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Time-varying excitatory and inhibitory synaptic inputs govern activity of neurons and
process information in the brain. The importance of trial-to-trial fluctuations of synaptic
inputs has recently been investigated in neuroscience. Such fluctuations are ignored in
the most conventional techniques because they are removed when trials are averaged
during linear regression techniques. Here, we propose a novel recursive algorithm based
on Gaussian mixture Kalman filtering (GMKF) for estimating time-varying excitatory and
inhibitory synaptic inputs from single trials of noisy membrane potential in current clamp
recordings. The KF is followed by an expectation maximization (EM) algorithm to infer
the statistical parameters (time-varying mean and variance) of the synaptic inputs in a
non-parametric manner. As our proposed algorithm is repeated recursively, the inferred
parameters of the mixtures are used to initiate the next iteration. Unlike other recent
algorithms, our algorithm does not assume an a priori distribution from which the synaptic
inputs are generated. Instead, the algorithm recursively estimates such a distribution by
fitting a Gaussian mixture model (GMM). The performance of the proposed algorithms is
compared to a previously proposed PF-based algorithm (Paninski et al., 2012) with several
illustrative examples, assuming that the distribution of synaptic input is unknown. If noise
is small, the performance of our algorithms is similar to that of the previous one. However,
if noise is large, they can significantly outperform the previous proposal. These promising
results suggest that our algorithm is a robust and efficient technique for estimating time
varying excitatory and inhibitory synaptic conductances from single trials of membrane
potential recordings.
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INTRODUCTION
Interaction of the excitatory and inhibitory synaptic inputs con-
structs the shape of the receptive fields and can elucidate the
synaptic mechanism underlying the functional activities of neu-
rons. Therefore, inferring synaptic inputs from neuronal record-
ings is an important topic of interest in neuroscience (Shu et al.,
2003; Wehr and Zador, 2003; Priebe and Ferster, 2005; Murphy
and Rieke, 2006; Ozeki et al., 2009; Haider et al., 2013). In many
cases, intercellular recordings of membrane potential (or cur-
rent) under pharmacological blockade spiking activities are used
to estimate synaptic inputs. Estimating synaptic inputs based on
averaging over many trials and linear regression fitting, which
is commonly used, is not always the best methodology because
the trial-to-trial variations of synaptic inputs are ignored. The
significance of such variations in understanding the neuronal
mechanisms of the brain activity (especially spontaneous) and
their key roles in information processing is well reviewed in
(Destexhe and Contreras, 2006).

The main scope of this paper is to develop an efficient recur-
sive algorithm for estimating synaptic inputs from single trials

of recorded membrane potential. We point out two recent stud-
ies (Kobayashi et al., 2011; Paninski et al., 2012) that have used
the well-known Bayesian approach to infer synaptic inputs in
single trials. In both studies, promising results were reported
under low observation noise. Kobayashi et al. (2011) considered
the Ornstein-Uhlenbeck stochastic model with time-dependent
mean and variance as the neuronal model. Kalman filtering
(KF) was then used to track these statistical quantities from
recorded membrane potential. Paninski et al. (2012) used a
compact neuronal model associated with two differential equa-
tions representing the dynamics of the excitatory and inhibitory
synaptic conductances. Then the sequential Monte-Carlo method
[particle filtering (PF)] was derived for filtering/smoothing the
dynamics of the model. Finally, an expectation maximization
(EM) algorithm (in both parametric and non-parametric man-
ner) was used to infer the time-varying mean of the synap-
tic conductances. Since the above-mentioned studies used the
Bayesian approach, the distributions of synaptic inputs need to
be known as a priori knowledge. This is the major theoreti-
cal drawback of these methods because synaptic distributions
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are unknown in real neurons. Moreover, Kobayashi et al. (2011)
assumed that all excitatory or inhibitory synaptic weights are
identical to obtain an explicit relation between the excitatory and
inhibitory synaptic inputs vs. the mean and variance of input
current, and this assumption does not necessarily hold in real
neurons.

The difficulty in estimating the time course of both excita-
tory and inhibitory synaptic inputs from only a single trial of
the recorded data as compared with other conventional meth-
ods (averaging and estimating the mean of synaptic inputs) is
that the problem is underdetermined since two unknown vari-
ables have to be estimated at each time instant. We propose a
robust recursive algorithm, based on Gaussian mixture Kalman
filtering (GMKF), for filtering/smoothing the dynamics of a com-
pact neuronal model (including synaptic conductances) followed
by an EM algorithm to infer the statistical parameters of such
synaptic inputs. Our methodology provides more degrees of free-
dom for these inputs by estimating their distributions with a
Gaussian mixture model (GMM). Accordingly, as we are deal-
ing with Gaussian distribution for each mixand, KF is considered
as an optimal filtering, which is also faster and easier than the
PF approach (Paninski et al., 2012). Once the neuron dynam-
ics are estimated, we can simply (in a closed form) infer the
time-varying mean and variance of the synaptic inputs using
a non-parametric spline method. Our major contribution in
this paper is the development of a general framework for esti-
mating time-varying synaptic conductances when there is no
pre-assumption about the synaptic conductances dynamics, e.g.,
small changes of amplitudes upon presynaptic spikes (Kobayashi
et al., 2011), exponential distribution of the synaptic input,
or exponential non-linearity to describe the presynaptic input
(Paninski et al., 2012). Note that, in the special case of a single
Gaussian distribution, our algorithm reduces to the standard KF
used in a recursive framework. The simulation results demon-
strate the accuracy and robustness of our both KF- and GMKF-
based algorithms compared to the PF-based algorithm. While the
proposed general GMKF-based algorithm exhibits accurate and
robust performance over the entire range of parameters studied,
our KF-based algorithm exhibits fast and simple estimation in
many representative scenarios. Thus, our general GMKF-based
algorithm is a promising tool in neuroscience for estimating exci-
tatory and inhibitory synaptic conductances from single trials of
recordings.

The organization of the paper is as follows. In Section
Materials and Methods, we introduce the problem of estimat-
ing excitatory and inhibitory synaptic conductances (inputs).
In addition, sufficient details of our proposed algorithms are
explained in this section. In Section Results, we present our sim-
ulation results and statistical analysis on the performance of the
proposed and existing algorithms. Finally, in Section Discussion,
some discussions and concluding remarks are given.

MATERIALS AND METHODS
PROBLEM FORMULATION
A reasonable neuronal model similar to Paninski et al. (2012)
represents the dynamics of a single-compartment neuron that
receives synaptic inputs. The observed membrane potential shows

the sub-threshold membrane voltage (active channels are phar-
macologically blocked). This model can be expressed as follows.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V(t + 1) = V(t) + dt[gL(EL − V(t)) + gE(t)(EE − V(t))

+ gI(t)(EI − V(t))] + w(t)

gE(t + 1) = gE(t) − dt gE(t)
τE

+ NE(t)

gI(t + 1) = gI(t) − dt gI(t)
τI

+ NI(t)

(1)

where V, gE, and gI are the dynamics of the neuron indicating
the membrane potential and excitatory and inhibitory synaptic
conductances, respectively, w(t) is white Gaussian noise of vari-
ance σ2

w, NE(t) and NI (t) are the instantaneous excitatory and
inhibitory synaptic inputs to the neuron at time step t (Koch,
1998; Huys et al., 2006; Paninski et al., 2012), respectively, and
dt is the time bin that may differ from the voltage recording
sampling time (Paninski et al., 2012). Note that the time index
t takes integer values between 0 and T, where T × dt is the entire
(physical) time of recording. We assume that these time steps are
equidistant and represent the actual physical sampling duration.
Similar to Kobayashi et al. (2011) and Paninski et al. (2012), the
reversal potentials EL, EE, and EI , the leakage conductance gL, and
the synaptic time constants τE and τI are known. Note that the
capacitance of the membrane potential is set to 1 μF and therefore
removed from (1).

Our objective in this paper is to assess the time trace of
the excitatory and inhibitory synaptic conductances, gE and gI ,
as well as the corresponding synaptic inputs NE and NI from
noisy membrane potential using the known Bayesian approach.
To optimally reconstruct the time course of the excitatory and
inhibitory synaptic conductances, we have to determine the prob-
ability distributions of the corresponding synaptic inputs, as the
a priori knowledge in the Bayesian approach. Most of previ-
ous studies used Poisson distribution as the distribution of the
synaptic inputs (Kobayashi et al., 2011) [see also Paninski et al.
(2012) that derived PF for the exponential distribution]. Here we
use a weaker assumption about the distributions of the synaptic
inputs, namely, the probability distribution function (pdf) of the
synaptic input can be estimated by a finite number of weighted
Gaussians—GMM. Moreover, by identifying and tracking each
Gaussian component with KF, we propose a general GMKF-based
algorithm. The pdfs of excitatory and inhibitory synaptic inputs
are given by

p (NE(t)) =
G∑

j = 1

αj N
(
μE, j(t), �E, j(t)

)
, NE(t) ≥ 0

p (NI(t)) =
G∑

j = 1

αj N
(
μI, j(t),�I, j(t)

)
, NI(t) ≥ 0 (2)

where μE, j(t) and μI, j(t) are, respectively, the mean of the excita-

tory and inhibitory inputs at time t that belong to the jth mixand
(j ∈ {1 : G}). Here, G is the number of mixands. Similarly, �E, j(t)
and �I, j(t) are the time-varying variances of these inputs at

time t, and αj is the weight corresponding to selecting the jth

mixand. Our goal is to estimate NE(t) and NI (t) in (1) by using
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the GMM in (2). To this end, we are using extended Kalman
filtering (EKF) to estimate the dynamics of (1) followed by the
well-known EM algorithm to infer the statistical parameters of
the synaptic inputs, μE, j(t), μI, j(t), �E, j(t), and �I, j(t) in (2).
By using these statistics as the a priori knowledge, we repeat
our algorithm until no considerable changes in the estimated
dynamics occur.

PROPOSED ALGORITHM, GAUSSIAN MIXTURE KALMAN FILTERING
In this subsection, we present GMKF for identifying the exci-
tatory and inhibitory synaptic conductances of a single neuron
expressed by (1) from noisy membrane potential. In the follow-
ing subsections, we use a notation x(0:t) = {x(0), x(1), . . ., x(t)}
to represent the time trace of variable x from 0 to t. A special case
of the GMKF, i.e., KF, will be described later on. Before describing
GMKF and KF in detail, we introduce a general recursive frame-
work for estimating (tracking) the parameters (dynamics) of a
system whose hidden dynamics are represented by a state space
model.

General framework
Figure 1 shows a block diagram of the general recursive frame-
work for tracking the hidden dynamics and estimating the

FIGURE 1 | A block diagram of the general recursive framework.

Schematic representation of the general recursive algorithm is shown for
tracking the dynamical states and estimating the time-varying stochastic
inputs represented by system (3), where x is the state of the system and y
is the observation. Here, k and θ0 are the iteration number and the initial
values of the statistical parameters, respectively. X and Y are abbreviations
for the entire samples of x and y over time, i.e., X = x (0:T ) and Y = y(0:T ).
θ is the unknown statistical parameters of the system noise and the super
script H represents the matrix transpose operation.

(statistical) parameters of a dynamical system, S, which is
defined as:

S :
{

x(t + 1) = F[x(t)] + v(t)
y(t + 1) = H[x(t + 1)] + ε(t)

(3)

where x(t) and y(t) indicate, respectively, the state vector and the
observation at time t, F and H are the transition and observa-
tion functions, and v(t) and ε(t) are the system noise (or the
unknown stochastic inputs) and the observation noise, respec-
tively. In Figure 1, θ stands for the statistical parameters of v and
ε, e.g., the mean and variances. The objective of the recursive
algorithm shown in Figure 1 is to estimate/track the dynamics
of S as well as infer the statistical parameters of the stochas-
tic sources ν and ε. Although this framework has been used in
Huys and Paninski (2009) and Paninski et al. (2012), we show
the effectiveness and usefulness of this framework for estimat-
ing both the hidden states of a system (in a state-space model
as well as those modeled as convolution relationship) and the
statistics of its input. The recursive algorithm begins with an
arbitrary initiation followed by filtering/smoothing steps (2 and
3). These filtering/smoothing steps are necessary to identify the
hidden dynamics S. Accomplishing this step and calculating the
statistics (mean, variance, etc.) of such dynamics, the parameters
of the stochastic sources can be inferred by using an appropri-
ate optimization technique, e.g., the EM algorithm. Since these
parameters construct the initial values of the next iteration, the
algorithm can stop with an appropriate criterion.

GMKF-based algorithm
In this subsection, according to aforementioned recursive frame-
work, we derive our algorithm for estimating the excitatory and
inhibitory synaptic conductances using GMKF. Let x(t) = [V(t),
gE(t), gI(t)]H denotes the vector of neuronal state at time t. We
can represent the neuronal model (1) by the dynamical system (3)
where the observation function is given by H[x(t)] = Cx(t) with
a vector C = [1, 0, 0], meaning that only the membrane potential
is observed. Similarly, the transition function F is given by:

F[x(t)] =
⎡
⎢⎣ 1 − dt

(
gL + gE(t) + gI(t)

)
, dtEE, dtEI

0, 1 − dt
τE

, 0

0, 0, 1 − dt
τI

⎤
⎥⎦

⎡
⎣ V(t)

gE(t)

gI(t)

⎤
⎦+

⎡
⎣ dtgLvL

0

0

⎤
⎦ (4)

Here, ε is a white Gaussian (observation) noise of variance σ2
ε ,

and the distribution of the system noise (dynamical noise) v(t) =
[w(t), NE(t), NI (t)]H [see (1)] is a GMM containing G mixands.

p(vt) =
G∑

j = 1

αj N
(
μj(t),�v, j(t)

)
,

μj(t) = [0,μE, j(t),μI, j(t)] & �v, j(t) =
⎡
⎢⎣

σ2
w, 0, 0

0, �E, n(t), 0

0, 0, �I, n(t)

⎤
⎥⎦

(5)

Frontiers in Computational Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 109 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lankarany et al. Inferring synaptic inputs using GMKF

where, αj is again the probability of selecting the jth mixand,
and NE and NI , which are of our interest, describe excitatory
and inhibitory synaptic inputs, respectively. Since the distribu-
tion of the system noise is a mixture of Gaussians, one may
simply use KF for each mixand. The major drawback of this
approach is that the number of Kalman filters required to estimate
the conditional probability p(x(t)| y(0:t)) increases exponentially
with time (Kotecha and Djuric, 2003); therefore, computational
costs of this approach becomes very heavy. However, to eliminate
this drawback, we use a parallel dynamic state space and resam-
pling approach (Jayesh et al., 2003). The aim of this approach
is to keep a constant number of Kalman filters for estimat-
ing the conditional probability p(x(t)| y(0:t)) upon arrival of a
new observation at t. In this regard, the conditional probability
p(x(t)|y(0:t)) is approximated by K filters. Then, it is obvious
that K × G Kalman filters are required to represent p(x(t + 1)|
y(0:t + 1)) (see Appendix 1 for more details). Using a resampling
technique, K filters are again selected to approximate the later
probability; hence, the number of filters remains constant at the
arrival of each new observation. Consistent with this description,
p(x(t)| y(0:t)) can be expressed as the combination of K parallel
Kalman filters, as given below,

p(x(t)|y(0 : t)) =
K∑

i = 1

βi(t)p(x(t)|y(0 : t), i) (6)

where p(x(t)|y(0:t), i) indicates the conditional pdf of the ith

filter and βi(t) is the normalized weight corresponding to the
ithKalman filter at the arrival of a new observation at t. At the
arrival of a new observation at time instant t + 1, the conditional
pdf p(x(t + 1)|y(0:t + 1)) is given by the K × G parallel Kalman
filter [since p(x(t + 1)|x(t)) is represented by G mixands].

p(x(t + 1)|y(0 : t + 1)) ≈
K∑

i = 1

G∑
j = 1

γi, j(t + 1)p(x(t + 1)|y(0 : t + 1), i, j)

(7)
where γi, j(t + 1) is the conditional probability of selecting
the ith filter and jth mixand at the arrival of y(t + 1), i.e.,
γi, j(t + 1) = p(i, j | y(0:t + 1)). As mentioned above, to avoid
increasing the number of filters at each new time, we resample
to select the most K probable filters from the K × G filters used in
(7). Consequently, (7) can be re-written as

p(x(t + 1)|y(0 : t + 1)) ≈
K∑

i = 1

βi(t + 1)p(x(t + 1)|y(0 : t + 1), i)

(8)
where βi(t + 1) is obtained by selecting the K most significant
values of γi, j(t + 1). In the next section, the KF is derived for each
i ∈ {1 : K} and j ∈ {1 : G} . The final estimation of the states is the
combination of the results of these filters.

Kalman forward filtering. In KF, we use a set of mathematical
equations underlying the process model to estimate the current
state of a system and then correct it using any available sen-
sor measurement (Haykin, 2001). In EKF, the first-order Taylor

linearization of the non-linear process and measurement model is
used to derive the underlying prediction-correction mechanism.
Using (1), a priori (predicted) state estimate and error covari-
ance matrix can be calculated at each t. Moreover, following the
standard KF for linear time invariant systems, the correction step
calculates a posteriori state estimate and error covariance matrix
for this time instant. These variables will be used in the KF recur-
sive framework for the next time instant t + 1, regarding the
arrival of a new observation. According to the above-mentioned
discussions, after combining results from K Kalman filters and G
mixands at t, we run K × G parallel Kalman filters. Then, resam-
pling to select K filter is accomplished before the arrival of new
observation at t + 1. For each i belonging to {1:K} and j belong-
ing to {1:G}, we aim to calculate the state estimate E{xi, j(t)|
y(0:t)} and state correlation matrix E{xi, j(t)xi, j(t)H | y(0:t)} in
the forward filtering step (see Figure 1) and E{xi, j(t)| y(0:T)}
and E{xi, j(t)xi, j(t)H | y(0:T)} in the backward filtering (smooth-
ing) step using KF approach where E{.} stands for the expected
value and xi, j is the state vector belong to the ith filter and

jthGaussian mixand. For the forward filtering step, for each i and
j, we can apply the EKF approach (Rosti and Gales, 2001) as
explained in Appendix 2. After computing E{xi, j(t)| y(0:t)} and
E{xi, j(t)xi, j(t)H | y(0:t)} in the forward filtering step, resampling
is accomplished to select the most probable K filters. To do so,
γi, j(t) has to be calculated for each i, j at t. Then, γi, j(t) can
be easily sorted in descending order and the highest K values
are selected [corresponding to the most probable state estimate
E{xi, j(t)| y(0:t)} and state correlation matrix E{xi, j(t)xi, j(t)H |
y(0:t)}].

Kalman backward filtering (smoothing). In this step, we obtain
the smoothed state estimate E{xi, j(t)| y(0:T)} and state corre-
lation matrix E{xi, j(t)xi, j(t)H | y(0:T)} and the corresponding
weights γi, j(t) for all i ∈ {1 : K} , j ∈ {1 : G} , t ∈ {1 : T} . This
step is explained in detail in Appendix 3. Calculating E{xi, j(t)|
y(0:T)} and E{xi, j(t)xi, j(t)H | y(0:T)} in the backward filtering
(smoothing) step, we can infer the statistical parameters of the
system noise v via the EM algorithm.

Inferring statistical parameters via expectation maximization.
The EM algorithm is a robust optimization technique for
inferring the parameters of models involving unobserved data
(Dempster et al., 1977), e.g., the excitatory and inhibitory synap-
tic inputs NE(t) and NI(t) in this paper. This algorithm is guaran-
teed to increase the likelihood of the model at each iteration and
therefore can find a local optimum of the likelihood (Paninski
et al., 2012). In this section, the EM algorithm is used to infer the
statistical parameters of (3–5), i.e., the time varying mean (μj(t))
and the variance of the states (σ2

w, �v, j(t)), and the variance of
the observation noise (σ2

ε ). Having sufficient statistics of the state
estimate (mean and correlation matrices) of each mixand j and
filter i (obtained in backward filtering step), we can easily calcu-
late the final state estimate E{x(t)| y(0:T)} as the combination of
the mixtures and parallel filters.

E{x(t)|y(0 : T)} = x̂(t) =
∑

i

∑
j

γi, j(t)x̂i, j(t) (9)
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where x̂(t) =
[

V̂(t), ĝE(t), ĝI(t)
]H

is the state vector estimated by

KF. Note that for the sake of simplicity of expressing notations, we
denote E{xi, j(t)| y(0:T)} by x̂i, j(t). To use the EM algorithm, it is
essential to write the joint distribution of the states and observa-
tion, over time, as follows (X and Y denote the entire samples of
x and y over time, respectively):

p(Y , X, i, j|θ) = p(Y |X, θ, i, j)p(X|θ, i, j)p(i|θ)p(j|θ)
log p(Y , X, i, j|θ) = log p(i|θ) + log p(j|θ) + log p(Y |X, θ, i, j)

+ log p(X|θ, i, j) (10)

We want to maximize the log of the joint probability of the states
and observation via the EM algorithm for each mixture as follows.

max Q
s.t.θ̂

(θ, θ̂) = max
(

E
{

log
(

p(Y , X, i, j|θ̂)
)
|Y , θ

})
(11)

= max

(∫
log
(

p(Y , X, i, j|θ̂)
)

p(X|Y ,θ)dX

)

where

p(X|Y) =
K∑

i = 1

G∑
j = 1

p(i, j|Y)p(X|i, j, Y) (12)

By doing the corresponding calculations to solve (11) (as
described in Appendix 4), we can obtain the mean and variance
of each mixand (for both excitatory and inhibitory inputs). By
combining them, the total mean and variance of the synaptic
inputs as well as the observation noise variance are calculated.
As a result, we can update the statistical parameters of the exci-
tatory and inhibitory synaptic inputs as well as the variance
of the observation noise in the M-step (see Appendix 4 for
full derivation). Inferring all parameters, we can initialize the
next iteration of the recursive algorithm. The algorithm contin-
ues until no considerable changes in two consecutive iterations
occur.

KF-BASED ALGORITHM
The simplest case of our GMKF-based algorithm uses a sim-
ple Kalman filter (G = 1 and K = 1) for the filtering/smoothing
step. By providing the sufficient statistics in these steps, the
non-parametric EM algorithm gives the smoothed mean and
variance (both are time-varying) of excitatory and inhibitory
synaptic inputs. As a brief description of this algorithm, the pdf
p(x(t)| y(0:t)) is approximated by only one Gaussian distribu-
tion. Therefore, E{x(t)| y(0:T)} [or x̂(t), which is given as a
combination of K × G parallel filters in the GMKF] can be cal-
culated through the standard KF. This strategy not only reduces
the complexity of the GMKF-based algorithm but also results in
highly accurate reconstruction of the excitatory and inhibitory
synaptic conductances in many cases where the true (unknown)
distributions of synaptic inputs are nicely approximated by a
Gaussian distribution. Otherwise (when the true distributions
are far from Gaussian), the estimated parameters from the EM
algorithm (which is derived for the Gaussian distribution) give a

smoothed version of the underlying true means and variances.
Two issues have arisen from the specific choice of G = 1 and
K = 1 that we need to clarify. First, the synaptic conductances
have to be constrained as positive values. Second, the EM algo-
rithm has to be derived based on truncated Gaussian distributions
for the synaptic inputs. Note that these would not be an issue if
G > 1 is used because the probability of having negative synaptic
conductances naturally decreases with the number of Gaussian
mixands. It turns out that neither of these issues affects the esti-
mation of the synaptic conductances in the parameter regime
studied here.

The first issue could be easily addressed by using the con-
strained KF (Gupta and Hauser, 2007), for example, implemented
in the convex optimization toolbox CVX (Grant and Boyd,
2012) to penalize the Kalman gain as follows (SDPT3 is another
MATLAB package for semi-definite problem optimization that
can be used):

KC(t) = arg min
{

trace
[
(I − K(t)C)�t − 1

x (t)(I − K(t)C)H

+K(t)σ2
εK(t)H]} (13)

s.t. D(xt−1(t) + K(t)e(t)) ≥ 03 × 1 (14)

where KC(t) is the constrained Kalman gain at t, xt−1(t) and
�t−1

x (t) are the predicted state estimate and state correlation
matrix at t, respectively, and D is diagonal matrix with the values
[−1, 1, 1] preserving the negativity of membrane potential (which
is not necessary and important for results) as well as the posi-
tivity of the synaptic conductances. According to this constraint
optimization, the Kalman gain, at each time t, is calculated such
that the positivity of synaptic conductances is satisfied. It is note-
worthy that our results show that a simple constraining on the
(updated) state estimate Dxt(t) � 0 (xt(t) = xt−1(t) +K(t)e(t)
in standard KF), without applying the constrained optimization
for calculating the new Kalman gain, KC(t), has shown very sim-
ilar performance to that obtained by using (13). This means that
the simple and conventional KF with ignoring negative synaptic
conductances [zero forcing the updated xt(t) for negative synap-
tic conductances], which we use here, is a reasonable alternative
to (13).

The second issue makes the M-step of our EM algorithm more
complicated than we have presented for the GMKF-based algo-
rithm. Here again, we have heuristically found that the standard
EM algorithm assuming Gaussian distributions of the synaptic
conductances works very well because the estimated synaptic con-
ductances rarely take negative values even if the largest noise level
explored in this paper is applied.

RESULTS
NUMERICAL SIMULATIONS
We have considered two conditions to analyze the performance
of the proposed KF- and GMKF-based algorithms, i.e., the con-
ditions with large and small signal-to-noise ratios (SNRs). First,
we conducted two numerical simulations to demonstrate the per-
formance of the KF-based (see Example 1) and GMKF-based (see
Example 2) algorithms with large SNR, similar to Paninski et al.
(2012), where the variances of system noise (σ2

w) and observation
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noise (σ2
ε ) were sufficiently small. Note that estimating excitatory

and inhibitory synaptic inputs in this condition was relatively easy
and the results did not depend much on the algorithms used.
Then, the robustness of the KF- and GMKF-based algorithms
were verified in three subsequent examples (see Examples 3–5)
with small SNR, in which the PF-based algorithm (Paninski et al.,
2012) did not perform well. The time step for our simulations
was 2 ms. In all the simulations our recursive algorithm (for both
KF- and GMKF-based) ran for 10 iterations, which was consis-
tent with previously used parameters (Paninski et al., 2012) and
gave a fair condition to compare our proposed algorithms and
the PF-based algorithm. Other model parameters used were sim-
ilar to Paninski et al. (2012) and summarized in Table 1.We first
graphically show the estimation results and later summarize the
quantifications in Tables 2, 3.

Example 1. In this example, the mean pre-synaptic excitatory
and inhibitory inputs were a non-linear function of their synaptic
fields.

E(NE(t)) = exp(ξE(t))

E(NI(t)) = exp(ξI(t))

where ξE and ξI were sinusoidally modulated (5 Hz) input sig-
nals (amplitude modulation is 1). ξI had 10 ms delay relative
to ξE. The synaptic inputs, both excitatory and inhibitory, were

Table 1 | Characteristics of the neuron model.

EE 10 mV

EI −75 mV

EL −60 mV

gL 80 s

τE 3 ms

τI 10 ms

generated from a Poisson distribution. The variance of (volt-
age) system noise (σ2

w) was negligible and that of observation
noise (σ2

ε ) was 0.5 mV. Obviously, since we used a non-parametric
EM algorithm, ξE and ξI were unknown. Figure 2 indicates the
results of the KF-based algorithm in estimating the excitatory and
inhibitory synaptic conductances.

Example 2. In this example, the pre-synaptic mean functions
were modeled by the absolute value of random realizations of
Ornstein-Uhlenbeck processes (a white Gaussian noise is filtered
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FIGURE 2 | Estimating synaptic conductances and inputs given a

single voltage trace of Example 1 using the KF-based algorithm. Each
panel shows membrane potential (top), excitatory and inhibitory synaptic
conductance (second and third from top), and excitatory and inhibitory
synaptic inputs (fourth and fifth from top), respectively. Black solid lines
represent true values and the red dashed lines represent the estimated
ones. The blue dots (in top panel) represent noisy observations of
membrane potential. The dashed green line describes the membrane
potential reconstructed from the estimated synaptic conductances. The
initial values of the KF-based algorithm were set as follows: The
time-varying means (for both excitatory and inhibitory) were generated
from a uniform distribution and their variances (for both excitatory and
inhibitory) were 1 (for all times).

Table 2 | Statistical analysis of the performances of the GMKF-, KF-, and PF-based (Paninski et al., 2012) algorithms in the example with

structural synaptic input (specifications of the simulation were the same as in Example 4).

Algorithms\features v gE gI

PF 0.0124 ± 1 × 10−3 0.5658 ± 5 × 10−3 0.3046 ± 3 × 10−2

KF 0.0031 ± 0.2 × 10−3 0.4106 ± 0.7 × 10−3 0.2614 ± 0.5 × 10−2

GMKF 0.0033 ± 0.2 × 10−3 0.4611 ± 0.7 × 10−3 0.2876 ± 0.5 × 10−2

The values describe trial means and standard deviations of the normalized estimation error of (15).

Table 3 | Statistical analysis of the performances of the GMKF-, KF- and PF-based (Paninski et al., 2012) algorithms in the example with

non-structural synaptic input (Specifications of the simulation were the same as in Example 5).

Algorithms\ features v gE gI

PF 0.0246 ± 7 × 10−3 0.6678 ± 0.4 × 10−2 0.6479 ± 0.4 × 10−2

KF 0.0233 ± 7 × 10−3 0.6392 ± 0.6 × 10−2 0.6322 ± 0.7 × 10−2

GMKF 0.0147 ± 1 × 10−3 0.4599 ± 0.6 × 10−2 0.5811 ± 0.6 × 10−2

Definition of parameters is the same as Table 2.
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by an exponential filter of amplitude 0.4 and time constant
1.11 ms). The synaptic inputs, both excitatory and inhibitory,
were generated from the Poisson distribution and the observa-
tion noise was negligible. For the GMKF-based algorithm, we set
G = 2 (number of mixands) and K = 4 (number of Kalman fil-
ters; see our discussion about GMKF setting). The variance of the
system noise (σ2

w) was negligible and that of the observation noise
(σ2

ε ) was 0.5 mV. Figure 3 shows the results of the GMKF-based
algorithm for this example.

Example 3. In this example, the mean pre-synaptic input of
excitatory was a cosine function (amplitude 1 and frequency
of 5 Hz) and that for the inhibitory was a constant value
(time-independent). Then, the synaptic inputs were generated
from a Gaussian distribution of variance 1.5 and 0.05, respec-
tively, for excitatory and inhibitory inputs. The small variance
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FIGURE 3 | Estimating excitatory and inhibitory synaptic conductances

given a single membrane potential trace of Example 2 using the

GMKF-based algorithm. Other descriptions concerning this figure are the
same as those in Figure 2. The initial values of the GMKF-based algorithm
(G = 2, K = 4) were set as follows: the time-varying means (for both
excitatory and inhibitory) were generated from a uniform distribution and
their variances (for both excitatory and inhibitory) were 1 for both mixands
(for all times).

of the inhibitory synaptic input generated a very narrow dis-
tribution function (almost delta function). The variances of
the membrane voltage (σ2

w) and observation noise (σ2
ε ) were

10−2 and 5 mV, respectively. These parameters were chosen not
because they are physiologically realistic but they illustrate dif-
ferences in the algorithms. Figure 4 shows the results of the
KF- and PF-based algorithms in estimating the synaptic conduc-
tances from the observed noisy membrane potential generated
in this example.

As can be seen from Figures 2, 3, both the KF- and
GMKF-based algorithms accurately identified the excitatory and
inhibitory synaptic inputs. These results are not very surprising
given the large SNR used in these examples. In fact, the PF-
based algorithm could also accurately estimate synaptic inputs
under similar conditions (Paninski et al., 2012). In the following
examples, we explored cases with a small SNR.

Figure 4 shows that gE and gI as well as the membrane voltage
were better estimated using the KF-based algorithm. It is clear that
the PF-based algorithm could not track either gE or gI . Figure 5
shows the distributions of excitatory and inhibitory synaptic
conductances. It shows that the KF-based algorithm could esti-
mate the true distributions of gE and gI very well, while the
PF-based algorithm failed especially for the inhibitory synaptic
conductance.

In Example 3, we considered an extreme case in which
the inhibitory synaptic input had very narrow distribution.
In this case, the KF-based algorithm (by selecting appro-
priate initiation, i.e., large enough variance) could effec-
tively estimate both excitatory and inhibitory synaptic con-
ductances though the PF-based algorithm completely failed
(see Figures 4, 5). Under this small SNR condition, the prior
distribution of synaptic input made an important contribu-
tion to the results. While the exponential prior distributions
assumed for the PF-based algorithm tended to underestimate
the inhibitory synaptic input, the KF-based algorithm could bet-
ter approximate the inhibitory input by fitting a single Gaussian
distribution.
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FIGURE 4 | Estimating synaptic conductances and inputs given a

single voltage trace of Example 3 using the KF-based (left)

and PF-based (right) algorithms. Other descriptions about the
figure are the same as those in the Figure 2. The initial values
of the KF-based algorithm were as follows: the time-varying

means (for both excitatory and inhibitory) were generated from a
uniform distribution and their variances (for both excitatory and
inhibitory) were 5 (for all times). This initial setting (increasing the
variance) helped the KF-based algorithm to better estimate the
distributions of the synaptic inputs in this example.
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Example 4. In this example, the specifications of the synaptic
inputs were the same as those in Example 1 (amplitude modu-
lation is 1.5 for both excitatory and inhibitory inputs). However,
the variances of the membrane voltage (σ2

w) and observation noise
(σ2

ε ) increased to 10−2 and 5 mV, respectively. Figure 6 shows
the results of the GMKF- and PF-based algorithms in estimating
the synaptic conductances from the observed noisy membrane
potential generated in this example.

The results of each algorithm in Figure 6 confirm that the
gE and gI (and therefore NE and NI) were better estimated
using the GMKF-based algorithm than the PF-based algorithm.
It should be noted that the membrane potential was also bet-
ter tracked using the GMKF-based algorithm. To see how these
algorithms approximate the distributions of the excitatory and
inhibitory synaptic conductances, we plotted histograms of gE

and gI estimated by the GMKF- and PF-based algorithms in
Figure 7. As can be seen from Figure 7, the approximated his-
togram of the GMKF-based algorithm better represents the true
distributions for both excitatory and inhibitory synaptic conduc-
tances.

Example 5. In this example, the pre-synaptic mean functions
were modeled by the absolute value of random realizations of

Ornstein-Uhlenbeck processes (same as Example 2). The synap-
tic inputs, both excitatory and inhibitory, were generated from
the log-normal distribution of variance 1.2. The variances of the
membrane voltage (σ2

w) and observation noise (σ2
ε ) were 10−2 and

5 mV, respectively. Figure 8 shows the results of the GMKF-based
and PF-based algorithms in estimating the synaptic conductances
from the observed noisy membrane potential generated in this
example.

Similar to Example 4 where the GMKF-based algorithm out-
performed the PF-based algorithm, Figure 8 indicates that the gE

and gI as well as the membrane voltage were better estimated
by the GMKF-based algorithm. The estimated gE and gI using
the PF-based algorithm could not follow the rapid fluctuations
of the synaptic conductances. Figure 9 depicts the histogram of
the true and estimated gE and gI using the GMKF- and PF-based
algorithms.

A heavy high-amplitude tail of the distribution of synaptic
inputs has often been observed in neuronal circuits (Song et al.,
2005; Lefort et al., 2009; Ikegaya et al., 2013). The heavy tail of
the log-normal distribution in Example 5 (for both gE and gI)
occasionally produced large synaptic inputs and induced rapid
changes in synaptic conductances, which the PF-based algorithm
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FIGURE 5 | Histogram of the excitatory (left) and inhibitory (right) synaptic conductances of the true (blue), estimated using the KF-based (red) and

the PF-based (black) algorithms in Example 3.
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FIGURE 6 | Estimating synaptic conductances and inputs given a single

voltage trace of Example 4 using the GMKF-based (left) and PF-based

(right) algorithms. Other descriptions about the figure are the same as
those in Figure 2. The initial values of the GMKF-based algorithm (G = 2,

K = 4) were as follows: the time-varying means (for both excitatory and
inhibitory) were generated from a uniform distribution and their variances (for
both excitatory and inhibitory) were 0.5 for the first mixand and 2 for the
second mixand (for all times).
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FIGURE 8 | Estimating synaptic conductances and inputs given a single

voltage trace of Example 5 using the GMKF-based (left) and PF-based

(right) algorithms. Other descriptions about the figure were the same as the
Figure 2. The initial values of the GMKF-based algorithm (G = 2, K = 4) were

as follows: the time-varying means (for both excitatory and inhibitory) were
generated from a uniform distribution and their variances (for both excitatory
and inhibitory) were 1 for the first mixand and 4 for the second mixand (for all
times).
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FIGURE 9 | Histogram of the excitatory (left) and inhibitory (right) synaptic conductances of the true (blue), estimated by GMKF-based (red) and

PF-based (black) algorithms in Example 5.

could not keep track of. Hence, this result likely applies to the per-
formance of the GMKF-based vs. PF-based algorithms for heavy-
tailed distributions in general. As it is clear from Figures 8, 9,
the GMKF-based algorithm could better track synaptic inputs
because GMKF (in this example) used two Gaussian mixands that
provide more degrees of freedom for fitting the log-normal distri-
bution than only one exponential distribution, which was used in
the PF-based algorithm (Paninski et al., 2012).

Theoretically speaking, the PF-based algorithm (Paninski
et al., 2012) does not perform accurately under small SNR con-
ditions if the true underlying distributions for synaptic inputs are

different from the presumed prior distributions [e.g., an expo-
nential distribution (Paninski et al., 2012)]. Our examples with
various distributions of synaptic inputs confirmed that the PF-
based algorithm (Paninski et al., 2012) works well if the variance
of the observation noise and membrane voltage noise are suf-
ficiently small. The PF-based algorithm can give approximately
the same results as the GMKF-based algorithm in this case.
However, our examples suggest that the PF-based algorithm does
not accurately estimate synaptic inputs from distributions that are
not properly approximated by the prior distribution (Examples
3–5) in noisy systems. Under this condition, the GMKF-based
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algorithm outperforms the PF-based algorithm due to its capa-
bility of estimating an arbitrary distribution of synaptic inputs by
using a GMM. It should be noted that a larger number of mixands
(G > 2) may be necessary if the synaptic input distribution is dis-
similar to a Gaussian distribution: for example, with a very long
tail.

Furthermore, as can be seen from Figures 2–4, 6, 8, the recon-
structed membrane potential (dashed green lines) from the esti-
mated synaptic conductances are closely overlap the estimated
membrane potential (red dashed line in the top panels) obtained
by GMKF and KF (or PF). This suggests that the difference of the
estimated membrane potential and the reconstructed membrane
potential based on the synaptic conductances was negligible in the
range of the noise levels we have examined.

STATISTICAL ANALYSIS
In addition to the above-mentioned observations from the simu-
lation results and in order to compare our algorithms with the
PF-based algorithm (Paninski et al., 2012), a statistical analy-
sis was performed in this section. Two types of synaptic inputs,
namely, structural (cosine function) and non-structural (O-U
process) were considered to generate the membrane potential.
Then, each algorithm was applied to 10 trials of these membrane
potentials. For the numerical simulations with the structural
synaptic input, the same specifications as in Example 4 were used
and for the example in which synaptic inputs were generated from
the O-U process, the same specifications as in Example 5 were
applied. Tables 2, 3 quantify the performance of each algorithm
in these examples. For each algorithm, the mean and standard
deviation (std) of the normalized error over time was calculated
for V, gE, and gI where the normalized error is defined as:

err(n) =

√
T∑

t = 1

[
xn(t) − x̂n(t)

]2
√

T∑
t = 1

xn(t)2

(15)

where, xnand x̂n are the true and estimated values of the nth trial,
respectively. The mean and std were calculated over 10 trials,
err(n)| n = 1:10.

According to these tables, we can conclude that the perfor-
mance of our KF- and GMKF-based algorithms was better (for
all parameters) than that of the PF-based algorithm. When the
synaptic distribution was not heavy-tailed (Table 2), the KF- and
GMKF-based algorithms had approximately the same perfor-
mance. However, for a heavy-tailed synaptic distribution (log-
normal in Table 3), the GMKF-based algorithm outperformed
the KF-based algorithm. In the GMKF-based algorithm, one
could use G > 2 (number of mixands) which results in more
expensive computations. In our simulations, however, G = 2 was
sufficiently good to provide the balance between computational
costs and accuracy. For very heavy-tailed distributions the higher
the value of G was the better accuracy was obtained for estimating
synaptic inputs. Note that the simulations of (G = 2 and K = 4,
i.e., eight filters for each time) only took approximately the same
running time as the PF-based algorithm. Moreover, we observed

that K = 2, 3, or 4 [number of filters used for estimating p(x(t)|
y(0:t))] did not change the final results considerably. As a rule
of thumb, we concluded that, K = G is a good choice for select-
ing the value of K. It should be noted that when G = 1 and K >

1 (the system noise is approximated by only one Gaussian dis-
tribution) it is called Gaussian sum filtering [Kalman or particle
can be applied, see Kotecha and Djuric, (2003)]. In this case,
the conditional probability p(x(t)| y(0:t)) is estimated using K
Gaussian filters. However, our case with G > 1 and K > 1 is
called Gaussian mixture filtering. In fact, in this case, G > 1 forces
K to be greater than one in order to better approximate p(x(t)|
y(0:t)), whose filter number grows exponentially overtime [see
(Kotecha and Djuric, 2003)]. Note that the number of filters G
and K can be chosen based on a standard model selection crite-
rion such as Akaike’s or Bayesian information criterion (Akaike,
1974; Burnham and Anderson, 2002) with real experimental data.

As the main conclusion of our results, we found that our pro-
posed KF- and GMKF-based algorithms outperform the PF-based
algorithm. Generically, the GMKF-based algorithm offers a more
powerful estimation method than the KF-based algorithm by pro-
viding higher degrees of freedom to fit synaptic inputs. However,
it is noteworthy that even the KF-based algorithm gives simi-
lar results to the GMKF-based algorithm unless the underlying
synaptic input distributions are complex. In many cases, the KF-
based algorithm is not only much simpler than both the GMKF-
and PF-based algorithms but also much faster: therefore, more
efficient.

DISCUSSION
We have proposed a recursive algorithm based on GMKF for esti-
mating the excitatory and inhibitory synaptic conductances (and
inputs) from single trials of noisy recorded membrane poten-
tial. Two other methods have been proposed in the literature
along this direction. Quick alternation of membrane potential
between excitatory and inhibitory reversal potentials (Cafaro and
Rieke, 2010) enabled nearly simultaneous reconstruction of exci-
tatory and inhibitory synaptic conductances from single trials.
One advantage of our method compared to this approach is that it
does not require rapid alternations of membrane potential, which
might cause experimental artifacts. Thus, our method provides
wider applicability to existing as well as future experimental data.
Another approach is to infer excitatory and inhibitory synaptic
conductances by using the oversampling method (Bédard et al.,
2012). Unlike this approach, our KF/GMKF algorithms do not
require the manual adjustment of oversampling time steps to
suppress singularity problems. The main advantage of our meth-
ods in comparison with Kobayashi et al. (2011) and Paninski
et al. (2012) relies on the fact that it has the flexibility to esti-
mate an arbitrary (and unknown) pdf of the synaptic inputs by
using a GMM. Moreover, we derived and tested a special case
of the GMKF-based algorithm when there is only one mixand,
i.e., the Kalman filter, for estimating the excitatory and inhibitory
synaptic conductances. The simulation results have demonstrated
the accuracy and robustness of the proposed algorithms in noisy
conditions for estimating synaptic inputs generated from differ-
ent distributions. In this regard, we have found that the GMKF-
and KF-based algorithms outperform the PF-based algorithm
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(Paninski et al., 2012). We have also found that the GMKF- and
KF-based algorithms have approximately identical performances
in many cases where simple distributions of synaptic inputs are
assumed. On the other hand, the GMKF-based algorithms pro-
vide much more accurate estimation than the KF-based one when
synaptic inputs are drawn from heavy-tailed distributions with
many strong synapses. In practice, running both KF-based and
GMKF-based algorithms and comparing their results should pro-
vide an idea on how complex the underlying distributions of
synaptic inputs are. Therefore, the simplicity and high speed of
the KF-based algorithm as well as the robustness and general

applicability of the GMKF-based algorithm make them efficient
techniques for neuroscientists to monitor trial-to-trial variability
of the excitatory and inhibitory synaptic inputs.

ACKNOWLEDGEMENTS
The authors would like to thank Hokto Kazama and Hideaki
Shimazaki for discussions. This work was supported by RIKEN
Brain Science Institute (M. Lankarany and Taro Toyoizumi), the
Natural Sciences and Engineering Research Council (NSERC) of
Canada and the Regroupement Stratégique en Microsystémes du
Québec (M. Lankarany, W.-P. Zhu, and M. N. S. Swamy).

REFERENCES
Akaike, H. (1974). A new look at

the statistical model identification.
IEEE Trans. Automat. Contr. 19,
716–723. doi: 10.1109/TAC.1974.
1100705

Bédard, C., Behuret, S., Deleuze, C.,
Bal, T., and Destexhe, A. (2012).
Oversampling method to extract
excitatory and inhibitory conduc-
tances from single-trial membrane
potential recordings. J. Neurosci.
Methods 210, 3–14. doi: 10.1016/j.
jneumeth.2011.09.010

Burnham, K. P., and Anderson, D.
R. (eds.). (2002). Model Selection
and Multimodel Inference: A
Practical Information-Theoretic
Approach. Springer-Verlag, ISBN:
978-0-387-22456-5 (Online).

Cafaro, J., and Rieke, F. (2010). Noise
correlations improve response
fidelity and stimulus encod-
ing. Nature 468, 964–967. doi:
10.1038/nature09570

Dempster, A., Laird, N., and Rubin,
D. (1977). Maximum likelihood
from incomplete data via the EM
algorithm. J. R. Stat. Soc. B Stat.
Methodol. 39, 1–38.

Destexhe, A., and Contreras, D.
(2006). Neuronal computations
with stochastic network states.
Science 314, 85–90. doi: 10.1126/
science.1127241

Haider, B., Hausser, M., and Carandini,
M. (2013). Inhibition dominates
sensory responses in the awake cor-
tex. Nature 493, 97–100.

Haykin, S. (ed.). (2001). Kalman
Filtering and Neural Networks.
John Wiley and Sons Inc, ISBN:
978-0-471-36998-1.

Huys, Q. J., Ahrens, M. B., and
Paninski, L. (2006). Efficient esti-
mation of detailed singleneuron
models. J. Neurophysiol. 96,
872–890. doi: 10.1152/jn.00079.
2006

Huys, Q. J., and Paninski, L. (2009).
Smoothing of, and parame-
ter estimation from, noisy
biophysical recordings. PLoS
Comput. Biol. 5:e1000379. doi:
10.1371/journal.pcbi.1000379

Ikegaya, Y., Sasaki, T., Ishikawa, D.,
Honma, N., Tao, K., Takahashi,
N., et al. (2013). Interpyramid
spike transmission stabilizes
the sparseness of recurrent
network activity. Cereb. Cortex
23, 293–304. doi: 10.1093/cercor/
bhs006

Grant, M., and Boyd, S. (2012). CVX:
Matlab Software for Disciplined
Convex Programming, Version
2.0 beta. Available online at:
http://cvxr.com/cvx

Gupta, N. and Hauser, R. (2007).
Kalman Filtering with Equality and
Inequality State Constraints. (No.
07/18). Oxford: Oxford University
Computing Laboratory.

Kobayashi, R., Shinomoto, S., and
Lansky, P. (2011). Estimation
of time-dependent input from
neuronal membrane potential.
Neural Comput. 23, 3070–3093. doi:
10.1162/NECO_a_00205

Koch, C. (ed.). (1998). Biophysics of
Computation. Oxford University
Press, ISBN-10: 0195104919

Kotecha, J. H., and Djuric, P. M.
(2003). Gaussian sum particle
filtering. IEEE Trans. Signal Process.
51, 2602–2612.

Lefort, S., Tomm, C., Floyd Sarria,
J. C., and Petersen, C. C. (2009).
The excitatory neuronal net-
work of the C2 barrel column in
mouse primary somatosensory
cortex. Neuron 61, 301–316. doi:
10.1016/j.neuron.2008.12.020

Murphy, G., and Rieke, F. (2006).
Network variability limits
stimulus-evoked spike timing
precision in retinal ganglion cells.
Neuron 52, 511–524.

Ozeki, H., Finn, I., Schaffer, E.,
Miller, K., and Ferster, D. (2009).
Inhibitory stabilization of the
cortical network underlies visual
surround suppression. Neuron 62,
578–592.

Paninski, L., Vidne, M., DePasquale, B.,
and Ferreira, D. G. (2012). Inferring
synaptic inputs given a noisy volt-
age trace via sequential monte
carlo methods. J. Comput. Neurosci.
33, 1–19. doi: 10.1007/s10827-011-
0371-7

Priebe, N. J., and Ferster, D. (2005).
Direction selectivity of excitation
and inhibition in simple cells of the
cat primary visual cortex. Neuron
45, 133–145. doi: 10.1016/j.neuron.
2004.12.024

Rosti, S-V. I., and Gales, M. J. F.
(2001). Generalized Linear Gaussian
Models. (No. TR.420). Cambridge:
Cambridge University.

Shu, Y., Hasenstaub, A., and
McCormick, D. (2003). Turning on
and off recurrent balanced cortical
activity. Nature 423, 288–293.

Song, S., Sjostrom, P. J., Reigl, M.,
Nelson, S., and Chklovskii, D.
B. (2005). Highly nonrandom
features of synaptic connectivity

in local cortical circuits. PLoS Biol.
3:e68. doi: 10.1371/journal.pbio.
0030068

Wehr, M., and Zador, A. M. (2003).
Balanced inhibition underlies
tuning and sharpens spike timing
in auditory cortex. Nature 426,
442–446. doi: 10.1038/nature02116

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 23 April 2013; accepted: 24 July
2013; published online: 03 September
2013.
Citation: Lankarany M, Zhu W-P,
Swamy MNS and Toyoizumi T (2013)
Inferring trial-to-trial excitatory and
inhibitory synaptic inputs from mem-
brane potential using Gaussian mixture
Kalman filtering. Front. Comput.
Neurosci. 7:109. doi: 10.3389/fncom.
2013.00109
This article was submitted to the
journal Frontiers in Computational
Neuroscience.
Copyright © 2013 Lankarany, Zhu,
Swamy and Toyoizumi. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permit-
ted, provided the original author(s) or
licensor are credited and that the origi-
nal publication in this journal is cited, in
accordance with accepted academic prac-
tice. No use, distribution or reproduc-
tion is permitted which does not comply
with these terms.

Frontiers in Computational Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 109 | 11

http://dx.doi.org/10.3389/fncom.2013.00109
http://dx.doi.org/10.3389/fncom.2013.00109
http://dx.doi.org/10.3389/fncom.2013.00109
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lankarany et al. Inferring synaptic inputs using GMKF

APPENDIX 1
In order to show how the number of mixture Kalman filters grows exponentially with the arrival of a new observation y(t), we assume
that p(x(t − 1)| y(0:t − 1)) can be represented by K Kalman filters as follows.

p(x(t − 1)|y(0 : t − 1)) =
K∑

i = 1

βi(t − 1)p(x(t − 1)|y(0 : t − 1), i) (A1.1)

where βi(t − 1) is the normalized weight corresponding to the ith Kalman filter at time t − 1. Then, p(x(t)| y(0:t – 1)) will be given by
the following equation considering that p(x(t)| x(t − 1)) is approximated by G mixands.

p(x(t)|y(0 : t − 1)) =
G∑

j = 1

K∑
i = 1

αjβi(t − 1)p(x(t)|y(0 : t − 1), i, j) (A1.2)

Now p(x(t)| y(0:t)) can be calculated using the Bayesian rule.

p(x(t)|y(0 : t)) = p(y(t)|x(t))p(x(t)|y(0 : t − 1))

p(y(t)|y(0 : t − 1))

=

G∑
j = 1

K∑
i = 1

αjβi(t − 1)p(y(t)|x(t), i, j)p(x(t)|y(0 : t − 1), i, j)

p(y(t)|y(0 : t − 1))

=

G∑
j = 1

K∑
i = 1

αjβi(t − 1)p(y(t)|y(0 : t − 1), i, j)p(x(t)|y(0 : t), i, j)

p(y(t)|y(0 : t − 1))

=
G∑

j = 1

K∑
i = 1

γi,j(t)p(x(t)|y(0 : t), i, j)

(A1.3)

where

γi,j(t) = p(i, j|y(0 : t))

∝ αj(t)βi(t − 1)p(y(t)|y(0 : t − 1), i, j)
K∑

i = 1

G∑
j = 1

αj(t)βi(t − 1)p(y(t)|y(0 : t − 1), i, j)
(A1.4)

and

p(y(t)|y(0 : t − 1), i, j) =
∫

p(y(t)|x(t), i, j)p(x(t)|y(0 : t − 1), i, j)dx(t)

=
∫ ∫

p(y(t)|x(t), i, j)p(x(t)|x(t − 1), j)p(x(t − 1)|y(0 : t − 1), i)dx(t)dx(t − 1)

(A1.5)

Although (A1.5) can be easily obtained using the results of KF (see Appendix 3), (A1.3) indicates that p(x(t)|y(0:t)) is approximated
by K × G filters. Consequently, p(x(t + 1)|y(0:t + 1)) will be represented by K × G2 filters and the number of filters increases expo-
nentially with the arrival of each new observation. As mentioned in Section Results, this problem can be overcome by resampling. To
do this, it is required to select the most probable K filters of (A1.3) from γi, j(t). In this regard, p(x(t)|y(0:t)) will be approximated by
only K filters as follows.

p(x(t)|y(0 : t)) ≈
K∑

i = 1

βi(t)p(x(t)|y(0 : t), i) (A1.6)

Where βi(t) is the weight corresponding to the K highest values of γi, j(t). Since βi(t) is normalized after the resampling process, it
gives equivalent weights to all selected filters (1/K for each filter). Please note that the resampling process is done only to eliminate
the increase in the number of filters required for approximating p(x(t)|y(0:t)) at the arrival of new observation y(t). Hence, K × G
Kalman filters are needed to run at each time t to compute p(x(t)|y(0:t)) for each new observation y(t).
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APPENDIX 2. KALMAN FORWARD FILTERING (SEE Rosti and Gales, 2001)
In this appendix, K × G Kalman forward filtering is derived for each i belonging to {1:K} and j belonging to {1:G}. The standard
KF technique includes two main steps: 1-time update and 2-measurement update (Haykin, 2001). In the time update step, for each i
and j, the predicted state estimate E{xi, j(t)| y(0:t − 1)} and predicted state correlation matrix E{xi, j(t)xi, j(t)H | y(0:t − 1)} (therefore
the state covariance matrix, E{xi, j(t)xi, j(t)H | y(0:t – 1)} − [E{xi, j(t)| y(0:t − 1)})2] are calculated using (1) [or (3), i.e., the system
dynamic]. Then, in the measurement update step, the modified state estimate E{xi, j(t)| y(0:t)} and modified state correlation matrix
E{xi, j(t)xi, j(t)H | y(0:t)} are updated using the recursive Kalman framework. In the following equations, for the sake of simplicity in

representing the notations, E{xi, j(t)| y(0:t − 1)} and E{xi, j(t)| y(0:t)} are denoted as xt−1
i, j (t) and xt

i, j(t), respectively. Accordingly, the

predicted and updated state covariance matrices are denoted as �t−1
x, i, j(t) and �t

x, i, j(t), respectively. For each i and j, the time update
step can be followed by

xt−1
i, j (t) = A(t)xt − 1

i (t − 1) + μv, j(t − 1)

�t − 1
x, i, j(t) = A(t)�t − 1

x, i (t − 1)A(t)H + �v, j

(A2.1)

where A(t) = ∂F[x]
∂

∣∣
x(t) is the time dependent transition matrix, and μv, j and �v, j are the mean and variance of the synaptic input

corresponding to jth mixand. The so called Kalman gain is then obtained by

Ki, j(t) = �t − 1
x, i, j(t)CH�−1

y, i, j(t) (A2.2)

where

�
(t)
y, i, j = C�t − 1

x, i, j(t)CH + σ2
ε (A2.3)

Here, C is the observation vector [1, 0, 0] and σ2
ε is the observation noise variance. By defining the innovation process as, ei, j(t) =

y(t) − Cxt − 1
i, j (t), the updated state estimate and state covariance matrix are calculated as follows.

xt
i, j(t) = xt − 1

i, j (t) + Ki, j(t)ei, j(t)

�t
x, i, j(t) = �t − 1

x, i, j(t) − Ki, j(t)C�t − 1
x, i, j(t)

(A2.4)

Since the KF-based algorithm is a recursive algorithm, (A2.4) is used for the next iteration and xt
i, j(t) (or E{xi, j(t)| y(0:t)}) is estimated

for the all time samples of the observation data y(0:T).

APPENDIX 3. KALMAN BACKWARD FILTERING (SMOOTHING) (Rosti and Gales, 2001)
Similar to Appendix 2, Kalman backward filtering is accomplished for K × G Kalman filters at each iteration, t. The resampling
procedure is already performed to eliminate the increase in the number of filters estimating the p(x(t)| y(0:t)). The goal with backward
filtering is providing a better estimate of the state mean E{xi, j(t)| y(0:T)} and the state correlation matrix E{xi, j(t)xi, j(t)H | y(0:T)}
using all observed data y(0:T). Again, for the sake of simplicity, E{xi, j(t)| y(0:T)} and the state covariance matrix [E{xi, j(t)xi, j(t)H |
y(0:T)}—(E{xi, j(t)| y(0:T)})2] are denoted as x̂i, j(t) and �̂x, i, j(t), respectively. Following the standard Kalman backward filtering
algorithm, for each i belonging to {1:K} and j belonging to {1:G}, we have:

x̂t − 1
i, j = xt − 1

i, j (t − 1) + Ji, j(t − 1)
(

x̂i, j(t) − xt − 1
i, j (t)

)
(A3.1)

where

Ji, j(t − 1) = �t − 1
x, i, j(t − 1)A(t)H

(
�t − 1

x, i, j(t)
)−1

(A3.2)

The state covariance matrix is calculated as follows.

�̂x, i, j(t − 1) = �t − 1
x, i, j(t − 1) + Ji, j(t − 1)

(
�̂x, i, j(t) − �t − 1

x, i, j(t)
) (

Ji, j(t − 1)
)H

(A3.3)

and �̂t − 1
x, i, j(t) = �̂x, i, j(t)

(
Ji, j(t − 1)

)H
.
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For time indices, since in backward filtering the initial values start at t = T, we have

x̂i, j(T) = xT
i, j(T), �̂T

x, i, j(T) = �T
x, i, j(T), R̂i, j(T) = �̂T

x, i, j(T) + x̂i, j(T)x̂i, j(T)H (A3.4)

Moreover, it is necessary to obtain the correlation matrices E{xi, j(t)xi, j(t)H | y(0:T)} and E{xi, j(t)xi, j(t − 1)H | y(0:T)}

for the expectation maximization (EM) algorithm. These matrices are, respectively, denoted as R̂t − 1
i, j (t) and R̂i, j(t) in

our equations.

R̂x, i, j(t) = �̂x, i, j(t) + x̂i, j(t)(x̂i, j(t))H

R̂t − 1
x (t) = �̂t − 1

x, i, j(t) + x̂i, j(t)(x̂i, j(t − 1))H
(A3.5)

Having the sufficient statistics, we can use the EM algorithm to infer the statistical parameters of each mixture.

APPENDIX 4. EXPECTATION MAXIMIZATION (EM) ALGORITHM FOR THE GMKF-BASED ALGORITHM
Recalling (10) and (11), we want to maximize the log of the joint probability of the states and observation via the EM algo-
rithm for each mixture. Then the results are combined to yield the final estimation of the states as well as the distributions of the
synaptic inputs.

max Qs.t.θ̂(θ, θ̂) = max

⎛
⎝∫ ∑

i, j

p(i, j|Y) log
(

p(Y , X, i, j|θ̂)
)

p(X|i, j, Y)dX

⎞
⎠

= max

⎛
⎝Ep(X/i, j, Y)

⎧⎨
⎩
∑
i, j

p(i, j|Y) log
(

p(Y , X, i, j|θ̂)
)
|Y , θ

⎫⎬
⎭
⎞
⎠

(A4.1)

where X and Y stand for all the states and observation over time, respectively. The expected value of the joint probability in (A4.1) can
be expanded as follows.

Ep(X/n,m,Y)

⎧⎨
⎩
∑
i, j

p(i, j|Y) log
(

p(Y , X, i, j|θ̂)
)
|Y , θ

⎫⎬
⎭

=
∑

i

∑
j

T∑
t = 1

p(i, j|y(0 : t))Ep(X/i, j, Y)

{
log αj(t) + log βi(t) + log p(y(t)|x(t), i, j, θ) + log p(x(t)|x(t), i, j, θ)

}

=
∑

i

∑
j

T∑
t = 1

p(i, j|y(0 : t))Ep(X/i, j, Y)

{
log αj(t)

}+
∑

i

∑
j

T∑
t = 1

p(i, j|y(0 : t))Ep(X/i,j,Y)

{
log βi(t)

}

+
∑

i

∑
j

T∑
t = 1

p(i, j|y(0 : t))Ep(X/i,j,Y)

{
−1

2
log σ2

ε + (y(t) − x(t)
)H (

σ2
ε

)−1 (
y(t) − x(t)

)}

+
∑

i

∑
j

T∑
t = 1

p(i, j|y(0 : t))Ep(X/i, j, Y)

{
−1

2
log �v, i, j + (x(t) − Ax(t) − μi, j(t − 1)

)H (
�v, i, j

)−1 (x(t) − Ax(t − 1) − μi, j(t − 1)
)}

(A4.2)

Considering (A4.2) to solve (A4.1), we need to calculate Ep(X/i, j, Y ){x(t)}, Ep(X/i, j, Y){x(t − 1)x(t)H } and Ep(X/i, j, Y){x(t) x(t)H }.

These statistics are already calculated in the backward filtering step as indicated by x̂i,j(t), R̂t−1
i,j (t), and R̂i,j(t), respectively.
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Furthermore, p(i, j| y(0:t)) is already defined in (A1.4) and can be simply computed as follows [calculating the double integral in
(A1.5)].

p(y(t)|y(0 : t − 1), i, j) =
∫

p(y(t)|x(t), i, j)p(x(t)|y(0 : t − 1), i, j)dx(t)

=
∫ ∫

p(y(t)|x(t), i, j)p(x(t)|x(t − 1), j)p(x(t − 1)|y(0 : t − 1), i)dx(t)dx(t − 1)

=
∫

p(y(t)|x(t), i, j)N(x(t); x̂t−1
i, j (t), �̂t−1

i, j (t))dx(t)

= N
(

yt; Cx̂t
i, j(t), σ2

ε + C�̂i, j(t)CH
)

(A4.3)

And p(i, j| y(0:t)) can be estimated as

p(i, j|y(0 : t)) = γi, j(t)

∝ αj(t)βi(t − 1)p(y(t)|y(0 : t − 1), i, j)
K∑

i = 1

G∑
j = 1

αj(t)βi(t − 1)p(y(t)|y(0 : t − 1), i, j)

(A4.4)

Note that βi(t − 1) is the normalized weight after resampling and is equal to 1/K for all t. Now we can derive the M step by taking
the derivative of (A4.2) due to the unknown parameters [α, μv, �v, σ2

ε ]. It should be noted that it is convenient to demonstrate the
optimized parameters in the EM algorithm as [α̂, μ̂v, �̂v,σ̂

2
ε ]. For αj, one can write

max Q
s.t.θ̂

(θ, θ̂) = max

⎛
⎝∑

i, j

T∑
t = 1

γi, j(t)Ep(X/i, j, Y)

{
log αj(t)

}⎞⎠ (A4.5)

and the fact that
∑

j
αj = 1. Using Lagrange multiplier we can solve the following optimization.

∑
i, j

T∑
t = 1

γt
i, j log αj − λ

⎛
⎝∑

j

αj − 1

⎞
⎠ (A4.6)

which results in solving the following set of equation.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K∑
i = 1

T∑
t = 1

γi, j(t)
1

α̂j
− λ = 0∑

j

α̂j −1 = 0
⇒ α̂j = 1

T

K∑
i = 1

T∑
t = 1

γi, j(t) (A4.7)

The optimized μ̂i, j can be calculated by taking the derivative of (A4.2) due to this parameter, as given below:

∂Q(θ, θ̂)

∂μ̂
=

∂

⎛
⎝∑

i, j

T∑
t = 1

γi, j(t)Ep(X/i, j, Y)

{
−1

2
log �v, i, j + (x(t) − Ax(t − 1) − μ̂i, j(t − 1)

)H (
�v, i, j

)−1 (
x(t) − Ax(t − 1) − μ̂i, j(t − 1)

)}⎞⎠
∂μ̂

= (
�v, i, j

)−1∑
i, j

T∑
t = 1

γi, j(t)
(
x̂i, j(t) − Ax̂i, j(t − 1) − μ̂i, j(t − 1)

)
(A4.8)
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As we want to calculate μ̂i, j for each i, j, we can rewrite (A4.8) as

∂Q(θ, θ̂)

∂μ̂i, j
= 0 ⇒

T∑
t = 1

γi, j(t)
(
x̂i, j(t) − A(t)x̂i, j(t − 1) − μ̂i, j(t − 1)

) = 0

μ̂i, j =

T∑
t = 2

γi, j(t)
(
x̂i, j(t) − A(t)x̂i, j(t − 1)

)
T∑

t = 2

γi, j(t)

(A4.9)

Obviously, (A4.9) can be obtained for each mixand j as follows (by combining K filters).

μ̂j =
K∑

i = 1

μ̂i, j =

K∑
i = 1

T∑
t = 2

γi, j(t)
(
x̂i, j(t) − A(t)x̂i, j(t − 1)

)
K∑

i = 1

T∑
t = 2

γi, j(t)

(A4.10)

In the non-parametric approach we are using the goal is to estimate the time-varying mean (and variance) using a (defined) basis
function X (spline basis function in this paper). As a result, the time-varying means E{NE,j(t)} and E{NI,j(t)} can be estimated as
follows (recall that μj(t) = [0, E{NE,j(t)}, E{NI,j(t)}]).

E
{

NE, j(t)
} =

K∑
i = 1

γi, j(t)
(
ĝE, i, j(t) − aEĝE, i, j(t − 1)

)
K∑

i = 1

γi, j(t)

E
{

NI, j(t)
} =

K∑
i = 1

γi, j(t)
(
ĝI, i, j(t) − aI ĝI, i, j(t − 1)

)
K∑

i = 1

γi, j(t)

(A4.11)

where gE and gI are the second and third component of the state vector x, respectively. To model E{NE,j(t)} = X(t)ωE,j and E{NI,j(t)} =
X(t)ωi,j, we need to find the weighting vectors, ωE,j and ωi,j, of the basis function X as follows:

ωE, j = (XTX)−1XTE{NE, j}
ωI, j = (XTX)−1XTE{NI, j}

(A4.12)

where E{NE, j} and E{N i, j} indicate E{NE, j(t)} and E{NI, j(t)} over the entire time. Similar to Paninski et al. (2012), the basis function
X consists of 50 spline basis functions.

Similarly, the covariance matrix �̂v,i,j can be inferred by taking the derivative of (A4.1) due to this parameter.

∂Q(θ, θ̂)

∂�̂
−1
v, i, j

=
∂

⎛
⎝∑

i, j

T∑
t = 1

γi, j(t)Ep(X/i, j, Y)

{
−1

2
log �v, i, j + (x(t) − A(t)x(t − 1) − μ̂i, j(t − 1))H

(
�̂v, i, j

)−1
(x(t) − A(t)x(t − 1) − μ̂i, j(t − 1))

}⎞⎠
∂�̂−1

v

= 1

2

∑
i, j

T∑
t = 1

γi(t)
(
�v, i, j − (

x̂i, j(t) − A(t)x̂i, j(t − 1) − μ̂i, j(t − 1)
) (

x̂i, j(t) − A(t)x̂i, j(t − 1) − μ̂i, j(t − 1)
)H)

(A4.13)
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Then, for each i and j we have

∂Q(θ, θ̂)

∂�̂
−1
v, i, j

= 1

2

T∑
t = 1

γi, j(t)
(
�̂v, j − (

x̂i, j(t) − A(t)x̂i, j(t − 1) − μ̂i, j(t − 1)
) (

x̂i, j(t) − A(t)x̂i, j(t − 1) − μ̂i, j(t − 1)
)H) = 0

�̂v, i, j =

T∑
t = 2

γi, j(t)

(
R̂i, j(t) − [

A(t) μ̂i, j(t − 1)
] [

R̂i, j(t − 1) x̂i, j(t)
]H
)

T∑
t = 2

γn, m(t)

(A4.14)

Similar to (A4.9), (A4.14) can be obtained for each mixand j as follows,

�̂v, j =

K∑
i = 1

T∑
t = 2

γi, j(t)

(
R̂i, j(t) − [

A(t) μ̂i, j(t − 1)
] [

R̂i, j(t − 1) x̂i, j(t)
]H
)

K∑
i = 1

T∑
t = 2

γi, j(t)

(A4.15)

The time varying variances of the excitatory and inhibitory inputs can be expressed as:

�̂E, j(t) =

K∑
i = 1

γi, j(t)

(
R̂i, j(t)

∣∣∣
2, 2

− [aE NE, i, j(t)
] [

R̂i, j(t − 1)

∣∣∣
2, 2

ĝE, i, j(t)

]H
)

K∑
i = 1

γi, j(t)

�̂I, j(t) =

K∑
i = 1

γi, j(t)

(
R̂i, j(t)

∣∣∣
3, 3

− [aI NI, i, j(t)
] [

R̂i, j(t − 1)

∣∣∣
3, 3

ĝI, i, j(t)

]H
)

K∑
i = 1

γi, j(t)

(A4.16)

where R̂i, j(t)
∣∣∣
2, 2

stands for the second row and second column of the matrix R̂i, j(t). In our non-parametric model, �̂E, j(t)= X(t)λE,j

and�̂I, j(t)= X(t)λi,j. The weighting vectors λE,j and λi,j of basis function X can be given by

λE, j =
(

XTX
)−1

XT�̂E, j

λI, j =
(

XTX
)−1

XT�̂I, j

(A4.17)

where �̂E, j and �̂I, j indicate �̂E, j(t) and �̂I, j(t) over the entire time, respectively. Hence, the system noise (including synaptic inputs)
can be represented by a GMM as follows.

v(t) ≈
G∑

j = 1

α̂jN
(
μ̂j(t), �̂v, j(t)

)
(A4.18)

where μ̂j(t) and �̂v,j(t) are defined by (5) and their components are calculated in this Appendix. Moreover, as mentioned before, we
can simply calculate the final state estimate x(t) as the combination of K × G parallel filters at each time t.

x̂(t) =
∑
i, j

γi, j(t)x̂i, j(t) (A4.19)

Note that, the variances of the membrane voltage (σ2
w) and observation noise (σ2

ε) can be calculated in a straightforward way, as
mentioned in Paninski et al. (2012).

Frontiers in Computational Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 109 | 17

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Inferring trial-to-trial excitatory and inhibitory synaptic inputs from membrane potential using Gaussian mixture Kalman filtering
	Introduction
	Materials and Methods
	Problem Formulation
	Proposed Algorithm, Gaussian Mixture Kalman Filtering
	General framework
	GMKF-based algorithm
	Kalman forward filtering
	Kalman backward filtering (smoothing)
	Inferring statistical parameters via expectation maximization


	KF-Based Algorithm

	Results
	Numerical Simulations
	Statistical Analysis

	Discussion
	Acknowledgements
	References
	Appendix 1
	Appendix 2. Kalman Forward Filtering (see Rosti and Gales, 2001)
	Appendix 3. Kalman Backward Filtering (Smoothing) (Rosti and Gales, 2001)
	Appendix 4. Expectation Maximization (EM) Algorithm for the GMKF-Based Algorithm


