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Risk frames nearly every decision we make. Yet, remarkably little is known about
whether risk influences how we learn new movements. Risk-sensitivity can emerge when
there is a distortion between the absolute magnitude (actual value) and how much an
individual values (subjective value) a given outcome. In movement, this translates to the
difference between a given movement error and its consequences. Surprisingly, how
movement learning can be influenced by the consequences associated with an error
is not well-understood. It is traditionally assumed that all errors are created equal, i.e.,
that adaptation is proportional to an error experienced. However, not all movement errors
of a given magnitude have the same subjective value. Here we examined whether the
subjective value of error influenced how participants adapted their control from movement
to movement. Seated human participants grasped the handle of a force-generating robotic
arm and made horizontal reaching movements in two novel dynamic environments that
penalized errors of the same magnitude differently, changing the subjective value of the
errors. We expected that adaptation in response to errors of the same magnitude would
differ between these environments. In the first environment, Stable, errors were not
penalized. In the second environment, Unstable, rightward errors were penalized with the
threat of unstable, cliff-like forces. We found that adaptation indeed differed. Specifically,
in the Unstable environment, we observed reduced adaptation to leftward errors, an
appropriate strategy that reduced the chance of a penalizing rightward error. These results
demonstrate that adaptation is influenced by the subjective value of error, rather than
solely the magnitude of error, and therefore is risk-sensitive. In other words, we may not
simply learn from our mistakes, we may also learn from the value of our mistakes.

Keywords: risk-sensitivity, adaptation, motor learning, decision-making, internal model, subjective value,

sensorimotor control

INTRODUCTION
Effective movement relies largely on adaptation: the process of
correcting control from movement to movement, which, criti-
cally, is driven by movement error (Topka et al., 1998; Smith
and Shadmehr, 2005; Bastian, 2008; Rabe et al., 2009). However,
investigations of adaptation have largely overlooked the fact that
not all movement errors of the same magnitude necessarily have
the same subjective value. Consider a game of tennis. Compare
a 5 cm error in ball placement in the middle of your oppo-
nent’s court with a 5 cm error at the edge that lands the ball
out-of-bounds. Although the error magnitude is equivalent, the
subjective value is drastically different. Clearly one would respond
to each error very differently on the next shot. Most movements
involve similar decisions, where the subjective value of an error
must be considered. The fact that people respond differently
demonstrates that the magnitude of the error and the subjective
value of the error, are not always the same. This raises the ques-
tion of whether adaptation may depend on the subjective value,
rather than simply the magnitude, of an error.

A distortion between the magnitude (actual) and the subjec-
tive value of an error suggests a risk-sensitive decision-making
process in the brain (Bernoulli, 1954; Huettel et al., 2006).

Sensitivity to risk, the variance associated with an outcome, has
been extensively studied in economics (Kahneman and Tversky,
1979; Smith et al., 2002), psychology, and, recently, motor control
(Wu et al., 2009; Braun et al., 2011; O’Brien and Ahmed, 2013).
Theoretically, risk-sensitive behavior can arise from a distor-
tion between subjective and actual value (i.e., a non-linear value
function; Glimcher, 2008). Risk-sensitivity suggests, counter to
traditional computational models of decision making and learn-
ing that decisions are not based solely on maximizing expected
gain over all outcomes, but are also influenced by the variance.
However, research on risk-sensitivity has largely focused on sin-
gle decisions, with few investigating sequences of decisions in
cognitive tasks (Niv et al., 2012). This is surprising, as the pro-
cess of making sequences of decisions is, at its core, the learning
process. Here we investigate movement adaptation: a sequential
decision-making process critical to effective movements.

Adaptation is frequently studied in humans by exposing
them to novel dynamic environments (Lackner and Dizio,
1994; Shadmehr and Mussa-Ivaldi, 1994; Scheidt et al., 2001).
Adaptation proportional to the magnitude of error has been
observed, suggesting that error magnitude is being minimized.
However, the idea of proportionality between error magnitude
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and adaptation has been recently challenged. Non-linear adap-
tation has emerged when the directional bias, relevance, statis-
tics and magnitude of the errors are manipulated (Fine and
Thoroughman, 2007; Wei and Koerding, 2009; Marko et al.,
2012). These results suggest that adaptation is not solely depen-
dent on error magnitude.

We sought to determine if we could alter adaptation patterns
by manipulating the subjective value of movement errors with
identical magnitude. If adaptation to errors with identical mag-
nitude differs with the subjective value of the error, this would
quantitatively demonstrate that adaptation is risk-sensitive and
influenced by the subjective value of error.

METHODS
THEORETICAL DEVELOPMENT
To examine the influence of the subjective value of movement
error on adaptation, we created a task in which we modulated the
subjective value associated with a movement error of a given mag-
nitude. Participants made reaching movements while holding the
handle of a force-generating robot arm (Figure 1) in two novel
dynamic environments that imposed different consequences on
the same magnitude of movement error.

The first dynamic environment, Stable, was a velocity-
dependent force field, which perturbed their reaching movements
and required participants to compensate in order to reach the
target. The force field pushed the handle to the left, away from
the target which was directly ahead. To reach the target accu-
rately, participants had to push to the right to effectively cancel
out the perturbation. The perturbation generated by the robot
changed in magnitude but not direction from trial-to-trial. This
is a well-studied paradigm where results have consistently demon-
strated that healthy adults adapt in a manner proportional to
movement error magnitude (Shadmehr and Mussa-Ivaldi, 1994;
Thoroughman and Shadmehr, 2000).

In the second dynamic environment, Unstable, movement
errors in the right half of the screen were heavily penalized,

FIGURE 1 | Experimental Setup. Seated participants grasped the handle
of a robotic arm and made 15 cm reaching movements from a start circle to
a target circle. The forearm was supported by a cradle attached to the
robotic arm. Visual feedback of the start, target, and cursor were provided
on a monitor mounted at eye level. The location of the “cliff” was indicated
by the line 2.5 cm to the right of the start and target circles.

thereby altering the subjective value of an error of a given mag-
nitude relative to the Stable environment. The Unstable environ-
ment was identical to the Stable environment, except that we
imposed a boundary on the right side of the screen, simulating
a virtual cliff. Errors to the right of this boundary would lead
to instability: large rightward perturbing forces that participants
could not compensate for within that trial (Figure 2). On trials
with such an error, it was not possible for the participants to reach
the target after the cursor had crossed the boundary. Here right-
ward errors were considerably less desirable than leftward errors.
Compared to the Stable environment, a rightward error of the
same magnitude in the Unstable environment had a less desirable
consequence, and therefore a different subjective value.

If adaptation was influenced by an individual’s subjective value
of the error, then the relationship between the magnitude of error
experienced on one trial, and the adaptation observed on the
following trial in response to that error would differ between
movement environments. To predict the nature of this difference,
we developed a risk-sensitive model of movement adaptation by
building upon a commonly-used model of movement adapta-
tion that predicts proportional adaptation to movement error
(Thoroughman and Shadmehr, 2000). This model is based upon
the assumption that the central nervous system seeks the motor
command, y, which will minimize the squared movement error,
x2. Solving this optimization problem, an expression is obtained
for how the command on the following trial, yn+1, should adapt
based on the predicted perturbation on the current trial, B̂n, and
the movement error experienced on the current trial, xn:

xn = D(Bn − B̂n) (1)

B̂n+1 = AB̂n + Kxn (2)

yn+1 = −B̂n+1 (3)

FIGURE 2 | Experimental Protocol. (A) Illustration of the forces produced
by the robot during reaching. Leftward arrows (filled) in both panels
represent the viscous curl field forces. Rightward (empty) arrows in the
rightmost panel represent position dependent divergent forces. (B) The
experiment consisted of four phases: Baseline (50 no-force trials), Stable
(200 trials with changing curl-field dynamics), Unstable (400 trials with
changing curl-field dynamics identical to the Stable trials, but with penalties
associated with large rightward movement errors), and Washout (50
no-force trials).
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Here, x represents the movement error on the current trial, n,
and results from a difference between the predicted perturba-
tion, B̂, and the actual perturbation, B, experienced on that
trial. Importantly, the amount of adaptation to a given error is
represented by a constant, K, which will lead to proportional
adaptation to error. The parameters A and D represent forgetting
and system compliance parameters, respectively.

In a risk-sensitive formulation, the amount of adaptation can
depend on the subjective value associated with a given error:
v(x), which can be a non-linear function of the errors observed.
Substituting this error sensitivity function into (2), brings us to
the following expression:

B̂n+1 = AB̂n + Kv(xn) (4)

While this function can theoretically take a variety of forms,
we will use a simple piecewise linear function to differentially
weight rightward and leftward errors, similar to functions used
to describe increased sensitivity to positive vs. negative rewards
(Niv et al., 2012):

v(x) =
{

αx if x > 0, rightward

−β|x| if x < 0, leftward
(5)

Clearly, when α = β, rightward and leftward errors are valued
equally and there is no distortion between the magnitude and
subjective value of an error. Effectively, we are back to (2), which
can now be described as risk-neutral adaptation. However, in the
Unstable phase, the addition of a cliff on the right creates a subjec-
tive error-value function that explicitly penalizes rightward errors

more than leftward errors such that α > β > 0. It can now be seen
how a distortion between the magnitude and subjective value of
an error will manifest as risk-sensitivity in the learning process
which arises from sensitivity to outcome variance. The non-linear
transformation of movement errors results in asymmetric learn-
ing from rightward and leftward errors. This asymmetry will lead
to outcome variance being penalized or favored.

The risk-sensitive model described above was used to sim-
ulate adaptation to a random sequence of perturbation gains
and the results are shown in Figure 3. This sequence of per-
turbation gains replicated that which was experienced by the
participants. Adaptation was calculated as the difference between
the motor commands on two subsequent trials: yn+1 − yn. Model
parameters were set arbitrarily at A = 1, K = 0.9, and D = 0.1.
Importantly, the qualitative predictions presented in Figure 3 are

not sensitive to these particular parameter values. Rightward and
leftward errors are respectively defined as positive and negative,
but the reference can also vary without altering the qualitative
predictions. The blue line represents the standard risk-neutral
model where α = β = 1. As expected, a proportional relation-
ship between adaptation on the following trial and error on the
previous trial is observed. However, when rightward, positive
errors are penalized more than leftward, negative errors (α = 1.2,
β = 0.8), adaptation is more sensitive to rightward than leftward
errors. Another way to quantify this difference, which is better
suited to the present experiment, is to compare adaptation to
the risk-neutral case. Adaptation to large leftward errors is less
sensitive than in the risk-neutral condition, whereas adaptation to
large rightward errors is more sensitive (Figure 3, left panel). Also

FIGURE 3 | A Risk-Sensitive Model of Movement Adaptation. Predicted
Adaptation is plotted vs. Error for Risk-Neutral (blue line) and Risk-Sensitive
(red) models. Error represents positional error, x, on trial n. Adaptation
represents the change in command, y, from trial n to n + 1. Left panel plots
risk-sensitive predictions when leftward errors are penalized less and

rightward errors are penalized more. Also depicted are risk-sensitive model
predictions for when only leftward errors are penalized less (top right panel),
and when only rightward errors are penalized more (bottom right panel).
Risk-sensitive predictions plotted with dashed red lines in right panels for
clarity.
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shown in Figure 3 are model predictions for when only leftward
negative errors are penalized less, compared to the risk-neutral
case, and when only rightward positive errors are penalized more
than the risk-neutral case. They are depicted as the dashed red
lines in the right top and bottom panels, respectively.

In the present experiment, our independent variable is subjec-
tive value, which is modulated by the experimental environment:
Stable vs. Unstable. Therefore, we compared adaptation to iden-
tical error magnitudes between environments. Based on these
model predictions we expected that, in the Unstable environment,
participants would increase their sensitivity, adapting more to
rightward errors. Additionally, or alternatively, participants may
reduce their sensitivity, adapting less to leftward errors, com-
pared to the Stable environment. This non-intuitive prediction
emerges from the leftward direction of the force field and right-
ward location of the instability. To adapt to the leftward forces,
they must push to the right. However, since the magnitude of
the perturbation changes from trial to trial, overcompensating
and adapting too strongly could lead to an undesirable right-
ward error beyond the cliff boundary. We expected that the more
costly consequences of a rightward error in the Unstable environ-
ment would lead to weaker, less sensitive adaptation to leftward
errors and/or stronger, more sensitive adaptation to rightward
errors.

PARTICIPANTS
Twenty healthy right-handed participants were recruited for the
study. Nine participants performed the main experiment (mean
± SD: 22.3 ± 3.6 years, three females). Six participants performed
the reverse experiment (23.33 ± 2.0 years, 4 males), and the
remaining five participants performed the control experiment
(21.0 ± 1.9 years, 5 males). Handedness was assessed with the
Edinburgh Handedness Inventory (Oldfield, 1971). All partici-
pants provided informed consent and all methods were approved
by the institutional review board at the University of Colorado,
Boulder.

TASK
The task involved making horizontal reaching movements while
seated and grasping the handle of a robotic arm (Interactive
Motion Technologies, Shoulder-Elbow Planar Robot. The posi-
tion of the handle was provided on each trial in the form of a
yellow, circular cursor on a computer screen in front of the par-
ticipants (Figure 1). Participants were asked to use the handle to
steer the cursor from a start circle to a target circle 15 cm away in
the sagittal plane. Start, target, and cursor circles had diameters
of 0.70, 0.85, and 0.45 cm, respectively. Participants were secured
in the seat with a four-point seat belt such that the trunk was
restrained. Visual feedback of the cursor position was provided
on a computer screen located above the robotic arm, directly in
front of them at eye-level. They were instructed to make a rapid
reaching movement to the target within a time window of 400–
700 ms. Color-coded visual feedback of the reaching movements
was provided about movement time. If participants reached the
target within the correct time interval, the target would “blow up”
(a yellow ring would emanate from the target). If they moved too
fast or too slow, the target would turn green or gray, respectively.

Participants were instructed to try and “blow up” the target on
each trial.

PROTOCOL
The experimental protocol consisted of four phases: Baseline,
Stable, Unstable, and Washout (Figure 2). Participants were not
informed of the different phases. The Baseline phase consisted
of 50 null trials (no-force) in which participants were allowed
to familiarize themselves with the task and the time constraint.
This was followed by the Stable phase, in which participants were
exposed to a counter-clockwise viscous curl force field. In these
force trials the robot handle exerted a force upon the participants’
hands that had a magnitude proportional to handle velocity
and acted in a direction perpendicular to the handle velocity.
The robot-generated force was determined with the following
equation:

[
Fx

Fy

]
= B

[
0 1

−1 0

] [
Vx

Vy

]
(6)

In the above equation, Fx and Fy represent the handle force in the
x and y directions, respectively. Handle velocity is represented by
Vx and Vy. The gain of the force field is represented by B. The
gain of the force field for each trial was randomly selected, based
on a uniform distribution, from 11 discrete bins equally spaced
from 0 to −40 Ns/m. The Stable phase consisted of 200 trials, in
which participants were exposed to each gain 18 times in ran-
dom order. The Stable phase was followed by 400 trials in the
Unstable phase. The sequence of gains in the Unstable phase was
identical to the sequence of gains in the Stable phase. All partic-
ipants were exposed to the same sequence. Just before trial 251,
a white line appeared 2.5 cm to the right of the start circle and
the target circle (Figure 1). The force field (6) was maintained to
the left of the white line in the Unstable phase. However, if the
handle moved more than 2.5 cm to the right of the start circle
(beyond the white line), the robot generated cliff-like dynamics
on the handle. This virtual cliff was presented as a divergent force
field (Equation 7, d = 500 N/m), which resulted in a force that
pulled the hand strongly to the right with a force proportional to
the handle’s horizontal, x, distance from the start circle:

[
Fx

Fy

]
= d

[
1 0
0 0

] [
x
y

]
(7)

The divergent force field was present only in the region to the
right of the white line, and was accompanied by an audiovisual
cue that the participants had crossed the line (a bright red screen
with black text indicating that the participants had crossed the
“cliff”). While no explicit instructions were given regarding the
presence of the white line, participants inevitably crossed the line,
which resulted in experiencing the cliff-like dynamics. The diver-
gent field was only present for the initial 50 trials of the Unstable
phase. After the initial 50 trials the divergent field was removed,
leaving only the audiovisual cue to indicate that the participants
had crossed the line. For the remaining trials in the Unstable
phase, participants were not adapting in the presence of a true
instability, but rather the threat of instability. Importantly, the
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distance to the cliff was specifically chosen to be greater than
the majority of movement errors, such that participants rarely
crossed the cliff but were merely alerted to its presence. The
Unstable phase was followed by the Washout phase, which con-
sisted of 50 null (no force) trials to washout adaptation to the
novel dynamics.

RATIONALE FOR THE DESIGN OF THE UNSTABLE PHASE
When participants are exposed to environments that are unstable
throughout the workspace, they adapt by increasing joint stiffness
through muscle coactivation (Burdet et al., 2001; Franklin et al.,
2003; Selen et al., 2009). This suggests that participants could
adapt to the instability presented in this experiment by using
such a stiffening strategy, rather than adapting their feedforward
control from trial to trial. To avoid this we created an environ-
ment that was unstable only in one region of the workspace.
However, if participants still increased joint stiffness to compen-
sate for the dynamics, this would manifest as a change in our
experimental measure of feedforward adaptation (Franklin et al.,
2003). Therefore, we created an environment with asymmetric
instability to disambiguate any changes in feedforward adapta-
tion from changes in stiffness control. Changes in stiffness control
would lead to symmetric changes in adaptation, whereas changes
in feedforward adaptation to a given gain would lead to asym-
metric adaptation. A number of other precautions were taken to
ensure that participants minimized the use of a stiffness strategy
to counteract the instability. We placed the cliff boundary beyond
the limit of normally experienced movement errors so that partic-
ipants could theoretically use the same movement trajectories, the
same stiffness, and the same adaptation pattern used in the Stable
environment to successfully perform the task in the Unstable
environment. The strength of the instability was also set so that it
was very unlikely that participants could recover even if they did
use a stiffness strategy. Finally, to rule out the effect of the unstable
dynamics on the movement and adaptation, the divergent force
field was removed after the first 50 trials. The unstable dynam-
ics, if experienced, would change the movement kinematics and
make it impossible to distinguish between changes due to changes
in adaptation and changes simply due to the mechanical pertur-
bation experienced. Removing the forces after 50 trials, without
informing the participant, allowed us to induce the threat of insta-
bility without having unstable forces influence the adaptation
metrics.

DATA ACQUISITION AND ANALYSIS
Robot handle position, handle velocity, and robot generated
force were recorded at 200 Hz. Movement error was calculated
as the perpendicular displacement from a line connecting the
start and target circles. Movement error was measured early in
the reaching movement (5 cm in the y-direction from the cen-
ter of the home circle, Figure 4), in an effort to capture the
error due to feedforward control based on the previous trial,
and not the reactive control employed to counter the pertur-
bation on that trial. To quantify the average movement error
experienced in response to each gain, the error from each
trial was grouped with trials of the same gain during each
phase.

FIGURE 4 | Average Hand Paths. Average hand paths across all
participants to identical gains in the Stable (solid lines) and Unstable
(dashed lines) phases. Participants reached from the start (green) circle to
the target (red) circle. Movement errors were sampled 5 cm into the
movement (horizontal black line). The unstable cliff region is depicted in red,
right of center.

ADAPTATION ANALYSIS
To test our predictions we analyzed adaptation in three differ-
ent ways, and compared adaptation between phases. Although
our predictions are based on the relationship between movement
error and adaptation, it is difficult to control for movement error
experimentally. Instead, we controlled for trial gain, as a proxy
for movement error, and thereby ensured an equal number of
trials for each gain. It is not unreasonable to do so, as previ-
ous studies have shown a linear relationship between gain and
error (Fine and Thoroughman, 2007). Thus, for our first adapta-
tion metric we quantified the relationship between our behavioral
measure of adaptation and the gain on the preceding trial. We
expected stronger gains to represent increasingly leftward errors
and weaker gains to represent increasingly rightward errors. Our
second adaptation metric was a model-based measure of adapta-
tion, also calculated as a function of gain on the preceding trial.
Finally, we also calculated an adaptation metric based on the
relationship between our behavioral measure of adaptation and
movement error on the preceding trial. The three adaptation anal-
yses are described in detail below. For all metrics, we expected
that adaptation to leftward errors (the stronger gains) would be
reduced in the Unstable phase compared with the Stable phase.
We also expected that adaptation to rightward errors (the weaker
gains) would be greater in the Unstable phase compared with the
Stable phase.

Behavioral gain-based adaptation
Adaptation was calculated based on the error observed in each
trial, as a function of the gain experienced on the previous trial.
Because the gain on each trial influenced the movement error on
that trial, it was necessary to normalize errors before quantify-
ing adaptation. Movement errors were normalized to the average
error for the gain experienced on that trial. In order to quantify
the influence of the gain on the current trial, n, on adaptation
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in the following trial, n + 1, we compared the normalized error
between the trials before and after the current trial. Adaptation
resulting from a given trial was defined by (8), where errorn+1 is
the normalized error from the following trial, and errorn−1 is the
normalized error from the previous trial.

Adaptationn = errorn+1 − errorn−1 (8)

Adaptation to the gain, k, on trial n was calculated as the average
adaptation observed in response to all trials with gain k. For the
Stable phase, all 200 trials were included in the analysis. In the
Unstable phase, adaptation was calculated as the average adap-
tation observed over the final 350 trials, removing the first 50
trials when the divergent force field was active. We did not ana-
lyze these initial 50 trials because we did not want to analyze any
failed trials where the hand was pulled strongly to the right by the
divergent field. Furthermore, we wanted to ensure that we ana-
lyzed data after the participants had been alerted to the presence
of the cliff. All participants experienced the divergent field at least
once during the 50 initial trials in the Unstable phase.

Model gain-based adaptation
We also sought to calculate adaptation in another manner, to
confirm that the results were not dependent upon our specific
definition of adaptation, provided in (8). To do so, we used
the following state-space model (Fine and Thoroughman, 2007),
based on the model introduced earlier, to fit the adaptation
parameters:

xn = D(Bn − B̂n) (9)

B̂n+1 = AB̂n + �S · �pn (10)

The output of this model, xn, is the movement error on the
current trial, n. This error was dependent on a scalar D, which
represents arm compliance and the error in the prediction of the
gain on the current trial (where Bn is the actual gain on the cur-
rent trial, and B̂n is the estimated gain for that trial). Equation
10 describes how the estimated gain for the following trial, B̂n+1,
is dependent on the estimated gain on the current trial B̂n, a
scalar A, which represents a forgetting factor as well as a sensi-
tivity vector, �S. Each element of this vector corresponds to how
much the gain experienced on that trial will contribute to the
estimate on the following trial. For example, assuming a linear
relationship between adaptation and error, if the error resulting
from a given gain was large, then the corresponding term in the
sensitivity vector should be large. If no error resulted from a given
gain, then the corresponding term in the sensitivity vector should
be zero. To ensure that only the element of the sensitivity vec-
tor corresponding to the specific gain experienced contributes
to the estimation, the vector �pn is designed such that all ele-
ments of �pn are zero except the element corresponding to the
gain experienced. The element corresponding to the gain expe-
rienced was set equal to 1. Using this definition, if adaptation is
proportional to error, K from (1) is constant, then the sensitivity
vector, �S, should scale linearly with gain and be identical across
Stable and Unstable conditions. This definition is slightly differ-
ent from other definitions of sensitivity in the literature, which

would involve further normalization by the corresponding gain
experienced to equate it to the constant K from (1). We fit the
model by obtaining the D, A, and �S that minimized the squared
difference between the model predictions and the participant data
in the final 200 trials of each phase using the built-in MATLAB
function “fminsearch” (MATLAB). Our model-based measure of
adaptation is the sensitivity vector. Its gain-specific elements are
analogous to the gain-specific adaptation metric calculated from
the behavioral data. The advantage of this analysis is that sensitiv-
ity does not depend on our experimentally derived calculation of
adaptation, but only on the error experienced from trial-to-trial.

Behavioral error-based adaptation
Because our predictions are specifically based on adaptation to
movement errors, a third analysis was performed on the experi-
mental data, grouping the adaptation by experimental movement
error rather than by trial gain. Trials were sorted into eleven
0.5 cm bins ranging from −3.0 cm through 2.5 cm. Leftward
errors greater than 3.0 cm and rightward errors greater than
1.5 cm were excluded from the analysis. This size and range of the
bins was selected to ensure an even distribution of trials between
the bins, while minimizing the number of trials excluded from the
analysis. Specifically, if there were an anomalously small number
of trials in a given bin (<50), and any subject did not have a single
trial in that bin, the bin was removed from the analysis.

REVERSE EXPERIMENT
To further explore our hypotheses regarding subjective value,
a second experiment was conducted in which the experimen-
tal setup was reversed. The cliff edge was placed to the left of
the center of the screen, and the associated divergent force field
pushed the handle to the left if the cursor was placed to the
left of the cliff. The curl force field now pushed the handle to
the right such that participants were still pushed away from the
cliff edge as in the main experiment. Otherwise all experimen-
tal parameters remained the same, such as trial number, trial
type, force magnitude and distribution. Six naive participants
completed this reverse experiment and we compared adaptation
between the Stable and Unstable conditions. In this experiment,
because the placement of the cliff increased the subjective value
of leftward errors relative to rightward errors, the predictions
were reversed, although the hypotheses conceptually remained
the same. Participants were expected to reduce adaptation to
rightward errors (away from the cliff) and/or increase adaptation
to leftward errors (toward the cliff).

CONTROL EXPERIMENT
To explore the possibility that participants might reduce adapta-
tion as a result of repeated exposure to the distribution of gains, a
control experiment was conducted. Naive participants performed
identical reaching movements as in the main experiment, with
an identical set of gains, but without the presence of the unstable
cliff. In this experiment, the white line that represented the edge
of the cliff never appeared, nor did the divergent forces that were
present beyond the cliff edge in the Main and Reverse experiment.
The experiment consisted of four phases: Baseline, Early Stable,
Late Stable, and Washout. The Baseline and Washout phases were
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identical to those in the main experiment, while the Early and
Late Stable phase in the Control experiment consisted of a total
of 600 reaching trials dynamically identical to those in the Stable
Phase of main experiment. Since there was no Unstable phase
in this experiment, we renamed the phases for clarity. The Early
Stable and Late Stable phases correspond, in terms of trial num-
ber, to the Stable and Unstable phases of the main experiment:
the first 200 force field trials and the last 350 force field trials,
respectively.

STATISTICS
In this study we altered the subjective value of error between
the Stable and Unstable phases. To determine whether sub-
jective value of error influenced adaptation, we used a linear
mixed effects regression model to analyze the error and adap-
tation observed in each experiment. The mixed effects model
was selected because of its ability to consider changes between
the phases of the experiment while considering intra-participant
variability. It is called a “mixed” effects model because it mod-
els both random and fixed effects. In this case, the within subject
(random) and between subject (fixed) effects are both taken into
account in the final output of the model. First, we determined
whether gain was a suitable proxy for error by including gain as
a factor. We also included phase as a factor to test whether there
was a difference in error between the two phases. A phase by gain
interaction term was also included to determine whether there
were differential effects of phase at individual gains. To confirm
that adaptation was influenced by gain we included gain in the
model as a factor. We also included phase as a factor to deter-
mine whether phase influenced adaptation. Finally, to determine
whether adaptation to the larger gains (leftward errors) and/or
smaller gains (rightward errors) were differentially affected by
phase, we also included a phase by gain interaction term. Planned
comparisons were carried out on adaptation between phases to
the strongest and weakest gains or to the most leftward and
rightward errors (for the error-based adaptation). For the model
gain-based adaptation, sensitivity, rather than gain, was included
as a factor as well as a sensitivity by phase interaction term.
Similarly, for the error-based behavioral adaptation, movement
error, rather than gain, was included as a factor as well as an error
by phase interaction term. The level for statistical significance was
set at α = 0.05.

RESULTS
OVERVIEW
In order to determine whether the subjective value of an error
can modulate adaptation we quantified adaptation to random
perturbations during reaching movements in two novel dynamic
environments: (1) a stable environment, and (2) an unstable
environment in which we altered the subjective value of right-
ward movement errors compared with leftward errors (Figure 2).
Overall we found that on average, movement error was differ-
ent between the two environments and that the subjective value
of movement error of a given magnitude significantly affected
adaptation. The behavioral results of this study are supported by
model-derived changes in sensitivity to gain when the subjective
value of an error was altered.

MOVEMENT ERROR
We began our analysis by examining the movement error for each
gain. In both phases, rightward errors greater than 2.5 cm were
rare. Trial movement error was grouped by gain into bins and
separated by phase. The results of the linear mixed effects regres-
sion model indicated that there was a main effect of gain (P <

0.00001), and confirmed a linear relationship between movement
error and gain in each phase. Stronger gains led to increasingly
leftward errors, and weaker gains led to increasingly rightward
errors (Figure 5A). These results support the use of gain as a
proxy for error in adaptation analyses to come.

If adaptation differed between the two phases, this should
influence the average movement trajectories and, accordingly, the
average movement error. Specifically, if adaptation to leftward
errors was reduced and adaptation to rightward error increased
in the Unstable phase, then movement errors should be more left-
ward, away from the cliff. Indeed, the linear mixed effects regres-
sion model also indicated there was a main effect of phase. In
other words, there was a significant difference in movement error
between phases (P = 0.0154; Figure 5B); there were more left-
ward trajectories, and leftward errors in the Unstable compared
with the Stable phase (Figures 4, 5B). The average movement
error in the Stable phase was −0.5 ± 0.19 cm, slightly less left-
ward than the average movement error in the following Unstable
phase −0.61 ± 0.22 cm. There was no phase × gain interaction
(P = 0.0864).

Participants moved with similar velocities in both condi-
tions (paired t-test, P = 0.7926), with average velocities of 43 ±
14 cm/s and 43 ± 15 cm/s in the Stable and Unstable phases,
respectively. The similarity of hand velocities indicates that par-
ticipants experienced similar velocity-dependent robot forces in
both phases.

BEHAVIORAL GAIN-BASED ADAPTATION
In the Stable phase, the average adaptation plotted as a function
of the gain on the previous trial displays a linear relationship

FIGURE 5 | Movement error vs. Gain. (A) Average movement errors
across all participants, for each trial gain, are plotted for the Stable (blue)
and Unstable (red) phases. (B) Average error in each phase (positive:
rightward, negative: leftward). The Unstable phase had slightly greater
leftward error. Asterisk indicates P < 0.05. Error bars represent standard
error of the mean.
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(Figure 6A). The slope of this line, fit using a linear mixed effects
regression model, was found to be significant (P < 0.00001,
k = −2.24 m2/Ns). There was also a significant effect of gain
on adaptation in the Unstable phase (P < 0.00001; Figure 6A).
The slope of the adaptation curve for the Unstable phase
(k = −1.72 cm2/Ns) was significantly different from that of the
adaptation curve in the Stable phase (P = 0.0043; Figure 6B),
indicating a significant effect of phase. The cliff by gain inter-
action term was also significant (P = 0.0306), indicating that
the presence of instability led to greater differences in adapta-
tion at some gains more than others. Indeed, the adaptation
vs. gain relationship for the Unstable phase (Figure 6A) qual-
itatively displays a notable non-linearity at the strongest gain,
but otherwise is similar to the adaptation observed in the Stable
phase. To further quantify this difference, planned comparisons
were performed and revealed a significant reduction in adapta-
tion to the strongest gain (P = 0.005), and similar adaptation to
all other gains (P > 0.05). This is in line with the model pre-
dictions presented in Figure 3. Specifically, similar results are
prediction by a model exhibiting reduced adaptation to leftward
errors only as the strongest gain led to the greatest leftward
errors. We chose to quantify adaptation over the final 350 tri-
als in the Unstable phase to maximize the data included in
the analysis. Nevertheless, the changes observed between phases
appear to be long-lasting; there was no difference in adapta-
tion between the final 200 trials in the Unstable phase com-
pared to the final 350 trials (P = 0.600, linear mixed effects
regression).

Because the relationship between adaptation and gain appears
to exhibit a non-linearity to the strongest gain (−40 Ns/m), we
also explored the possibility that the reduction in adaptation
to the strongest gain was significant enough to alone cause the
change in the slopes of these curves. An identical analysis was per-
formed on the data set after removing those data associated with
the strongest gain. When we excluded the data corresponding to
adaptation at the strongest gain, there was no longer a significant
difference in the slopes of the adaptation curves for each phase
(P = 0.315; Figure 6B).

FIGURE 6 | Adaptation vs. Gain. (A) Average adaptation for all participants
vs. gain is plotted for the Stable (blue) and Unstable (red) phases. For
clarity, arrows are used to indicate gains resulting in increasingly leftward or
rightward errors. (B) Slopes of the adaptation curves for all gains (left) and
only gains −36 through 0 Ns/m (right). Asterisks indicate P < 0.05. Error
bars represent standard error of the mean.

MODEL GAIN-BASED ADAPTATION
We next turn to the model gain-based analysis of adaptation.
While the elements of the sensitivity vector, S, varied from par-
ticipant to participant, the values of D (2.2e-4 ± 0.46e-4 m2/Ns)
and A (0.69 ± 0.08) are consistent with previous findings (Fine
and Thoroughman, 2007). Model fits predicted the data well
with an average R2 of 0.76 ± 0.002 across participants. The ele-
ments of the sensitivity vector exhibit a linear positive relationship
with gain in both phases (Figure 7). Again these data were ana-
lyzed using the linear mixed effects regression model with gain
and phase included as factors, as well as a gain by phase inter-
action term. The slope of the sensitivity vs. gain curve during
both the Stable and Unstable phase were found to be signifi-
cant: P < 0.002, k = 0.60519 and P < 0.002, k = 0.4188, respec-
tively. As in the behavioral results, there was a significant gain
by phase interaction (P = 0.0000168), a planned comparison at
the largest gain indicates a significant difference (P = 0.0006;
B = −40 Ns/m). Specifically, sensitivity to this gain was reduced
in the Unstable phase compared to the Stable phase. Post-hoc pair-
wise comparisons also reveal a trend toward a reduction in sen-
sitivity to gains B = −36 Ns/m, B = −24 Ns/m, and −20 Ns/m
(P = 0.0222, P = 0.0107, P = 0.0435). However, when correct-
ing for multiple comparisons these P-values are greater than the
Bonferroni-corrected significance level (α = 0.05/9 = 0.0056).
Overall, these model results confirm our behavioral findings.
They indicate that sensitivity, the model-based metric of adap-
tation, was also affected by phase, and that sensitivity to the
larger gains was reduced in the Unstable phase compared to the
Stable phase. These findings are also in line with the predic-
tions in Figure 3 in the case of reduced adaptation to leftward
errors only (i.e., the strongest gains). Moreover, compared to
the behavioral results, the sensitivity analysis reveals a stronger
effect of phase on sensitivity. We observed reduced sensitivity
in four of the highest gains, compared to the observation of
reduced adaptation to only the largest gain in the behavioral
analysis.

FIGURE 7 | Sensitivity vs. Gain. Group averaged elements of the
sensitivity vector are plotted for Stable (blue) and Unstable (red) phases. For
clarity, arrows are used to indicate gains resulting in increasingly leftward or
rightward errors. Asterisks indicate P < 0.05. Error bars represent standard
error of the mean.
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BEHAVIORAL ERROR-BASED ADAPTATION
Finally, we performed an error-based analysis. Although the
experimental design did not explicitly control for error, this anal-
ysis would provide confirmation, albeit inherently variable, that
adaptation to a given error differed between phases. Despite the
increased variability in the results, the analysis supported the
findings of the gain-based analysis. Trials were sorted by the
magnitude of movement error into 11 bins, each 0.5 cm wide,
ranging from −3.0 cm through 1.5 cm. The same bins were used
for all participants. Similar to the gain-based analysis, effect of
bin and phase were observed, as well as a bin by phase interac-
tion (P < 0.00005, P = 0.0363, and P = 0.0322, respectively). In
the Unstable phase participants significantly reduced adaptation
in response to the largest leftward movement errors (P = 0.0471;
Figure 8). These findings are also in line with the predictions in
Figure 3 in the case of reduced adaptation to leftward errors only.
It is interesting that participants also slightly reduced adaptation
in response to small rightward movement errors between 0.5 and
1.0 cm, although this was not significant when corrected for mul-
tiple comparisons (P = 0.0483; Figure 8). Thus, this error-based
adaptation reveals weaker adaptation to leftward errors and also
suggests that the reference line that defined whether an error was
non-threatening (away from the cliff) or threatening (toward the
cliff), may not have been strictly defined by a straight line toward
between the home and the target. It is reasonable that participants
may have considered small rightward errors as non-threatening.
A slight rightward offset in the reference line could still lead to
more leftward errors on average and trajectories that avoided the
cliff, which is what was observed (Figure 5B). It would be inter-
esting in future investigations to understand what factors drive
this distinction.

REVERSE EXPERIMENT
In the main experiment, the cliff was located to right, increasing
the subjective value of rightward errors compared with leftward

FIGURE 8 | Adaptation vs. Movement Error. Adaptation for each trial was
binned by the magnitude of the error experienced on that trial. Each data
point represents the the average adaptation and the average error across
participants for a given error bin, for the Stable (blue) and Unstable (red)
phases. Asterisks indicate P < 0.05. Error bars indicate standard error of
the mean.

errors. In the Reverse experiment, we reflected the cliff loca-
tion so that leftward errors had a greater subjective value than
rightward errors. As in the main experiment, we compared both
movement error and adaptation between the Stable and Unstable
phases. As expected, there was a main effect of gain in both the
error and adaptation analyses (both P’s < 0.00001). Similar to the
main experiment, movement error differed significantly between
Stable and Unstable phases (Stable: 0.89 ± 0.96 cm; Unstable:
1.05 ± 1.22 cm; P = 0.0209), Movement errors were more right-
ward in the Unstable phase indicative of a desire to avoid the cliff.
Turning to the adaptation results, there was a significant phase
by gain interaction (P = 0.0121). We observed that adaptation
to the strongest rightward gains, leading to the largest rightward
errors, was significantly reduced in the Unstable phase compared
with the Stable phase (Figure 9). Specifically, a planned com-
parison revealed that adaptation to the strongest rightward gain
of B = 40 Ns/m was significantly reduced in the Unstable com-
pared with the Stable phase (P = 0.016). There was also a trend
toward reduced adaptation to the gain of B = 28 Ns/m, however
this was not significant when corrected for multiple comparisons
(P = 0.011). Such reduced adaptation to the strongest rightward
gain is in direct contrast to the findings of the main experiment
where adaptation to the strongest leftward gains, leading to the
largest leftward errors, was reduced. However, this reversal is pre-
cisely what we expected to occur given that the location of the cliff
and subjective value of the movement error was also reversed.

CONTROL EXPERIMENT
To ensure that the changes in adaptation between the phases were
not simply the result of prolonged exposure to the viscous curl
field, a control experiment was conducted in which participants
made 650 reaching movements without the presence of the unsta-
ble cliff region. Similar to the main experiment, we compared
movement error and gain-based behavioral adaptation between
phases. These data were also analyzed using the linear mixed
effects regression model with gain and phase included as factors,
and a gain by phase interaction term. As expected, there was a

FIGURE 9 | Reverse Experiment. Adaptation vs. Gain. Average adaptation
for all participants vs. gain is plotted for the Stable (blue) and Unstable (red)
phases. For clarity, arrows are used to indicate gains resulting in
increasingly leftward or rightward errors. Asterisks indicate P < 0.05. Error
bars represent standard error of the mean.

Frontiers in Computational Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 118 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Trent and Ahmed Risk-sensitivity in movement adaptation

main effect of gain in both the error and adaptation analyses
(both P’s < 0.00001). We found there was no difference in move-
ment error between the Early Stable Phase and the Late Stable
Phase (Early Stable: −0.43 ± 0.96; Late Stable: −0.44 ± 0.78 cm;
P = 0.872; Figure 10A). Similarly, no difference in adaptation
was found between the Early Stable and Late Stable Phases
in the control experiment (P = 0.5576; Figure 10B). It is also
important to note the consistency in the magnitude of adap-
tation observed in response the largest gain in the Control
experiment (Figure 10B: gain = −40 Ns/m), where the environ-
ment is always Stable, and the adaptation to the largest gain
observed in the Stable phase of the main experiment (Figure 6A:
gain = −40 Ns/m). This strengthens our finding that adaptation
to the largest gain was indeed reduced in the Unstable phase of
the Main experiment.

SUMMARY
Here we have presented results from three different experiments,
using three different analyses demonstrating that subjective value
can influence adaptation, and ultimately adapted behavior. When
the cliff was on the right, adaptation to leftward errors, away
from the cliff, decreased, leading to greater leftward errors (away
from the cliff, Figure 11). When the cliff was on the left, adap-
tation to rightward errors decreased, leading to greater right-
ward errors (away from the cliff). Finally, when no cliff was
present, errors did not change, and no change in adaptation was
detected.

DISCUSSION
In this study, we investigated the influence of the subjective value
of movement error on adaptation during a novel reaching task.
We found that introducing a cliff-like region in the workspace,
and thereby changing the subjective value of error, we could mod-
ulate the degree to which participants would adapt to movement
errors of the same magnitude. Weaker adaptation was observed in
response to movement errors away from the cliff in the Unstable
phase, when such errors had lower subjective value. These results
are a demonstration of a risk-sensitive process in movement adap-
tation, in that adaptation was influenced by the subjective value
of error rather than solely the magnitude of error. Our findings

FIGURE 10 | Control Experiment. (A) Movement error vs. Gain. Error from
the Early Stable phase is shown in blue, while error from the Late Stable
phase is shown in red. There was no difference in movement errors
between phases. (B) Adaptation vs. Gain. Adaptation for all participants vs.
gain for the Early Stable phase and Late Stable phase. No significant
changes in adaptation were found to any gain. Error bars represent
standard error of the mean.

indicate that we don’t simply learn from our mistakes, we may
also learn from how much we value our mistakes.

It is intriguing that participants primarily demonstrated
reduced adaptation to leftward errors away from the cliff (the
strongest gains). They could have additionally, or alternatively,
demonstrated stronger adaptation to the rightward errors toward
the cliff (the weakest gains). However, all three analyses consis-
tently demonstrated weaker adaptation to leftward errors. Even
in the Reverse experiment, only weaker adaptation to rightward
errors (away from the cliff) was observed. Why not use both
strategies? First, let us emphasize that both strategies lead to over-
all under-compensation for the force field, and increasing errors
away from the cliff. This is not surprising, as one would like
to avoid the cliff as much as possible. However, the target must
still be reached, and greater errors may compromise one’s abil-
ity to reach the target within the time constraints. Participants
may have realized that weaker adaptation to the leftward gains,
under-compensating for only the strongest gains, sufficiently
allowed them to avoid the cliff, yet reduce leftward errors as well.
Under-compensation for all the gains would have reduced the
possibility of crossing the cliff boundary even more, but at the
expense of increased leftward errors. By reducing adaptation and
under-compensating only to the largest gains, participants were
effectively optimizing a tradeoff between performing the task and
avoiding the worst-case scenario.

A critical element of the experimental design is that partici-
pants changed how they adapted without regularly experiencing
the penalty. Because the forces experienced in the Stable phase
caused movement errors away from the cliff region, participants
rarely experienced errors large enough in magnitude to result in
the cursor entering the unstable region. It was merely the threat

FIGURE 11 | Average change in movement error between phases for

Main, Control, and Reverse experiments. In both the Main and Reverse
experiments, participants’ movement trajectories avoided the cliff in the
later phase (when the cliff was present). In the Control experiment, no
change was detected. Error bars represent standard error of the mean.
Asterisks indicate P < 0.05.
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of instability that led to changes in adaptation, not the instabil-
ity itself or the surprise associated with the initial experience with
the instability. The instability was actually not present for most of
the experiment. These results demonstrate that adaptation can be
modulated indirectly without explicitly constraining movement.

We propose our observation of a difference in adaptation is
evidence of risk-sensitivity in the learning process, where risk-
sensitivity is defined as sensitivity to the variance over outcomes
(i.e., error). Although we do not explicitly modulate the error
variance in this task, a distortion between the subjective value and
actual value of an error will manifest as risk-sensitive behavior.
Thus, a strong prediction that emerges from these results is that
increasing or decreasing the variance of error in an environment
that resembles the cliff-like environment created in the present
study, will alter the adaptation process.

RELATIONSHIP TO ERROR-BASED LEARNING STUDIES
Recent studies have shown that subtle changes in the properties
of a given movement error can drive distinct changes in proper-
ties of the adaptation process (such as savings and generalization
to other movement contexts; Kluzik et al., 2008; Berniker and
Kording, 2011). However, in all these studies the magnitude of
error also varied. We report significant changes in adaptation
in response to movement errors of the same magnitude, clearly
demonstrating that adaptation does not depend solely on error
magnitude. Changing the subjective value of error by penalizing
some errors more than others can modulate adaptation.

RELATIONSHIP TO REWARD-BASED LEARNING STUDIES
The subjective value of an error could be interpreted as the reward
associated with an error. Surprisingly, only a few studies have
examined the influence of reward, or the role of reinforcement
learning, on movement adaptation. One such study demonstrated
that participants could learn a movement task using only reward
feedback, in the absence of sensory feedback of the error (Izawa
and Shadmehr, 2011). The authors concluded that reward feed-
back may harness reward learning mechanisms over and above
the error-driven learning. This may be relevant for our findings
as well. Changing the subjective value of error may recruit striatal
mechanisms in the adaptation process, in addition to the well-
documented cerebellar mechanisms (Smith and Shadmehr, 2005;
Rabe et al., 2009; Bastian, 2011).

While risk-sensitivity has been assessed in single movements
(Wu et al., 2009; Braun et al., 2011; O’Brien and Ahmed, 2013),
as well as sequences of decisions (Averbeck et al., 2011; Niv
et al., 2012), to our knowledge this is the first demonstration of
risk-sensitivity in sequences of movement decisions (i.e., move-
ment adaptation). Niv et al. demonstrated non-linear learning
in sequences of non-motor decisions and concluded that the
non-linearity is associated with a risk-sensitive learning process
that penalizes positive and negative errors asymmetrically. In the
present study we also observe that large leftward errors (a conse-
quence of the largest gains) lead to weaker adaptation than large
rightward errors (a consequence of the weakest gains). However,
while risk-sensitivity in the study by Niv and colleagues appears to
emerge from an inherent distortion between positive and negative
errors, we explicitly penalize rightward errors more than leftward
errors in our experimental task.

In the present study, subjective value was modulated by
increasing the penalty associated with a given movement error. In
other words, we provided negative rewards, and cannot necessar-
ily extrapolate our findings to conditions where subjective value
is altered by modulating positive rewards. A mounting body of
evidence over the past few years has indicated that positive and
negative reward differentially affect decision making. Results of a
recent study seem to indicate that participants relied more heavily
on positive feedback (Averbeck et al., 2011). Even in skill learning,
positive reward leads to improved retention over days to months.
While our study only modulated the degree of negative reward,
we nevertheless observed that it could influence adaptation. An
interesting question for future research is the whether modulating
positive reward would have led to more pronounced differences in
movement adaptation.

It may be argued that the risk-sensitive behavior demonstrated
in this task emerges only because we have explicitly designed
it to, and does not represent natural movement tasks. In other
words, humans do not inherently penalize rightward errors
more than leftward errors; we explicitly designed a task that did
just that. How then is this relevant to motor control? Such a
distortion between the actual and subjective value of a movement
error is inherent to many activities of daily living. The simple
reaching movements frequently studied in laboratories over the
past couple decades do not normally demonstrate this distortion
so this phenomenon has been largely overlooked. But postural
movements, which are inherently unstable and constrained
within a given base of support, are a natural example of a
situation where the magnitude of an error does not correspond to
the subjective value of that error. A 2 cm movement error within
the base of support, is very different that the same 2 cm error
that moves the center of mass beyond the base of support. The
latter will result in a loss of balance, the former will not. Results
from a recent study suggest that postural learning is modulated
asymmetrically by stability limits, suggesting that adaptation may
be risk-sensitive (Manista and Ahmed, 2012). Indeed, we propose
that motor adaptation in any environment where the error and
its consequence do not correspond, will be risk-sensitive.

CLINICAL RELEVANCE
The finding that adaptation can be modulated by changing
subjective value is of great relevance to current rehabilitation
programs for patients suffering from neurological impairments
such as a stroke or Parkinson’s disease. It may be possible to
influence the adaptation process, in a manner tailored to each
patient, by simply rewarding some movements more than
others. Future studies should investigate alternative means of
modulating subjective value, via implicit rewards like verbal
instruction, encouragement or visual feedback. Alternatively,
explicit rewards such as point rewards and penalty and/or
monetary compensation could be investigated.

LIMITATIONS
The experimental design prevented us from investigating partic-
ipant’s initial adaptation to the Unstable phase. It would be of
interest to know how their adaptation changed during those ini-
tial 50 trials, but because of the variability and the small sample
size during this period we were unable to perform this analysis.

Frontiers in Computational Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 118 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Trent and Ahmed Risk-sensitivity in movement adaptation

A second limitation is that the removal of the unstable forces after
the initial 50 trials in the Unstable phase, may have influenced the
strength of the overall effect. Participants did occasionally cross
the cliff edge after the unstable forces were no longer present.
While there was still an audiovisual penalty, the lack of unstable
forces may have influenced the participants’ avoidance of the cliff
edge.

CONCLUSIONS
In summary, our results provide evidence for a risk-sensitive pro-
cess underlying movement adaptation. Adaptation can be altered
by modulating an individual’s subjective error value function.
The implications of these findings are far-reaching and could
potentially lead to new and improved rehabilitation therapies
that are tailored to each and every patient at an individual level.

More generally, we hope they can lead to significant advances
in our understanding of the neural mechanisms by which risk
influences the learning process in both motor and non-motor
tasks.

AUTHOR CONTRIBUTIONS
Michael C. Trent designed and performed research, analyzed data
and wrote the paper. Alaa A. Ahmed designed and performed
research, analyzed data, and wrote the paper.

ACKNOWLEDGMENTS
This work was supported by the Defense Advanced
Research Projects Agency Young Faculty Award (DARPA YFA
D12AP00253) and National Science Foundation Grants SES
1230933 and CMMI 1200830.

REFERENCES
Averbeck, B., Kilner, J., and Frith,

C. (2011). Neural correlates
of sequence learning with
stochastic feedback. J. Cogn.
Neurosci. 23, 1346–1357. doi:
10.1162/jocn.2010.21436

Bastian, A. (2011). Moving, sensing and
learning with cerebellar damage.
Curr. Opin. Neurobiol. 21, 596–601.
doi: 10.1016/j.conb.2011.06.007

Bastian, A. J. (2008). Understanding
sensorimotor adaptation and
learning for rehabilitation. Curr.
Opin. Neurol. 21, 628–633. doi:
10.1097/WCO.0b013e328315a293

Berniker, M., and Kording, K. (2011).
Estimating the relevance of world
disturbances to explain savings,
interference and long-term motor
adaptation effects. Plos Comput.
Biol. 7:e1002210. doi: 10.1371/jour-
nal.pcbi.1002210

Bernoulli, D. (1954). Exposition of a
new theory on the measurement of
risk. Econometrica 22, 23–36. doi:
10.2307/1909829

Braun, D., Nagengast, A., and
Wolpert, D. (2011). Risk-
sensitivity in sensorimotor control.
Front. Hum. Neurosci. 5:1. doi:
10.3389/fnhum.2011.00001

Burdet, E., Osu, R., Franklin, D.,
Milner, T., and Kawato, M. (2001).
The central nervous system stabi-
lizes unstable dynamics by learn-
ing optimal impedance. Nature 414,
446–449. doi: 10.1038/35106566

Fine, M., and Thoroughman, K.
(2007). Trial-by-trial trans-
formation of error into
sensorimotor adaptation changes
with environmental dynamics.
J. Neurophysiol. 98, 1392–1404. doi:
10.1152/jn.00196.2007

Franklin, D., Osu, R., Burdet, E.,
Kawato, M., and Milner, T.
(2003). Adaptation to stable
and unstable dynamics achieved
by combined impedance control
and inverse dynamics model.

J. Neurophysiol. 90, 3270–3282. doi:
10.1152/jn.01112.2002

Glimcher, P. (2008). Understanding
risk: a guide for the perplexed.
Cogn. Affect. Behav. Neurosci. 8,
348–354. doi: 10.3758/
CABN.8.4.348

Huettel, S., Stowe, C., Gordon, E.,
Warner, B., and Platt, M. (2006).
Neural signatures of economic
preferences for risk and ambi-
guity. Neuron 49, 765–775. doi:
10.1016/j.neuron.2006.01.024

Izawa, J., and Shadmehr, R. (2011).
Learning from sensory and
reward prediction errors dur-
ing motor adaptation. Plos
Comput. Biol. 7:e1002012. doi:
10.1371/journal.pcbi.1002012

Kahneman, D., and Tversky, A. (1979).
Prospect theory - analysis of deci-
sion under risk. Econometrica 47,
263–291. doi: 10.2307/1914185

Kluzik, J., Diedrichsen, J., Shadmehr,
R., and Bastian, A. (2008).
Reach adaptation: what deter-
mines whether we learn an inter-
nal model of the tool or
adapt the model of our arm.
J. Neurophysiol. 100, 1455–1464.
doi: 10.1152/jn.90334.2008

Lackner, J., and Dizio, P. (1994).
Rapid adaptation to coriolis-force
perturbations of arm trajectory.
J. Neurophysiol. 72, 299–313.

Manista, G. C., and Ahmed, A. A.
(2012). Stability limits modu-
late whole-body motor learning.
J. Neurophysiol. 107, 1952–1961.
doi: 10.1152/jn.00983.2010

Marko, M. K., Haith, A. M.,
Harran, M. D., and Shadmehr,
R. (2012). Sensitivity to predic-
tion error in reach adaptation.
J. Neurophysiol. 108, 1752–1763.
doi: 10.1152/jn.00177.2012

Niv, Y., Edlund, J., Dayan, P., and
O’Doherty, J. (2012). Neural
prediction errors reveal a risk-
sensitive reinforcement-learning
process in the human brain.

J. Neurosci. 32, 551–562. doi:
10.1523/JNEUROSCI.5498-10.2012

O’Brien, M. K., and Ahmed, A.
A. (2013). Does risk-sensitivity
transfer across movements.
J. Neurophysiol. 109, 1866–1875.
doi: 10.1152/jn.00826.2012

Oldfield, R. (1971). The assessment
and analysis of handednesss:
the edinburgh inventory.
Neuropsychologia 9, 97–113. doi:
10.1016/0028-3932(71)90067-4

Rabe, K., Livne, O., Gizewski, E.,
Aurich, V., Beck, A., Timmann,
D., et al. (2009). Adaptation to
visuomotor rotation and force
field perturbation is correlated to
different brain areas in patients
with cerebellar degeneration.
J. Neurophysiol. 101, 1961–1971.
doi: 10.1152/jn.91069.2008

Scheidt, R., Dingwell, J., and Mussa-
Ivaldi, F. (2001). Learning to move
amid uncertainty. J. Neurophysiol.
86, 971–985.

Selen, L., Franklin, D., and Wolpert,
D. (2009). Impedance con-
trol reduces instability that
arises from motor noise.
J. Neurosci. 29, 12606–12616. doi:
10.1523/JNEUROSCI.2826-09.2009

Shadmehr, R., and Mussa-Ivaldi, F.
(1994). Adaptive representation
of dynamics during learning of
a motor task. J. Neurosci. 14,
3208–3224.

Smith, K., Dickhaut, J., McCabe, K.,
and Pardo, J. (2002). Neuronal
substrates for choice under ambi-
guity, risk, gains, and losses.
Manag. Sci. 48, 711–718. doi:
10.1287/mnsc.48.6.711.194

Smith, M., and Shadmehr, R. (2005).
Intact ability to learn internal mod-
els of arm dynamics in Huntington’s
disease but not cerebellar degenera-
tion. J. Neurophysiol. 93, 2809–2821.
doi: 10.1152/jn.00943.2004

Thoroughman, K., and Shadmehr, R.
(2000). Learning of action through
adaptive combination of motor

primitives. Nature 407, 742–747.
doi: 10.1038/35037588

Topka, H., Massaquoi, S., Benda, N.,
and Hallett, M. (1998). Motor skill
learning in patients with cerebel-
lar degeneration. J. Neurol. Sci.
158, 164–172. doi: 10.1016/S0022-
510X(98)00115-4

Wei, K., and Koerding, K. (2009).
Relevance of error: what
drives motor adaptation.
J. Neurophysiol. 101, 655–664.
doi: 10.1152/jn.90545.2008

Wu, S., Delgado, M., and Maloney, L.
(2009). Economic decision-making
compared with an equivalent
motor task. Proc. Natl. Acad.
Sci. U.S. A. 106, 6088–6093. doi:
10.1073/pnas.0900102106

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 01 May 2013; accepted: 04
August 2013; published online: 23 August
2013.
Citation: Trent MC and Ahmed AA
(2013) Learning from the value of your
mistakes: evidence for a risk-sensitive
process in movement adaptation. Front.
Comput. Neurosci. 7:118. doi: 10.3389/
fncom.2013.00118
This article was submitted to the
journal Frontiers in Computational
Neuroscience.
Copyright © 2013 Trent and Ahmed.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) or licensor are cred-
ited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use, dis-
tribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Computational Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 118 | 12

http://dx.doi.org/10.3389/fncom.2013.00118
http://dx.doi.org/10.3389/fncom.2013.00118
http://dx.doi.org/10.3389/fncom.2013.00118
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Learning from the value of your mistakes: evidence for a risk-sensitive process in movement adaptation
	Introduction
	Methods
	Theoretical Development
	Participants
	Task
	Protocol
	Rationale for the Design of the Unstable Phase
	Data Acquisition and Analysis
	Adaptation Analysis
	Behavioral gain-based adaptation
	Model gain-based adaptation
	Behavioral error-based adaptation

	Reverse Experiment
	Control Experiment
	Statistics

	Results
	Overview
	Movement Error
	Behavioral Gain-Based Adaptation
	Model Gain-Based Adaptation
	Behavioral Error-Based Adaptation
	Reverse Experiment
	Control Experiment
	Summary

	Discussion
	Relationship to Error-Based Learning Studies
	Relationship to Reward-Based Learning Studies
	Clinical Relevance

	Limitations
	Conclusions
	Author Contributions
	Acknowledgments
	References


