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The study of sensory signaling in the visual cortex has been greatly advanced by
the recording of neural activity simultaneously with the performance of a specific
psychophysical task. Individual nerve cells may also increase their firing leading up to the
particular choice or decision made on a single psychophysical trial. Understanding these
signals is important because they have been taken as evidence that a particular nerve
cell or group of nerve cells in the cortex is involved in the formation of the perceptual
decision ultimately signaled by the organism. However, recent analyses show that the
size of a decision-related change in firing in a particular neuron is not a secure basis
for concluding anything about the contribution of a single neuron to the formation of a
decision: rather the size of the decision-related firing is expected to be dominated by the
extent to which the activation of a single neuron is correlated with the firing of the pool
of neurons. The critical question becomes what defines membership of a population of
neurons. This article presents the proposal that groups of neurons are naturally linked
together by their connectivity, which in turn reflects the previous history of sensory
stimulations. When a new psychophysical task is performed, a group of neurons relevant
to the judgment becomes involved because the firing of some neurons in that group is
strongly relevant to the task. This group of neurons is called a micro-pool. This article
examines the consequences of such a proposal within the visual nervous system. The
main focus is on the signals available from single neurons, but it argued that models of
choice-related signals must scale up to larger numbers of neurons because MRI and MEG
studies also show evidence of similar choice signals.
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Several decades of research have discovered that there are numer-
ous, distinct areas of the cerebral cortex devoted to the analysis
of incoming visual information (Zeki, 1993). In all mammalian
species so far investigated, there is a primary area of the visual
cortex (often referred as V1 for short), which is characterized
as receiving the majority of thalamic fibers from the lateral
geniculate nucleus (Lund, 1988). Immediately adjacent to V1,
and extending some distance anterior to it, is a set of multiple
visual areas, collectively known as extra-striate visual cortex. The
number of different extrastriate areas is not known definitively
but as many as 30 (Felleman and Van Essen, 1991) have been
hypothesized in the best-studied species, the macaque monkey.
The research agenda for modern visual neuroscience has been
very much driven by the goal of searching for and characterizing
the distinct and special contributions of these different corti-
cal areas to visual perception and performance (Zeki and Shipp,
1988; Zeki, 1993).

To that end, many recordings of neural signals have been made
from the visual cortex of macaque monkeys, whilst they perform
a specific visual task for which they have been trained. This com-
bination of recording a neural signal and a behavioral response
has been a powerful tool to reveal the specifics of the neural cod-

ing of perceptually-relevant signals (Parker and Newsome, 1998).
Notably, the goal of understanding the distinct contribution of
different visual cortical areas has been advanced considerably by
probing the contribution of neural signals to sensory decisions.

DECISION-RELATED ACTIVITY
Beginning with Hubel and Wiesel (1962), research of the last
50 years has demonstrated in a whole variety of different ways that
certain visual cortical neurons have responses that are selective
for attributes of the external stimulus. Examples are orientation,
direction of motion, chromatic content of the stimulus, binocular
depth as well as more complex features of faces, objects and
elements of shape perception. Identification of selective responses
has been extended beyond simple stimulus attributes to aspects
of the visual pattern that reflect its perceptual appearance (see
Movshon et al., 1986).

Decision-related activity is distinct from a simple response
to an external visual stimulus. Decision-related activity in this
context means the identification of specific element of the neu-
ral response that is linked to a task-related decision about the
stimulus. Thus, in one well-known set of studies, animals were
trained to judge the direction of motion of a visual stimulus
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formed from a group of moving dots (Newsome et al., 1989;
Salzman et al., 1990; Britten et al., 1996). Many neurons in the
visual cortex are selective for a particular direction of motion of
moving dot patterns; some of these neurons also show enhanced
response when the animal not only views the visual stimulus but
also decides behaviorally that the direction of motion coded by
these neurons is the correct choice in the behavioral task.

Data such as these give the appearance that the neuron is not
just responding to the arrival of an external stimulus, to which the
neuron is selective on account of its pattern of anatomical con-
nections. Rather, these results suggest that a neuron that exhibits
a decision-related signal must be a step closer to the cognitive
stage of taking a perceptual decision, in comparison with neurons
that show no decision-related signals. The suggestion is that such
neurons may carry a signal that is related to what the animal is
actually perceiving, rather than just reflecting the physiological
excitation of the neuron.

Before progressing to such a conclusion, it is important to con-
sider exactly what the basic form of this experimental paradigm is
capable of demonstrating. The fundamental result is an associa-
tion between two events: one event relates to perceptual behav-
ior (the choice), the other is the activation of a neuron. The
association is expressed as a change in conditional probability,
an increased probability of one event given the occurrence of
another. This increase in probability may reflect an underlying
causal relationship or may just reflect an increased tendency of
both events to happen at the same time, in other words a statistical
correlation.

Broadly viewed, there are at least two possible sources for
generating a correlation between neural activation and percep-
tual choices (Britten et al., 1996; Dodd et al., 2001). On the first
option, the correlation is driven primarily by fluctuations in the
activation of neurons at early stages of visual processing. Noise in
the visual pathway results in statistical variation in the activation
of neurons during a sequence of trials in which the identical exter-
nal stimulus is presented on each trial. This noisy variation may
be enough to drive the perceptual decision on a fraction of the
trials, pushing the decision one way when the activation is strong
and favoring the opposite decision when the activation is weaker.
In comparing neurons with and without decision-related signals,
the ability of noisy variation in a neuron’s activity to influence the
perceptual decision may be regarded as evidence that the neurons
with decision-related signals are truly on the perceptual pathway
for the decision. Although the neurons without decision-related
signals may be activated by the external stimulus, the absence of
decision-related activity suggests that such neurons are outside
the perceptual pathway for the task currently undertaken by the
organism.

On the second option, the correlation between neural acti-
vation and perceptual choice is driven primarily by the state
of the organism leading up to a particular trial. Consider the
same sequence of trials just mentioned: if there is an element of
pre-judgment or bias about a particular stimulus even before it
arrives, this may have the effect of slightly favoring one perceptual
choice over the other. If this state of bias is communicated
internally through the nervous system to a site where neural
activity is being recorded, then the activity at that site may be

measurably correlated with perceptual choice. For example, the
bias signal may have the effect of enhancing the gain of the sensory
response. On this view, the neurons with decision-related signals
exhibit them because the brain is putting into action a working
hypothesis that these particular neurons are going to be involved
in the upcoming perceptual decision. According to this idea, the
distinction between neurons with and without decision-related
signals reflects the preliminary state of the nervous system before
the task is completed on this particular trial. There is a pre-
selection of which neurons are most appropriate for the task and
consequently those neurons have an enhanced response.

These two possible routes for generation of a choice-related
change in neural activity are sometimes referred to as “bottom-
up” and “top-down” respectively to give an indication of the likely
source of the relationship. However, the real distinction lies in
whether the primary cause is regarded as a change in neural activ-
ity at the recorded neuron or the behavioral state of the organism.
Thus, a “bottom-up” effect generated in some particular set of
peripheral nerves may pass into the central nervous system and
out again to emerge as a “top-down” effect at another site.

DECISION-RELATED ACTIVITY AND THE CONTRIBUTION OF
NEURONS TO PERCEPTUAL DECISIONS
A reason for the interest in decision-related activity is that it has
been widely presumed that neurons with this kind of activity may
be playing a special role in the supporting perceptual decisions.
It was always recognized that the relationship between neural
events and perceptual events, as measured with this approach,
is fundamentally a correlation rather than a proven causal rela-
tionship. Nonetheless, the presumption was that neurons with
decision-related activity must at least be candidates for a direct
involvement in perception. This was advanced as a general prin-
ciple by Parker and Newsome (1998): “Fluctuations in the firing
of some set of the candidate neurons to the repeated presentation
of identical external stimuli should be predictive of the observer’s
judgment on individual stimulus presentations.” This statement
should not be viewed as a direct and definitive test of the involve-
ment of a set of neurons in a perceptual decision. The principle
articulates the argument that in the absence of evidence even for a
correlative link, then there is in reality no case for pursuing other
lines of investigation to determine whether there is a perceptual
role for some set of neurons. This is true even if the neurons are
exquisitely sensitive to the visual stimuli to be discriminated or
detected. The correlative link is therefore a weak test for the role
of neurons in perception but it can nonetheless be advanced as an
important minimal requirement.

SIZE, SPECIFICITY AND PREVALENCE OF DECISION-RELATED
ACTIVITY
As well as noting enhancements of firing rates in certain neurons,
decision-related activity has been assessed statistically; for a recent
account, see Nienborg et al. (2012). The standard approach has
set up the following test for the presence of decision-related
activity. Consider a set of trials upon which the activity from a
single neuron or small group of neurons has been recorded in
response to repeated presentations of the same stimulus. When
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these responses to repeated presentations are considered, it may
be the case that the behavioral response is different on some
of those trials in comparison with others. When the behavioral
response is a binary choice, the trials then simply divide into two
types according to the binary choice on that particular trial. The
statistical assessment of choice-related activity is to ask with what
reliability could one predict the behavioral choice at the end of
the trial purely on the basis of neural responses. In other words, if
an external observer of the trials knows the statistical distribution
of activity of the neuron for different trial outcomes, what are
the chances of correctly predicting the monkey’s decision on this
particular trial, given only the activity of the neuron on this trial?

Clearly, if there is no decision-related activity arising from the
neuron, then the external observer’s chances of correctly predict-
ing a binary choice judgment are 50:50. If the neural activity has a
decision-related component, the external observer’s chances rise:
a neuron that is completely reflecting the sensory decision will
have a complete separation in the statistical distribution of activity
associated with each of the two choices.

Consider a simple decision, which is a binary choice about
direction of movement (as in the first clear demonstrations of
these phenomena). If the experimenter is recording from a sen-
sory neuron that has a preference for movement of the visual
stimulus to the left as opposed to movement to the right, then
decision-related activity is normally expected to be an enhance-
ment of firing when the behavioral decision is a choice for
leftwards movement. It might be thought that recording from a
motor neuron right at the output stage could fulfill this specifi-
cation for decision-related activity. This misses the point that the
above logic really applies to a sensory neuron with a particular
stimulus preference. The way that the choice is recorded does
not need to be specified, but the ability to identify the stimulus
selectivity of the neuron is critical. Only with this identification
can the behavioral responses be classified as with or against the
sensory properties of the neuron under study. Thus, in the origi-
nal experiments, when a decision was made that a visual stimulus
was moving to the left, the activity was enhanced in neurons that
preferred leftwards moving stimuli as against rightward moving
stimuli.

It is usual practice to evaluate decision-related firing with
stimuli that only have a zero or weak movement in a particular
direction: this allows a number of mistakes to arise in the set
of behavioral choices over a sequence of trials. Without this
variability of the behavior, it would be impossible to measure
choice-related activity from the neuron. This reflects again that
the fundamental measure of decision-related activity is a correla-
tion between two types of events: sensory decisions and neuronal
activity. At first thought, it may seem remarkable that any cor-
relation could be detected. There are many neurons available for
recording, yet only one is chosen by the experimenter, typically
by adjusting the position of the electrode within the cortical grey
matter until a clear action potential is isolated. Considering that,
in a volume of tissue approximately the size of a cortical column
(1×1×2 mm), there may be as many as 100,000–150,000 neurons
(Rockel et al., 1980; Carlo and Stevens, 2013), it might be thought
improbable that the one encountered by the experimenter is also
the neuron that is correlated with the decision. Yet, for at least

some of these recordings, correlations between neural firing and
decision have been established.

Furthermore, for some individual studies, the correlations
are fairly tight, with choice probabilities as high as 0.67–0.75
(Dodd et al., 2001; Ghose and Harrison, 2009). Under the (incor-
rect) assumption that the firing of neurons is independent, there
would be a striking consequence. Given a choice probability of
P, the probability of not correctly predicting the outcome of the
decision is (1 − P); with N independent neurons, this probability
of incorrect prediction falls to (1 − P)N . With this simple mul-
tiplication of probabilities, the probability of failing to predict
decision correctly is simply 1 − (1 − P)N , so that the activity from
as few as three neurons would be sufficient to give a statistically
adequate (better than 95% correct) prediction of the decision
on an individual trial. The improbability of encountering those
three neurons among 150,000 is self-evident. More typical values
reported for choice probability are 0.55 on average (Britten et al.,
1996), which might suggest the availability of about five relevant
neurons on the same calculation, but even this adjustment barely
scratches the surface of the problem.

It was immediately appreciated that the estimate is improb-
able because the assumption that the responses of the neurons
are statistically independent is incorrect. Direct measurements
of the correlation between the firing of single neurons during
the motion detection task have suggested values of 0.15–0.18
(Zohary et al., 1994). A more broad-ranging set of cases is sum-
marized in Cohen and Kohn (2011). Correlations of this level are
sufficient to change model-based estimates of the pool size for the
decision, raising it to 50–100 neurons (Shadlen et al., 1996). By
contrast, it has been argued that the time-course for assessment
of choice probabilities is critical in accepting this conclusion. In
a task in which a single sensory event must be detected in a
reaction-time paradigm, neuronal signals discriminating correct-
detects from failures-to-detect are strongly separated, as are sig-
nals from the same neurons that discriminate correct-detection
from false-positives (Ghose and Harrison, 2009).

Recently, neuronal sensitivity and choice probability in the
central nervous system have been compared at cortical and sub-
cortical sites involved in a judgment of heading direction for
which the primary sensory signal is vestibular in origin (Liu et al.,
2013). These authors report differences in the correlation struc-
ture of noise at these different sites, which they relate theoretically
to the different sizes of choice probability observed at those sites.

TOP-DOWN SIGNALS
The above discussion is fundamentally based upon a view of
decision-related neural activity that regards the underlying causal
link as originating with the sensory neuron: a noisy fluctuation
in neural activity tips the decision one way or the other on a
particular trial, with the result that a correlation between neural
activity and perceptual choice (see Figure 1 “Feedforward”). On
this view, the neuronal activity in the sensory neuron has two
components: one is related to the visual stimulation, another
arises from noisy fluctuations intrinsic to the nervous system.

An entirely distinct view of choice probability has been enter-
tained from the earliest papers. On this view, there are also two
relevant sources of input to the neuronal activity: one arises from
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the visual stimulation as before, the other path of influence on the
recorded neuron reflects the cognitive state of the organism just
prior to the trial that is being tested (Krug, 2004). The cognitive
state is manifest as a bias for one perceptual choice rather than
another. Such a bias signal is thought to be targeted at neurons
that prefer a visual stimulus that corresponds to the perceptual
choice favored by the bias state. The state of bias may be set by
factors such as the history of reward or failure, the diet of visual
stimulation or as yet unidentified fluctuations in internal state.

In this case, the causal direction is different. The physiological
correlate is a change in the firing of certain neurons elsewhere in
the brain: these neurons communicate, possibly indirectly, with
the sensory neurons that are being studied by the experimenter,
forming what is often referred to a “top-down” signal (see
Figure 1 “Feedback”). As internal state changes, under the
influence of reward conditions, attention or stimulus history, this
change affects both the organism’s choice on the upcoming trial
and the firing of the neuron that is being recorded. The initial
study on choice probability carefully considered and rejected the
notion that all aspects of choice-related firing could be explained
by variations in attentional state (Britten et al., 1996). The
experimenters pointed to differences between the firing patterns
induced by modulation of attention and those related to percep-
tual choice. Later work has established that at least a component
of the choice-related firing may be driven by “top-down” factors.

The first piece of evidence is negative. Shadlen and colleagues
carefully modeled the noise-driven, “bottom-up” route for
the generation of choice related firing. Within a population of
model neurons, whose firing patterns were closely matching the
statistical characteristics of the recordings of V5/MT neurons,
Shadlen et al. (1996) explored the conditions under which a
realistic combination of parameters could be achieved to explain
two parameters of neuronal performance. The first parameter was
the choice probability already described; the second parameter
was the detection performance of the population of neurons,
when their individual signals were pooled to predict the
behavioral performance of the monkey. Within a range of values
compatible with observed values of the detection performance of
single neurons and interneuronal correlations measured during
performance of the motion-coherence detection task, it was
impossible to accommodate choice probabilities as large as 0.67
as found in some studies. The model with parameters similar
to those considered most likely by Shadlen et al. (1996) leads
to small numbers for the pool size of neurons (less than 10),
which implies a return of all the issues for finding and identifying
the relevant neurons. This analysis is specific to the conditions
discussed and explored: in particular, with a change in the
interneuronal correlation, it may become possible to find a set of
model parameters that allows all possibilities.

The second piece of evidence is more direct. Nienborg and
Cumming (2009) examined the performance of disparity-
sensitive neurons in the secondary visual area of V2 of macaque
monkeys. They were following up an earlier observation of
theirs (Nienborg and Cumming, 2006), in which they found
that V2 neurons exhibited significant choice probabilities with
a disparity-detection task, while V1 neurons did not. In the
follow-up experiment (Nienborg and Cumming, 2009), they

introduced a noisy signal within the visual stimulus within each
individual trial: they arranged for a two-second presentation of
a stimulus trial to be broken down into eight separate epochs,
during each of which a modest fluctuation of disparity, positive
or negative, was superimposed upon the programmed disparity
for the trial. The strategy was to examine whether these imposed
fluctuations of stimulus disparity were manifest as noise in the
firing pattern of the neuron and in particular to ask whether
the imposed fluctuations had similar or different effects upon
the neuron and the monkey’s behavior. If the effect of imposed
fluctuations were very similar on neuron and behavior, then
there would be a strong inference that the choice probability is
fundamentally an early, “bottom-up”-driven process. On the
other hand, a marked difference in the effects of the inserted
noise on the neural and behavioral measures on a trial-by-trial
basis would strongly suggest the presence of an additional signal,
potentially from a “top-down” source. Nienborg and Cumming’s
results and analysis favored the second of these outcomes and
therefore strongly suggest the inadequacy of a simple account of
choice probability based on noise early in the visual processing.

CHOICE PROBABILITIES ON A COARSER SCALE OF
GRANULARITY
Choice probabilities have also been investigated with methods
that do not involve the recording of single neurons. In one
case, brain regions that encode the presentation of faces with
expressions of fear were distinguished in an MRI study from brain
regions that encode the presentation of faces showing expressions
of disgust (Thielscher and Pessoa, 2007). A single trial fMRI study
was then conducted using signals from the two brain regions
classified according to the behavioral response of the participant
to a perceptually ambiguous expression. Calculated choice proba-
bilities for these brain regions were very close to the values of 0.55
reported from the initial single neuron studies in macaque cortex.

Two points are relevant to bear in mind about these results.
First, the identification and selection of ROIs for the MRI analysis
is dependent in part on identification of clusters of responding
voxels. This step in the analysis is likely to mean that the each ROI
consists of a set of voxels with correlations in the activity between
voxels in the cluster. This is somewhat similar to the circumstances
in which single neurons’ responses are correlated. Second, the
stimulus-related responses of the MRI clusters are less reliable
than expected and less reliable than many single neurons in the
macaque’s brain. Correct identification (stimulus probability) of
the fear vs. disgust an expression of the faces was at best 0.69, this
being under circumstances in which the behavioral judgments
reached 1.0. This leaves some explanatory gap for the MRI data,
in terms of a complete account of the behavioral performance,
and raises the issue of what values would be achieved for choice
probability if the precision of the MRI signal were greater.

In a separate study, a single trial analysis of EEG data was
used to identify choice-related brain activations during a task
to discriminate faces from automobiles (Philiastides and Sajda,
2006). In this case, the combined measurement of neural and
psychophysical performance showed that the neural signals had
the precision to extend over the full range of human behavioral
responses. The early phase of the EEG signal gave inconsistent
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results in the choice probability analysis: only three out of six
participants exhibited significant choice-related neural respond-
ing. In the later phase of the EEG signal, robust evidence for
choice probabilities emerged, with values between 0.61 and 0.81.
The late phase of the response studied here arises between 300
and 450 ms after stimulus onset (depending on the individual
subjects’ responses). There is therefore the possibility that some of
the choice-related differentiation of this signal is related to post-
decisional processes. It is also worth comparing this point with
the single-neuron data in sensory areas, which typically shows
some evidence of decision-related signal as soon as stimulus onset
occurs.

Data of this kind demonstrate that the phenomena identified
in single neuron recording experiments with macaque monkeys
have parallels with observations using non-invasive measures,
which can be achieved with human volunteer participants. How-
ever, thus far, the parallels are not exact. These experimental
approaches also raise interesting issues of scale in brain measure-
ments. Neurophysiologists typically spend a great deal of planning
and effort to target single neurons with specifically interesting
signals relating to cognitive behavior. It remains unclear how a
local group of neurons might generate a choice-related signal that
would be detectable on a larger scale of measurement, some tens
of mm3 of tissue in size. Clearly, the role of correlated activity
across a set of neurons must be important in generating a scale-
independent regularity of this kind. Often however the signals
from small groups of neurons will fall below the resolution level of
these non-invasive techniques, so the choice-related signals may
be visible only under highly specific experimental paradigms.

INTERPRETATION OF CHOICE PROBABILITIES
A major motivator remains to understand what do these set
of results tell us about the role of neurons (or other neural
structures) in perception? If the early-noise model is correct, are
we allowed to conclude that neurons with choice probabilities are
indeed on the perceptual pathway: that is, in general, does the
activity within neurons that show significant choice probabili-
ties control the perceptual decision by comparison with similar
activity in neurons with no significant choice probability? If the
“top-down” view is correct, is it correct to presume that the top-
down signal is directed specifically to the neurons relevant for
the perceptual decision; or does the cognitive signal leak out to
influence the firing of neurons that actually have no contribution
to the task?

A recent theoretical analysis casts some light on this question.
Haefner et al. (2013) examined the role of interneuron correlation
on choice-related signals in a neural population: rather than
considering the distributed activity of a population of neurons,
they considered the mean behavior of a large population. With
this analysis, it became clear that when a neuron exhibits a choice
probability, even a large one, this tells us more about which
other neurons this recorded neuron is connected to, rather than
revealing the presence of a subgroup neurons that are indeed on
the perceptual pathway (see Figure 1 “Interconnected”).

This principle is illustrated in the simulation illustrated in
Figure 2. A small set of neurons was simulated with Gaussian
random variables. To just one of these neurons, a choice signal

Sensory 
Signals 

A B C 

Feedback 

Cognitive
Signals 

A B C 

Inter-
connected

Cognitive
Signals 

A 

Sensory 
Signals 

B C 

Feed-
forward

FIGURE 1 | Three connection patterns that lead to measurable choice

probabilities in neurons A, B and C. In the feed forward model, the three
neurons receive common input from a site providing sensory signals. The
common driving of A, B and C is sufficient to generate measureable
correlation if two neurons are recorded simultaneously. In the feedback
model, all three neurons receive a feedback signal in common from a more
central site, with the same consequence for measureable correlations. In
the interconnected case, only neuron A receives the feedforward or
feedback signal, but neurons B and C exhibit signs of its arrival because
they are connected to A, which influences their activity and generates
correlations between all three neurons.

was added—in this case by adding an additional level of activity
to that neuron, thereby simulating the effect of a single top-down
signal targeting just one neuron in the pool. The pool of neurons
is interconnected, thereby generating correlated activity in that
pool (Bair et al., 2001).

Whether or not a neuron in involved in a perceptual decision
is governed by a set of weights, one for each neuron that defines
the contribution of that neuron to the decision variable. Thus for
a particular decision in favor of an outcome, the decision variable
is formed by a weighted sum of the activations of a population
of neurons. The authors refer to this process as “reading-out” a
decision from a profile of activity across a population of neurons
and these weights are often referred to as the “read-out weights”.
The weights for a particular decision are stable from trial to trial
of the decision task but the weights may be gradually adjusted
over time under feedback about the outcome of decisions already
made.

An important question is therefore what consequences for
measured correlations are generated by the pattern of neural con-
nectivities? Correlations among a group of multi-variate entities
are represented by the correlation-matrix. This matrix is always
symmetric since the correlation C between elements i and j are
always constrained by Cij = Cji.

An equivalent matrix that defines the connectivity between a
pair of neurons i and j does not have this constraint. For example,
with a simple feed-forward connection, the firing of neuron i may
influence neuron j without there being an equivalent influence
from j to i. Another complexity of neuronal relationships that is
not captured by the correlation of firing between two neurons is
the combination of excitatory and inhibitory influences; another
issue is the difference between long-range excitatory connections
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FIGURE 2 | Illustrating the effects of correlation on neuronal signals in

a population. This simulates a network such as that in Figure 1. (A)

Four neurons arranged to have an interneuronal correlation (rho) equal to
0.4. Neurons 2 to 4 are simulated as zero mean, unit variance Gaussian
random variables. Neuron 1 is the same, except an artificial choice signal
(value = 1.5) is inserted. (B) The responses of the four neurons are
subjected to ROC analysis to reveal the choice related signal. The black
curve projecting up to the upper left corner represents the detectability of
the choice signal on Neuron 1. The colored curves are for Neurons 2,3,4.
These neurons received no choice signal in themselves but acquired the
choice signal by virtue of their correlated variance with neuron 1. (C)

Summary histogram of choice probabilities induced in population of 40
neurons by choice signal inserted into single neuron and presence of
interneuronal correlations inducing the choice probability in the other 39.
Estimate of 100 repeated trials with a choice signal of 1.5 as at Figure 2.

and short-range inhibitory connections that characterizes cortical
connections as revealed histologically.

Nonetheless, it is now demonstrated that in theoretical models
that the structure of neuronal connectivities brings about distinct
patterns of correlation and, more encouragingly, the observed
pattern of correlations provides some insight into and constraints
upon the underlying pattern of connectivities (Kriener et al.,
2009; Pernice et al., 2011). Indeed, Haefner et al. (2013) suggest
some ways in which structure within the correlation matrix can
be exploited to recover information about which neurons are
contributing directly to the perceptual decision. Empirically,
Liu et al. (2013) compared different sites and successfully
related the differences in choice probability to measurable
differences in noise correlations between those sites. However,
comparison of this kind do not address the more fundamental
question of what conclusions are justifiable based on the
observation of statistically significant choice probabilities at a
brain site.

Another route into interpreting the pattern of correlated activ-
ity is to bring in the time domain. Various attempts have been
made in neuroscience to base the analysis of correlations on the
concept of Granger causality: see Seth (2008) for review. This
asserts that if the variation in signal in a structure A at time t
is A(t), then a signal in structure B at time t-δ explains what
is happening at A, if A(t) is correlated with B(t-δ). Of course,
this situation can be created if two signals leave a third source
C and arrive at both A and B, but there is a relative delay in
transmitting the signal from C to B in comparison with from
C to A.

The conclusion from these various issues is that patterns of
correlation may provide some interesting constraints on the set
of possible connectivities between groups of neurons. Nonethe-
less, the same pattern of correlations may be generated by quite
different underlying connectivities (Pernice et al., 2011). In the
future, it will be necessary add in information from other sources
of evidence, separate from what can be learnt from direct mea-
surement of correlations. The obvious next step is to couple
measurements of correlated activity with some method of inter-
vening in the functional signaling among the group of neurons,
such as molecular activation or silencing, or with some sep-
arate and independent line of evidence about the role of the
group of neurons in perceptual decisions, as attempted by Krug
(2004).

ALTERNATIVE CHECKS ON THE FUNCTIONAL SIGNIFICANCE
OF CHOICE PROBABILITIES
Given the complexities of interpretation raised by the presence
of interneuronal correlations in groups of neurons, it seems
reasonable to ask the question whether we can gain an inde-
pendent assessment of the functional significance of observing a
statistically valid choice probability within the activity of a single
neuron. If, as seems clear, the identification of decision-related
firing does no more than present circumstantial evidence that the
neuron might be a candidate for involvement in the perceptual
decision, it seems worthwhile to consider alternative routes for
validating the neuron-perception link.
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FIGURE 3 | Two experimentally observed measurements of the

interconnectedness of pools of neurons sufficient to generate

interneuronal correlations. (A) Shows connectedness on a scale of the

order of 100 µm (Perin et al., 2011), while (B) shows connections on a much
larger scale that traverse a large fraction of cortical area V5/MT in the
macaque (Ahmed et al., 2012).

Two experimental strategies present themselves. First, it might
be possible to identify a neuron that has a choice probability and
directly test the consequences of activating that neuron for the
perceptual choices made by the participant. Second, it might be
possible to generate a corroborative test of the role of neurons
that have already been identified as carrying a choice probabil-
ity. To my knowledge, only the second of these tests has been
attempted.

Recording in V5/MT during the performance of a
stereo/motion task by macaque monkeys (Krug et al., 2004)
tested single neurons for the presence of choice probabilities
during the performance of the task, which required a response to
the sign of binocular depth in a structure-from-motion stimulus,
to judge its direction of three-dimensional rotation. The same
neurons were also tested to see whether there was a consistent
response to the stereo disparity of binocularly anti-correlated
stimuli. The authors confirmed that changing the disparity of
these binocularly anti-correlated stimuli failed to yield a coherent
change in the depth percept. Hence, by this test neurons that
carry a perceptual signal ought not to respond to changes in
the disparity of binocularly anti-correlated stimuli. Taking each
test alone, the authors identified V5/MT neurons that carry
signals that are congruent with the perceptual effects. However,
on comparing tests, there was no fixed pool of neurons, whose
activation would lead to a unitary account for the binocular
depth percept. Specifically in the context of this discussion, the
authors found that excitation of neurons that are proven to have
a statistically measurable choice probability does not necessarily
lead to a change in perception.

This result places a clear challenge to the interpretation of
decision-related firing in single neurons. At least some neurons
may exhibit decision-related signals in a perceptual task, in cases
when there is clear alternative evidence that their activity is
unrelated to perceptual decisions. There are a number of ways of
explaining this complexity but in the rest of this article, I focus
on the role of neuronal connectivities in generating results of this
kind.

IRRELEVANT NEURONS IN THE POOL?
Up to this point, the discussion has been essentially neutral on
the issue of how connections between neurons arise. Although
functionally open connections between neurons will always have
consequences for the size of measurable correlations in their
firing, it is possible to identify a number of distinct ways in
which correlation may be generated. The classic “bottom-up; top-
down” distinctions have been mentioned already. In the bottom-
up approach, interneuronal correlation is generated by trial-by-
trial fluctuations in the strength of signals arriving from earlier
sensory stages. These signals pass into a group of neurons, sending
a common signal that is stronger on some trials and weaker on
others. This variation is transmitted in parallel to this group of
neurons, which will therefore exhibit measurable interneuronal
correlations regardless of whether the members of this group are
interconnected with each other. A similar picture applies for top-
down signals. Here a signal may arrive in a group of neurons from
another cortical site, typically conceived as sending a cognitive
signal relating to attention or other task-related. The effect is very
much the same as before. Trial-to-trial variations in this signal
may be transmitted in parallel to the group of neurons that the
experimenter has under measurement; again these variations will
generate interneuronal correlations in firing among the group; as
before there is no requirement for the members of the group to
be functionally connected to each other to generate correlations
among them.

Neither of these schemes is particularly realistic when consid-
ered against the known facts of cortical connectivity. Neurons that
are receiving in common sensory inputs or source of cognitive
influence are likely to be connected among themselves, rather
than isolated from each other. These interconnections are also a
mechanism by which interneuronal correlations can be generated.
With this in mind, it is possible to hypothesize a third route
by which neurons may acquire choice-related firing during the
performance of a perceptual task. This is through the so-called
“innocent bystander” route; in this case, a neuron is not actually
part of the decision process but it is functionally connected with
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neurons that are involved in the decision. By sitting as a member
of a network that has functional connections with neurons that
are directly involved in the decision, the “innocent bystander”
acquires measurable signals relating to the decision itself (see for
example, Cohen and Newsome, 2009). In cognitive terms, these
signals represent knowledge without responsibility: the signals are
present and could be read out to learn about the decision, but they
don’t actually affect the decision one way or the other. In mech-
anistic terms (Haefner et al., 2013), this relationship is expressed
as neurons that have a measurable interneuronal correlation but a
zero weight in the decision.

The pure “innocent bystander” model, which is illustrated in
Figure 1 “Interconnected”, is neutral about how and why the
interconnections between neurons arise. One route is to argue
that these interconnections have no functional purpose at all.
They are just accidental. On this approach, it is possible to take
a minimalist view of the significance of measuring a choice prob-
ability in a particular neuron. As noted earlier, the presence of the
choice probability simply indicates no more than the haphazard
association of the recorded neuron with some other neuron,
which is the true conveyor of information forming the decision.
This minimalist view is useful for stripping away assumptions
about what a measurable choice probability tells us about the
role of a neuron in perceptual decisions. However, it is not a very
realistic view about the organization of the nervous system.

The suggestion here is the fairly conventional view that con-
nections between neurons build up and are refined as a conse-
quence of developmental process followed by activity-dependent
tuning of neural connections. Granted that there may be some
random and haphazard connections, but the idea that this is the
dominant mode of connectivity is far-fetched and implausible.
What is more consistent with knowledge about the structural
and functional connectivity of the cortex is to acknowledge the
following. Whenever a new study of a perceptual task is begun,
the participants (whether human or non-human) arrive at the
beginning of the task with a highly structured visual nervous sys-
tem. The learning of the specific task required by the experimenter
is overlaid on this past experience. That previous experience will
have shaped and adjusted the visual nervous system, creating sets
of connections that are relevant for the range of tasks involved in
everyday living plus any specific tasks for which the experimenter
may have been trained. Thus, neurons are already organized
into groups and functional circuits before the experimental study
begins.

When a new psychophysical task is performed, a group of
neurons relevant to the judgment becomes involved because the
firing of some neurons in that group is strongly relevant to the
task. This group of neurons is called a micro-pool. It is suggested
that the selection process for forming a decision pool relevant to
the task is by selection of a micro-pool not by selection of indi-
vidual neurons. Hence, some neurons in the micro-pool become
associated with the performance of the task on the basis that they
are connected with the neurons that are firing strongly in a task-
relevant way. These other neurons have firing that is correlated
with the activity of the relevant neurons, largely because past
experience has shaped the present state of the nervous system,
equipping it with neural circuits or cell assemblies that have been

functionally useful. Over time the membership of the micro-pool
may be adjusted as a result of perceptual learning. But there will
generally be some inefficiency and therefore there will always
be some irrelevant neurons in the micro-pool, whose firing is
partially correlated with the firing of neurons relevant to the task.
On this view the connections within the pool are not generated
by random processes but are present for functional reasons that
happen to be only partially relevant to the task being studied.

CHOICE PROBABILITY AS AN INDEX OF FUNCTIONAL
CONNECTIVITY?
Whether we regard choice probabilities as arising from a bottom-
up or top-down source, it is clear that at a particular cortical
site, where neurophysiological recordings are being conducted, a
signal enters among a connected group of neurons. This signal
propagates among that restricted group. We assume here that
there is no distinction in the way that the choice-related signal
propagates from neuron to neuron and the way that other signals
propagate among the same neuronal group. This is a standard
baseline assumption: it implies that all signals from one neuron
to the next are treated equivalently, simply passing from one
neuron to the other with a signal strength governing by a single
value for the synaptic weighting from neuron A to neuron B.
Other assumptions are possible but they would involve separate
signaling pathways exiting the neuron, with one of the pathways
preferentially channeling the choice-related signal and the other
channeling the pure stimulus-evoked signals.

Under this assumption, once a choice-related signal has
entered a local network of cortical neurons, it is able to propagate
through the network using the same synaptic connections
that deliver other signals (Bair et al., 2001). Recent recordings
from multiple neurons in cortical tissue slices have used photic
or electrical stimulation to probe the functional connectivity
between small groups of neurons (Yoshimura et al., 2005;
Perin et al., 2011). The connectivity revealed by these experiments
suggests the interlinking of groups of neurons (chiefly pyramidal
neurons from sensory neocortex), with a specialized linking of
some dozens of neurons over 100–300 µm distances in cortical
tissue. Neurons forming a single cluster are individually spaced
such that it is easy to embed multiple clusters within a single
compartment of cortical tissue. An arrangement such as this
means that there are favored paths of connectivity throughout a
single block of cortical tissue (see Figure 3).

An indirect line of support for this view comes from the
work of Ghose’s lab (Ghose, 2006; Ghose and Harrison, 2009).
In these studies, the animal is presented with a pair of arrays
(each about 5–7 degrees in visual angle), composed of 31 Gabor
stimulus elements, each one moving back and forwards accord-
ing to independent random sequences. Within this stream of
random sequences, a brief pulse of coherent motion is intro-
duced to one of the two arrays, during which elements move
consistently in a single direction. The animals’ task is to detect
this motion pulse, responding with an eye movement. As men-
tioned earlier, the choice probabilities calculated for V5/MT neu-
rons during this task are substantially higher (0.64) than those
found for other motion detection tasks in the same visual area
(Ghose and Harrison, 2009). The reasons advanced in that paper
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for the larger choice probability relate to the temporal precision
of the information that must be processed for this sensory task.

An alternative view, not necessarily incompatible with that of
the authors, is that points across the cortical V5/MT representa-
tion of the array of Gabor stimulus elements are likely to be served
by neurons connected on the basis of similar motion preferences.
Applying a coherent pulse of motion across the stimulus array
consistently drives this strongly connected network of neurons.
This may be distinguished from the random-dot kinetogram
stimulus, in which the relevant motion signal is distributed at
inconsistent locations across the field of random dots. Thus, it is
true that the kinetogram differs from the array of Gabors because
it provides a temporally brief pulse of motion. However the array
of Gabors also delivers a pattern of motion that spatially coherent
and also is presented with low spatial uncertainty (Davis, 1981;
Nachmias, 2002; Bach and Dolan, 2012) since each motion pulse
is introduced into the display at the spatial location of a highly
visible stimulus element.

In regard to the connections between neurons, the organi-
zation of a network that responds to coherent motion across
spatial positions is something that can be potentially constructed
on the basis of daily experience outside the task-specific training
that the animals participating in this study will have received. A
similar consideration applies to the rotating cylinder stimulus, for
which high choice probabilities have been reported (Dodd et al.,
2001). This stimulus delivers a combination of motion paral-
lax and binocular depth that is often experienced by a moving
observer, who is translating in the world and simultaneously
counter-rotating the eyes to maintain gaze on a static point in the
visual scene (Krug and Parker, 2011). By contrast, the knowledge
about the spatial uncertainty attached to a particular stimulus
is something that can only be learned in a task-specific manner
but Ghose (2006) has demonstrated significant learning effects
in his experimental paradigm. These learning-related changes are
presumably manifest within the connectivity matrix of sensory
neurons.

The potential implication for the analysis of choice proba-
bilities is that the correlation matrix, which is related to the
connectivity matrix, is far from uniform in its set of values. Some
connections will be strong, implying relatively high correlation
values for the pair of neurons concerned, whilst other connections
will be weaker, resulting in lower correlation values. For the
neural tissue of V5/MT, in which many experimental observations
of choice probability have been made, the pattern of intrinsic
connections within the cortical area is critical. A recent study
(Ahmed et al., 2012) has revealed an internal organization of

projections within V5/MT extending as broadly as 10 mm across
the cortical surface with an approximately 2 mm repeat pattern. It
would be of considerable interest to measure the interneuronal
correlations and decision-related activity between cortical sites
across this repeating pattern.

CONCLUSION: A MICRO-POOL MODEL
This article has analyzed the behavior of three different models
of the generation of decision-related firing, particularly its mani-
festation as choice probability during the performance of a visual
task. These different models were chosen primarily to illustrate
their individual shortcomings and to demonstrate that the truth
must lie somewhere between these. A second theme of this article
is to consider the structure of interneuronal correlations as a
potential influence on the generation of choice probabilities. It is
concluded that the clustering of neurons into functional groups
almost certainly precedes the training for particular perceptual
tasks. The initial selection of neural mechanisms suitable for
task performance is probably at the level of these functional
groups, which were termed here a “micro-pool”. The numerical
size of the pool is uncertain at this stage: it may arise from
small clusters of tightly packed neurons or it may spread over
mm of cortex by long-range connections. Two important factors
that determine the choice probability measurable from a micro-
pool are the size of the choice signal arriving with one or more
neurons in the pool and the interconnectedness of the pool
itself.

It is concluded that the clustering of neurons into functional
groups almost certainly often precedes the training for particular
perceptual tasks. The initial selection of neural mechanisms suit-
able for task performance is probably at the level of these func-
tional groups, which were termed here a “micro-pool”. The size of
the pool size is uncertain at this stage and may vary from task to
task: it may arise from small clusters of tightly packed neurons or
it may spread over mm of cortex by long-range connections. Two
important factors that determine the choice probability measur-
able from a micro-pool are the size of the choice signal arriving
with one or more neurons in the pool and the interconnected-
ness of the pool itself. It is concluded that the generation of strong
choice probabilities seen in some studies (Dodd et al., 2001) may
reflect a selection process, in which the dominant structures that
emerge to control perceptual behavior are tightly interconnected
groups of neurons. With this organization, it is possible to gener-
ate a sufficiently high correlation among activities of a group of
neurons, some of which are the primary processing units for the
choice-related signals.
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