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Moving in a cluttered environment with a six-legged walking machine that has additional
body actuators, therefore controlling 22 DoFs, is not a trivial task. Already simple
forward walking on a flat plane requires the system to select between different
internal states. The orchestration of these states depends on walking velocity and on
external disturbances. Such disturbances occur continuously, for example due to irregular
up-and-down movements of the body or slipping of the legs, even on flat surfaces,
in particular when negotiating tight curves. The number of possible states is further
increased when the system is allowed to walk backward or when front legs are used as
grippers and cannot contribute to walking. Further states are necessary for expansion that
allow for navigation. Here we demonstrate a solution for the selection and sequencing of
different (attractor) states required to control different behaviors as are forward walking
at different speeds, backward walking, as well as negotiation of tight curves. This
selection is made by a recurrent neural network (RNN) of motivation units, controlling
a bank of decentralized memory elements in combination with the feedback through the
environment. The underlying heterarchical architecture of the network allows to select
various combinations of these elements. This modular approach representing an example
of neural reuse of a limited number of procedures allows for adaptation to different internal
and external conditions. A way is sketched as to how this approach may be expanded
to form a cognitive system being able to plan ahead. This architecture is characterized
by different types of modules being arranged in layers and columns, but the complete
network can also be considered as a holistic system showing emergent properties which
cannot be attributed to a specific module.
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INTRODUCTION
In this article, we propose a simple neural architecture
that consists of basically independent, parallel sensori-motor
procedures—or modules—that allows to orchestrate these mod-
ules. In addition this architecture shows the property for easy
expansions of the system. This architecture is not based on
a specific biological brain structure, but is inspired by behav-
ioral experiments on insects (Cruse et al., 2009a) as are walking
on unpredictable environment, performed with stick insects,
and navigation, performed with desert ants and honey bees.
Nonetheless, such a modular architecture may be of broader
interest because many authors assume that a modular structure
is a basic property of brains in general.

For example, Anderson (2010) has argued that evolution had
to find specific solutions for quite different requirements posed
by specific environmental conditions as are locomotion, mat-
ing, navigation or feeding, and problems occurring later during
evolutionary development may be solved by combining existing
(functional) modules in different ways, following the principle
of “neural reuse” (Anderson, 2010). In this way, different proce-
dures might be developed that finally serve the same or very much

related purposes, thus leading to redundant structures. In insect
navigation, for example, path integration and landmark naviga-
tion are used in parallel. In this case, different input modules
are used to drive the same output elements. In turn, the same
motor structure may be used for different purposes. This is obvi-
ous in the case of the Praying Mantis, where front legs can be
used for walking, but can also be used for a completely different
purpose, namely for catching prey, which requires specific neu-
ronal structures for these different functions. Furthermore, Flash
and Hochner (2005) have reviewed results on both vertebrates
and invertebrates that lead these authors to the interpretation
that “many different movements can be derived from a limited
number of stored primitives.” These movements can further be
“combined through a well defined syntax of action to form more
complex action.”

Therefore, many results suggest the existence of such dis-
crete primitives. The question as to how behavioral choice is
performed, i.e., how the lower level elements are selected and
orchestrated to control a specific behavior is still open (Briggman
and Kristan, 2008). Activating such a subfset means to select a
specific internal state that sets priorities. At a higher level, this
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corresponds to the faculty of selective attention, i.e., the enact-
ment of internal states that control which sensory input may be
exploited. This top–down influence may be complemented by
bottom–up attention: sufficiently strong, specific sensory inputs
could influence and change the internal state of the system.

In this article, we propose a way how this problem could be
addressed by exploiting an artificial neural network, Walknet, that
has been developed to describe a huge amount of biological data
concerning insect, i.e., hexapod (forward) walking (Dürr et al.,
2004; Schilling et al., 2013). This network consists of a number of
parallel modular elements able to control “microbehaviors” as for
example swing movement of the left front leg or stance movement
of the right middle leg. This decentralized architecture is able to
control forward walking within a continuous range of velocities as
observed in stick insects (Graham, 1972) or Drosophila (Wosnitza
et al., 2013). Walknet can further describe a large number of
behavioral experiments performed with stick insects, including
difficult cases like climbing over a gap of about body size. In doing
so, the controller shows its robustness with respect to distur-
bances resulting from unpredictable environment but also from
the complex dynamics of the own body.

So, Walknet is able to deal with complex behavior, but still
controls only one overarching specific context, namely forward
walking as will be briefly reviewed in Section The Basic Version
(for a recent review see Schilling et al., 2013). According to this
structure, only local decisions are required, which concern the
decision between swing and stance for a given leg. Walknet has
been expanded by a body model, briefly reviewed in Section Body
Model (for details see Schilling, 2011; Schilling et al., 2012), that
represents the kinematics of the body, i.e., all 18 joints of the six
legs plus two body joints, each with 2◦ of freedom, as can be found
in stick insects and as they are used by the physical hexapod robot
Hector (Schneider et al., 2011). However, to allow for controlling
different behaviors, further decision structures are required. A
simple case concerns the decision between forward and backward
walking. In addition, the system may decide between 6-legged
walking and 4-legged walking, where the front legs may be used
for other purposes, for example as grippers, as is the case in the
above mentioned Mantis. A more general problem concerns the
ability to exhibit trial-and-error behavior, i.e., select a behavior
that is not selectable in the current context. This faculty is a pre-
requisite for a further capability, namely being able to plan ahead
(i.e., internal simulation of a selected behavior), a property which
may not be found on the insect level. Another problem concerns
the question how biological systems may be able to invent and
deal with symbols, or new concepts. Hints exist that this property
can already be found in insects (Giurfa et al., 2001), at least on a
simple level.

Based on the already given Walknet, in this article we will
introduce a neural architecture that provides a precondition for
dealing with those problems. To this end, we will adopt a struc-
ture already successfully applied within a network, Navinet, that
is able to control insect-like navigation (Cruse and Wehner, 2011;
Hoinville et al., 2012). Navinet can then be used as an expansion
of Walknet to allow for decisions at higher levels of integration.
For example, a foraging ant may decide between selecting one of
different food sources stored in memory, and, at a lower level, to

select between inbound or outbound travels. After having selected
the food source, the ant may decide to attend a visual landmark
seen or not. In Navinet, this ability is given by a so-called motiva-
tion unit network, a structure that will now be applied to Walknet,
too (Section Motivation Unit Network). This expansion allows
the complete system to decide between different behaviors at dif-
ferent levels of integration. In the final version this will lead us to
an architecture that will consist of many parallel “columns” which
are organized in four layers. As the motivation unit network can
be considered the “backbone” of the architecture proposed here,
we call the latter Motivation Unit Based Columnar Architecture
(MUBCA).

In this article we will show how Walknet can be expanded
by motivation units and still does inherit its earlier proper-
ties. To this end the behavior of the expanded Walknet will
be tested in different situations of forward walking including
starting from uncomfortable leg configurations and the negoti-
ation of very tight curves. These tests are critical for studying
the stability of the system because due to the irregular step-
ping patterns, resulting from the dynamical properties of the
body including possible leg slipping, the complete system is sub-
ject to continuous disturbances. We further will show that the
network can select between states of forward walking and back-
ward walking. To illustrate how the motivation unit network
could be expanded for further procedures, as an example we will
discuss the case of switching between 6-legged walking and 4-
legged walking (Section Discussion) and will note how to connect
Walknet with Navinet to equip the complete system with insect-
like navigation procedures as are vector navigation and landmark
navigation. In addition, to illustrate the capacity of this architec-
ture we will briefly sketch how this structure could be exploited
to equip the complete system with cognitive abilities in the sense
to be able to plan ahead and how the use of symbols may be
possible.

WALKNET
THE BASIC VERSION
Tightly based on the morphology of a stick insect (Carausius
morosus), the walker has six legs, each of which is equipped
with three joints. The abdomen and the head of the insect are
not functionally relevant for walking. Therefore, the body of the
walker consists of only three functional relevant body segments.
The leg pairs are connected to those three body segments. The
body segments are connected by joints, each allowing for 2◦ of
freedom (up and down as well as side movements of the body
segments). Therefore, the controller has to deal with 22◦ of free-
dom (DoF). As the position of one body segment in space is
defined by only six DoFs (three for position in space, three for
orientation) there are 16 DoFs free to be decided upon by the
controller. However, “free” does not mean that the controller may
leave the decision open, rather it has to make these 22 decisions
in a sensible way at any moment of time and, as mentioned, in
an unpredictable environment. Note that in many similar robots
the number of free DoFs is artificially reduced by a central con-
troller (e.g., an explicit tripod controller), which simplifies the
control but, on the other hand, restricts the flexibility of the
system.
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As a first step—and to make it simple for our understand-
ing, but not necessarily for the system itself—, the walker is not
equipped with distance sensors like vision or acoustic sensors,
but only with tactile sensors situated in the legs (and possibly
the antennae) measuring contact with external objects, and with
proprioceptors measuring position and velocities of joints.

The walking system to be described in the following and
that has been tested to be able to control a six-legged robot
(Dürr et al., 2004; Schmitz et al., 2008), is based on behav-
ioral (and to some extent neurophysiological) studies on insects,
in particular stick insects. For the purpose required here the
reactive controller will also be equipped with elements form-
ing plausible expansions. At first, we briefly describe the essen-
tials of the earlier version, Walknet, and will then introduce
the expansions in Sections Further Procedural Elements and
Body Model.

Forward walking in stick insects, which has already been inten-
sively studied (Cruse et al., 1998), consists, on the leg level, of
the stance movement, during which the leg maintains ground
contact and is retracted to propel the body forward while sup-
porting the weight of the body, and the swing movement where
the leg is lifted off the ground and moved in the direction of walk-
ing to touch down at the location where the next stance should
begin. Experiments on the walking stick insect have shown that
the neuronal system is organized in a decentralized way (Wendler,
1964; Bässler, 1983; Cruse, 1990). Derived from these results,
a model has been proposed in which each leg is attributed to
a separate controller (Dürr et al., 2004). These single leg con-
trollers are assumed to be situated in the thoracic ganglia [for a
review see (Bässler and Büschges, 1998)]. Figure 1 sketches the
approximate anatomical arrangement of the controllers and the
numbering of the legs. Each controller is in charge of the behav-
ior of the connected leg, as the controller decides which behavior
is executed by this leg and in which way the joints are moved.
Figure 2 shows the details of the controllers as used in Walknet for
two legs (leg1, leg2, e.g., the right front leg and the right middle
leg). A single leg controller mainly consists of several procedures
that are realized by artificial neurons forming a local, in general,
recurrent neural network (RNN). In most cases these networks
consist of perceptron-like feedforward networks. These modules
might receive direct sensory input and provide output signals
that can be used for driving motor elements. But other mod-
ules may also provide input to a module. All these networks may
be considered to form elements of the procedural memory. The
two most important procedural elements in our example are the
Swing-net, responsible for controlling a swing movement, and the
Stance-net controlling a stance movement [Figure 2, see (Dürr
et al., 2004; Schumm and Cruse, 2006) for details concerning the
Swing-net, and (Schmitz et al., 2008) for Stance-net]. In addi-
tion, each leg possesses a so-called Target_fw-net (Figure 2). This
net influences the Swing-net to determine the endpoint of the
swing movement during forward walking. During normal for-
ward walking the swing end-position is situated in the anterior
section of the leg’s range of movement (anterior extreme position,
AEP). During stance the leg is moved backward until it reaches
the posterior extreme position (PEP), the latter being represented
by another memory element (not depicted in Figure 2).

FIGURE 1 | Schema of the morphological arrangement of the leg

controllers and the coordination influences (1–6) between legs. Legs
are marked by L for left legs and R for right legs and numbered from 1 to 3
for front, middle, and hind legs, respectively. The question mark indicates
that there are ambiguous data concerning this influence.

FIGURE 2 | A section of Walknet showing two leg controllers. Each
consists of a Stance-net and a Swing-net, the latter being connected with a
Target-net (Targetfw). The motor output acts on the legs (box
muscles/body/environment). Sensory feedback is used by the motor
procedures as well as to switch between the states (red units connected
by mutual inhibition). r1 represents coordination rule 1 (see Figure 1).

Furthermore, a leg controller must also take into account the
interaction with the other legs. Part of these interactions are
mediated directly by the body and through the environment,
making explicit computations superfluous [see, e.g., the local pos-
itive velocity feedback approach (Schmitz et al., 2008)]. While
the physical coupling through the environment is important, it
is not sufficient. In addition, the controllers of neighboring legs
are coupled via a small number of channels transmitting infor-
mation concerning the actual state of that leg (e.g., swing, stance)
or its position (i.e., values of joint angles). These coordination
rules were derived from behavioral experiments on walking sticks
(Cruse, 1990; Dean, 1991a,b, 1992a,b). In Figure 1 the channels
are numbered 1–6. Coordination rules 1–3 influence the length of
the stance movement by influencing the transition from stance to
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swing movement, i.e., they change the PEP value. The Target-nets
(rule 4) influence the AEP. As an example, in Figure 2 (dashed
line) only one connection is shown, rule 1 (r1), which suppresses
the start of a swing movement of the anterior leg (in this case the
front leg, leg1) during the swing movement of the posterior leg
(here the middle leg, leg2).

The local sensory influences and the coordination influences
are integrated in the so-called analog selector net (Schilling et al.,
2007) that decides whether a swing movement or a stance move-
ment is performed. Activation of the Stance-net is triggered by
ground contact, activation of Swing-net is triggered when the
current PEP value is reached. In Figure 2 the selector net is repre-
sented by two units (marked red) which are connected by mutual
inhibition, thus forming a winner-take-all network (WTA-net, for
details see Section Motivation Unit Network). Activation of such
a unit (between 0 and 1) controls the output of the correspond-
ing procedure in a multiplicative way. The representation of the
value for the default PEP is not depicted in Figure 2 as well as
the detailed influence of the coordination rules influencing the
actual PEP value (for reviews see Dürr et al., 2004; Schilling et al.,
2013).

Kinematic and dynamic simulations as well as tests on robots
have shown that this network can control walking in different
velocities, producing different insect gaits including the con-
tinuous transition between the so called tetrapod gait and the
tripod gait, negotiate curves (Kindermann, 2002), climbing over
obstacles (Dürr et al., 2004) and over very large gaps (Bläsing,
2006), and coping with leg loss (Schilling et al., 2007). Thus,
Walknet exhibits a free gait controller where the gaits are not
explicitly implemented but emerge from a strictly decentralized
architecture. Including some more recent extensions, Walknet can
describe further behaviors observed in stick insects walking on

variously shaped substrates (e.g., Diederich et al., 2002; Schumm
and Cruse, 2006).

In the following, we will expand Walknet as illustrated in
Figure 3. These expansions concern (i) the introduction of fur-
ther procedural elements (Section Further Procedural Elements),
(ii) a body model (Section Body Model), and (iii) a motivation
unit network (Section Motivation Unit Network). The properties
of the robot simulator will briefly sketched in the Appendix.

FURTHER PROCEDURAL ELEMENTS
Further procedures are required when the controller should
not only be able to perform one type of behavior, for exam-
ple forward walking, but also others like backward walking.
Specifically, further Target-nets are introduced which can influ-
ence the corresponding Swing-net to move the leg in posterior
direction as during backward walking (bw) the swing end posi-
tion is in the posterior (rear) section (Figure 3, Target_bw-net).
Correspondingly, the default end position of the stance move-
ment is represented by a “PEP-net,” one for forward walking and
another one for backward walking. For simplicity the latter are
not depicted in Figure 3. The Target_fw-net mentioned above can
be realized by a two-layer perceptron (Dean, 1990). Its function
is to compute the anterior target position, the leg aims at dur-
ing the swing movement. The anterior target is usually situated
directly behind the current position of its anterior neighboring
leg. The computation therefore represents the inverse kinemat-
ics. Alternatively, and this version is used in the simulation shown
here, the Target-nets and the PEP memories are realized as a
three-unit RNN with bias, representing a static memory element
storing the corresponding target position. For backward walking
in addition the corresponding coordination rules are required but
not depicted in Figure 3.

FIGURE 3 | Walknet as depicted in Figure 2, but now expanded by further procedures (Target_bw-net), a body model (blue) and a motivation unit

network (red). The body is represented by the boxes “leg.” Note that for clarity only the target nets are depicted, but not the PEP-nets.
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FIGURE 4 | The body model. Left, the upper, abstract level representing
the body; Right, three of the six networks representing the legs.

BODY MODEL
A second important expansion concerns the construction and
implementation of a body model. This body model is repre-
sented by a specific RNN (Schilling, 2011) and has a modular
structure (Schilling et al., 2012). It consists of six networks each
representing one leg. These modules are connected on a higher
level forming a seventh network representing the whole body.
This network represents the central body and the legs in an only
abstracted form. In Figure 3 the elements of the body model are
marked in blue. Thus, the body model is represented by a mod-
ular structure which, as it is constructed as a RNN, at the same
time comprises a holistic system [Figure 4, for details concerning
the body model see (Schilling, 2011; Schilling et al., 2012)].

In normal walking the body model is used for controlling
stance movements. It is used in forward and backward walking
as well as in negotiating curves and provides joint control sig-
nals to the system. Sensory data are fed into the body model.
Due to its holistic structure the body model integrates redundant
sensory information and is able to correct possible errors in the
sensor data (Schilling and Cruse, 2012). As will be sketched in the
Discussion, due to its ability of pattern completion, this model
can also be used as a forward model (Schilling, 2009). Therefore,
the model allows for prediction, too.

The function of the body model is to mediate the coupling
between the single leg vectors (Figure 4). During a movement
these vectors have to be moved in a coherent way. While the body
moves to the front, the feet should stay on the same place on
the ground, i.e., the relative position between the feet must not
change. As the model mirrors the 22◦ of freedom of the insect
body the task is underdetermined and therefore this is still a
hard problem and a unique solution is not directly computable
(Schilling and Cruse, 2012).

As a solution, we apply the idea of the passive motion
paradigm to this problem (von Kleist, 1810; Mussa Ivaldi
et al., 1988; Loeb, 2001). Like a simulated marionette puppet
(Figure 5B), the internally simulated body is pulled by its head
in the direction of desired body movement (Figure 5B, delta_0),
provided, for example, by a vector based on sensory input from
the antennae (Dürr and Schütz, 2011) or, if available, by visual

FIGURE 5 | (A) Illustrates how the body model is attached to the body of
robot Hector. (B) shows the vectors delta_0 and delta_back pulling the
model in forward or backward direction, respectively.

or acoustic input (Figure 3, sensory input, Figure 5B, delta_0,
delta_back). As a consequence, the stance legs of the puppet move
in an appropriate way. The changes of the simulated joint angles
as well as the body joints can be used as commands to control
the actual joints. If such a body model is given that represents the
kinematical constraints of the real body, we obtain in this way
an easy solution of the inverse kinematic problem, i.e., for the
question how the joints of legs standing on the ground have to
be moved in concert to propel the body (for details and applica-
tion for the control of curve walking see Schilling et al., 2012). In
this case, the positive feedback input given to Stance-net, as was
used in the earlier version (Schmitz et al., 2008) is not anymore
necessary (although application of both influences may be sensi-
ble). The Stance-net can therefore be considered to only consist
of Integral Controllers, one for each leg joint to which the body
model provides the reference inputs.

MOTIVATION UNIT NETWORK
To allow the system to select autonomously between different
behaviors as for instance standing and walking, or forward and
backward walking, Walknet is expanded by introduction of a
RNN consisting of so-called motivation units (Figure 3) as has
been done for Navinet (Cruse and Wehner, 2011; Hoinville et al.,
2012). The units used here are artificial linear summation neu-
rons with a piece-wise linear activation function showing lower
and upper limits of 0 and 1, respectively.

The function of a motivation unit as applied here is to control
to what extent the corresponding procedural element contributes
to the behavior. To this end, these units influence the strength of
the output of this network (in a multiplicative way). In an earlier
version (Figure 2, Schilling et al., 2007) such a network contain-
ing only two motivation units has been applied to control the
output of Swing-net and Stance-net. In this network each moti-
vation unit is reinforcing itself, whilst the two motivation units
are mutually inhibiting each other forming a WTA-net. Due to
this competition, only one of the two behaviors is active most
of the time. This decision is influenced by sensory signals act-
ing on the motivation units. When the leg touches the ground at
the front during a swing movement, the ground contact causes
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switching to the stance movement. When the leg reaches the
PEP during stance, swing is initiated. Introduction of motivation
units was inspired by Hassenstein (1983) and Maes (1991) and is
based on the finding of Schumm and Cruse (2006) according to
which there are indeed variable motivational states for individual
procedures, in this case the swing controller.

Here we expand this network in two ways (Figure 3). First,
each procedural element will be equipped with a motivation unit.
This means that not only Swing-net and Stance-net, but also all
Target-nets and all PEP memories as well as the leg coordina-
tion channels have an own motivation unit. Motivation units for
Target-nets and PEP-nets are required to select between differ-
ent target positions for forward walking and backward walking.
The motivation units influencing the coordination rules are moti-
vated by Dürr (2005), and Ebeling and Dürr (2006), who showed
that coordination influences can be modulated (e.g., during curve
walking).

Second, motivation units can also be used to influence other
motivation units via excitatory or inhibitory connections. This
is illustrated in Figure 3. Units which belong to the procedu-
ral nets controlling the six legs (only two legs are depicted in
Figure 3) show mutual positive connections to a unit termed
“walk” in Figure 3. This unit serves the function of arousing
all units possibly required when the behavior walk is activated.
Neurophysiological grounding of such an influence is given by
Büschges (1998): when walking is started, the basic potential level
in a number of relevant neurons is increased. In addition, follow-
ing earlier authors (see Discussion) we introduce units “forward”
and “backward” to activate procedures required for forward or
backward walking (Figure 3, fw, bw), respectively, by selecting
specific Target-nets and PEP-nets. It is only indicated in this fig-
ure that the unit “walk” may be coupled via mutual inhibition
to other units that stand for different behaviors like, for example,
standing still (unit “stand”). However, the corresponding proce-
dures are not depicted (for a further expansion see Figure 10).
Apart from the units fw and bw, it is also not shown that these
“higher-level” motivation units, as is the case for the motivation
units of Swing-net and Stance-net, may receive direct or indi-
rect input from sensory units that influence the activation of a
motivation unit.

As illustrated in Figure 3, this at first sight hierarchical struc-
ture is in general not forming a simple, tree-like arborization.
As indicated by the bi-directional connections, motivation units
form a RNN coupled by positive (arrowheads) and negative
(T-shaped connections) influences (for details concerning the
weights used see the Appendix). This structure may therefore be
better described as “heterarchical.” The combination of excita-
tory and inhibitory connections form a network that can adopt
various stable attractor states. Some of these motivation units
are coupled by local winner-take-all connections. This is true
for the Swing-net and Stance-net of each leg, as well as for the
motivation units for forward and backward walking. Thereby, a
selection of one of the available Target-nets and of the PEP-nets is
possible. Excitatory connections between motivation units allow
for building coalitions. As depicted in Figure 3, there are differ-
ent overlapping ensembles. For example, all “leg” units and the
unit “walk” are activated during backward walking and during

forward walking, but only one of the two units termed “fw”
(forward) and “bw” (backward) and only some of the targeting
modules are active in either case. This architecture can produce
various stable attractor states or “internal states” (see Appendix
for details). Such a state protects the system from responding to
inappropriate sensory input. For instance, as a lower-level exam-
ple, depending on whether a leg is in swing state or in stance
state, a given sensory input can be treated differently: stimulation
of a specific sense organ leads to a Levator reflex (when hitting
an obstacle the leg is briefly retracted and then lifted) when in
swing, but not during stance (see Figure 5 from Dürr et al., 2004).
Correspondingly, internal states can be distinguished on higher
levels, as for example walking, standing still or forage (in the case
of Navinet).

RESULTS
As this article is focused on demonstrating the structure and
the functioning of the heterarchical network in cooperation with
the decentralized procedural memory, we will not report on a
detailed quantitative evaluation of the functional properties of
the walking system as has been done by Kindermann (2002).
Instead, we show six examples of walking situations for which
various combinations of active motivation units are required
(five cases for forward walking, one case for backward walk-
ing) as are different walking velocities, “uncomfortable” starting
configurations, or curve walking. The behavior is illustrated by
plotting the footfall pattern, i.e., for each leg the state swing
(black) or stance (white) over time, to illustrate the temporal
structure of the gaits. In addition, in the supplement we pro-
vide videos showing the behavior of the robot, the temporal
development of the footfall patterns, as well as the temporal
sequence of the internal states, represented by the activation of all
motivation units.

During forward walking, continuously active units are walk,
fw (forward), all six leg units and the units of the corresponding
Target-nets and PEP-nets. More or less regularly alternating are
the Swing and Stance units of the six legs.

STRAIGHT WALKING
In forward walking a vector (Figure 5B, delta_0), which might be
provided by tactile input from the antennae or by visual input,
is pulling the body model straight forward. Velocities are given
as a dimensionless number (relative velocity v_rel = swing dura-
tion/stance duration). Figure 6A (Movie S1) shows high velocity
walking (v_rel = 0.5) corresponding to what is usually called
tripod gait (at least three legs are on the ground at any time).
Figure 6B (Movie S2) shows a walk with lower velocity (v_rel =
0.4), usually called tetrapod (at least four legs are on the ground
at any time). Figure 6C (Movie S3) shows very slow walking
(v_rel = 0.15), sometimes termed wave gait. Note that, like in the
insects, there is no clear separation between these “gaits.” Rather,
examples shown in Figure 6 are taken from a continuum which
depends on one control parameter, the velocity.

Figure 6D (Movie S4) shows a walk (v_rel = 0.3) starting from
a difficult starting configuration (see legend). In this case, con-
tralateral leg pairs started with exactly the same leg position. This
leads to a gallop-kind stepping pattern (see the first three steps).
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A symmetry-break occurs due to minor irregularities in the ODE
simulation (e.g., short slipping of a leg). After another about three
to four steps, a stable wave gait pattern can be observed (Videos
for all example walking cases are provided as supplementary
material.).

NEGOTIATING CURVES
Still in forward mode, the body model can also be used for walk-
ing in curves which leads to another kind of leg coordination.
Only the pull vector acting on the body model has to be adjusted
and has to point in the direction the agent should walk to. As
mentioned, the pull vector may be provided by signals from the
antennae or via visual input. The body model is pulled (at the
front of the first segment, Figure 5B, delta_0) into this direction
and all standing legs as well as the body segments are following
(Schilling et al., 2012). Figure 7 (Movie S5) shows a simulation
run, where the body model is pulled to the front and the right
by an angle of 12◦. Velocity is set to v_rel = 0.4, i.e., no differ-
ent velocities are required for right and left legs in contrast to the
simulation of Kindermann (2002). We also did not change the

FIGURE 6 | Simulated Hector walking straight with high (A), middle

(B), and low (C) speed, leading to tripod gait, tetrapod gait and

wave gate, respectively. (D) shows a walk starting from uncomfortable
starting configuration. Starting position (in m, origin is position of coxa)
for (D): L1: 0.15, R1: 0.15, L2: -0.1, R2: -0.1, L3: -0.02, R3: -0.02. Black
bars indicate swing movement of the respective leg: left front, middle
and hind leg, right front, middle and hind leg, from top to bottom.
Abscissa is simulation time. The lower bars indicate 500 iterations
corresponding to 5 s real time.

nominal AEP and PEP values in contrast to the behavior observed
in the insects (Jander, 1985; Dürr, 2005; Dürr and Ebeling, 2005;
Rosano and Webb, 2007; Gruhn et al., 2009). As has been shown
by these authors, during swing, the legs, in particular the front
legs, target sideways, which may even allow these animals to turn
on the spot (Cruse et al., 2009b). Nonetheless, the simulated agent
can negotiate curves as tight as a radius of about one body length
(distance between front leg coxa and hind leg coxa, 578 mm,
see Figure 8B) compared to the approach of Kindermann (2002)
whose tightest curves had a diameter of about three body lengths.
During the sequence depicted in Figure 7, a curve of about 180◦
has been negotiated. In the simulation, inner legs show much
smaller stance velocities and smaller step amplitude compared to
the outer legs. As can be observed in Figure 7, the inner hind
leg shows much smaller step frequencies and, depending on the
radius of the curve, may even keep staying on the ground dur-
ing the complete turn (not shown). Both results compare to those
observed in insects (Dürr, 2005; Rosano and Webb, 2007; Gruhn
et al., 2009).

Figure 8A Illustrates the movement of the leg tips during
stance in a top–down view using as coordinate system that of
the last body segment. Shown is at least one stance phase of each
leg over the time of 2 s simulation time after the curve walking
has been initiated for 6 s This means, that initialization of the
curve has been completed and the behavior is now in a stable

FIGURE 7 | Simulated Hector walking a turn to the right using the

internal body model. The internal body model is constantly pulled to the
front and the right. The complete run shown corresponds to a turn of about
180◦. Starting positions (in m, origin is position of coxa): L1: 0.20, R1: 0.05,
L2: -0.04, R2: -0.14, L3: -0.02, R3: -0.22; for further explanations see
Figure 6.

FIGURE 8 | Curve walking of the model. In (A) the movement of the leg
tips during the stance movement is shown with respect to the last body
segment. (B) shows snapshots of the movement over time. Every second
of simulation time the body posture is shown, the postures of the legs in
stance are shown four times each second.

Frontiers in Computational Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 126 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Schilling et al. Heterarchical architecture for hexapod walking

FIGURE 9 | Simulated Hector walking backwards. Starting positions (in
m, origin is position of coxa): L1: 0.20, R1: 0.05, L2: -0.04, R2: -0.14, L3:
-0.02, R3: -0.22; for further explanations see Figure 6.

execution state. This is also shown by the stable orientation of
the body segment angles [first segment joint has a mean value of
15.0◦ (std. ± 1.27), second segment joint has a mean value of 4.8◦
(std. ± 0.35)]. The outer legs perform faster movements during
stance than do inner legs (see different distances of symbols). The
outer front leg is showing movements far away from the body,
mostly because the body is pulled away from its footpoint. In
Figure 8B the movement is shown as a sequence, emphasizing the
tightness of the curve. Here, every second of simulation time the
body posture is shown and the leg postures are given for stand-
ing legs in addition four times each second. Figure 8B includes
the initiation of curve walking (see also the video provided as
supplementary material).

BACKWARD WALKING
To trigger backward walking, the motivation unit for backward
walking (Figure 3, bw) has to be activated. In animals, this
behavior can be elicited by tactile stimulation of both antennae
(Graham and Epstein, 1985). Motivation unit bw activates the
corresponding Target-nets and PEP-nets. Activation of this moti-
vation unit additionally sets the forward pull vector to zero, and
activates a displacement vector being attached to the back of the
last segment, thereby pulling the model backwards (Figure 5B,
delta_back). Furthermore, the leg coordination rules required for
backward walking are switched on (here we used a mirror image
version of the rules used for forward walking). As in straight
forward walking or curve walking, this vector is assumed to be
provided by appropriate sensory input.

In the case of backward walking (Figure 9, v_rel = −0.4,
Movie S6) the attractor states of the motivation unit network are
characterized by the continuously active units walk, bw (back-
ward), all six leg units as well as the units of the corresponding
Target-nets and PEP-nets required for backward walking. As
in forward walking, Swing-nets and Stance-nets of the six legs
show variable activation patterns, which, in backward walking,
also result from the different coordination rules applied. The
corresponding video further outlines the details of the behavior.

DISCUSSION
We describe a novel architecture that can be used to control an
autonomous robot and is based on earlier approaches, Walknet
and Navinet. The neural controller Walknet, as described ear-
lier (e.g., Dürr et al., 2004; Bläsing, 2006; Schmitz et al., 2008;
Schilling et al., 2013), represents a typical case of an embod-
ied controller: the network is able to control the movement of

a hexapod walker in unpredictably varying environments with-
out relying on other information than available using the given
mechanosensors. This is possible because the body and proper-
ties of the environment are crucial elements of the computational
system—the system is embodied not only in the sense that there
is a body (i.e., that there are internal states being physically repre-
sented), but in the sense that the properties of the body (e.g., its
geometry) are required for computational purposes. Exploiting
the loop through the world (including the own body) allows
for a dramatic simplification of the computation. In the ver-
sion being expanded by an internal body model, too, control
of DoFs does not result from explicit specification by the neu-
ronal controller, but results from a combination/cooperation of
the neuronal controller, the internal body model and the coupling
via the environment.

The procedures forming the decentralized controller are basi-
cally arranged in parallel, i.e., obtain sensory input and provide
motor output, but there are also procedures that receive input
from other procedures and, as a consequence, procedures that
provide output to other procedures. Application of such a decen-
tralized architecture helps to solve the flexibility—automaticity
dilemma. Modules have a fixed function, but can work together
in a flexible way to solve difficult tasks. In the case described here
this is realized by a system that, based on studies of insect behav-
ior, has been designed to control hexapod walking but is also able
to climb over very large gaps (Bläsing, 2006).

Flexibility of the system is improved by introduction of the
motivation unit network (Section Motivation Unit Network),
which allows to integrate additional behaviors in the process of
behavioral selection. The organization of this network is espe-
cially designed to allow for competitions on different levels, in this
way forming different clusters of units. For example, the compe-
tition on a leg level selects swing and stance movements, while,
on a more global level, the walking direction or other behav-
iors different from walking can be selected. Activities of these
motivation units not only allow for selection of behavioral ele-
ments, but also provide a context according to which specific
sensory inputs are attended or not. In this sense, the motiva-
tion unit network can be considered to be a system allowing for
controlling attention. This property is more obvious in another
case, where the architecture proposed here has successfully been
applied for controlling insect navigation (“Navinet,” Cruse and
Wehner, 2011; Hoinville et al., 2012). In this task the animals are
able to select visiting one of a number of food sources learned,
and to decide between traveling to the food source or back home.
Of particular interest is here that a desert ant and also Navinet
attend known visual landmarks only in the appropriate context,
i.e., depending on the food source it is actually traveling to. In
this way, the system controlled by the motivation network allows
for selective attention. As Navinet provides walking direction as
output, both Navinet and Walknet can directly be combined,
whereby the output of Navinet controls the pull vector of the body
model.

Introduction of motivation units does not impair the behav-
ior of the basic Walknet structure, because during walking in one
direction (forward or backward) all motivation units maintain
their activation values except for the Swing and Stance motivation
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units. Only the latter change their activation dynamically and do
this in the same way as is the case in the earlier Walknet versions.
Therefore, all properties of Walknet concerning forward walking
are inherited in the version expanded by motivation units.

Although the procedures as such are essentially arranged in
parallel, the motivation network provides connections between
the modules that form a dynamical heterarchy. In contrast to
Jenkins and Mataric (2003), for example, who discuss a three
level structure (motor level, skill level, task level), our architec-
ture does not imply such a strict separation in levels. Rather, any
combination of modules might, in principle, be possible in this
architecture. Furthermore, this architecture is very flexible as it
easily allows for later expansions to represent not only six-legged
walking, but, for example, four-legged walking where both front
legs could be used as grippers. How this could be done is illus-
trated in Figure 10. As depicted in this figure, to this end the front
leg controller, in the figure leg 1, is equipped with a parallel pro-
cedure termed “grasp,” that is controlled by an own motivation
unit (Figure 10, gri1). This motivation unit is activated if the unit
“4-legged walk” is active, which in turn inhibits the unit “6-legged
walk.”

Figure 11 indicates how the motivation unit network of
Navinet (Cruse and Wehner, 2011; Figure 1) and that of the
Walknet version depicted in Figure 3 can be combined. To this
end, we introduce a higher layer consisting of two motivation
units “sleep” and “awake,” which are then connected to the upper-
most layer of Walknet (Figure 3), units “stand” and “walk,” and
to the uppermost layer of Navinet, units “nest” and “forage.”

Our network provides an example showing that concatenation
of modules required for control of complex behavior does not
necessarily require explicit coding, but may emerge from local
rules and the coupling through the environment. The heterar-
chical structure used in the expanded version of Walknet and
in Navinet comprises a simple realization of “neural reuse” as
proposed in Anderson’s massive redeployment hypothesis 2010.

The network, as described, consists of a “hard-wired” struc-
ture, i.e., the weights connecting the artificial neurons are fixed.
Nevertheless, the system is able to flexibly adapt to properties
of the environment. However, there may also situations occur in

FIGURE 11 | Combination of the motivation unit network of Walknet as

depicted in Figure 3 and of Navinet (Cruse and Wehner, 2011, Figure 1).

FIGURE 10 | The same network as shown in Figure 3, but now

expanded by a procedure that allows for switching between 6-legged

walk and 4-legged walk, where front legs (here leg 1) can be

controlled by another procedure (“grasp,” output not shown) via a

motivation unit “gri1.” The additional connections required are marked by
dashed lines.
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which the controller runs into a deadlock. Think for example of
the situation in which, during forward walking, by chance all legs
but the right hind leg are positioned in the frontal part of their
corresponding range of movement, whilst the right hind leg is
positioned very far to the rear. When this leg starts a swing move-
ment, the body may fall backward as the center of gravity is not
anymore supported by the legs on the ground. Such a “problem”
might be signaled by specific sensory input, for example a specific
load distribution of the legs. To find a way out of this deadlock,
a random selection of a behavioral module not belonging to the
actual context, in our case forward walking, may help. A possible
example might be a backward step of the right middle leg. Such a
backward step of the middle leg would make it possible to support
the body, then allowing the hind leg to start a swing. However, in
our controller, backward steps are only permitted in the context
of backward walking. How might it be possible for the system to
find such a solution nonetheless?

In Figure 12 we briefly illustrate a simple expansion allowing
the system to search for such a solution (Schilling and Cruse,
2008). A third layer, essentially consisting of a recurrent WTA-net,
is arranged in such a way that each motivation unit has a part-
ner unit in the WTA-net (Figure 12, green units). The WTA units
might be activated by various “problem detectors” not depicted in
Figure 12. Motivation units activated in the actual context inhibit
their WTA partner unit (T-shaped connections in Figure 12).
Thus, a random activation of the WTA-net will, after relaxation,
find one of the currently not activated modules. The WTA unit

winning the competition can then be used to activate its partner
motivation unit and thereby trigger a new behavior that can be
tested for being able to solve the problem. In this way, realizing a
special type of top down attention, the network has the capability
of following a trial-and-error strategy.

As has been proposed (Schilling and Cruse, 2008) a further
expansion of the system may permit to use the body model
instead of the real body to test the new behavior via “inter-
nal trial-and-error” whilst the motor output to the real body is
switched off. To this end, switches have to be introduced allowing
the motor output signals to circumvent the real body and being
passed directly to the body model (not depicted in Figure 12).
Only if the internal simulation has shown that the new trial pro-
vides a solution to the problem, the behavior will actually be
executed. McFarland and Bösser (1993) define a cognitive sys-
tem in the strict sense as a system that is able to plan ahead, i.e.,
to perform internal simulations to predict the possible outcome
of a behavior. Therefore, the latter expansion would, according
to McFarland and Bösser, make the system a cognitive one (for
details see Schilling et al., 2013).

Furthermore, inspired by Steels and Belpaeme (2005); Steels
(2007), the possibility to expand the network by a forth layer,
that contains specific procedures, namely networks that repre-
sent verbal expressions has been discussed by Cruse (2010). These
“word-nets” may likewise be used to utter or to comprehend the
word stored. The underlying idea is to connect each word-net
with a unit of the motivation network of which it carries the

FIGURE 12 | Walknet as depicted in Figure 3, with a body model (blue) and a motivation unit network (red), but now expanded by a further layer

(WTA, marked green, not all connections are depicted). The body is represented by the boxes “leg.”
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meaning (e.g., the word-net “walk” should be connected with the
motivation unit walk), thereby grounding the symbolic expres-
sion (Cruse, 2010). Interestingly, Jenkins and Mataric (2003) draw
an analogy between the structure for what they call a “motor
vocabulary” to linguistic grammar or “verb graphs,” a property
that is reflected in our network.

Although the latter two levels (WTA-net and word-nets) are
still quite speculative as they have not yet been tested, together
with the two lower layers they illustrate the principal idea of this
architecture (Figure 13). Horizontally arranged modules (pro-
cedures, motivation units, WTA neurons and procedures for
words), are ordered in the horizontal layers in such a way that
the corresponding elements in the different layers appear in a ver-
tical order, leading to modules arranged in a columnar fashion
(Figure 13, dashed rectangles). Addressing this columnar struc-
ture does not mean that each lower level procedure or each
motivation unit has to have a partner in the upper layers, but only
means that such connections are in principle possible. Similarly,
not every unit or procedure in the upper layers necessarily has
a partner procedure in the lowest layer. As a column in this
architecture is characterized by a motivation unit, we name our
architecture MUBCA.

Interestingly, Schack and Ritter (2009) and Schack (2010)
have, too, proposed a four layer model to describe an archi-
tecture for the control of complex movements, which makes a
comparison tempting. The four layers of this model are char-
acterized as (i) sensorimotor control, (ii) sensorimotor repre-
sentation, (iii) mental representation, and (iv) mental control.
Although this architecture is settled at a more abstract level of
description, our procedural layer might well be compared with
Schack’s sensorimotor control layer. Further, our motivation net-
work has relations to Schack’s sensorimotor representation layer
(ii). Schack’s layers (iii) and (iv) are not directly comparable, as
“mental” is defined in his approach by consciously accessible,
an aspect not considered here. Nonetheless, our WTA layer may
be related with Schack’s uppermost layer (iv), the mental con-
trol layer. Our uppermost layer might better be related with the
mental representation layer of Schack’s model, i.e., his layer (iii).
This layer is characterized by containing the so called basic action

FIGURE 13 | Schematic showing the horizontal and columnar

arrangement of the modules used by the architecture proposed.

concepts, behavioral elements to which verbal expressions can
be assigned. So, there appear to exist some interesting relations
between Schack’s model and ours, but obvious differences can be
observed in detail.

Another proposal, the DAC architecture developed by
Verschure and cooperators (review Verschure, 2012), is at first
glance formally very similar to our approach, as it consists of four
layers and (three) columns. The four layers show some relation
to our layers. DAC differentiates between soma (body includ-
ing sensors and actuators) and three layers characterizing the
brain, the reactive layer, the adaptive layer and the contextual
layer. The reactive layer roughly corresponds to our procedural
layer, the adaptive layer controls (classical and operant) learning,
not addressed in our approach. The contextual layer has some
relation to our motivation unit network. The contextual layer
of the DAC architecture also contains memory elements (STM,
LTM) in contrast to our system where these memories are only
stored in the lower, procedural layer. The motivation units only
contribute to selecting the different procedures containing the
memory content. The three columns, however, are quite differ-
ent from the columns used in our architecture. They concern (i)
the state of the world, (ii) the state of the self, and (iii) control
of action. In our network, these functions are implicitly embed-
ded in the different layers making our architecture much simpler.
Learning is, in our model, foreseen to be implemented as explo-
rative learning (Schilling et al., 2013) and will be realized by a
cooperation of our third layer (WTA net) and the second layer
(motivation unit network).

Our architecture follows the concept of D’Avella et al. (2003)
assuming that natural motor patterns are constructed by com-
bination of discrete elements (“modules,” “motor programs”).
To simplify the simulation, we assume that different modules
are constructed of separate, non-overlapping neuronal elements.
The situation might, however, be more complicated. As reviewed
by Briggman and Kristan (2008), “morphologically defined cir-
cuits could be reconfigured into many distinct functional circuits
[. . .] generating recognizable discrete behaviors.” To cope with
this case, for example Tani et al. (2004) studied how a number
of different behaviors can be represented by different states of one
RNN. A similar question can be asked with respect to the moti-
vation units. Are they better described by individual units or do
they form a distributed structure? Tani (2007) showed interest-
ing studies of models, where not individual motivation units are
responsible to modulate a given behavior. In contrast, a higher
level RNN adopts different attractor states which as such influ-
ence the properties of lower level RNN. As, however, distributed
systems containing recurrent connections appear to be more diffi-
cult to be stabilized, we have chosen to deal with distinct modules
on the lower level and single units at the higher level. This is in
particular helpful when dealing with a large number of modules
and aiming to control relatively complex behaviors as is the goal
of Walknet and Navinet.

Two further approaches should be mentioned that address
the problem of how various sensory input can be used to select
between different behaviors. The architecture of Arena et al.
(2009) essentially consists of a number of “basic behaviors” (e.g.,
phonotaxis, phototaxis, obstacle avoidance) and a “representation
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layer.” The former compare with our procedures, the latter is
related to our motivation unit network layer. Whereas the moti-
vation unit layer comprises a simple, sparsely coded Hopfield-like
network forming a decentralized structure with local, dedicated
sensory inputs for some of the units, the Representation Layer of
Arena et al. (2009) is quite different as it receives all sensory inputs
to form a “central representation of the actual environmental
situation” being represented by a Turing pattern. The Turing pat-
tern emerges from a structure consisting of sensory neurons and
two layers of Reaction-Diffusion Cellular Non-linear Networks
(CNN) which, through temporal dynamics leads to static Turing
patterns. The attractors represented by these patterns depend on
the actual activation of the sensory cells. An additional selector
network computes, after learning is finished, the relative contri-
bution of the different basic behaviors to the overall behavioral
output. A comparable selection process is, in our system, per-
formed directly by the motivation unit network, that allows for
parallel activation of different procedures except for those that
are directly connected via inhibitory weights. As an important
functional difference to our approach, learning plays a crucial role
for the system developed by Arena et al. (2009), requiring a more
complex architecture. As in our system no (online) learning is tak-
ing place, the network can be dramatically simplified and allows
a simple way of finding sensible combinations of procedures. A
central representation of the actual situation given by the current
sensory input is not required.

An, on a general level, similar architecture, that transforms
sensory input data into a vector that then is used to drive the
single behaviors is given by Steingrube et al. (2010). Not counting
on details, the representation layer of Arena et al. (2009) is here
replaced by a network showing chaotic properties. The neuronal
chaos controller requires a preprocessor and a postprocessor
for sensorimotor mapping able to select between 11 different
basic behaviors, whereby at least six of them are considered as
“typical walking patterns emerging in insects.” Although this
solution is from a mathematical point of view quite interesting,
the biological grounding is not well justified. The different gaits
used should not be interpreted as discrete “basic behavioral
patterns.” Rather, as discussed earlier, these “gaits” are arbitrarily
selected patterns out of a continuum and should therefore be
considered as one basic behavior. Furthermore, although being
claimed as allowing for fast switching between behaviors, the
chaos controller is slower than our very simple motivation unit
network which requires one or at the most two iteration for
finding another attractor.

Both approaches are characterized by application of central-
ized structures to solve the problem of combining a large amount
of sensor data and use this information to control various dif-
ferent behaviors. As an alternative, here we propose a decen-
tralized solution. Our approach of using individual motivation
units is supported by evidence for the existence of discrete neu-
rons on the higher level, at least for invertebrates. For example,
Briggman et al. (2005) show that in the leech a specific neu-
ron drives crawling, while experimental inhibition of this neuron
supports swimming. In Aplysia feeding behavior, a “command-
like neuron” influenced by motivational states normally elicits
ingestion behavior. After experimental application of a specific

neuropeptid, this neuron elicits egestive behavior, thus deciding
between two mutually excluding behaviors (Jing et al., 2007).
Briggman and Kristan (2008) reviewed further examples includ-
ing units releasing neuromodular substances.

Application of motivation units for controlling the selection
of different procedures arranged in parallel have been introduced
by Maes (1991, see also Hassenstein (1983), both inspired by
K. Lorenz). Maes also included connections between motivation
units that allow to control temporal relationships between the
procedures, a property not applied here. Instead, we introduced a
heterarchical structure to allow for the selection of various com-
binations of modules. Simple, non-heterarchical structures have
already been applied in Walknet to select between procedures
(Swing—Stance, Schilling et al., 2007) and between higher-level
states (forward—backward, (Schilling and Cruse, 2008), then
called “distributor net”). In the form of so-called command neu-
rons the selection between forward walking and backward walk-
ing has already been applied by Ayers and Davis (1977). Similarly,
mutually inhibitory units used to decide between forward and
backward walking have also been used in a model of Tóth et al.
(2012). In both cases, the units controlling forward or backward
walking are directly connected with the motor units on the muscle
level, in contrast to our approach. More generally, these mod-
els are based on strictly hierarchical structures what makes it
difficult to use individual modules in other ways than allowed
in the actual context. Therefore, these hard-wired hierarchical
structures prohibit trial-and-error variations in cases of emer-
gency. Our heterarchical system with selective access to individual
modules makes this possible (Figure 12 and related text).

Although our approach has originally been derived from
studying insect behavior, the neuronal architecture is purpose-
fully abstracted from any neuroanatomical constraints given by
the insect brain. Therefore, concentrating on the functional
aspect and searching for some kind of minimal model, this archi-
tecture may be applied to different types of brains. Nonetheless, in
the following we will briefly discuss to what extent this model may
be mapped to the neuronal system of insects. Some motivation
units clearly should be part of local, thoracic ganglia. These are
the motivation units for swing and stance, target_fw, target_bw,
PEP_fw, PEP_bw of the different legs, as well as most probably
the six “leg” motivation units. Less clear is the localization of
the motivation units controlling the different coordination influ-
ences acting between the legs. All other motivation units, like
stand, walk, forage, (stay in) nest, forward, backward, are to be
attributed to the brain of the insects.

Finally, a nomenclatural question that might be briefly dis-
cussed is whether it is sensible to attribute a higher level term
as “motivation” to such simple units as used here to control
microbehaviors like swing or stance, for example. Generally
accepted examples for motivational states are, for instance,
aggression controlling fight, or fear controlling flight. However, in
our network, there is functionally no principal difference between
motivation units controlling behaviors at any level of our net-
work. Therefore, we believe it is justified to apply this term also
to such lower level elements, or “microbehaviors,” like swing or
stance of a leg, for example. Of course, this usage of the term moti-
vation often applied in robotics and animal behavior, is still quite
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different from that used in psychology, focusing on systems with
cognitive abilities. Motivation in psychology is generally consid-
ered as a (multiplicative) combination of desire and expectancy.
In our case, only the aspect of “desire” is addressed.

CONCLUSION
Our architecture, MUBCA, integrates often discussed properties
postulated to exist in neuronal systems, as are modularity, hierar-
chy, cross modal influences (e.g., path integration and landmark
navigation in Navinet), bottom–up and top–down attention con-
trol, i.e., selection of relevant input data establishing priorities,
application of internal models for prediction, and redundant
structures. Due to the fact that some central structures as the
motivation unit network and the body model are realized as RNN,
the complete network forms a holistic system. Therefore, this
architecture can be considered as modular and holistic at the same
time. As this architecture does not follow strict rules for construc-
tion, it is very flexible and can be expanded in various ways. To
verify these capabilities further, our next step to do is to imple-
ment the cognitive layer as sketched in Figure 12. In parallel, all
versions of the model will be tested on the physical robot Hector.
The versatility of this approach is further underlined by a proposal

as to how this architecture could be expanded to show proper-
ties of a mirror system and Theory of Mind (Cruse and Schilling,
2011). Recently, these authors have argued that even higher-level
properties as are intention, (bottom–up and top–down) atten-
tion, volition as well as some aspects of consciousness can be
attributed to a network based on this architecture. Interestingly,
these properties are not explicitly implemented but appear as
emergent properties of the network (Cruse and Schilling, 2013).
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SUPPLEMENTARY MATERIAL
Movie S1 | Corresponds to Figure 6A, fast walking, normal starting

posture.

Movie S2 | Figure 6B, medium walking velocity, normal starting posture.

Movie S3 | Figure 6C, slow walking, normal starting posture.

Movie S4 | Figure 6D, medium walking velocity, difficult starting posture.

Movie S5 | Figure 7 curve walking.

Movie S6 | Figure 9 backward walking.
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APPENDIX
MOTIVATION UNIT NETWORK
The motivation unit network as applied here represents a recur-
rent neural network with piecewise linear summation units and
bounded activation function (output ≥ 0 and ≤ 1). Each unit has
a fixed self-activation weight [w/(w + 1)], which gives each unit
the property of a first order low-pass filter with a time constant
tau = w − 1 (here we used w = 3). The used weights are given in
the matrix shown in Table A1. Note that all values are multiplied
by (w + 1). In Table A1 several submodules can be identified.
One consists of the two units Stance and Walk, the other of units
Walk, Fw, Bw, leg1 . . . leg6. In addition, there are six leg submod-
ules consisting of leg#, Sw# and St#, (# = 1–6). Motivation units
for Target-net, PEP-net and Coordination Rules only receive top–
down influence. This is done to simplify the net dynamics, but in
principle recurrent connections were possible, too.

Training of such a network is possible for linear and non-linear
activation functions (Makarov et al., 2008; Cruse and Schilling,
2010). To obtain sparse coding, only those weights were allowed
to be learned that in Figure 3 are represented by (red) connec-
tions. By this way, the different procedures controlling the six
legs were kept separate which simplifies the number of attrac-
tors to be trained. For training the leg network we used four
vectors characterized by activation of units (1) walk, fw, leg1,
sw, (2) walk, fw, leg1, st, (3) walk, bw, leg1, sw, and (4) walk,
bw, leg1, st. Application of the procedure proposed by Makarov
et al. (2008) guarantees to find stable attractor solutions even for
a piecewise-linear activation function showing no upper limit.
However, following this procedure, stability of the network would
depend on the exactness of the weight values, i.e., noise would

deteriorate the stability. We therefore, made this network more
stable against noisy weights by introduction of an upper limit of
1 for each activation function. In this way, the network shows
a Hopfield-like structure, apart from asymmetric weights being
possible. Introduction of this activation function further allows
in a second step, to increase the weight values in order to decrease
relaxation time. To this end, within a leg, positive weights were
increased to 1, negative weights decreased to −3. The weight val-
ues of the upper motivation unit “walk” that connects all leg
units, were only increased to a value of 0.2, but the inhibitory
weights decreased to −5, to cope with the different number of
positive (five) and negative (one, in the example of Figure 3)
input channels. This two-step procedure makes the already sta-
ble trained net solution more stable with respect to noisy weight
values and allows for faster relaxation. Note that the figures for
the weight values given here and in Table A1 are multiplied by a
factor (w + 1) with w = 3.

With the weights given in Table A1, the motivation net-
work shows the following dynamic properties. Motivation units
connected via mutual inhibition (e.g., Walk—Stand, Swing—
Stance) change from zero to one (and back) within one iteration.
Motivation units which receive only feedforward input (e.g.,
motivation units of Target-nets or PEP-nets) change their output
value following a low-pass filter dynamic with a time constant of
four iterations.

An important aspect is that (sensory) input driving the moti-
vation unit has to show a transient component, i.e., has to be
endowed with high-pass filter like properties. The amplitude of
the first pulse is tuned by hand and depends on the value of the
inhibitory weight stabilizing the WTA elements.

Table A1 | The weights required for the motivation unit network (Figure 3, marked red).

St wa fw bw leg1 sw1 st1 Tfw1 Tbw1 Pfw1 Pbw1 R1fw R1bw leg2 . . .

st W −1

wa −5 W 1 1 0.2 0.2

fw 1 w −3

bw 1 −3 W

leg1 1 W 1 1

sw1 1 W −3

st1 1 −3 w

Tfw1 −3 1 w

Tbw1 −3 1 w

Pfw1 −3 1 w

Pbw1 −3 1 w

R1fw −3 1 w

R1bw −3 1 w

leg2 . . . 1 w

Upper row and left column refer to the individual motivation units. Weights arranged in a horizontal row mark input weights of the unit shown at the left. Units marked

in Figure 3 by “stand,” or “walk” are abbreviated here by “st” or “wa,” respectively. Units shown in Figure 3 as “fw,” “bw,” “leg1,” “leg2” . . . are shown as marked

in Figure 3. Units not explicitly marked in Figure 3 are the motivation units for the swing procedure (here abbreviated by sw plus the number for the corresponding

leg), the motivation unit for the stance procedure (marked by “leg model” in Figure 3) here abbreviated by st plus the number for the leg. The motivation units for

the target nets are abbreviated by Tfw and Tbw for forward walking and backward walking, respectively plus the number for the leg. Correspondingly, the motivation

units for the PEP nets, not shown n Figure 3, are abbreviated by Pfw and Pbw plus the number for the leg. Furthermore, motivation units for coordination rule 1 is

abbreviated by R1fw and R1bw for forward walking and backward walking, respectively. All weights multiplied by (w + 1); w = 3.
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ROBOT SIMULATION
As mentioned in the Introduction, to test the capability of our
controller, a physical robot or, as a first step, a physics engine
is required that is able to simulate the robot and its interac-
tion with the environment. The robot named Hector (Schneider
et al., 2011), currently being developed, has 22 DoFs. The spa-
tial arrangement of the joints corresponds to that found in stick
insects, however, all measurements are scaled by a factor of 20.
The distance between the onset of the front leg and the middle leg
is 360 mm, the corresponding distance between middle leg and
hind leg is 218 mm. The three leg segments have a length of 30,
260, and 280 mm (coxa, femur, tibia, respectively). For the robot,
all legs are constructed identically in order to simplify the design.
The nominal step length of a leg is 310 mm, i.e., about 85% of
the scaled up step length as found in stick insects (Stick insects
have a step length of about 18 mm which would correspond
to 360 mm in the scaled robot.). The step amplitude is limited
mainly because in the stick insects, different to the robot, front
legs and hind legs are longer than the middle legs. Nevertheless,
step amplitude is quite large compared to usual 6-legged
robots.

For the simulation the Open Dynamics Engine is used as a
physics engine to simulate the interaction between all the moving

parts and with the environment. The simulation basically con-
sists of a rigid body dynamics simulation engine and a collision
detection engine. Within this virtual environment the robot is
rebuilt and the inertias of the sub-assemblies of the robot are set
according to their real complement. The geometry of the hous-
ings and the movement ranges correspond to the real robot. The
joints in the real robot will consist of a joint drive coupled with
elastic properties in order to model muscle-like characteristics
(Annunziata and Schneider, 2012). In the computer simulation
the elasticity is also incorporated into the joint actuators and cor-
responds to a spring-damper-system. As the nature of the friction
between the legs and the environment is generally quite complex
in real systems, these contacts are hard to simulate. Therefore,
these interactions can only be approximated and this will lead to
differences between the virtual and the real system. This makes
the application of the real robotic system important. The weight
of the three simulated body segments is 2000 g, each.

All simulation experiments were made on flat terrain, how-
ever, due to (in particular for fast walking) considerable up- and
down movements of the body, irregular ground was mimicked. In
addition, as friction is limited, eventually legs showed slipping in
various directions during stance. The resulting irregularities are
also visible in the footfall patterns
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