
ORIGINAL RESEARCH ARTICLE
published: 23 October 2013

doi: 10.3389/fncom.2013.00132

Statistical evaluation of synchronous spike patterns
extracted by frequent item set mining
Emiliano Torre1*, David Picado-Muiño2, Michael Denker1, Christian Borgelt2 and Sonja Grün1,3

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre and JARA, Jülich, Germany
2 European Centre for Soft Computing, Mieres, Spain
3 Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany

Edited by:

Ruben Moreno-Bote, Foundation
Sant Joan de Deu, Spain

Reviewed by:

Shigeru Shinomoto, Kyoto
University, Japan
Srdjan Ostojic, Ecole Normale
Superieure, France

*Correspondence:

Emiliano Torre, Institute of
Neuroscience and Medicine (INM-6)
and Institute for Advanced
Simulation (IAS-6), Jülich Research
Centre, Wilhelm-Johnen-Strasse,
52425 Jülich, Germany
e-mail: e.torre@fz-juelich.de

We recently proposed frequent itemset mining (FIM) as a method to perform an optimized
search for patterns of synchronous spikes (item sets) in massively parallel spike trains.
This search outputs the occurrence count (support) of individual patterns that are not
trivially explained by the counts of any superset (closed frequent item sets). The number
of patterns found by FIM makes direct statistical tests infeasible due to severe multiple
testing. To overcome this issue, we proposed to test the significance not of individual
patterns, but instead of their signatures, defined as the pairs of pattern size z and
support c. Here, we derive in detail a statistical test for the significance of the signatures
under the null hypothesis of full independence (pattern spectrum filtering, PSF) by means
of surrogate data. As a result, injected spike patterns that mimic assembly activity are
well detected, yielding a low false negative rate. However, this approach is prone to
additionally classify patterns resulting from chance overlap of real assembly activity and
background spiking as significant. These patterns represent false positives with respect
to the null hypothesis of having one assembly of given signature embedded in otherwise
independent spiking activity. We propose the additional method of pattern set reduction
(PSR) to remove these false positives by conditional filtering. By employing stochastic
simulations of parallel spike trains with correlated activity in form of injected spike
synchrony in subsets of the neurons, we demonstrate for a range of parameter settings
that the analysis scheme composed of FIM, PSF and PSR allows to reliably detect active
assemblies in massively parallel spike trains.

Keywords: higher-order correlations, neuronal cell assemblies, spike patterns, spike synchrony, multiple testing,

data mining

1. INTRODUCTION
The cortex is comprised of a highly interconnected network of
neurons and thus one may speculate that information processing
in the brain may only be understood on the basis of the con-
certed activity of the neuronal population. Hebb (1949) suggested
that neurons coordinate their activities by organizing in func-
tional groups, termed cell assemblies. Synchronous spike input
to receiving neurons is known to be more effective in generating
output spikes (Abeles, 1982; König et al., 1996), which leads to
the hypothesis that temporal coordination of spiking activity or
correlational processing is the defining expression of an active cell
assembly (Singer et al., 1997; Harris, 2005). As excitatory post-
synaptic potentials are small in amplitude compared to the gap
between the resting potential and the neuronal firing threshold,
it is expected that a cell assembly is composed of many neurons
firing in a correlated fashion. This observation is the basis for the
assumption that higher-order synchronous spiking activity serves
as a signature expression of an active assembly (Riehle et al., 1997;
Berger et al., 2010; Staude et al., 2010b; Shimazaki et al., 2012).

In order to observe and detect such signatures in the brain, the
spiking activities of many neurons must be recorded simultane-
ously. Fortunately, in recent years considerable progress has been

made in the development of multi-electrode recording techniques
[e.g., Nicolelis, 1998; Buzsaki, 2004; Hatsopoulos et al., 2007;
Riehle et al., 2013], which enable to record the activity of hun-
dred(s) of neurons. Such massively parallel spike train data
pose statistical challenges due to the inherent complexity of the
required multivariate approaches. Most notably, increasing the
number of observed neurons leads to a combinatorial explo-
sion of the number of potential spike patterns that need to be
detected and tested. Based on pairwise correlation analyses only,
the existence and functional relevance of neuronal correlations
could be demonstrated in various cortical systems and behavioral
paradigms [e.g., Gerstein and Aertsen, 1985; Riehle et al., 1997;
Kohn and Smith, 2005; Berger et al., 2007; Fujisawa et al., 2008;
Feldt et al., 2009; Humphries, 2011; Masud and Borisyuk, 2011].
Nevertheless, a correlation analysis considering the complete set
of simultaneously recorded spike trains is required to uncover
also higher-order correlations among neurons. In recent years
several such approaches were developed, each of which focuses
on different aspects: (i) methods to determine the presence of
higher-order spike correlations with a minimum order without
explicitly identifying the participating neurons [e.g., Louis et al.,
2010a; Staude et al., 2010a,b]; (ii) methods that test whether
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individual neurons participate in synchronous spiking activity
without identifying the groups of correlated neurons [e.g., Berger
et al., 2010]; (iii) methods that test for the presence of corre-
lation as predicted by a specific correlation model such as a
synfire chain (Abeles, 1991), that is, spatio-temporal spike pat-
terns or propagation of synchronous spiking activity [e.g., Abeles
and Gerstein, 1988; Schrader et al., 2008; Gerstein et al., 2012;
Gansel and Singer, 2012]; (iv) methods that directly identify the
members of cell assemblies on the basis of the patterns of syn-
chronous spiking activity [e.g., Gerstein et al., 1978; Pipa et al.,
2008; Feldt et al., 2009; Gansel and Singer, 2012; Shimazaki et al.,
2012; Picado-Muiño et al., 2013].

In Picado-Muiño et al. (2013) we presented the basic approach
and relevant statistics to employ frequent item set mining (FIM)
to identify significant patterns of spike synchrony in massively
parallel spike trains. FIM enables fast and efficient counting of
synchronous spike patterns by pruning the tree of all possible pat-
terns. To address the problem of multiple testing, statistics are not
computed for individual patterns, but on the pattern spectrum
that collects the number of observed patterns based on their sig-
nature. A signature is defined as the pair (z, c) of pattern size z
(i.e., number of participating neurons) and support c (i.e., num-
ber of pattern occurrences). In pattern spectrum filtering (PSF)
those identified sets of neurons for which patterns with the same
signature (z, c) occur also in appropriate surrogate data are then
marked as chance patterns and discarded.

Here, we extend the approach of Picado-Muiño et al. (2013)
in three ways that will enable the application of the method to
biological data. First, we refine the statistical test employed in
pattern spectrum filtering for reporting significant patterns of
a given signature (Section 2). Then, we introduce a subsequent
analysis step, termed pattern set reduction (PSR), to addition-
ally filter out those patterns that are detected as significant, but

are compositions of chance spikes or patterns and the actual cell
assembly pattern (Section 3). Finally, we report on the perfor-
mance of our method related to features describing the data (e.g.,
coincidence rate, assembly pattern size, firing rate heterogeneity
or non-stationarity) and analysis parameters (Section 4). The dis-
cussion (Section 5) includes a step-by-step instruction on how to
utilize the proposed method in the context of massively parallel
spike trains obtained from electrophysiological recordings.

2. SPIKE PATTERN DETECTION AND STATISTICAL TESTING
In this section we introduce our approach to detect frequent syn-
chronous spike patterns in massively parallel spike trains (MPST).
We first briefly review frequent item set mining (FIM) and related
terminology and definitions as proposed in Picado-Muiño et al.
(2013) as a tool to efficiently detect and count synchronous spike
patterns in MPST. Then we derive a modified version of the
FIM-based statistics proposed in Picado-Muiño et al. (2013) for
assessing pattern significance.

2.1. FREQUENT ITEMSET MINING
Given N parallel spike trains with neuron ids 1, 2, . . . , N,

observed in the time window [0, T), we partition [0, T) into b
exclusive bins {bi}b

i = 1 of identical width w = T/b (typically cho-
sen as a few ms): bi = [(i − 1) · w, i · w). If one or more spikes
of one neuron fall into a bin, we consider the bin occupied and
reduce the entry to 1 (clipping), so that each time bin contains at
most one spike per neuron. Spikes from different neurons falling
into the same time bin are defined as synchronous (see Figure 1A).
Borrowing terminology from FIM, we define each neuron id as an
item, the set Ti of all items spiking in bi as the i-th transaction in
the binned data, and {Ti}b

i = 1 as the transaction list. Given a min-
imum pattern size z0, each set of z ≥ z0 items in Ti constitutes a
pattern of synchronous spikes, or item set (see Figure 1B). Here we

A C

B D

FIGURE 1 | From spike data to closed frequent itemsets. (A) Sketch of a
raster plot of 4 neurons firing in parallel. Shaded colors separate adjacent
bins. Red spikes mark the occurrences of the synchronous pattern composed
of neurons 1, 3, 4. (B) Transaction list derived from the spike data in (A) after
binning. (C) List of item sets obtained from (B), together with their
occurrence counts. Black boxes mark non-frequent item sets (support set
to 2), blue boxes mark non-closed frequent item sets, red boxes mark CFISs.

(D) Average number of item sets (dashed black line), frequent item sets
(dashed blue line) and CFISs (dashed red line) obtained from 100 simulations
of 100 parallel independent spike trains with a firing rate of 20 Hz, as a
function of the simulation time. Other parameters are bin width w = 3 ms
and minimum pattern size z0 = 2. Bars mark ±1 std. dev. The solid line
indicates the number of time bins (and thus transactions) as a function of the
simulation time.
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set z0 to 2. Due to clipping, each item set occurs at most once
per transaction. The number of occurrences of an item set in the
transaction list is the support of that item set.

A transaction that contains K items yields 2K − K − 1 differ-
ent (but possibly overlapping) item sets of size z ≥ 2, that is, all 2K

possible subsets without the empty set and the K singletons. The
total number of different item sets in a transaction list can thus
largely exceed the number of transactions (i.e., time bins). This
number grows with the duration of the data set (see Figure 1D)
and with the number of parallel spike trains (not shown).

In order to limit the data to potentially interesting and non-
trivial item sets, we select only item sets whose support c is larger
than or equal to a minimum support c0 (c0 ≥ 1) as introduced
by Picado-Muiño et al. (2013). Here we set c0 to 2. An item set
whose support equals or exceeds the minimum support is called
frequent item set. For c0 > 1, frequent item sets are usually a small
fraction of all item sets (Figure 1D, compare black dashed line to
blue dashed line). Furthermore, we discard any frequent item set
occurring as many times as any of its supersets. These patterns are
trivially explained by the occurrences of their supersets, which are
more significant due to the larger number of neurons involved.
Non-trivial frequent item sets are called closed frequent item sets
(CFISs; see Figure 1C). Discarding non-closed frequent item sets
does not yield any loss of information. Indeed, the set F of all
frequent item sets can be reconstructed from the set C of CFISs by

F =
⋃
I∈C

⋃
J⊂I, |J|≥z0

J.

The support s(I) of a non-closed frequent item set I ∈ F can be
computed as s(I) = maxJ∈C, J⊃I s(J).

If A and B are two CFISs such that B � A, and cA, cB their
respective supports, it follows from the definition of CFISs that
cB > cA (a priori property). We refer to the (non-empty) set A\B
as the excess items of A with respect to B, and to the difference
cB − cA as the excess occurrences of B with respect to A.

Following Picado-Muiño et al. (2013), we make use of fre-
quent itemset mining [FIM; for a review, see Goethals (2010),
Borgelt (2012)] to extract CFISs and their support from an MPST
transaction list. FIM performs a non-redundant search for spike
patterns, starting from those of size z0 and then moving on to
supersets of increasing size. Starting at lowest-size patterns, the
search is organized in a search tree in layers of increasing pattern
size. A branch connects two patterns if one is a subset of the other.
Each pattern is visited at most once. FIM exploits the apriori prop-
erty to stop the search at infrequent patterns, as no supersets of an
infrequent item set can be frequent. The output of FIM is a list of
all CFISs with their support (Figure 1C).

2.2. PATTERN SPECTRUM FILTERING
Direct statistical tests of all individual patterns occurring in
MPST are not suitable, as they cause a severe multiple testing
problem yielding large occurrences of false positives (FPs), or
enhanced levels of false negatives (FNs) after statistical correc-
tions. Therefore Picado-Muiño et al. (2013) proposed to pool
CFISs according to their size z (number of neurons involved) and
their support c (number of occurrences) in a two-dimensional

histogram (pattern spectrum) and to evaluate patterns of the same
signature (z, c) for significance by a Monte-Carlo approach using
surrogate data. Here we present a refinement of this original
approach, named pattern spectrum filtering (PSF), that bases the
test for a specific signature (z, c) also on patterns of higher size
and support than specified by the signature.

In order to implement the null hypothesis H0 of independent
spiking, and to approximate the p-values of the signatures (z, c),
from the original data (Figure 2A) we repeatedly generate surro-
gate data (Figure 2B), collect from each one its CFISs through
FIM as done for the original data, and compute the correspond-
ing surrogate pattern spectrum (Figure 2C). The surrogates are
generated from the original data by intentionally destroying cor-
relations while keeping other features, such as firing rates, intact
[e.g., by spike randomization or spike dithering, Louis et al.
(2010b)].

Let � be the partial ordering on the real plane, that is,
(x∗, y∗) � (x, y) if x∗ ≥ x and y∗ ≥ y, where � holds if at least
one inequality is strict. From each surrogate pattern spectrum
we compute a binary spectrum which takes value 1 at each sig-
nature (z, c) such that at least one signature (z∗, c∗) � (z, c) is
occupied, and value 0 otherwise [in contrast to Picado-Muiño
et al. (2013) where only the occupation of signature (z, c) is
checked]. Formally, we define the signature operator sgt(·) such
that, given a CFIS A with size zA = |A| and occurrence count cA,
sgt(A) := (zA, cA). For each list Si of CFISs from one surrogate
data set, let P̂i be the binary pattern spectrum, defined for each
z, c ≥ 2 by:

P̂i(z, c) :=
{

1 if ∃A ∈ Si : sgt(A) � (z, c)

0 otherwise
.

Averaging the binary spectra at each signature, we get the p-value
spectrum P̂:

P̂(z, c) := 1

K
#
(Si : ∃A ∈ Si : sgt(A) � (z, c)

)
.

P̂(z, c) yields an estimate of the probability to observe (one or
more) patterns with signature (z∗, c∗) � (z, c) under H0 (see
Figure 2D).

We then classify any signature (z, c) whose p-value is lower
than the significance level α∗ as significant. Given the desired
overall significance level α for PSF, we derive α∗ from α by
Bonferroni correction for the number m of tests, i.e., the num-
ber of signatures in the data to test for: α∗ = α/m. Any sig-
nature (z, c) for which P̂(z, c) < α∗ is classified as significant.
Formally, we introduce the significance spectrum Ŝ defined at each
(z, c) by

Ŝ(z, c) :=
{

1 if (z, c) is significant

0 otherwise
.

In Figure 2E Ŝ(z, c) = 1 is marked in white, Ŝ(z, c) = 0 in gray.
The border between the two is the detection border, on the
left of which signatures in the original data are classified as
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not significant and rejected. Signatures to its right (Ŝ(z, c) = 1)
are considered as significant (marked in red in Figure 2E).
The corresponding patterns and their supports are listed in
Figure 2F.

A

B

C

F

D E

FIGURE 2 | PSF on artificial data. (A) Raster plot of 100 parallel simulated
spike trains consisting of independent Poisson activity plus 6 injections of
one pattern of synchronous spikes (highlighted in red) from neurons 1 to 10,
occurring at random times (see Section 4 for details). The total firing rate of
each neuron is 20 Hz, the simulation time is 3 s. (B) Same as in (A), but
without injection of synchronous patterns. The spike trains are therefore
completely independent. (C) Pattern spectrum of CFISs extracted from the
data in (A) by FIM (z0 = 2, c0 = 2, w = 5 ms). Counts are color-coded
(logarithmic scale). (D) P-value spectrum drawn from 5000 surrogate,
independent data sets of the type shown in (B). P-values are color-coded
(logarithmic scale). (E) Significance spectrum (overall significance α = 0.01,
Bonferroni-corrected for m = 50 tests yielding α∗ = 2 · 10−4). Gray squares
indicate signatures that are not significant, white squares mark potentially
significant signatures. Red squares mark significant signatures of the
pattern spectrum shown in (C), i.e., which fall into white squares of the
significance spectrum. (F) List of patterns detected by PSF. Besides the
injected pattern A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, PSF also classifies
additional patterns as significant, all being subsets or supersets of A.

3. PATTERN SET REDUCTION
PSF tests the significance of patterns under the null hypothesis
H0 of fully uncorrelated spike trains. However, PSF might fail
in rejecting patterns that result from combinations of chance
spikes or chance patterns with the assembly pattern (see list of
detected patterns in Figure 2F besides the injected one). These
patterns are a specific kind of false positive, not resulting from
merely independent data. They may be subsets or supersets of
the assembly pattern, or patterns that partially overlap with it
(Figures 3A–C). In this section we define the type of FPs that
may occur, investigate why PSF is prone to return such FPs,
and propose an additional statistical analysis, termed pattern set
reduction (PSR), to remove them.

3.1. TYPES OF FPs
3.1.1. Chance subsets
If a CFIS A repeats cA times and a subset B of A (with |B| ≥ z0)
has c additional chance occurrences, B represents a CFIS repeat-
ing cB = cA + c total times. We call B a chance subset of A, having c
excess occurrences (Figure 3A). PSF is designed to test the signif-
icance of signature (|B|, cB) under H0 (complete independence),
thus disregarding the fact that cA occurrences are due to pattern A.
As a result it classifies B as a significant pattern, thus yielding an
FP outcome. This is illustrated in Figure 2F, where e.g., pattern
{4, 6, 10} occurs twice by chance plus 6 times as a subset of pattern
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The corresponding signature (3, 8) is
significant compared to the surrogates (Figure 2E), so that PSF
does not reject it.

3.1.2. Chance supersets
If a CFIS B occurs cB times and another set C of neurons
fires by chance synchronously with B in c of those cB trans-
actions (with c ≥ c0), then the pattern A = B ∪ C represents a
CFIS repeating cA = c times. We call A a chance superset of B,
with |C| excess neurons (Figure 3B). PSF tests the significance
of signature (|A|, cA) under H0, disregarding the fact that |B|
of the |A| neurons of A are due to the presence of pattern B.
The test is therefore prone to classify A as significant. This is
the case for patterns {1, 2, . . . , 10, 80}, {1, 2, . . . , 10, 28} and
{1, 2, . . . , 10, 24} in Figure 2F, each of which occurs twice as a
superset of {1, 2, . . . , 10}. The corresponding signature (11, 2) is
significant compared to the surrogates (Figure 2E), so that PSF
classifies these patterns as significant.

A B C D

FIGURE 3 | Excess occurrences and excess items. Sketch of the possible
relationship between a reference pattern and patterns sharing neuron
identities and/or time occurrences with it. In each panel, ticks represent
individual spikes. Rows correspond to neurons and columns to transactions,
i.e., time bins. Spikes forming a pattern are grouped by an ellipse. The
reference pattern of each panel is shown by black ticks and is indicated by a

solid ellipse. (A) B is a subset of A with excess occurrences (red). (B) A is a
superset of B with excess items (blue). (C) B is a subset of A with excess
occurrences (red). Neurons in C (blue) additionally fire synchronously to A and
to excess occurrences of B. Thus pattern D = B ∪ C forms a CFIS, which
partially overlaps with A. (D) Patterns A and B are disjoint: they are composed
of different neuron identities and occur at different time bins.

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 132 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Torre et al. Significance of FIM-based spike patterns

3.1.3. Chance overlapping sets
The simultaneous presence of excess items and excess occurrences
can yield yet another type of FP outcome, namely patterns that
overlap with the actual assembly. Given an assembly A, assume
that a subset B of A has additional chance occurrences. If an addi-
tional set C of neurons disjoint from A fires synchronously to A
and to an excess occurrence of B for a total of c ≥ c0 chance times,
then the set D = B ∪ C represents a CFIS which partially overlaps
with A (Figure 3C). PSF is prone to classify D as significant.

3.1.4. Disjoint patterns
Two patterns which do not have items in common are disjoint
(Figure 3D). In contrast to the previous classes of chance pat-
terns, the presence of an active assembly does not enhance chance
patterns disjoint from it. PSF therefore correctly estimates their
significance and manages to filter out almost all of them, as shown
in 4.

3.2. PSR STATISTICS
Let P be the class of CFISs reported as significant by PSF. Given a
pair (A, B) ∈ P × P such that B ⊂ A (therefore cB > cA by defi-
nition of CFIS, and |B| < |A|), we propose statistical tests to assess
the conditional significance of either A given B (A|B) or B given A
(B|A), i.e., of one pattern given that the other represents an assem-
bly pattern. These tests can be applied, using different strategies,
to the class of all such (A, B) pairs, reducing P to a subclass Q of
patterns which are mutually significant given each other.

3.2.1. Subset filtering
This procedure aims at rejecting FPs that are chance subsets of
other CFISs. For each pair (A, B) ∈ P × P such that B ⊂ A (so
that cB > cA), B has cB − cA excess occurrences with respect to

A. Subset filtering tests B|A, i.e., the null hypothesis HB|A
0 that

B is a chance subset of the actual assembly A, by assessing the

significance of the excess occurrences of B. Equivalently, HB|A
0

states that the pattern B′ defined by the same items as B but its
excess occurrences only (red spikes in Figure 3A) is a chance pat-

tern. If HB|A
0 is rejected, B is kept and A discarded, otherwise A

is kept and B discarded. Thus, the procedure keeps either A or B
and discards the other (exclusive). We present two alternatives to

test HB|A
0 .

3.2.1.1. Exact test. This test computes the p-value of the signature
(|B|, cB − cA) of B′. If cB − cA < c0, B is classified as a chance sub-
set of A. Otherwise, let T′

A be the transaction list obtained from
T by discarding the transactions where A occurred, and keeping
in the remaining transactions only the items composing A. All
the excess occurrences of subsets of A must be contained in T′

A.
B′ itself is a CFIS in this transaction list: it is an item set because
|B′| = |B| ≥ z0, it is frequent because cB − cA ≥ c0, it is closed
because otherwise B itself would be non-closed. To test the sig-
nificance of B′, one can therefore run FIM and PSF on surrogates
of T′

A to estimate the significance of its signature (|B|, cB − cA). If
(|B|, cB − cA) is significant, B′ is significant in T′

A and B is clas-
sified as significant in T (given A). Otherwise, B is classified as
non-significant.

3.2.1.2. Approximate test. This test approximates the p-value of
the signature (|B|, cB − cA) in T′

A by the p-value of the signature
(|B|, cB − cA + h), h ≥ 1, in T, already obtained when perform-
ing PSF. In contrast to T′

A, T is composed of more neurons
than those which can actually form chance subsets of A (because
it does not contain the items of A only), and more transac-
tions than those where such subsets could actually display excess
occurrences (because it also contains the transaction where A is
already present). Therefore, the p-value of (|B|, cB − cA) would
be underestimated if computed over T instead of T′

A. Parameter
h heuristically corrects for this by substituting it with the p-
value of a signature with the same size but higher support. The
lower h, the higher the probability to reject B. If h ≥ cA, then
(|B|, cB − cA + h) � (|B|, cB) and B is necessarily reported as sig-
nificant. This test avoids to run FIM and PSF on T′

A and is
therefore computationally more efficient.

3.2.2. Superset filtering
This procedure aims at rejecting FPs that are chance supersets of
other CFISs. For each pair (A, B) ∈ P × P such that B ⊂ A (so
that |B| < |A|), A has |A| − |B| excess items with respect to B.

Subset filtering tests A|B, i.e., the null hypothesis HA|B
0 that A is

a chance superset of the actual assembly B, by assessing the sig-

nificance of the excess items of A. Equivalently, HA|B
0 states that

the pattern A′ defined by the same transactions as A but contain-
ing its excess items only (blue spikes in Figure 3B), is a chance

pattern. If HA|B
0 is rejected, A is kept and B discarded from P ,

otherwise B is kept and A discarded from P . Thus, the procedure
keeps either A or B and discards the other (exclusive). We present

two alternatives to test HA|B
0 .

3.2.2.1. Exact test. This test computes the significance of the
signature (|A| − |B|, cA) of A′. If |A| − |B| < z0, A is classified
as a chance superset of B. Otherwise, let T ′̄

B
be the transaction

list obtained from T by keeping only the transaction where B
occurred, and discarding from them the items constituting B. All
groups of excess items of B (i.e., neurons that fire synchronously
to B) must be contained in T ′̄

B
. A′ itself is a CFIS of this trans-

action list: it is an item set because |A′| = |A| − |B| ≥ z0, it is
frequent because cA ≥ c0, it is closed because otherwise A itself
would be non-closed. To test the significance of A′, one can there-
fore run FIM and PSF on surrogates of T ′̄

B
to estimate the p-value

of its signature (|A| − |B|, cA). If (|A| − |B|, cA) is significant, A′
is significant in T ′̄

B
and A is classified as significant in T (given B).

Otherwise, A is classified as non-significant.

3.2.2.2. Approximate test. This test approximates the p-value
of the signature of A′ in T ′̄

B
by the p-value of signature

(|A| − |B| + k, cA), k ≥ 1, in T, already obtained when perform-
ing PSF. In contrast to T ′̄

B
, T is composed of more neurons than

those that can actually form excess items of B (because it con-
tains the items of B, too), and more transactions than those
where supersets of B could actually occur (because it contains
also transactions where B does not occur). Therefore, the p-value
of (|A| − |B|, cA) would be underestimated if computed over T
instead of T ′̄

B
. Parameter k heuristically corrects for this by sub-

stituting it with the p-value of a signature with the same support
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but higher size. The lower k, the higher the probability to reject A.
Note that if k ≥ |B| then (|A| − |B| + k, cA) � (|A|, cA) and A
is necessarily reported as significant. This test allows to avoid
running FIM and PSF on T ′̄

B
for each B.

3.2.3. Covered-spikes criterion
This simple selection strategy consists of taking all pairs (A, B) ∈
P × P for which B ⊂ A, and keeping for each pair the pattern
covering the largest number of spikes, while rejecting the other.
Specifically, the criterion prefers A to B if zA · cA ≥ zB · cB, B to A
otherwise. It does not involve significance tests, but is based on the
observation that, given the probability p for a neuron to spike in
a time bin, the probability for z neurons to fire synchronously in
a bin is approximately pz, so that the probability that this pattern
occurrs c times is binomially distributed and approximately pro-
portional to pz·c. The larger the z · c score, the less likely a pattern
of such size and support. This matches the finding that the detec-
tion border separating non-significant signatures (marked gray
in Figure 2E) from significant ones (marked white in Figure 2E)
in the significance spectrum exhibits a hyperbolic shape. The
criterion thus keeps the less likely of the two patterns.

A variant consists in keeping the pattern with the largest
(z − 1) · c score. This choice is motivated by the observation that
a pattern of size z and support c can be seen as z − 1 spike trains
which synchronize their spikes to another train c times. Thus,
(z − 1) · c spikes are coincident to spikes in another spike train.
Keeping the pattern with the largest (z − 1) · c score amounts
to keeping the pattern which covers more coincident spikes.
Geometrically, penalizing the pattern size corrects for the fact
that the hyperbolic shape of the detection border in Figure 2E is
elongated toward the pattern support (y-axis) rather than being
equilateral.

3.2.4. Combined filtering
Subset filtering, superset filtering and covered-spikes criterion can
be combined into a filtering procedure which tests for both excess
coincidences and excess items. Combined filtering tests for each

pair (A, B) ∈ P × P both the null hypotheses HB|A
0 (i.e., that B

is a chance subset of A) and HA|B
0 (i.e., that A is a chance superset

of B). If one of the null hypotheses is rejected, the correspond-
ing pattern is retained as significant. Thus, if both hypotheses
are rejected, both patterns are retained (inclusive). Accepting one
null hypothesis does not necessarily lead to the rejection of the
corresponding pattern (in contrast to subset or superset filter-
ing): the pattern is rejected only if the other pattern is accepted,

i.e., if the other null hypothesis is rejected. If both HB|A
0 and

HA|B
0 are accepted, one of the two patterns is kept based on the

covered-spikes criterion.

4. CALIBRATION ON ARTIFICIAL DATA
In this section we compare the performance (in terms of FPs and
FNs) of PSF to PSF followed by PSR to illustrate the advantages
yielded by the latter. For the sake of computational efficiency we
employ the approximate versions of the tests for the subset and
superset filtering with parameters h = 1 and k = 2, respectively.
We test different types of artificial data that involve typical fea-
tures of experimental data. After studying the general behavior of

the analysis method for stationary, homogeneous data, we study
data sets with heterogeneous firing rates across neurons, and with
non-stationary firing rates in time.

4.1. CORRELATED DATA
As a model for data containing assembly activity, we gener-
ate correlated spike trains by a modified version of the single-
interaction-process [SIP; Kuhn et al. (2003); Berger et al. (2010)],
which we keep calling SIP for convenience. First, we simulate
N = 100 parallel independent Poisson spike trains as background
activity. Then we model assembly activity by inserting syn-
chronous spike events in a subset of z of the N neurons (the SIP
neurons, with ids 1 to z). This is done by generating a hidden
Poisson process with the desired number c of pattern occurrences,
from which spikes are copied into each of the z spike trains of the
SIP neurons. Thus, as compared to the model proposed by Kuhn
et al. (2003) we insert correlated firing only in a specific subset
of the parallel processes. Before insertion of the synchronous pat-
terns, the background firing rate of the SIP neurons is reduced by
the rate of the hidden process to ensure the same firing rate for
all neurons. In the simplest scenario, the firing rates and the pat-
tern occurrence rate are stationary over time and homogeneous
across neurons. More complicated cases will include either non-
stationarity or heterogeneity of rates. The purpose of the analysis
of such data is to test under controlled conditions if the simu-
lated assembly is indeed detected and can be distinguished from
background activity.

4.2. INDEPENDENT DATA
To implement the null-hypothesis H0 of complete independence
needed to derive the significance of signatures of the correlated
data, we generate independent Poisson processes of the same rates
as the data to be tested, thus keeping the same marginal statistics.
This is one way of implementing the null-hypothesis. However, in
the context of analyzing real experimental data, one may want to
keep more statistical features of the experimental data (e.g., non-
stationary and heterogenous firing rates, deviation from Poisson,
and so on). This can be realized by the use of more complex sur-
rogates derived by manipulation of the original data, e.g., spike
dithering (Grün, 2009; Louis et al., 2010b).

4.3. ASSESSING SIGNIFICANCE
We evaluate the performance of our analysis in terms of the
average number of FPs and FNs obtained with PSF and PSR in
R = 1000 iterations on the same model of correlated data (SIP
of size z in N = 100 parallel spike trains). To study the per-
formance of our analysis, we investigate 243 models differing
in the size of the injected assembly z = 2, . . . , 10, its injection
count c = 2, . . . , 10, and the firing rates r = 5, 10 or 20 Hz (here:
homogeneous for all neurons). We analyse each model with a bin
width w = 3 ms and w = 5 ms for the detection of synchronous
spike patterns. See Table 1 for an overview of the parameter com-
binations. For the significance estimation we generate surrogate
data, i.e., independent Poisson processes with the same firing
rates as the correlated data, and analyse them with FIM as done
for the correlated data. This procedure is repeated for K = 5000
times to derive the p-value spectrum and then the significance
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spectrum by employing an overall significance level of α = 0.01,
Bonferroni-corrected for the number of signatures tested. The lat-
ter is given by the number of signatures existent in the correlated
data, which never exceeded m = 50. In order to have the same
corrected significance level for each of the 1000 iterations of each
SIP model, we always correct for m = 50 tests, instead of correct-
ing for the individual number m′ < m of signatures found in each
data set. This yields the corrected significance level α∗ = 2 · 10−4,
which is typically more conservative than correcting individually
for m′ tests. This procedure allows us to use a single significance
spectrum for all 81 SIP models with the same firing rates, differ-
ing by parameters z and c only, and for all 1000 realizations of
each model. To obtain the p-values with precision α∗ we generate
K = 1/α∗ = 5.000 surrogates, compute their binary spectra and
average them to draw the p-value spectrum (see Section 2.2).

Figure 4 shows significance spectra obtained from surrogate
data for models differing by the firing rate r (5, 10 or 20 Hz) anal-
ysed with different bin widths w (dark gray for w = 3 ms, light
gray for w = 5 ms; α∗ = 2 · 10−4). The set of non-significant sig-
natures shows a hyperbolic shape, which grows with both r and
w to higher z and higher c. Both factors, higher firing rates and

Table 1 | Parameters for calibration of the method.

Simulation parameters Analysis parameters

Background activity SIP FIM Statistical tests

N = 100 z = 2, . . . , 10 w = 3, 5 ms α* = 2 · 10−4

r = 5, 10, 20 Hz c = 2, . . . , 10 c0 = 2 K = 5000

T = 3 sec z0 = 2 R = 1000

Parameters for the background activity: N: number of neurons, r: firing rate, T :

simulation time. Parameters for correlated data: z: number of neurons in corre-

lated activity (size of SIP), c: SIP occurrences. Analysis parameters: w: bin width,

c0: minimum item set support, z0: minimum item set size. Statistical parame-

ters: α*: Bonferroni-corrected significance level (for m = 50 tests), K : number of

surrogates, R: number of simulation runs per SIP model.

FIGURE 4 | Significance spectra for different parameter sets.

Independent Poisson spike trains (N = 100; T = 3 s) of different firing rates
(r = 5, 10 or 20 Hz) serve as surrogates for the computation of three
significance spectra (from left to right). Each square represents a (z, c)

signature. Dark-shaded gray squares mark non-significant signatures
obtained with w = 3 ms. Light-shaded squares represent further
non-significant signatures for w = 5 ms. White squares indicate significant
signatures for both choices of the bin width. Other parameters: z0 = 2,
c0 = 2, α∗ = 2 · 10−4, K = 5000.

larger bin width, cause more spikes per bin, and therefore larger
and more frequent chance patterns.

4.4. PERFORMANCE, HOMOGENEOUS FIRING RATES
For each SIP parameter set we simulate the corresponding model
R = 1000 times, and evaluate FPs and FNs of each realization.
Their averages measure the performance of the analysis for each
parameter constellation.

As previously discussed (Section 3), in the presence of cor-
relations PSF tends to classify chance subsets, supersets or over-
lapping sets as significant, thus yielding FPs. Figure 5, top row,
shows this effect on simulations of SIP models differing by SIP
size (x-axis of each panel) and injection count (y-axis). For each
model, the FP level is computed as an average over 1000 stochas-
tic simulations. The total amount of FPs increases as the SIP size
and/or the number of injections get larger. The contribution of FP
supersets (green) and FP subsets (blue) is about the same, while
in comparison FP overlapping sets (yellow) occur only at higher
values for z and c, and FP disjoint patterns (purple) are almost
never observed. As shown in Figure 5, bottom row, PSR (here,
combined filtering) largely reduces the amount of FPs. Although
the PSR statistical tests apply to chance subsets (blue) and super-
sets (green) only (Section 3.2), they successfully remove most of
the overlapping patterns (yellow) as well. The reason is that, if
there is a CFIS D overlapping with the actual assembly A by z0 or
more items, their intersection B is a CFIS as well (Figure 3C). In
most cases PSF classifies B as significant together with A and D.

If so, PSR likely rejects D when testing HD|B
0 , and rejects B when

testing HB|A
0 .

A reduction of the amount of FPs typically comes at the
expense of enhanced FNs. In particular, FNs may occur if the
real pattern is rejected in favor of one of its subsets or supersets.
Figure 6 shows, for a range of combinations of SIP size and
injection count, the resulting level of FPs, FNs, and the max-
imum of the two (as a measure of overall performance) after
performing each of the proposed PSR strategies. The significance
spectrum used to determine significance for all realizations of
the SIP models is the one for w = 3 ms shown in Figure 4 (top
right, dark-shaded entries). For the FPs shown in Figure 6, top
row, the color-coded level refers to the fraction of simulations
(out of 1000) containing one or more FPs. This measure takes
values between 0 and 1, unlike the average FP counts shown in
Figure 5. This representation simplifies the comparison with the
average FN level, which ranges between 0 to 1 since here only
a single spike pattern is injected in every simulation. To aid the
comparison between the performances of PSF and PSR, gray dots
mark those squares that correspond to models where the error
rates exceed 5%. PSF on its own never performs well in terms
of FNs and FPs simultaneously, while all PSR strategies yield a
range of models for which both quantities are low. In summary,
the relative improvement of PSR versus PSF shows that any PSR
strategy reduces the FP rate considerably, while causing only a
minor increase in the FN rate.

4.5. PERFORMANCE, HETEROGENEOUS FIRING RATES
If neurons have the same spiking statistics, the spike pattern
statistics depends on the pattern size only. Thus, the p-value of
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FIGURE 5 | Average number of FPs, distinguished by type, after PSF and

PSR. Average number of FPs obtained for different SIP models on R = 1000
model simulations. FPs are shown after performing PSF (top) and then PSR
with combined filtering (bottom), and are distinguished by type (columns
from left to right: FP supersets, FP subsets, FP overlapping, FP disjoint

patterns). Each panel shows the average number of FPs obtained for different
SIP models, each corresponding to a square in the grid: the models differ by
the SIP size (from 2 to 10; x-axis) and its injection count (from 2 to 10; y -axis).
Other parameters (same for all simulations): N = 100, T = 3 s, r = 20 Hz,
w = 3 ms, K = 5000, α∗ = 2 · 10−4.

FIGURE 6 | Performance of PSR with homogeneous, stationary firing

rates. Performance of PSR with different filtering methods, measured as the
fraction of R = 1000 simulations where FPs (top row) and FNs (second row)
are detected (thus the fraction represents a rate). The maximum of the two
(third row) indicates the combined error rate. Each matrix shows the
performance for 81 different SIP models varying by SIP size (from 2 to 10,
x-axis) and number of SIP injections (from 2 to 10, y -axis), of stationary and

homogeneous neuronal firing rates (r = 20 Hz). The performance value is
color-coded (see color bar, logarithmic scale). White squares mark SIP models
where no simulations led to false outcomes. Gray dots mark entries where the
error rate is above 5%. Each column corresponds to a different PSR strategy
applied after PSF, from left to right: no filtering, subset filtering, superset
filtering, covered-spikes criterion, combined filtering. Other parameters
(same for all panels): N = 100, T = 3 s, w = 3 ms, K = 5.000, α∗ = 2 · 10−4.

each pattern is fully determined by the pattern signature. This
does not hold when neurons have different spiking statistics,
and in particular different firing rates. Here we discuss the case
of heterogeneous firing rates across neurons, which are often
present in electrophysiological data. Higher firing rates lead to
a higher spiking probability per time bin. Patterns composed
of neurons with higher firing rate are more likely to occur by

chance, and are therefore less significant than patterns com-
posed of neurons with lower rates. Thus, the p-values of patterns
with the same signature (z, c) differ for different compositions
of the firing rates. Pooling patterns by size and support in the
pattern spectrum does not take into account the heterogene-
ity of firing rates across neurons and thus may lead to a biased
statistics.
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To investigate the robustness of our method against firing rate
heterogeneity, we first simulate independent data consisting of
100 neurons, with a small population of neurons (2 to 10) firing at
a higher rate (20 Hz) than the rest of the neurons (5 Hz). We sim-
ulate 1000 data sets of this type, and evaluate FPs in each of them
by means of FIM and PSF (K = 5000 surrogates). In none of the
simulations we detect significant signatures, i.e., FPs. The oppo-
site scenario, where 2 to 10 neurons fire at 5 Hz and the others at
20 Hz, does not yield FPs as well. Thus, employing rate-preserving
surrogates allows PSF to correctly estimate the significance of
signatures under H0, also when rates are heterogeneous across
neurons.

Next we study correlated data characterized by heterogeneous
background firing rates. We investigate two cases based on a SIP
model. In scenario S1, a pattern is injected in a set of neurons
firing with lower firing rate (rS = 5 Hz) than the independent
neurons firing at rate rI = 20 Hz (Figure 7, left column). In con-
trast, in scenario S2 the pattern is injected in neurons with higher
firing rates (rS = 20 Hz, rI = 5 Hz; Figure 7, right column). In
comparison to the homogeneous case where all neurons fire at
5 Hz (data not shown), the overall performance drops signifi-
cantly, but does not so compared to the 20 Hz homogeneous case

FIGURE 7 | Performance of PSR with heterogeneous firing rates.

Performance of PSR (combined filtering with parameters h = 1, k = 2) in
terms of FP rates (top row), FN rates (middle row) and the combined error
rates (maximum of FP and FN rates) (bottom row) of data with
heterogeneous rates. Left column: SIP neurons fire at rS = 5 Hz,
independent neurons fire at rI = 20 Hz. Gray dots mark entries where the
error rate is above 5%. Right column: SIP neurons fire at rS = 20 Hz and
independent neurons at rI = 5 Hz. Other parameters (same for all panels):
N = 100, T = 3 s, w = 3 ms, K = 5.000, α∗ = 2 · 10−4.

(see Figure 6, right column). This is consistent with the previ-
ous finding that higher rates worsen the performance by shifting
the detection border in the significance spectrum to the right
(Figure 4, left vs. right). This also explains why FP and FN rates
in scenario S1 are higher than in scenario S2: the average fir-
ing rate in the former ranges (depending on the SIP model)
from 18.5 to 19.7 Hz, in the latter from 5.3 to 7 Hz. Our choice
of using PSR with combined filtering leads to a better perfor-
mance in this scenario than the covered spikes criterion (not
shown). Taken together, these results indicate that the method
can deal well with heterogeneity of firing rates without severe
performance loss.

4.6. PERFORMANCE, NON-STATIONARY FIRING RATES
Now we want to consider the case when the firing rates of the neu-
rons are not stationary in time. To explore the sensitivity of our
method to non-stationarities we employ simulated data, again
consisting of 100 parallel spike trains, which fire in two con-
secutive epochs of length T1 and T2 (the total simulation time
T = T1 + T2 is 3 s, as in the data previously analysed) at different
rates (r1 = 5 Hz and r2 = 20 Hz; or vice versa), homogeneously
across the neurons in both epochs. In the first epoch, correlated
activity is inserted by the SIP model. SIP of size 2 to 10, injected
2 to 7 times, amount to a coincidence rate of 1.33 to 4.66 Hz in
the first epoch. The background rate is reduced correspondingly.
For comparison, we also study the stationary case, where all neu-
rons fire at r = 10 Hz. The performance for the three scenarios
is shown in Figure 8 (first column: r1 = 5 Hz, r2 = 20 Hz; sec-
ond column: r1 = 20 Hz, r2 = 5 Hz; third column: r1,2 = 10 Hz).
Although our analysis performs better (detection border more
to the left) in the stationary case (r = 10 Hz; third column), it
can still recover SIP activity with no FPs in a large portion of
the parameter space, provided that rate-preserving surrogates are
employed. As in the heterogeneous case, FPs increase when the
SIP neurons have higher firing rates and thus more FP subsets
occur. As apparent from Figure 8, bottom row, the method can
correctly detect significant patterns in a wide range of models also
in the presence of non-stationary rates. To study whether short
transients in the firing rates tend to generate FPs, we repeated
the analysis for T1 = 0.5 s, T2 = 2.5 s, setting first r1 = 5 Hz, r2 =
20 Hz and then r1 = 20 Hz, r2 = 5 Hz. In all cases we do not find
enhanced FPs (data not shown), indicating that employing rate-
preserving surrogates suffices to correct for rate non-stationarity
in independent data.

5. DISCUSSION
In this study we have presented a method to detect significant pat-
terns of synchronous spiking in a subset of massively parallel spike
trains in the presence of background activity. Our work is rooted
in Picado-Muiño et al. (2013), where we demonstrated how to
efficiently detect spike patterns in such data, and assess their sig-
nificance under the null hypothesis of independent firing. Here
we refined this significance test, which evaluates the significance
of patterns using PSF on the basis of the pattern signature (size
and support). PSF is prone to report FP patterns that arise due to
the activation of an actual assembly mixed with chance synchrony
because of background activity. To identify and remove these FP
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FIGURE 8 | Performance of PSR with non-stationary firing rates.

Performance of PSR (combined filtering) in terms of FP rate (top row), FN
rate (middle row), and maximum of the two (bottom row), computed over
R = 1000 simulations per SIP model. Each panel shows the performance
for 54 different models varying by SIP size (from 2 to 10, x-axis) and SIP
injections (from 2 to 7, y -axis). In the first two columns, the simulations
consist of two epochs. The first epoch of duration T1 = 1.5 s is composed
of a stationary, homogeneous SIP model (with firing rate r = r1), followed
by a second epoch of T2 = 1.5 s with independent spiking at a rate of
r2 �= r1. In the first column, the rate compositions are r1 = 5 Hz and
r2 = 20 Hz, and in the second column r1 = 20 Hz and r2 = 5 Hz. For
comparison, the third column shows the performance for the stationary
case with all neurons firing at rate r = 10 Hz, and a duration of T = 3 s.
Other parameters (same for all panels): N = 100, w = 3 ms, K = 5.000,
α∗ = 2 · 10−4. Gray dots mark entries where the error rate is above 5%.

detections, we introduced here PSR as an additional statistical
testing step. As shown in Figure 6 (second to last columns), PSR
succeeds in eliminating FPs for a wide range of parameters, at
the expense of a minor increase in FNs. A series of calibrations
demonstrates the effectiveness of our approach under conditions
of heterogeneous and non-stationary firing rates.

The relevance of higher-order correlations for information
processing in the nervous system is hotly debated. Approaches
based on maximum entropy models, such as Schneidman et al.
(2006), suggest that higher-oder correlations contribute by a neg-
ligible fraction to the total network correlation, which appears
to be dominated by pairwise correlations. However, it is impor-
tant to stress that for correlations of a specific order, maximum
entropy models estimate the overall magnitude of that correlation
order, and are not sensitive to individual correlation structures
of that order. Thus, the presence of a single group of correlated
neurons with a certain size in the data is not enough for max-
imum entropy models to report significant correlation of the
corresponding order. The study by Shlens et al. (2006) addresses
this point, discussing that maximum entropy models may miss
higher-order correlations because they overall contribute only by
a negligible fraction to the total correlation. Besides, Roudi et al.
(2009) showed that the statistical power of maximum entropy
models describing spike correlations in heavily undersampled
biological systems (such as parallel recordings with electrode
arrays) is low. Despite these challenges, Ohiorhenuan et al. (2010)
have shown using a maximum entropy model approach that in

visual cortex local microcircuits exhibit evidence of higher-order
interactions, whereas correlation statistics across long-range con-
nections are explained on the basis of pair-wise interactions.
However, methods designed to investigate individual spike pat-
terns are needed to investigate the detailed structure of correlation
in groups of spiking neurons.

A majority of current methods for spike correlation analy-
sis limit themselves to fully synchronous patterns or to patterns
with a specific size of typically low order [e.g., Grün et al.,
2002a,b; Berger et al., 2007, 2010; Shimazaki et al., 2012]. Other
approaches, such as CuBIC (Staude et al., 2010b), conclude on the
presence of higher order correlations based on the statistics of the
population activity without identifying the specific units engaged
in such correlations. While Gansel and Singer (2012) presented
a method for the detection of higher-order patterns, they iden-
tify pattern subsets by a purely heuristic procedure that is not
accessible by analytic treatment, and that tests patterns directly,
which requires a number of statistical corrections to avoid FPs (at
the expense of FNs). Our proposed method instead first tests the
significance of pattern signatures. PSF eliminates non-significant
signatures based on surrogate data through the significance spec-
trum (see Figure 4), and determines the class P of associated
significant patterns. Testing patterns on the basis of their signa-
ture rather than testing individual patterns reduces the number
of required statistical tests to the number of signatures found in
the data. We have shown that the composition of assembly and
background spikes typically leads to the identification of addi-
tional significant patterns (i.e., FPs). In order to remove this type
of FPs, we introduced here the PSR procedure that is based on
conditional pairwise tests.

We have tested the performance of our analysis on artifi-
cial data where we embedded groups of synchronously spiking
neurons in background activity of independent Poisson spike
trains [SIP, cf. Kuhn et al. (2003)]. We studied the rate of FP
and FN detections for occurrence rates of the synchronous pat-
tern varying from 0.66 to 3.33 Hz, which reflect plausible values
for the activation frequency of the assumed assemblies (Grün
et al., 1999; Denker et al., 2010). The analysis shows in particu-
lar that by introducing PSR, assembly detection becomes possible
with near perfect reliability and precision for a large range of
SIP parameters. The transition shifts toward higher support and
assembly size as the bin width or the firing rates increase (cf.,
Figure 4). Nevertheless, for physiologically realistic parameters
only for very small or very infrequent SIP injections these pat-
terns cannot be distinguished from chance synchrony. Moreover,
evaluating patterns obtained from a larger set of simultaneously
recorded neurons will have only minor impact on our find-
ings due to a slight increase in the average size of observed
patterns.

Non-stationarities of the firing rate in time or across neurons
are a common concern faced by correlation analysis methods. The
effect of non-stationary firing rates on PSF is two-fold. First, the
surrogates used to calculate the significance estimates on pattern
signatures should adequately reproduce the experimental rate
profiles. Even if the underlying rate profile is not known, a variety
of suitable approaches for surrogate generation is available for this
task (Grün, 2009; Louis et al., 2010b). However, the sensitivity of
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detecting assembly activations is further affected by where these
occur with respect to the rate non-stationarity. In this respect we
tested the performance of PSF and PSR in a scenario of step-wise
non-stationary firing rates where spike patterns were injected at
selected rate levels only. Compared to the stationary case, the
method retains a high performance for large parameter regimes
(Figure 8), and shows only a slight increase in the number of
FNs. For very large rate non-stationarities, a time-resolved anal-
ysis may be used to additionally aid the detection, as done, e.g.,
in the Unitary Events analysis (Grün et al., 2002b). In a similar
framework, we found that also heterogeneous firing rates across
neurons (Figure 7) exhibit a performance similar to the station-
ary case. While we see minor increases in the number of FPs, we
remark that to a large extent these are indeed supersets of the
injected pattern due to the high probability of gaining an addi-
tional coincident spike by chance from the set of neurons spiking
at high rates.

In this study we assumed that assemblies occur at the time res-
olution of the data, i.e., that spike times of the assemblies are
not jittered in time. In electrophysiological data this is a rare
scenario, and instead spike synchrony typically occurs with a
temporal jitter of up to several milliseconds [Grün et al., 1999;
Pazienti et al., 2008]. In order to capture such slightly imprecise
synchrony, exclusive binning is typically applied (Grün et al.,
1999), where the bin width is chosen large enough to capture
the jittered spike pattern. However, the spikes of the pattern
may be split into adjacent bins with a probability that depends
on the jitter, bin size, and pattern size. Therefore, the original
synchronous events are destroyed, leading to increased FN rates
(Grün et al., 1999). In Figure 9 we show how this effect can
have a substantial impact on the performance of the method.
We applied PSF followed by PSR (combined filtering) on data
where synchronous patterns are injected with a jitter of ±1 ms,
and analysed with a bin width of w = 3 ms (left column) and
w = 5 ms (right column). The performance drops considerably
due to an increase of the FP rate for higher z and c, and an over-
all increase of the FN rate. The performance is slightly better for
a bin width of 5 ms. Consistent with these findings, Grün et al.
(1999) showed that for two parallel spike trains about 60% of
the synchronous events are lost if the bin width corresponds to
the jitter width. An earlier modification of exclusive time binning
[multiple shift method, Grün et al., 1999] that avoids the splitting
of jittered synchrony was not trivially applicable to large num-
bers of parallel spike trains. In Picado-Muiño et al. (submitted)
we demonstrate how to implement a method for pattern detec-
tion based on the inter-spike distances rather than discrete time
binning. This approach successfully detects jittered spike patterns
and therefore trivially exhibits a performance in the context of
PSF that is similar to that achieved in the absence of jitter (see
Picado-Muiño et al., submitted, for details). Thus, it also com-
plements the PSR framework presented in this study. Therefore,
we suggest to detect jittered synchrony by the continuous detec-
tion method and perform the analysis by the proposed sequence
of FIM, PSF, and PSR.

A further scenario that remains to be addressed in the future
is unreliability in spiking activity that causes neurons to selec-
tively skip participation in assembly activations. This scenario

FIGURE 9 | Performance of PSR under jittered synchrony. Performance
of PSR (combined filtering with h = 1, k = 2) on data from SIP models with
jittered synchrony. The spikes of SIP events are randomly jittered up to
±1 ms around the original occurrence time. The performance is shown in
terms of FP rates (first row), FN rates (middle row) and maximum of the
two (bottom row) for different bin widths: w = 3 ms (left column) and
w = 5 ms (right column).

was discussed in the context of the synfire chain model, where it
was shown that stable propagation of synchronous spike packages
through the network happens reliably although the probabil-
ity that individual neurons participate in each activation of the
synfire chain is lower than 1 (Diesmann et al., 1999). Selective
participation may arise as a consequence of synaptic failure. The
multiple interaction process [MIP; Kuhn et al., 2003] was pro-
posed as a stochastic model implementing such a behavior. Our
method would interpret the variable composition of spikes in a
single MIP event as occurrences of multiple SIP events of lower
support.

We conclude with a discussion of the practical implementa-
tion of the proposed analysis on data from electrophysiological
recordings. Given a set of parallel spike recordings obtained at
a resolution (i.e., binning) w, we choose the minimum pattern
size z0 and the minimum pattern support c0 of the analysis. First,
the spike data is binned and, using FIM, the CFISs and the cor-
responding pattern signatures are obtained from the transaction
list. While this approach is feasible for the experimental data
available today, with several hundreds of parallel recordings the
computational effort may become too large. In this scenario, we
suggest to pre-filter the data entering the analysis as suggested by
Berger et al. (2010) before applying FIM on the reduced set of
neurons. To monitor dynamic changes in the correlation structure
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of the activity, e.g., if assemblies are time locked to a particu-
lar behavioral event, one may choose to additionally perform the
analysis in sliding windows.

Next, the significance of the observed patterns is evaluated
by PSF under the null-hypothesis of full independence imple-
mented by uncorrelated surrogate data. For experimental data,
several techniques for surrogate generation based on stochas-
tic sampling have been proposed in the past [for a review, see
Grün, 2009]. Surrogates that preserve the firing rate profiles, such
as spike dithering, seem most appropriate since PSF determines
pattern significance based on the firing rates. Given the signifi-
cance level α and m detected pattern signatures, a minimum of
K = 
m/α� surrogates are required to achieve the Bonferroni-
corrected significance level α∗ = α/m . Once the surrogates have
been generated, we follow the procedure described for the sim-
ulated data. CFISs, pattern signatures and the resulting binary
pattern spectrum are obtained for each surrogate run. Next, the
p-value spectrum is obtained as an average of the binary spectra
(see Section 2.2). The signatures whose p-values do not exceed the
Bonferroni-corrected significance level α∗ are marked as signifi-
cant, and the CFISs of significant signatures are collected into the
class P of potential assemblies. Finally, PSR with combined filter-
ing is performed to reduce P to a subclass Q of patterns which
are mutually significant with respect to each other.

In summary, the use of FIM combined with the statistical tests
described in this study and in Picado-Muiño et al. (submitted)

represents a powerful tool to extract candidate assemblies from
experimental data. The method is statistically rigid, computa-
tionally feasible, robust against heterogeneity in the data, and
powerful enough to deal with the limited amount of data typically
available from electrophysiological experiments. We expect that
our approach will help to reveal how precise spike synchroniza-
tion observed by pairwise analysis in relation to behavior (Riehle
et al., 1997) is manifested at the level of neuronal populations.
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SOFTWARE AND SUPPLEMENTAL MATERIAL
The FIM library underlying the Python scripts with which we
carried out our experiments is available at http://www.borgelt.
net/pyfim.html. Python and shell scripts for related experi-
ments as well as more extensive result diagrams are available at
http://www.borgelt.net/accfim.html and http://www.borgelt.net/
cocofim.html. Please also consult http://www.spiketrain-analysis.
org for these codes and further information on the analysis of
parallel spike trains.
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