, σV = 3 [deg], and σA =
6.5 [deg].

Both the Bayesian prior Pco and recurrent connectivity Jij affect
the integration threshold D0. Thus, the integration threshold D0

validates the idea that the Bayesian prior Pco corresponds to a
recurrent connectivity Jij in the cortical neural network.

4.3. NETWORK CONNECTIVITY REPRESENTS BAYESIAN PRIOR PCO

Synaptic plasticity is thought to be the basic phenomena under-
lying learning. It could be said that a neural network learns a
Bayesian prior by changing its connectivity. We investigated how
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A B C

FIGURE 6 | Localization bias with spatial disparity D. Error bars
represent SEMs. (A) Previous model Deneve et al. (1999). (B) Proposed
model. (C) Bayesian model Körding et al. (2007); Sato et al. (2007).
“Common cause” refers to the situation in which the model regarded that
two sensory signals have a common cause (i.e., the network converged to
a single bump state) and “independent cause” refers to the situation in

which the network regarded that two sensory signals have independent
causes (i.e., the network converged to a state of two single bumps or the
MAP estimate of the Bayesian model corresponds to two sources). The
negative bias indicates that the perceived auditory position is on the
opposite side of the true position with respect to the position of the visual
stimulus.

A B

C D

FIGURE 7 | Threshold of integration. (A) The thresholds of the Bayesian
model are plotted with the prior of sensory integration. (B) The thresholds
of the network model are plotted showing the ratio of the strengths of the
excitatory connection, M1, and inhibitory connection, M2, of the recurrent
network. (C) The thresholds of the network model are plotted with the
range of excitatory connection, σ1. (D) The thresholds of the network
model are plotted with the range of lateral inhibition, σ2.

the parameters of the network connectivity Jij affect the integra-
tion threshold, as shown in Figure 7. DNet

0 increases with the ratio
between the strength of excitatory connection, M1, and that of the
inhibitory connection, M2. It approximately increases with the
range of excitatory connection, σ1, similarly to the ratio between
M1 and M2, whereas it varies with a non-monotonic shape for the
range of lateral inhibition, σ2, as illustrated in Figure 7D.

Let us focus on the excitatory connection that could be
changed through Hebb’s learning rule. As shown in Figures 7A,

B, DNet
0 increases with M1 in the same way as D

Bay
0 increases with

Pco. This means that the Bayesian prior Pco is represented as M1 in
the network model. This result suggests that the neural network

achieves Bayesian inference through learning appropriate prior
information by adjusting the excitatory connection M1.

5. DISCUSSION
We constructed a recurrent network model that distinguishes
whether or not audiovisual stimuli have a common cause or dis-
tinct causes. We showed that our model not only estimates the
number of sources, but also reproduces the localization bias, as
observed in psychophysical experiments Wallace et al. (2004).
Previous studies have revealed that the Bayesian ideal observer
model could explain psychophysical data on sensory integration
Körding et al. (2007); Sato et al. (2007). Although a Bayesian
model gives a normative account of the computational principle,
it does not provide a neural implementation of optimal causal
inference. Our model is a biologically plausible one of cortical
circuitry, and it provides information about how the nervous
system can implement the computation Carandini et al. (1997).
To reveal how the nervous system implements Bayes’ inference,
we investigated the relationship between the synaptic connec-
tion of the proposed model and the prior distribution in the
Bayesian model. We found that the strength of the excitatory con-
nection represents the prior distribution for the probability of
integration.

Previous research has used divisive normalization for the fir-
ing rate, serving as a gain control. The network model extracted
variables encoded by a population of noisy neurons Deneve
et al. (1999). The neural activities converged to a smooth stable
peak, and the position of the peak depended on the variables.
Therefore, the position could be used to estimate these quantities
in their model. Moreover, through proper tuning of the param-
eters, the model closely approximated the maximum likelihood,
which would be used by an ideal observer in most cases of inter-
est. However, two or more localized activities could not coexist in
the previous network model. The model thus could not simul-
taneously estimate information about multiple sources, which
is needed for living in a natural environment. We found that
strong divisive normalization makes it hard for localized activi-
ties to coexist. Iteration of Equation 3 makes the ratio of local
excitations large, and eventually, only the largest one can survive.
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This effect occurs if the exponent is greater than 1. We constructed
a model in which an arbitrary number of local excitations could
coexist by making the exponent equal to one. This simple normal-
ization can be biologically implemented in a linear computation
and shunting inhibition Carandini et al. (1997). Although our
network may not achieve optimal inference for each source posi-
tion, it is biologically plausible and can reproduce the properties
of auditory-visual integration observed in psychophysical exper-
iments. These results imply that normalization with a threshold
linear function is important in multisensory integration with
causal inference.

We reproduced the results of psychophysical experiments
showing localization bias in audiovisual integration. Whenever
stimuli were unified, the model estimated that the auditory posi-
tion would shift to the location of the visual stimulus. This
phenomenon is caused by the difference in the reliability of the
stimuli. That is, because visual information for source localiza-
tion is much more reliable than auditory information, vision
dominates sound. Moreover, it is also known that when an audi-
tory signal is more reliable than a visual signal, sound dominates
vision Alais and Burr (2004). It is reported that localization
bias is observed in some cross-modal cues Pavani et al. (2000).
Our model represents the reliability of stimuli by the strength
of the input activity. It can be generalized to other types of cue
integration by changing the strength of the input activity.

The results of psychophysical experiments have been explained
using Bayes’ inference Körding et al. (2007); Sato et al. (2007).

Bayes’ inference is a method of reasoning that combines prior
knowledge with current input data. In our brains, information
about the external world is estimated on the basis of prior knowl-
edge Doya et al. (2007). However, until now, it was unknown how
prior knowledge can be represented in a neural circuit. We investi-
gated how a neural network can implement prior knowledge. Our
results suggest that neural networks learn an appropriate prior
with synaptic plasticity.

In the Bayesian model, negative bias is assumed to be caused
by sensory noise Körding et al. (2007); Sato et al. (2007). Stimuli
are unified when the distance between the perceived locations of
audiovisual stimuli which are shifted from their original posi-

tions is smaller than D
Bay
0 ; on the other hand, when it is larger

than D
Bay
0 , the stimuli are not unified. The averaged bias of the

non-unified case takes on a negative value. In our neural net-
work model, not only sensory noise but also the interaction of
localized activities has an effect on the negative bias. Localized
activities repel each other through the effect of a Mexican-hat
type of connectivity (Figure 3). This corresponds to implement-
ing the prior distribution such that of the likely positions of
different input sources, which has not been implemented in
the previous Bayesian models Körding et al. (2007); Sato et al.
(2007). It is unclear where causal inference is performed in the
brain. If the repulsive effect were to be observed in a brain
region that performs multisensory integration, it would sup-
port the notion that our model is actually implemented in the
brain.
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