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In this paper we present the RatLab toolkit, a software framework designed to set up
and simulate a wide range of studies targeting the encoding of space in rats. It provides
open access to our modeling approach to establish place and head direction cells within
unknown environments and it offers a set of parameters to allow for the easy construction
of a variety of enclosures for a virtual rat as well as controlling its movement pattern over
the course of experiments. Once a spatial code is formed RatLab can be used to modify
aspects of the enclosure or movement pattern and plot the effect of such modifications
on the spatial representation, i.e., place and head direction cell activity. The simulation is
based on a hierarchical Slow Feature Analysis (SFA) network that has been shown before
to establish a spatial encoding of new environments using visual input data only. RatLab
encapsulates such a network, generates the visual training data, and performs all sampling
automatically—with each of these stages being further configurable by the user. RatLab
was written with the intention to make our SFA model more accessible to the community
and to that end features a range of elements to allow for experimentation with the model
without the need for specific programming skills.
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INTRODUCTION
When navigating in known environments or exploring new ones,
rats display a distinct spatial code in their hippocampus. It con-
sists of the firing patterns of grid cells in the entorhinal cortex
(Hafting et al., 2005), place cells in the CA3 and CA1 areas
(O’Keefe and Dostrovsky, 1971), and head direction cells in
the subiculum (Taube et al., 1990). During development it can
be observed that head direction cells reach adult-like perfor-
mance as soon as young rats open their eyes. Place cells take until
age P16–P17 to reach adult level, while grid cell arrive there at
age P20–P21 (Langston et al., 2010; Willis et al., 2010). When
rats enter and subsequently move within a novel environment,
their head direction cells as well as the grid cell system anchor
themselves quickly to the available visual cues (Taube and Burton,
1995). Place cells on the other hand require about 10 min of
exploration time—during which single place fields may change
considerably—before the whole system settles into a stable state
(Wilson and McNaughton, 1994; Frank et al., 2004). This encod-
ing of place is persistent and will from then on be available in
the associated environment without the need for further training
(Thompson and Best, 1990).

It is currently unknown how exactly place fields form during
the initial exploration phase of an environment. It seems clear,
however, that visual information plays an essential role in this
process as the spatial representation in the rat is usually bound
to salient visual cues in the environment (Knierim et al., 1995;
Goodridge et al., 1998). It is therefore a straightforward ques-
tion to ask whether we can construct a model that is primarily
built on visual input and able to produce signals featuring the
same peaks in activity that we observe in place field recordings.
(Franzius and Wiskott, 2007) have shown how this can be done
with a hierarchical network of nodes implementing the Slow

Feature Analysis (SFA) algorithm and a final sparse coding step.
This model takes a sequence of images from an exploration phase
as its input for training and afterwards can be sampled over the
environment where it displays the expected firing properties of
different place cells.

One motivation for RatLab is the attempt to provide a user
friendly access point to using this model in further experiments.
Although the core network is described in detail in Franzius and
Wiskott (2007), replicating the software can be time consuming—
and more importantly—largely excludes scientists from other
fields without extended programming experience. RatLab is a
Python based software tool designed to bypass these issues and
allow the easy setup of a wide range of navigational experiments.
It includes the same hierarchical SFA network as described in
Franzius and Wiskott (2007) and offers the additional function-
ality to set up user defined environments, configure the statistical
behavior of the virtual rodent, and produce a multitude of place
code plots.

The software simulates random exploration experiments
where a rat is foraging for randomly thrown food pellets. In such
tasks the rat has no specific goal other than to keep moving in
order to passively generate a stable place code to be observed.
Once established this representation can be examined while being
subjected to various manipulations of the environment. Examples
include stretching a box in a certain direction as done in O’Keefe
and Burgess (1996) or morphing an enclosure from a circular
environment to a rectangular one as presented in Wills et al.
(2005). Other experiments are concerned with the binding of the
place code to prominent visual cues in the environment, where it
can be observed that the spatial representation of the place code
rotates with the rotation of notable cues (Knierim et al., 1995;
Goodridge et al., 1998). All of these experiments merely require
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the random foraging of the rat without the need of an explicit
goal for the rat to reach—as would be the case in experimental
setups like the Morris Water Maze (Morris, 1981). In addition
to experiments based on random movement the user may also
define a list of navigation points which are repeatedly traversed in
the given order. This can simulate a rat that was trained to fol-
low a certain path within a maze—for example to always turn
left at the crossroad of a T-maze, or to always run up and down
a single corridor. Studies like these can aim at the loss of direc-
tional invariance of the place code, i.e., the examination of place
fields that fire only when being traversed in a certain direction as
shown in McNaughton et al. (1983); O’Keefe and Recce (2004)
and reproducible by RatLab.

The following part describes how simulations can be set up
and which parameters and options are available. While this sec-
tion also briefly describes the structure of the framework, the
technical details are summarized in the third part of the text,
including a short overview of the theoretical principle at the heart
of the model.

RUNNING A SIMULATION
In order to allow for easier access to RatLab, the software comes
with several elements to help users familiarize themselves with the
framework. This includes an online tutorial, a short guide to the
packages used by Ratlab, and a script to check whether all of them
are available to Python on a given PC. The RatLab framework
itself consists of four core modules that are run in succession, and
consequently a full simulation is run by a script containing four
calls to this “pipeline” of modules. In order to not burden begin-
ner users with the process of writing a shell script, however, the
RatLab framework includes a hand drawn input mask that looks
like a plain sheet of paper with most of the basic parameters writ-
ten down on it (Figure 1). From these values a basic shell script
can be generated that executes a complete RatLab simulation.
These shell scripts can also be studied together with the RatLab
documentation in order to make use of the full set of the param-
eters available to the software. The documentation also contains

FIGURE 1 | RatLab GUI mask. To facilitate the quick setup of basic
experiments RatLab offers this GUI mask to create a full simulation script
from the presented parameter set. Note that this is primarily a learning tool
to help users to ultimately write elaborate scripts. The values shown in this
example yield the script shown in the second part of this section.

several examples to assist in this and is available by calling any of
the core modules with the “-help” parameter.

The available parameters of the RatLab framework are either
part of the more technical background (like the nearest distance
the virtual rodent will be able to walk up to a wall) or are part of
the setup options for an actual experiment (like placed obstacles
within the enclosure). All of the former, more technical, values
will typically stay the same over several, if not all, simulations
and are therefore collected in a central configuration file that can
be edited with any text editor. The experimental setup parame-
ters on the other hand are implemented as arguments to be used
when calling RatLab’s core Python modules. In this way it is pos-
sible to read a simulation script and clearly be able to tell what the
experiment will look like.

Most setup parameters belong to the first of these core modules
(ratlab.py) which implements the construction and rendering of
the environment as well as the control of the virtual rodent over
the course of the simulation. The available options to this module
include the number of steps the simulation will run, whether or
not visual data should be recorded, and if so, whether it should
be recorded in color, grayscale, or both. In terms of setting up the
enclosure for the experiment the user may choose between several
parameterized presets (see Figure 2) or specify a file describing
a completely user-generated environment. In case of the latter it
is only required to define the start and end points of the desired
wall segments (optionally using user generated textures) in a com-
mon.txt file. If indeed a custom maze is used, RatLab can also
be executed in “wallcheck” mode which renders two overview
images of the environment—one with a raster overlay and one
without—to enable a user to quickly check the floor plan geom-
etry for gaps. For further customization rectangular boxes can be
placed as additional obstacles within the chosen environments.
The textures for all wall segments and obstacles can optionally be
triggered to be the same or cycle through the available set of image
files. These are part of the file structure of the framework and thus
easy to replace, extend, or modify.

The virtual rat cannot be controlled directly. Its behavior is
controlled instead by a collection of parameters that define its
movement statistics over time. This includes the base speed of
the rat, its momentum, and its maximal rotation per time step.
The momentum value controls the curvature of path segments,
with higher momentum values resulting in straighter paths. As

FIGURE 2 | RatLab enclosure templates. RatLab offers a selection of
configurable templates for the most common experimental setups.
Parameters like the radius for a circle maze, or the number of arms for a
star maze can all be chosen freely. RatLab constructs and renders the
specified environment and thereby produces the training data for our
model. It also offers the option to define a fully custom environment in case
none of the presets fits to a desired experiment.
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mentioned in the introduction a distinct series of waypoints can
also be specified to imitate a rat trained on a specific path. This is
done by first rendering the blueprint of the environment with a
coordinate system overlay via the “wallcheck” option. This image
is then used to determine the distinct path coordinates and store
them within a.txt file. Using the “path” parameter, the simulated
rodent heads for each of the specified waypoints in sequential
order. A noise parameter is included to create a more irregular
movement along the path. The amount of this variation is an
example of the values stored in the RatLab configuration file, as
it is unlikely to change over experiments. It can also be speci-
fied whether the virtual rodent’s position should be reset upon
reaching the final waypoint or whether it should continue on to
the first waypoint and thus run in a continuous loop. In addi-
tion to the parameters that focus on movement, it can also be
specified whether the rat should use its full field of view (FoV) of
320 degrees (Hughes, 1979) or be restricted to a FoV of only 55
degrees. This smaller FoV option is provided to train the model
with the narrower FoV of a digital camera, thus enabling RatLab
to more easily work together with robots.

The script produced by accepting the values shown in
Figure 1 is:

python ratlab.py record limit 100000 color star_maze 5 20 80 40
mom 0.6 arc 60 path
star_maze_path.txt loop
python convert.py
python train.py batch_size 10000 ICA noise
python sample.py - 1 32 all

This translates to running a simulation for 100.000 steps while
recording the visual information both as color as well as grayscale
images. The environment is a star maze consisting of five equidis-
tantly positioned arms. The virtual rodent runs with a momen-
tum of 0.6 and during a single time step cannot turn more than 60
degrees. It follows a path specified in the file ‘star_maze_path.txt’
and loops back to the first waypoint upon reaching the final one.
Figure 3 shows a screenshot of RatLab running this particular
setup. After running for the specified amount of time steps a hier-
archical SFA network is trained with the recorded image data,
using 10 batches of 10.000 frames at a time. The network contains
an optional final step of ICA (independent component analysis)
and adds additional noise to the information propagated through
its different layers.

During a simulation a full set of place field plots is created
and stored in a local folder. These fields can be checked for being
directional dependent by comparing sampling plots where the
rat/camera points in a distinct direction to plots that are averaged
over eight different directions. All the necessary plots are auto-
matically generated and uniquely labeled. After executing and
studying basic scripts, users may then use the included documen-
tation in order to learn and make use of the additional parameters
not featured on the basic GUI input mask. This enables multi-
stage experiments as well as adapting RatLab simulations to
specific needs.

One final feature is to use RatLab to train the network in a
generic way. By default, training data consists of images produced

FIGURE 3 | RatLab simulation view. By default RatLab shows an
overhead view of the specified environment. The position and direction of
the virtual rodent is indicated by a red arrow, and the path traversed so far
by a white dotted line. Below this overview the current visual input to the
rat is rendered. In this example the rat is also trained to visit each of the five
arms in succession and does not randomly explore the environment. To
speed up the runtime of simulations some elements of rendering RatLab
frames can be switched off. Screenshots as shown here can be taken at
any time during the simulation by pressing F12; the image is then labeled
and stored in the working directory of the experiment. This simulation is
based on the parameters shown in Figure 1.

by traversing a particular environment and is being used to train
a full hierarchical network. Generic training, on the other hand,
uses a range of natural images as training data and merely trains
the lower layers of the hierarchical network. The images used may
be extracted from real life video streams, parts of movies, or any
other image sequence containing the statistics of natural images
and sufficient variety. This also includes sets of images recorded
over several different RatLab environments. A network trained
this way is able to extract low level features like edges and basic
patterns. The remaining upper layers of the network are then
trained within a single specific environment in order to learn a
place code associated with this enclosure. This overall process has
the benefit of creating a generalized base network that can be used
in several environments by merely training the upper layer in each
one of them. Since only one layer needs to be trained after general-
ized training, this also works faster than training a new complete
network for each of several different environments. Note, how-
ever, that the model has no memory state, i.e., once trained in
a second environment, the place code of a first environment is
usually lost. To facilitate generalized training RatLab offers a tool
to cut out the central parts of a series of images, thus providing
a quick way to produce training data in the format required for
RatLab.

Besides being a more efficient way to train networks for sev-
eral environments, generalized training is also more analogous
to the biological development of the visual system. The lower
network layers are developed first and serve to detect basic fea-
tures like edges. This generic functionality becomes fixed and is
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subsequently reused by the higher layers of the hierarchy in order
to recognize higher level features in the visual input when learning
a new environment.

MODEL BACKGROUND
Understanding the technical details of RatLab is not required to
make use of the toolkit or the model. However, as the complete
package is freely available online, users are encouraged to modify
or extend the framework as they see fit. Thus, the following two
sections describe the theoretical foundation of our approach and
the implementation details of the hierarchical model as it is used
in the software.

SLOW FEATURE ANALYSIS
Our approach to extract place field signals from training with
visual data is based on SFA, an unsupervised learning algorithm
described in detail in Wiskott and Sejnowski (2002). It is built
around the assumption than meaningful information within an
input stream of data varies slowly in time and aims at finding
a way to combine incoming signals in a way as to yield output
signals that satisfy this condition. More precisely, SFA takes a mul-
tidimensional input signal x(t) = [x1(t), x2(t), . . . , xN(t)]T and
finds a set of functions g1(x), g2(x), . . . , gk(x) such that each out-
put signal yi(t): = gi[x(t)] features the least amount of variation
over time possible, i.e.,

�(yi): = 〈
ẏ2

i

〉
t is minimal. (1)

The slowest possible signal would always be a constant value that
does not change over time and thus carries no information. In
order to avoid this, as well as to force SFA to not yield the same
slow signal twice, the set of output signals yi(t) further adheres to
the following constraints:

Zero mean : 〈yi〉t = 0. (2)

Unit variance : 〈y2
i 〉t = 1. (3)

Decorrelation and order : ∀i < j, 〈yi, yj〉t = 0. (4)

The SFA algorithm works by using a (usually quadratic) expan-
sion of the input signal data, whitening it, and computing the
covariance matrix of both the actual signals as well as their
first derivatives. By solving a generalized eigenvalue problem SFA
acquires the eigenvectors of these matrices which hold the val-
ues that in turn serve as the coefficients in the functions gi(x)
(cf. Berkes and Wiskott, 2005).

When training SFA with the quickly varying visual input
stream generated by RatLab a set of functions is found that allow
to extract the more slowly varying location. After training this
established spatial code is available in real time, i.e, the model
requires only a single visual input frame in order to respond with
place field firing at the current position. Note, however, that raw
SFA output alone does not yet display the desired place field pat-
terns. While the nonlinear computation of the SFA hierarchy does
provide a mapping from visual input to distinct location informa-
tion, it is only with an additional step of sparse coding that these
output patterns form place fields as shown in Figure 4. When

FIGURE 4 | RatLab place field results. After training the generated SFA
hierarchy is sampled over the learned environments. Here the resulting
place fields of a variety of simulations are shown. From left to right: a basic
circular enclosure, a radial arm maze featuring five arms, a rectangular box,
a three-arm maze, and a rectangular enclosure filled with a variety of
obstacles along the walls (visible as black dents at the edges of the plots)
and one in the center. Note the five arm star maze plots depicting the
results of the simulation that is defined in the script example of the text and
shown running in Figure 3.

using RatLab this additional step is performed by ICA (indepen-
dent component analysis), a linear transformation that rotates
the raw SFA output to form a more sparse code that results in
clear place fields. Whether ICA is attached to a SFA hierarchy
in RatLab is determined by an “ICA” parameter in the Python
script—it can be seen as a selected option in the RatLab GUI
mask shown in Figure 1 as well as in line number three of the
script example described above. If a network is chosen to be
trained without an additional ICA step the network can be fit-
ted with the missing ICA layer at a later stage by using “add_ICA”
parameter for training. This is useful for being able to look at
the network performance both with and without sparse coding.
This also holds when sampling for head direction cells: the orig-
inal SFA output of a trained network is already sensitive to the
direction of the agent, but not clearly tuned to particular direc-
tions. Only after adding an additional layer coding for sparseness
the model yields the expected head direction plots as depicted
in Figure 5.

SOFTWARE IMPLEMENTATION
When programming in Python the Modular toolkit for Data
processing (MDP) library (Berkes and Zito, 2007) provides a
complete implementation of SFA, encapsulated within a single
node class. The library also contains a package for organizing
such nodes in layered networks and is the primary means to
perform experiments based on the hierarchical SFA approach.
RatLab uses MDP to construct such a hierarchical network con-
sisting of three different SFA layers plus the optional ICA layer
described above (Figure 6). The lowest layer works directly on
the visual input data and is organized in a two dimensional array
of 63 by 9 SFA nodes. Each of these nodes covers a small rect-
angular area of the incoming video stream and learns to extract
simple features based on this section of the input. Neighboring
nodes cover overlapping areas of an input frame in order to facil-
itate feature detection over areas larger than the input window
of a single node. Once trained, these nodes share a wide range
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FIGURE 5 | RatLab head direction results. The SFA hierarchy can also be
trained to respond to the head direction of the agent, as shown in these
samples.

FIGURE 6 | Hierarchical SFA network. Schematic overview of the network
as it is used in RatLab: three layers of nodes performing the SFA algorithm
extract increasingly more abstract information from the visual data stream
generated by the software. A final node implementing sparse coding via
independent component analysis (ICA) translates the raw SFA output into
place cell activity.

of properties with the complex cells found in the primary visual
cortex (Berkes and Wiskott, 2005). The second SFA layer is orga-
nized in the same way and consists of an array of 8 by 2 SFA nodes
with overlapping input ranges. These nodes are trained by the
output signals of the initial SFA layer extract and more abstract
features than the nodes of the first layer. The third layer consists
of a single SFA node that integrates the output of all the sixteen
nodes in the previous layer. A final node implementing sparse
coding works on the output of the highest level SFA node and
is required to extract the place field information as it is shown in
Figure 4.

As comprehensive as the MDP framework is, however, it also
states a barrier of entry for interested parties with only lit-
tle experience in programming. MDP does also not offer any
graphical component to produce the visual data the experiments
described in this text are based upon. RatLab utilizes OpenGL and
the GLUT utility library [OpenGL, GLUT] to provide platform
independent rendering of environments and objects.

In addition, SFA suffers from the “curse of dimensionality”: A
high input dimensionality results in a drastically raised require-
ment of computational resources, i.e., processing power. This is
the actual reason to use the hierarchical network of SFA nodes
described in Franzius and Wiskott (2007) instead of a single SFA
instance. Using this approach any single SFA node within the net-
work has to deal with a significantly lower input dimensionality
than a full image frame, resulting in faster training of the over-
all network. The curse of dimensionality still cannot easily be
dismissed, however. When presented originally in Franzius and
Wiskott (2007) the network was trained on a hardware cluster,
and the MDP library can be used to replicate this parallelized ver-
sion and add it to RatLab. Natively, however, training in RatLab
can optionally be boosted by utilizing an Nvidia graphics card
and the freely available Nvidia CUDA tool set [CUDA]. This
allows for the use of highly parallel graphics hardware as a co-
processor. It is further recommended to use an optimized linear
algebra library like MKL1 [MKL] to speed up computations that
are not relayed to CUDA hardware. In our laboratory the soft-
ware was developed and used on desktop computers fitted with
16 gb of RAM, an Intel i7 quad core CPU, and a Nvidia GeForce
GTX 580 graphics card. On these machines it is possible to pro-
duce results as presented in this work in about 50 min. The
training of the network takes around 11 min; while most time—
about 32 min—is spent sampling the trained networks for the
final plots.

As mentioned earlier the RatLab source code primarily con-
sists of four Python core modules. Any automatically generated
and most manually written RatLab scripts will thus contain four
calls to execute each of these Python programs with the specified
parameter selection. Each module implements one step to pro-
duce all desired plots from the parameterized description of an
experiment:

(a) ratlab.py: The rendering and recording of the simulation
environment as the virtual rodent navigates the environment.

(b) convert.py: Converting the data from single image frames
into a single non-human-readable data file.

(c) train.py: Training the specified SFA hierarchy with the gener-
ated visual data.

(d) sample.py: Sampling the network over the complete enclo-
sure and generating plots as specified.

These four modules create the following data in this order:

(a.1) The visual data in the form of single color and/or grayscale
images.

(a.2) A summary of the experiment including trajectory data and
a screenshot of the final state of the experiment to judge
how well the enclosure has been traversed by the virtual rat.

(b) The visual data stored in a single, not human readable file.
(c) The trained network stored in a separate file for future use.
(d) All the specified plot images sorted into clearly labeled

directories.

1MKL is free to use for academic purposes.
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FIGURE 7 | RatLab reference walkthrough. Here a complete simulation
walkthrough is detailed: (A) The initial command to confirm the experimental
setup via the wallcheck option. (B) The generated wallcheck image depicting
the correct alignment of all walls and a coordinate raster overlay. The latter is
being used as a reference to find the required coordinates for a path that
leads the simulated animal successively into each of the arms of the maze.
(C) The full command to run and record the experiment using a text file
storing the coordinates found in the previous step. (D) A screenshot of the
final state of the simulation showing the area covered by the virtual rodent,
the final image of the visual stream, and the now filled progress bar of the

simulation. (E) The command to collect all image data within a single file. (F)

Training a new network with the collected data; the network is set to include
an additional ICA node at its top and is being trained in batches that fit
comfortably in system memory. (G) The sampling command to record the
slowest 32 signals at each valid coordinate position of the environment. Each
location is sampled while looking in eight different directions, as denoted by
the “all” parameter; afterwards plots are generated to archive the signal
activity in each of the sampled directions as well as an average over all of
them. (H) Shows three examples of the averaged spatial activity of three
cells/signals. The whole process is completed in about 50 min.

After training the actual network is available as a.tsn file,
which contains the network as a compressed Python object. Other
Python scripts can access this file and extract the stored network
via the following lines of code:

import pickle
tsn_file = open(“networkFileName,” ‘rb’)
sfa_network = pickle.load(tsn_file)

The idea of separating the distinct steps of the simulation is to
offer the ability to only use the distinct processing step(s) that
are currently of interest. In this way a network can be trained
once and sampled over various different environments without
the need to execute the whole software pipeline multiple times or
any additional parameters to specify which stages of the pipeline
should be executed and which should not. Trajectory and image
data can be re-used as well, for example by applying additional
image filters to the visual data and training two networks with the
raw and filtered data set—or even compare SFA results with a dif-
ferent model that adheres to the same input/output conventions
by replacing the default training module with a custom made one.
Another example is using a robot to take pictures for training a
network, and then using this network to facilitate place field based
navigation on the robot, merely requiring sensory input and thus
able to ignore the internally accumulating error of an approach
based on motor information and path integration.

DISCUSSION
This paper presents RatLab, a Python framework to set up
and simulate rodent studies examining the hippocampal place
code and its reaction to environmental modifications, agent
movement statistics, and specific input modulations. RatLab is
based on the SFA algorithm which has been shown to produce
plausible place fields based on visual training alone, and the
toolkit allows for open access to this model without any pro-
gramming requirements. The software includes all steps from
rendering a specified environment with a 320 degree field
of view, training the actual network, and automatically pro-
ducing finished place field plots. The full Python source for
RatLab is freely available together with a collection of addi-
tional tools, tutorials, and examples for advanced simulation
scripts.

In its current version RatLab is being used as part of a larger
project based on three concurrent threads: physiological studies
in real rats foraging in a virtual reality apparatus, robot experi-
ments with ePuck agents [ePuck], and further software models of
the hippocampal spatial code. RatLab takes part in every aspect
of these: it can offer predictions and experiments to the physiol-
ogy laboratory with emphasis on experiments that either cannot
be done at all or would require an excessive amount of effort to
do in the physical world. With the option to switch to the field
of view available to digital cameras, RatLab can simulate exper-
iments to be performed in robots. And finally, trained networks
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produced by RatLab can be used as modules in a larger soft-
ware framework and thus be part of a more elaborate architecture
to examine the formation and plasticity of the hippocampal
place code. Overall, the RatLab toolset serves as an example
of how computational models can be useful in facilitating an
interdisciplinary approach to neuroscience: experimental stud-
ies can be supported and enhanced, while measurement results
lead to refinements in the model. The actual work can be
performed in a largely independent manner for the involved
groups as coordination merely needs to take place when pro-
ducing new results and/or deciding on follow-up studies. As
such, software models like RatLab can offer the advantages of
theoretical simulation to experimentalists while at the same
time benefiting from real world data to validate the model
itself.

Simulation Steps Summary
For quick reference purposes, Figure 7 summarizes all steps of

a complete simulation.
Online Resources

The complete RatLab package is available for download under
the following address:

http://www.ini.rub.de/research/groups/tns/RatLab.html.en
The website describes the required Python libraries, the neces-

sary steps to install RatLab, and an extensive step by step tutorial
of setting up and running a complete RatLab simulation.
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