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Epilepsy is a relatively common brain disorder which may be very debilitating. Currently,
determination of epileptic seizures often involves tedious, time-consuming visual
inspection of electroencephalography (EEG) data by medical experts. To better monitor
seizures and make medications more effective, we propose a recurrence time based
approach to characterize brain electrical activity. Recurrence times have a number of
distinguished properties that make it very effective for forewarning epileptic seizures
as well as studying propagation of seizures: (1) recurrence times amount to periods
of periodic signals, (2) recurrence times are closely related to information dimension,
Lyapunov exponent, and Kolmogorov entropy of chaotic signals, (3) recurrence times
embody Shannon and Renyi entropies of random fields, and (4) recurrence times can
readily detect bifurcation-like transitions in dynamical systems. In particular, property (4)
dictates that unlike many other non-linear methods, recurrence time method does not
require the EEG data be chaotic and/or stationary. Moreover, the method only contains
a few parameters that are largely signal-independent, and hence, is very easy to use.
The method is also very fast—it is fast enough to on-line process multi-channel EEG data
with a typical PC. Therefore, it has the potential to be an excellent candidate for real-time
monitoring of epileptic seizures in a clinical setting.
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1. INTRODUCTION
Epilepsy is a relatively common brain disorder which may be
very debilitating. It affects approximately 1% of the world pop-
ulation (Jallon, 1997) and three million people in the United
States alone. It is characterized by intermittent seizures. During
a seizure, the normal activity of the central nervous system
is disrupted. The concrete symptoms include abnormal run-
ning/bouncing fits, clonus of face and forelimbs, or tonic rear-
ing movement as well as simultaneous occurrence of transient
EEG signals such as spikes, spike and slow wave complexes or
rhythmic slow wave bursts. Clinical effects may include motor,
sensory, affective, cognitive, automatic and physical symptoma-
tology. Although epilepsy can be treated effectively in many
instances, severe side effects may result from constant medica-
tion. Even worse, some patients may become drug-resistant not
long after treatment. To make medications more effective, timely
detection of seizure is very important.

In the past several decades, considerable efforts have been
made to detect/predict seizures through non-linear analysis of
EEGs (Kanz and Schreiber, 1997; Gao et al., 2007). Representative
non-linear methods proposed for seizure prediction/detection
include approaches based on correlation dimension (Lehnertz
and Elger, 1995, 1997; Martinerie et al., 1998; Aschenbrenner-
Scheibe et al., 2003), Kolmogorov entropy (van Drongelen et al.,
2003), permutation entropy (Cao et al., 2004), short time largest
Lyapunov exponent (STLmax) (Iasemidis et al., 1990; Lai et al.,
2003), dissimilarity measures (Protopopescu et al., 2001; Quyen

et al., 2001), long-range-correlation (Hwa and Ferree, 2002; Gao
et al., 2006b, 2007, 2011b; Valencia et al., 2008), power-law sen-
sitivity to initial conditions (Gao et al., 2005b), scale-dependent
Lyapunov exponent (SDLE) (Gao et al., 2006a, 2012a,b), and
synthesis of linear/non-linear methods by using neural net-
works (Adeli et al., 2007). Readers interested in “what is epilepsy,
where, when, and why (how) do seizures occur?” are referred to
the April, 2007 issue of Journal of Clinical Neurophysiology.

Note that most of the proposed methods assume that EEG sig-
nals are chaotic and stationary. As a result, they tend to have per-
formances that are signal- and patient-dependent due to the noisy
and non-stationary nature of the EEG within and across patients.
In addition, they are computationally expensive. Consequentially,
studies of epilepsy still heavily involve visual inspection of multi-
channel EEG signals by medical experts. Visual inspection of long
(e.g., tens of hours or days) EEG data is, however, tedious, time-
consuming, and in-efficient. Therefore, it is important to develop
new non-linear seizure monitoring approaches.

In this paper, we explore recurrence time based analysis of
EEG (Gao, 1999, 2001; Gao and Cai, 2000; Gao et al., 2003),
with the goal of potentially on-line monitoring the occurrence
and propagation of seizures. The method does not assume that
the underlying dynamics of EEGs be chaotic or stationary. More
importantly, it has been tested to be able to readily detect very
subtle changes in signals (Gao, 2001; Gao et al., 2003).

When developing a new method, it is important to com-
pare its performance with that of existing methods. For seizure
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detection, such a task has been greatly simplified by our recent
studies (Gao et al., 2011a, 2012a). By comparing seizure detec-
tion using a variety of complexity measures from deterministic
chaos theory, random fractal theory, and information theory,
we have found that the variations of those complexity measures
with time have two patterns—either similar or reciprocal (Gao
et al., 2011a). More importantly, we have gained fundamental
understanding about the connections among different complex-
ity measures through a new multiscale complexity measure, the
SDLE. These results are recapitulated in Figure 1. While we leave
the details to our prior works (Gao et al., 2006a, 2007, 2012a,b),
these results suggest that it would be sufficient for us to compare
the performance of the recurrence time based method for seizure
detection with the performance of any of the existing complex-
ity measures. Since some of the EEG data examined here had also
been analyzed by the STLmax method and documented results
exist, we shall compare our recurrence time method with the
STLmax method. We shall show that the recurrence time method
is both more accurate and faster than the STLmax method in
detecting seizures from EEG.

The remainder of the paper is organized as follows. In sec-
tion 2, we describe the data used here and the recurrence
time method and the STLmax method for seizure detection. In

FIGURE 1 | The variation with time of (A) λsmall−ε, (B) λlarge−ε, (C)

Lyapunov exponent, (D) correlation entropy, (E) correlation dimension,

and (F) the Hurst parameter obtained using DFA. Adapted from Gao
et al. (2011a).

section 3, we compare the performance of the recurrence time
and STLmax method for seizure detection, as well as study seizure
propagation. In section 4, we make a few concluding remarks.

2. MATERIALS AND METHODS
In this section, we first describe EEG data used here, then describe
the recurrence time method and the short-time Lyapunov expo-
nent (STLmax) method.

2.1. DATA
The EEG signals analyzed here are human EEG. They were
recorded intracranially with approved clinical equipment by the
Shands hospital at the University of Florida, with a sampling
frequency of 200 Hz. Figure 2 shows our typical 28 electrode
montage used for subdural and depth recordings.

Intracranial EEG is also called depth EEG, and is consid-
ered less contaminated by noise or motion artifacts. However,
the clinical equipment used to measure the data has a pre-set,
unadjustable maximal amplitude, which is around 5300 μV. This
causes clipping of the signals when the signal amplitude is higher
than this threshold. This is often the case during seizure episodes,
especially for certain electrodes. To a certain extent, clipping com-
plicates seizure detection, since certain seizure signatures may not
be captured by the measuring equipment. However, we did not
apply any filtering or conditioning methods to preprocess the
raw EEG signals when we use our recurrence time method. The
good results presented below thus suggest that the method is very
reliable.

Altogether we have data of seven patients. The total duration
of the measurement for each patient was up to about 3 days, as
shown in the 2nd column of Table 1. There were only one or a few

FIGURE 2 | Schematic diagram of the depth and subdural electrode

placement. This view from the inferior aspect of the brain shows the
approximate location of depth electrodes, oriented along the
anterior–posterior plane in the hippocampi (RTD, right temporal depth; LTD,
left temporal depth), and subdural electrodes located beneath the
orbitofrontal and subtemporal cortical surfaces (ROF, right orbitoftrontal;
LOF, left orbitofrontal; RST, right subtemporal; LST, left subtemporal).
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Table 1 | Performance of the T2 and the STLmax method for seven patients’ data.

Data Length Total number STLmax performance T2 performance

set (hours) of seizures
Sensitivity (%) False alarm Sensitivity (%) False alarm

Overall: 74% per hour Overall: 83% per hour

Mean: 0.05 Mean: < 0.01

P92 35 7 100 0.09 100 0.00

P93 64 23 78 0.02 78 0.02

P148 76 17 58 0.07 76 0.00

P185 47 19 73 0.02 89 0.04

P40 5.3 1 100 0.00 100 0.00

P256 4.5 1 100 0.00 100 0.00

P130 5.7 2 50 0.18 100 0.00

The total number of seizures was determined by examining clinical symptons and all 28 channel video-EEG data by medical experts. Note the five missed seizures

for patient P93 are all subclinical seizures, whose information does not appear to be reflected by the EEG dynamics.

seizures for some patients while there were several tens of seizures
for some other patients, as shown in the 3rd column of Table 1.
Some of the seizures were considered subclinical, i.e., not mani-
fested in the EEG signals. Sometimes the EEG signals may contain
signatures distinctly different from background non-seizure sig-
nals, due to, for example, the fact that the patient may be eating
food, drinking, etc. These non-seizure signatures typically may
also be picked up by a seizure monitoring method. In this study,
we shall focus on the behavior of the recurrence time and STLmax
method in detecting seizures using only three channels EEG data
without any preprocessing. As we shall see later, reliable decisions
can be made based on single channel EEG data. There appears to
be no need to combine multiple channels data.

2.2. RECURRENCE TIME BASED METHOD FOR SEIZURE DETECTION
The method involves first partitioning a long EEG signal into
(overlapping or non-overlapping) blocks of data sets of short
length k, and compute the so-called mean recurrence time of the
2nd type, T2(r), for each data subset. For non-stationary and
transient time series, it has been found (Gao, 1999, 2001; Gao
and Cai, 2000; Gao et al., 2003) that T2(r) will be different for
different blocks of data subsets.

Let us first define the recurrence time of the 2nd type. Suppose
we are given a scalar time series {x(i), i = 1, 2, . . .}. We first con-
struct vectors of the form: Xi = [x(i), x(i + L), . . . , x(i + (m −
1)L)], with m being the embedding dimension and L the delay
time (Packard et al., 1980; Takens, 1981; Sauer et al., 1991).
{Xi, i = 1, 2, . . . , N} then represents certain trajectory in a m-
dimensional space. Next, we arbitrarily choose a reference point
X0 on the reconstructed trajectory, and consider recurrences to
its neighborhood of radius r: Br(X0) = {X : ‖X − X0‖ ≤ r}. The
recurrence points of the 2nd type are defined as the set of points
comprised of the first trajectory point getting inside the neigh-
borhood from outside. These are denoted as the dark solid circles
in Figure 3. The trajectory may stay inside the neighborhood for
a while, thus generating a sequence of points, as designated by
open circles in Figure 3. These are called sojourn points (Gao,
1999). It is clear that there will be more such points when the size
of the neighborhood gets larger as well as when the trajectory is

FIGURE 3 | A schematic showing the recurrence points of the second

type (solid circles) and the sojourn points (open circles) in Br(X0).

sampled more densely. The summation of the recurrence points
of the second kind and the sojourn points is called the recurrence
points of the first kind. These are often called nearest neighbors
of the reference point X0, and have been used by all other chaos
theory-based non-linear methods.

Let us be more precise mathematically. We denote the recur-
rence points of the 1st type by S1 = {Xt1 , Xt2 , . . . , Xti . . .}, and
the corresponding Poincare recurrence time of the 1st type
by {T1(i) = ti + 1 − ti, i = 1, 2, . . .}. Note the time is computed
based on successive returns, not based on the returning points
and the reference point. Also note T1(i) may be 1 (for continuous
time systems, this means one unit of the sampling time), for some
i. This occurs when there are at least one sojourn point. Existence
of such points makes further quantitative analysis difficult. Thus,
we remove the sojourn points from the set S1 (which can be
easily achieved by monitoring whether the recurrence times of
the first type are one or not). Let us denote the remaining set
by S2 = {Xt′1 , Xt′2 , . . . , Xt′i . . .}. S2 then defines a time sequence

{T2(i) = t′i + 1 − t′i , i = 1, 2, . . .}. These are called the recurrence
times of the 2nd type.

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 122 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gao and Hu Recurrence time analysis of EEG data

T2(i) has a number of interesting properties: (1) For peri-
odic motions, so long as the size of the neighborhood is not too
large, T2(i) accurately estimates the period of the motion. (2)
For discrete sequences, the entire Renyi entropy spectrum can be
computed from the moments of T2 (Gao et al., 2005a). (3) For
chaotic motions, T2(i) is closely related to the Lyapunov expo-
nent, and hence, Kolmogorov entropy (Gao and Cai, 2000). (4)
For chaotic motions, T2(i) is related to the information dimen-
sion d1 by a simple scaling law (Gao, 1999; Gao et al., 2003),

T2(r) ∼ rd1−α, (1)

where α takes on value 0 or 1, depending on whether the
sojourn points form very few isolated points inside the neigh-
borhood Br(X0), thus contribute dimension 0, or form a smooth
curve inside Br(X0), thus contribute dimension 1. These proper-
ties make the recurrence time based method very versatile and
powerful in detecting signal transitions.

We now explain how the mean recurrence time of the 2nd type
can be computed. We simply evaluate this quantity for every ref-
erence point in a window, then take the mean of those times.
Such calculation is carried out for all the data subsets, resulting
in a curve which describes how T2(r) varies with time. It has
been observed (Gao, 1999, 2001; Gao and Cai, 2000; Gao et al.,
2003) that the variations of T2(r) coincide very well with sudden
changes in the signal dynamics, such as bifurcations or transi-
tions from regular motions to chaotic motions in non-stationary
data, and vise versa. An example is shown in Figure 4 using the
transient logistic map described by

x(n + 1) = a(n)x(n)[1 − x(n)], a(n) = a(n − 1) + 10−5 (2)

We observe from Figure 4 that the method not only detects all the
bifurcations in the signal, but also gives the exact periods of peri-
odic signals. Note that some changes in a signal may be difficult
to detect visually (Gao, 2001).

Since there are altogether four parameters involved, namely,
the embedding dimension m and delay time L, the window length
k for the data subsets, and the neighborhood size r, how shall we
select them properly? To better illustrate the ideas, we postpone
the discussion to section 3.1.1.

2.3. STLmax METHOD FOR SEIZURE DETECTION
The basic idea is to compute the largest positive Lyapunov expo-
nent for each window’s EEG signal using the Wolf et al.’s algo-
rithm (Wolf et al., 1985) or its simple variants. Therefore, it is
sufficient to describe the Wolf et al.’s algorithm (Wolf et al., 1985)
and point out how it can be modified.

To apply the Wolf et al.’s algorithm (Wolf et al.,
1985), one selects a reference trajectory and follows
the divergence of its neighboring trajectory from it.
Denote the reference and the neighboring trajectories by
Xi = [x(i), x(i + L), . . . , x(i + (m − 1)L)], Xj = [x(j), x(j +
L), . . . , x(j + (m − 1)L)], i,= 1, 2, . . . , j = K, K + 1, . . .,
respectively. At the start of the time (which corresponds to
i = 1), XK is usually taken as the nearest neighbor of X1. That
is, j = K minimizes the distance between Xj and X1. When time

FIGURE 4 | State transitions in the transient logistic map.

evolves, the distance between Xi and Xj also changes. Let the
spacing between the two trajectories at time ti and ti + 1 be d′

i and

di + 1, respectively. Assuming di + 1 ∼ d′
ie

λ1(ti + 1−ti), the rate of
divergence of the trajectory, λ1, over a time interval of ti + 1 − ti

is then

ln(di + 1/d′
i)

ti + 1 − ti
.

To ensure that the separation between the two trajectories is
always small, when di + 1 exceeds certain threshold value, it has
to be renormalized: a new point in the direction of the vector of
di + 1 is picked up so that d′

i + 1 is very small compared to the size of
the attractor. After n repetitions of stretching and renormalizing
the spacing, one obtains the following formula:

λ1 =
n − 1∑
i = 1

[
ti + 1 − ti∑n − 1

i = 1 (ti + 1 − ti)

] [
ln(di + 1/d′

i)

ti + 1 − ti

]

=
∑n − 1

i = 1 ln(di + 1/d′
i)

tn − t1
. (3)

Note that this algorithm assumes but does not verify exponential
divergence. In fact, the algorithm can yield a positive value of λ1

for any type of noisy process so long as all the distances involved
are small. The reason for this is that when d′

i is small, evolution
would move d′

i to the most probable spacing, which is typically
much larger than d′

i. Then, di + 1, being in the middle step of this
evolution, will also be larger than d′

i; therefore, a quantity calcu-
lated based on Equation (3) will be positive. This argument makes
it clear that the algorithm cannot distinguish chaos from noise. In
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other words, even if the algorithm returns a positive λ1 from EEG
data, one cannot conclude that the data are chaotic.

It is worth noting that in practice, to simplify implementation
of the algorithm, one may replace the renormalization procedure
described above by requiring that d′

i + 1 is constructed whenever
ti + 1 = ti + T, where T is a small time interval. Such a procedure
may be called periodic renormalization. In contrast, the original
version of the algorithm is an aperiodic renormalization.

3. RESULTS
3.1. SEIZURE DETECTION USING RECURRENCE TIME METHOD
As we pointed out earlier, the method contains four parame-
ters: the embedding dimension m and delay time L, the window
length k for the data subsets, and the neighborhood size r. In this
subsection, we first discuss how to choose these four parameters
properly. Then we evaluate the effectiveness of the method for
detecting epileptic seizures. For ease of presentation, we assume
that the data have been normalized to the unit interval [0, 1]
before further analysis.

3.1.1. Parameter selection
First, we consider the window length k for data subsets. Since our
purpose is to find transitions in the signal dynamics, the data sub-
set has to be small. In order to estimate the interesting statistics
reliably, a rule of thumb is that so long as a data subset contains
several periods of “oscillations”, it would be fine (assuming the
motion defines certain periodicity-like time scales). For our EEG
sampled with a frequency of 200 Hz, we have found that K in the
range of 500–2000 are all fine. Figures 5A,B show two examples,
for k = 1000 and 2000, respectively. Clearly, in both cases, the two
seizures have been detected correctly.

Next, we consider the size r of the neighborhood. It can be
readily appreciated that when r is large, there will be a lot of recur-
rences, while when r is small, recurrences will be rather rare. This
means T2(r) will be large for small r but small for large r. Such
expectations have been extensively observed in practice. For EEG
signals, we have found that although the values of T2(r) may vary
with r, the pattern of the variation basically remains the same for a
wide range of r. Two examples are shown in Figures 5B,C, where
r differs by a factor of 2. Our experience is that choice of this
parameter is not very critical, in so far as seizure monitoring is
concerned.

Finally, we consider the embedding parameters. As is well
known, the embedding parameters critically control the geomet-
rical structure formed by the constructed vectors. Because of this
feature, optimal embedding is a critical issue, especially when
geometrical or dynamical quantities of the dynamics are con-
cerned, such as the fractal dimension, Lyapunov exponents, and
Kolmogorov entropy. For an in-depth discussion of this issue, we
refer to Gao et al. (2007). Here, we wish to point out that the
time scales associated with the motion are typically much less
sensitive to the embedding parameters than the quantities such
as the fractal dimension, Lyapunov exponents, and Kolmogorov
entropy. To appreciate this feature, we have schematically shown
in Figure 6 two different sets of embeddings. It is clear that
the reconstructed trajectory shown in Figure 6A is fairly uni-
form, while that in Figure 6B is less so. One can readily conceive

that when Figure 6B is further squeezed, the embedding qual-
ity is even worse. Judged by most optimal embedding criteria,
the embedding shown in Figure 6A is considered a much better
one than that shown in Figure 6B. However, it can be read-
ily seen that T2(r) for both Figures 6A,B are more or less the
same. This means that the selection of m and L for comput-
ing T2(r) is much less critical than that for computing other
dynamical quantities. One good rule of thumb is that as long as
the geometrical structure formed by the vectors are reasonably

FIGURE 5 | Dependence of T 2 on the parameters of the algorithm.

(A–F) Correspond to (k, m, L, r) = (1000, 4, 4, 2−4), (2000, 4, 4, 2−4),
(2000, 4, 4, 2−3), (2000, 3, 4, 2−4), (2000, 4, 2, 2−4), and (2000, 4, 6, 2−4),
respectively.

FIGURE 6 | A schematic showing the effect of embedding on the

recurrence times of the second type. (A) and (B) show examples of the
reconstructed trajectory that is fairly uniform or less uniform, respectively.
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space-filling, the embedding is considered fine. Our experience
with computing T2(r) from EEG is that 3 ≤ m ≤ 6 are all fine,
and with a sampling frequency of 200 Hz, L may be chosen
2–6. This discussion may be better appreciated by comparing
Figures 5B,D–F, where four sets of (m, L) are illustrated. Clearly,
all the parameter combinations have detected the two seizures
accurately.

To summarize, the recurrence method is much less sen-
sitive to the parameters when compared with other non-
linear methods, where embedding and other parameters
have to be chosen carefully, and have to be specifically
adapted to each patient for good results. For our recur-
rence time method, however, we have used the same param-
eter combination (k, m, L, r) = (2000, 4, 4, 2−4) for all seven
patients’ data.

3.1.2. Performance evaluation of the method
To illustrate the idea, we shall arbitrarily pick up three chan-
nels of EEG data, 1 from one patient, and compare the patterns

1In fact, the three chosen channels EEG data may not correspond to where a
seizure was localized. This further indicates the robustness of our method.

FIGURE 7 | T2(r) and STLmax vs. time curves for the EEG signals

measured from three electrodes for a human patient. (A) and (B) are for
electrode LTD1, (C) and (D) for electrode LTD2, and (E) and (F) for
electrode LTD4.

of variation of T2(r) with that of STLmax. One typical result is
shown in Figure 7. Vertical dotted lines indicate the seizure occur-
rence time determined by medical experts by viewing videotapes
as well as the EEG signals. There are three seizures in Figure 7 dur-
ing the period of time plotted. We observe that T2(r) curves very
cleanly and accurately detect all the seizures occurred. In fact, if
one ignores the propagation-related slight timing difference (on
the order of a few seconds up to 1 min; this will be further dis-
cussed later) among different electrodes, then most of the chan-
nels can be considered equivalent. In other words, decision can be
based on single channel EEG data. This feature makes automatic
detection of seizure by thresholding almost trivial. In contrast, the
STLmax curves are much noisier than the T2(r) curves. Although
STLmax curves can be further post-processed to better reveal
seizure information (Iasemidis et al., 2003), those features are
still much weaker than those revealed by the recurrence time
method.

To more systematically compare the performance of the two
methods in detecting seizures, we have computed positive detec-
tion (or equivalently, sensitivity) and false alarm per hour for the
two methods. Positive detection is defined as the ratio between
the number of seizures correctly detected and the total num-
ber of seizures. The false alarm per hour is simply the number
of falsely detected seizures divided by the total time period.
Table 1 summarizes the results. Clearly, the recurrence time
method is more accurate than the STLmax method. This accuracy
becomes even more attractive if one notices that the recur-
rence time method only involves simple thresholding, while the
STLmax method involves a lot of further analysis (Iasemidis et al.,
2003).

FIGURE 8 | T2(r) curves for EEG signals measured by three electrodes.

The dashed vertical line indicate the seizure starting position around 200 s.
The seizure lasted for about 2 min. Note that from (A) LTD1 to (B) LTD3,
the seizure activity is delayed about 10 s, while from (A) LTD1 to (C) LTD5,
the seizure activity is delayed about 30–40 s.
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3.1.3. Computational cost
The recurrence time method is very fast. With an ordinary PC
(CPU speed less than 2 GHz), computation of T2(r) from one
channel EEG data of duration 1 h with sampling frequency of
200 Hz takes about 1 min CPU time. Computation of STLmax,
on the other hand, takes more than 10 min. Hence, the recurrence
time based method is much faster than the STLmax method. In
fact, even with an ordinary PC, one is able to process all 28 chan-
nels of 1-h EEG data in about half an hour, therefore, faster than
the data being continuously collected. With a more powerful PC,
of course, the speed becomes even faster. Such a speed implies
that the method can be used to real-time on-line process contin-
uously collected all channels of EEG data. From an engineering
perspective, the fast computation of recurrence time statistics can
be considered overwhelming.

3.2. PROPAGATION OF EPILEPTIC SEIZURES IN THE BRAIN
Formation and propagation of epileptic seizures in the brain is an
outstanding example of complex spatial-temporal pattern forma-
tions. One of the most desirable ways of studying these problems
is to understand how and when information flows from one
region of the system to other regions. To resolve this issue, it is
critical to accurately providing timing information for interesting
events occurring in the system. With the exact timing informa-
tion, one can then use concepts such as cross correlation and cross
spectrum, mutual information, or measures from chaos theory,
such as related to cross recurrence plots, to more fully char-
acterize the spatial–temporal patterns. Recurrence time method
can effectively provide such a timing information. To illustrate
this point, we have shown in Figure 8 an example of analysis of

multi-channel EEG signals using the recurrence time method.
For the specific seizure studied, it was known that the seizure
occurred around 200 s, and lasted about 2 min. While the recur-
rence time method has accurately detected the seizure, we note
that the seizure activity recorded by electrode LTD3 and LTD5
was about 10 and 40 s later than that indicated by electrode LTD1,
respectively. Hence, the recurrence time method not only accu-
rately detects the seizure, but also provides invaluable timing
information for the development of the seizure.

4. CONCLUSIONS
Motivated by developing a non-linear method without the limita-
tions of assuming that EEG signals are chaotic and stationary, we
have proposed a recurrence time based approach to characterize
brain electrical activity. The method is very easy to use, as it only
contains a few parameters that are largely signal-independent.
It very accurately detects epileptic seizures from EEG signals.
Most critically, the method is very fast—it is fast enough to real-
time on-line process multi-channel EEG data with a typical PC.
Therefore, it has the potential to be an excellent candidate for
real-time monitoring of epileptic seizures in a clinical setting.

The recurrence time method is also able to accurately give
the timing information critical for understanding seizure prop-
agation. Therefore, it may help characterize epilepsy type, lat-
eralization and seizure classification (Holmes, 2008; Napolitano
and Orriols, 2008; Plummer et al., 2008). To more thoroughly
understand the capabilities of recurrence time method in char-
acterizing seizure propagation, it would be desirable to combine
recurrence time analysis of EEG with studies based on MEG and
MRI exams.
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