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Sympathetic nerves conveying central commands to regulate visceral functions often
display activities in synchronous bursts. To understand how individual fibers fire
synchronously, we establish “oligofiber recording techniques” to record “several” nerve
fiber activities simultaneously, using in vitro splanchnic sympathetic nerve–thoracic spinal
cord preparations of neonatal rats as experimental models. While distinct spike potentials
were easily recorded from collagenase-dissociated sympathetic fibers, a problem arising
from synchronous nerve discharges is a higher incidence of complex waveforms resulted
from spike overlapping. Because commercial softwares do not provide an explicit solution
for spike overlapping, a series of custom-made LabVIEW programs incorporated with
MATLAB scripts was therefore written for spike sorting. Spikes were represented as
data points after waveform feature extraction and automatically grouped by k-means
clustering followed by principal component analysis (PCA) to verify their waveform
homogeneity. For dissimilar waveforms with exceeding Hotelling’s T2 distances from the
cluster centroids, a unique data-based subtraction algorithm (SA) was used to determine
if they were the complex waveforms resulted from superimposing a spike pattern close
to the cluster centroid with the other signals that could be observed in original recordings.
In comparisons with commercial software, higher accuracy was achieved by analyses
using our algorithms for the synthetic data that contained synchronous spiking and
complex waveforms. Moreover, both T2-selected and SA-retrieved spikes were combined
as unit activities. Quantitative analyses were performed to evaluate if unit activities truly
originated from single fibers. We conclude that applications of our programs can help to
resolve synchronous sympathetic nerve discharges (SND).
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INTRODUCTION
A challenge in elucidating the fundamental principles underlying
the operation of a complex system such as the central nervous
system is to achieve a measurement with signal resolution in both
micro- and macroscales. The multielectrode recording techniques
have been shown as a powerful tool to elucidate functional opera-
tions of cerebral cortical neurons (deCharms et al., 1999; Nicolelis
et al., 2003; Tsytsarev et al., 2006; Galashan et al., 2011) and
exemplify ensemble neuronal activities underlying somatic moto-
sensory controls (Saleh et al., 2010; Vargas-Irwin et al., 2010).
Applications of voltage-sensitive dyes in brain slice preparations
also provide another mean to examine surface signals generating
from the neural tissues and enable researchers for simultaneous
examination of multiple signals at a resolution of single neu-
ronal activities (Carlson and Coulter, 2008; Nakamura et al.,
2008). However, the applicability of these techniques to resolve
peripheral nerve activities at single-fiber levels is questionable.

The sympathetic nervous system is a vital neural network
that controls many visceral functions through its direct innerva-
tion of different target organs. Effective visceral control largely
depends on the central sympathetic commands being carried
out to the periphery by the efferent fibers of sympathetic pre-
ganglionic neurons (SPNs) located in the thoracolumbar spinal
cord of the vertebrates. The command signals are manifested
by a basal sympathetic nerve discharge (SND), which often dis-
plays synchronous bursts (Iigaya et al., 2012; Steinback and Kevin
Shoemaker, 2012; Fairfax et al., 2013). Conventionally, a direct
measurement of SND is achieved using electrodes that make a
direct contact with whole nerve bundles (Su et al., 1992; Jardine
et al., 2002; Miki et al., 2002; Barrett et al., 2003; Marina et al.,
2006; Orer et al., 2008; Madden and Morrison, 2009; Zahner
et al., 2011); also see references in (Montano et al., 2009). The
nerve signals are processed by electrical amplifiers and subse-
quently gauged in units of voltage. Although this conventional
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technique in recording the whole-bundle SND provides an
easy assessment of the central sympathetic outflow, acquisition
of detailed fiber activities could be crucial for understanding
the elementary components of central sympathetic commands.
Probably due to the technical obstacles, only limited studies
have acquired unitary sympathetic fiber activities (Johnson and
Gilbey, 1994; Macefield et al., 1994; Häbler et al., 1999; Lambert
et al., 2006; Tan et al., 2009; Tanaka et al., 2009). Moreover,
fewer studies have employed adequate algorithms to evaluate
if the “unitary” activities are truly recorded from “one” single-
fiber.

Our goal here is to establish an efficient way to record several
sympathetic fiber activities simultaneously. We used a splanch-
nic sympathetic nerve-thoracic spinal cord preparation that can
spontaneously generate rhythmic SND in vitro as an experimental
model (Su, 1999). Collagenase was used for in situ dissocia-
tion of the splanchnic nerve bundles (Ho et al., 2013). The
dissociated nerve fascicles were then brought into a suction elec-
trode to record several fiber activities, the so-called “oligofiber
recording.”

One main issue arose from the oligofiber recording tech-
niques is that different sources of interference might add to
the neural signals leading to a random variation of spike
waveforms (Lewicki, 1998; Snider and Bonds, 1998). How
to assign a nonstationary spike waveform to its originated
fiber becomes an issue of spike sorting. We took advantage
of LabVIEW softwares as proposed earlier by Stewart et al.
(2004). In addition, we also took advantage of Matlab pro-
grams, which provide numerous mathematical functions for
data probing. Programming based on a combination of both
LabVIEW and Matlab renders us a greater flexibility for signal
processing.

Computer analyses were based on the stochastic features of
spike waveforms to group the neural signals that were likely
originated from the same fiber. Two strategic methods were
used sequentially for spike sorting. First, similar spike waveforms
were automatically grouped by k-means clustering algorithm.
Second, stochastically homogenous or ideal spike waveforms were
extracted from each k-means cluster using principal component
analysis (PCA) to represent data and using Hotelling’s T2 dis-
tances as criteria to purge those data located distant from the
cluster centroids. Although commercial softwares are available for
spike sorting, they usually do not provide an explicit solution to
decompose the complex waveforms resulting from spike overlap-
ping. To further verify those complex waveforms with large T2

distances as true outliers, we used a subtraction algorithm (SA),
which was conducted simply by subtracting an ideal spike wave-
form from the complex waveforms, followed by determining if the
extracted, decomposed waveforms truly occur during the record-
ing. This is a data-based approach and is not a mathematical
approach as many other computational algorithms do. It is sim-
ply the best guess based on the signals obtained from original
recordings to provide a possible but not the sole solution that the
complex waveform may indeed occur because of spike overlap-
ping. Applications of other computational algorithms also helped
to evaluate if the seemingly “unit” activity was truly a single-fiber
activity.

METHODS
ANIMAL
Experiments were performed using 30 neonatal Sprague-Dawley
rats of age 3–5 postnatal days. All surgical and experimen-
tal procedures were approved by the Institutional Animal Care
and Utilization Committee of Academia Sinica (Protocol#:
RMiRaIBMSC2009064) in accordance with the Guide for the
Care and Use of Laboratory Animals of the Agriculture Council
of Taiwan.

SPLANCHNIC SYMPATHETIC NERVE–THORACIC SPINAL CORD
PREPARATIONS in vitro
En bloc preparations retained the splanchnic sympathetic nerve–
thoracic spinal cord (T1–T12) were prepared following sur-
gical procedures as previously described (Su, 1999; Su et al.,
2010). Briefly, neonatal rats were made unconscious by hypother-
mia (Danneman and Mandrell, 1997), followed by a prompt
midcollicular decerebration. During dissection, the reduced
preparation were immersed in ∼4◦C artificial cerebrospinal
fluid (aCSF; in mM: 128 NaCl, 3 KCl, 1.5 CaCl2, 1.0 MgSO4,
24 NaHCO3, 0.5 NaH2PO4, 30 D-glucose, and 3 ascorbate; equi-
librated with 95% O2–5% CO2). A stub of the splanchnic
sympathetic nerves was freed from surrounding tissues and
its distal end was severed adjacent to the celiac ganglion.
The nerve-thoracic spinal cord preparation (T1–T12) was then
immersed in a bath chamber containing 30-ml aCSF with tem-
perature maintained at 24.5 ± 1◦C. Dissociation of the nerve
bundles was performed by incubating the splanchnic nerves for
∼90 min in a glass micropipette containing 0.5% collagenase
(Type IV collagenase, C5138, Sigma-Aldrich, buffered by Hanks’
Balanced Salt Solution, 14185-052, Invitrogen Corporation).
Dissociated nerve fascicles showing a nerve stub with split
ends were easily obtained after the incubation (Ho et al.,
2013).

NEURAL RECORDINGS
Borosilicate glass micropipettes (AM-system, 5928, Carlsborg,
Washington) were tapered using a horizontal puller (P-97, Sutter
Instrument, Novato, California) to make long-shank recording
electrodes with tips ∼10 μm in diameter and back-filled with
aCSF. Dissociated nerve fascicles were brought into the glass
micropipette using a suction electrode (AM-system, 573000,
Carlsborg, Washington) to record spontaneous spike potentials.
Electrical signals were pre-amplified (DAM50; World Precision
Instruments, Sarasota, Florida), amplified (NL106, Digitimer
Ltd., Hertfordshire, England), bandpass filtered at 10–3000 Hz
(NL126, Digitimer Ltd.), and stored on a pulse-code modula-
tion tape recorder (Neuro-Corder DR-890; Cygnus Technology
Inc., Delaware Water Gap, Pennsylvania). Analog signals were
digitized in a real-time using a National Instrument-based data
acquisition system (NI-PCI-6010, National Instrument, Austin,
Texas) and processed using LabVIEW programs (version 8.2.1,
National Instrument) incorporated with MATLAB scripts (ver-
sion 7.9. The MathWorks, Inc., Natick, Massachusetts). To avoid
aliasing and sampling jitter for precise waveform alignments at
spike peaks, signals were first oversampled at 40 kHz and then
downsampled to 10 kHz by interpolation algorithm to keep file
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size small. All signals were digitally corrected for amplification
gains and expressed in units of μV for computational analyses.

SPIKE DETECTION AND WAVEFORM FEATURE EXTRACTION
Off-line analyses of the recorded signals were performed using
LabVIEW-based computer programs to analyze spiking events
in a 30-min epoch of continuous recording in each experiment.
Under our recording conditions, times for oligofiber spiking only
took up a small fraction of the overall recorded signals (e.g.,
Spiking activity at 5 Hz with spike duration of 5 ms contributes
to the signal with a ratio of 0.025 = 25 ms/1000 ms). Therefore,
an automatic determination of thresholds for spike detection was
based on an estimate of the standard deviation of background
noise σn using the equation:

σn = median

{ |x|
0.6745

}

where x is the band-pass filtered signal (10–3000 Hz); this yielded
a robust estimation of σn that was relatively indifferent to the
length of data segments being selected for analyses, because the
median would reliably measure the instrumental noise of record-
ings (Quiroga et al., 2004). Spikes with peak amplitudes >5σn

were automatically detected and the peak timing was taken as
the timestamp of spike occurrence. Signals of 25-ms in duration
extending from 12-ms prior to and 13-ms after the spike peak
were aligned for spike waveform analyses. A reference spike wave-
form was constructed by averaging 20 spike waveforms of similar
shape. To minimize interference, only the signal segments span-
ning from 10–15 ms (i.e., 2-ms prior to and 3-ms after the spike
peaks) were used to extract spike waveform features. Waveform
features were described by six parameters, including the peak
amplitude, the peak roundness (i.e., the 2nd derivative of the
spike peak), the root-mean-square of prespike amplitude (i.e.,
a magnitude measurement for a 1-ms signal segment starting
from 2-ms prior to the spike peak), the afterhyperpolarization
(i.e., afterspike minimum), the highest repolarization rate, and
the coefficient correlated with the reference waveform (Figure 1).
After feature extractions, a spike waveform was described by the
acquired parametric values that could represent the waveform as
a data point in a 6-D space (�6).

k-MEANS CLUSTERING AND PRINCIPAL COMPONENT ANALYSIS
Automatic spike sorting was conducted first using a least square
partitioning algorithm, the k-means clustering, which is mainly
based on a calculation of z-scores (z) of the six waveform feature
parameters obtained from the spikes occurred in 30-min epoch of
continuous recording (Appendix A). For comparisons, in some
experiments, z-values were obtained from a full-waveform calcu-
lation without a priori feature extraction. Therein, each ampli-
tude value in the waveform segment extending from 1.2 ms prior
to and 2 ms after the spike peak was taken as individual para-
metric value to calculate z-values for data representation in a
space of �32. Computation using cityblock distance and squared
Euclidean distance for k-means clustering were compared in these
experiments. To interpret the partitioning result and objectively
evaluate the cluster separation, we used the silhouette technique

FIGURE 1 | Extraction of spike waveform features. Squares enclose the
waveform segments (solid line) that are used to evaluate spike peak
amplitude (a), peak roundness (b), prespike amplitude (c), repolarization rate
(d), afterhyperpolarization (e), and correlation coefficient (f) with a reference
spike waveform (dashed line).

(Kaufman and Rousseeuw, 1990) (Appendix B). After k-means
clustering, apparent outliers with exceptionally large Hotelling’s
T2 distances in the cluster were removed automatically using
the PCA to simplify data representation in multivariate space
(Appendix C). In short, Hotelling’s T2 distance is the multivariate
counterpart of the Student’s-t. The higher the T2 value repre-
sents more distance from the observation to the mean or the
centroid. Homogeneity of principal component representations
of the data was evaluated by their distance from the centroid of
the cluster. Those data with Hotelling’s T2 distances falling into
a range exceeding 99.99% scope were considered as outliers (i.e.,
T2-unselected waveforms) and were subjected to empirical wave-
form evaluation (see below). In practice, k-means clustering and
PCA were achieved simply by adding a MATLAB script node in
the LabVIEW programs.

RETRIEVAL OF T2-UNSELECTED WAVEFORMS USING A DATA-BASED
SUBTRACTION ALGORITHM
In PCA, those data falling into a range exceeding 99.99% were
considered as outliers, and collectively defined as T2-unselected
spike waveforms. The outliers removed by PCA process were
subjected to empirical waveform evaluation, based on a simple
assumption that the distortion of the waveform was due to an
addition of “noise” to the otherwise homogenous spike wave-
forms. First, a reference waveform from each cluster was obtained
by averaging the spike waveforms in the cluster which had passed
T2 selections. Second, residual waveforms in 25-ms duration were
acquired after subtraction of the reference waveform from each
T2-unselected waveform. Because feature extractions of the spike
waveforms only evaluated a signal segment extending from 2-
ms prior to and 3-ms after the spike peak, the maximum of the
residual waveform occurring at 2–15 ms was detected and a 5-
ms waveform segment spanning from 2-ms prior to and 3-ms
after the maximum was extracted from the 25-ms residual wave-
form accordingly. This would extract an interference waveform
that fell into the signal segment 10-ms prior to and 3 ms after
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original spike peaks. A LabVIEW program was written for auto-
matically detecting the existence of the 5-ms residual waveforms
in a 10-min epoch of the original recordings. Two criteria were
used to recognize the occurrence of this “noise.” First, the max-
imum of the residual waveforms was <4σn, i.e., <80% of the
noise level of recording. Second, similar signals were found in
the original recordings with correlation coefficient greater than
0.95 and with a maximal magnitude difference less than 30%.
Upon fulfilling these criteria, the T2-unselected spike waveforms
would be retrieved. For each k-means cluster, this semi-automatic
evaluation process, the so-called “SA,” only required a subjective
determination of the stringency for waveform selections to min-
imize false negative and to avoid false positive (see below). Both
SA-selected and T2-selected data were combined and taken as unit
activities.

EVALUATION OF SINGLE-FIBER ACTIVITIES
Neuronal firing behaviors may provide useful clues for spike
sorting (Delescluse and Pouzat, 2006; Ventura, 2009). To imple-
ment an algorithm that can help to evaluate whether the unit
activities acquired from the waveform-based algorithms are truly
attributed to single fiber activities, the interspike intervals (ISIs)
were taken into account. First, ISIs of values less than 3-ms
were considered as a violation of refractory period (Horn and
Friedman, 2003); the data incurring such violations were arbi-
trarily defined as “false positive.” Second, because ISI probability
distribution in SPNs is nearly Gaussian (Su et al., 2007), we exam-
ined if this feature persisted in the data collected here. Third,
because spike waveform features could be affected by previous
spiking events, we examined if the waveforms features varied as a
function of their preceding ISIs. To better reveal Gaussian curves
in the data range of short ISIs, ISIs were transformed by natural
log and categorized with a bin range from 3-ms (equivalent to
e−5.809) to the upper 99.9% confidence limit of the ISI distribu-
tion. When appropriate, the plot of ISI probability distribution
was constructed based on the bin width (h) of Scott’s choice
(Scott, 1979), as calculated by the equation:

h = 3.49 s · n−1/3

where s is the standard deviation of ISIs and n the number of
ISIs. Probability distribution curves were fitted using the Gaussian
equation:

y =
k∑

i = 1

ai · e{−1/2[(x − bi)/ci]2}

where k represents the number of modes 1–3, ai the probability
density (pd) at the mode, bi the modes, and ci is the half-maximal
width. Evaluation of the best Gaussian fitting using different
number of modes was based on the corrected Akaike informa-
tion criterion (AICc; Burnham and Anderson, 2002), calculated
by the equation:

AICc = nb · ln(SSR
/

nb) + 2K + 2K(K + 1)

nb − K − 1

where nb the number of bins, SSR the sum of squared residuals
obtained from error estimates in the particular Gaussian model,
and K the number of parameters in the model. The best fitting
was considered as the one yielded a minimal AICc.

To examine whether changes of the waveform features were
preceding ISI-dependent, waveform parametric values were plot-
ted against their preceding ISIs in natural log-scales. Based on
the pattern of data distribution, the curves were fitted by an
exponential relaxation equation:

y = y0 + a · e−(x − x0)/t

where a the amplitude, x0 the center, t the relaxation time con-
stant, and y0 the offset of the particular parameter and is equiv-
alent to the parametric value at x → ∞ A negative value of a
indicates that the magnitude of parametrical values is reduced
when preceding ISIs become smaller. Alternatively, the curves
were simply fitted by a linear equation:

y = mx + b

where m is the slope and b is the intercept. The best fitting, either
by the exponential relaxation equation or by the linear equation,
was again evaluated by AICc.

DATA ANALYSIS
Spearman’s correlation of coefficient (r) was acquired after plot-
ting the observed data against the model predicted data in each
curve fitting. Tests of goodness of fit by a model were performed
using r to calculate Student’s t-values (t) by:

t = r ·
√

(nb − K − 1)
/
(1 − r2)

where nb is the number of bins, K the number of parame-
ters in the model, and nb − K − 1 the degree of freedom. A
P-value <0.05 was considered significant. All values are expressed
as mean ± SEM.

RESULTS
OLIGOFIBER ACTIVITIES RECORDED FROM
COLLAGENASE-DISSOCIATED NERVE FASCICLES
Spontaneous spiking signals were consistently obtained from
electrical recordings of collagenase-dissociated nerve fascicles. A
recording showing distinct spike waveforms may require sev-
eral attempts in sampling different nerve fascicles. Recorded
spike waveforms were primarily biphasic, showing an initial
overshoot of the potential trajectory followed by a prompt fall
and slowly-relaxed afterhyperpolarization. Figure 2 shows the
common features of spike waveforms obtained from oligofiber
recordings. Some spike waveforms had an afterdepolarization
immediately followed the afterhyperpolarization. For computa-
tional comparisons, the spike waveforms were aligned horizon-
tally at their peak and their waveform features were extracted
accordingly. Because a collection of spike waveforms with longer
durations was more likely to be contaminated by ambient elec-
tromagnetic interference and some background signals originated
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FIGURE 2 | Similar spike waveforms obtained from oligofiber

recordings. (A) Superimposed spikes showing similar waveform
shapes. Traces are averaged spike waveforms obtained from different
experiments. Spike waveforms are primarily biphasic. Arrows and arrow
heads indicate the presence and absence of a rebound potential
following the afterhyperpolarizations. (B) Superimposed traces of 500
spike waveforms showing the presence of small interference signals.
Square encloses the waveform segment, 2-ms prior to and 3-ms after
the spike peaks.

from spiking activities of other fibers (Figure 2B), the wave-
form feature extraction was limited to the early phase of spike
waveforms as illustrated in Figure 1. Noticeably, not all the
extracted features were equally effective to distinguish differ-
ent spike waveforms. The usefulness of a waveform feature for
spike sorting might vary between experiments. For instance,
most of the waveforms were biphasic and had similar shapes.
The similarity in waveform shapes did not permit the corre-
lation coefficients of the spike waveforms with their reference
waveform as an effective feature for spike sorting. Therefore,
in some cases, the correlation coefficients were discarded as a
waveform feature and were not used for the clustering analy-
ses. Nonetheless, the correlation coefficients were found useful
to distinguish signals of distinct waveforms, e.g., the wave-
forms of ambient interference from the waveforms of true neural
signals.

The first step of spike sorting was constructing a 2- or 3-D
plot that included the data points of interest by manually selecting
any two or three waveform features clearly showing obvious clus-
ter distribution patterns. Figure 3 shows an example that distinct
oligofiber activities are recorded. Waveform parametric plot that
showed at least one single-cluster distribution was successfully
acquired in all experiments (n = 30). After selecting appropri-
ate waveform parameters to construct the parametric plots, we
identified 1.67 ± 0.18 clusters per experiment simply by visual
inspection.

FIGURE 3 | Distinct oligofiber activities. Data were collected from a
30-min epoch of continuous recording. (A) Original trace showing spikes of
apparently different amplitudes. (B) Waveform feature plot showing
segregated data distribution. Numerical values indicate the number of data
points in groups (i–iv). (C) Spike waveforms of groups (i–iv). Data group (i)
and (iv) forms apparent clusters.

k-MEANS CLUSTERING OF OLIGOFIBER ACTIVITIES
The k-means clustering algorithm was used extensively for spike
sorting, especially for data with distribution patterns that had no
clear boundary. Figure 4 shows an example of k-means cluster-
ing that cluster boundaries are barely discernible. This algorithm
was also helpful in automatic data clustering even when clus-
ter boundaries were obvious. To make the k-means clustering
more efficient, in experiments with spike numbers >10,000, the
data forming apparent clusters in waveform parametric plots were
manually removed to reduce computation times. Conventionally,
k-means clustering is based on the squared Euclidean distance
acquired from the parametrical values of a full spike waveform.
Instead, we obtained the “cityblock” distance from the extracted
waveform features. Figure 5 shows an example that compares the
outcomes of spike sorting using different subalgorithms of k-
means clustering. The operation using “cityblock distance” with
waveform feature extraction was more computational efficient
and yielded a clearer cluster separation than the one using squared
Euclidean distance or the one with full spike waveforms.

The k-means clustering assigned each spike waveform to one
of the clusters. Silhouette values were calculated for each spike
and the resulted clusters were displayed on a silhouette plot
(Figure 4C). A cluster in the plot showing equally high silhou-
ette values is ideal because it represents the data in the cluster
having similar waveform features. In 17 experiments that the
cluster boundaries were obscure, the k-means clustering pro-
cess increased the number of identifiable clusters by 2.48 ± 0.29.
For the other 13 experiments, the k-means clustering did not
increase the number of clusters because the cluster boundary was
clear enough by visual inspection or because it failed in yielding
clear clusters for those data points with obscure boundaries. On
average, the number of clusters per experiment being identified
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FIGURE 4 | Spike sorting by k-means clustering algorithms. (A)

An original trace showing oligofiber spiking. (B) 3-D z-score plot
of waveform features showing two neighboring clusters (i, ii).
Z -score 1–3 are normalized values of peak amplitude, peak
roundness, and afterhyperpolarization. (C) Silhouette plot. Averaged

silhouette value is 0.6571. (D) Spike waveforms in the k-means
clusters (i, ii, as shown in B). Numbers of superimposed
waveforms are as indicated. (E) Averaged spike waveforms of
cluster (i, ii). Some waveforms as shown in (D) differed
considerably from their averaged waveform.

after k-means clustering was 3.40 ± 0.38 (n = 30). The following
analyses were based on these 102 data clusters.

SELECTING SPIKE WAVEFORMS OF HOMOGENEOUS FEATURES
A pitfall of k-means clustering algorithm is that it forces every
spike-like signal to be affiliated with a cluster, while the total
numbers of clusters are subjectively determined. This embedded
a possibility that the spike waveforms in a cluster may not be
homogenous. To further decipher whether a cluster truly con-
tained waveforms of homogenous features, T2 distance of each
data point to the centroids of each cluster was evaluated statisti-
cally. Figure 6 shows an example using PCA to select homogenous
spike waveforms. The algorithm selected the data distributed near
the core; these data points were collectively defined as T2-selected
spike waveforms. On average, tentative outliers recognized as T2-
unselected data were found in 7.0 ± 0.4% of the data points in
the k-means clusters.

Because often there are data distributed in the shell of a clus-
ter, whether the T2-unselected waveforms were true outliers was
further evaluated by a data-based SA. We assumed that the outlier
waveforms were otherwise the ideal waveforms being distorted by
the other signals that might appear independently and frequently
during the recordings. A residual waveform was then acquired by
subtraction of the averaged T2-selected “ideal” waveform from
each T2-unselected “outlier” waveform. Figure 7 demonstrates
using SA to decompose the outlier waveforms into the ideal wave-
forms and the residual waveforms. Appearance of these residual
waveforms in the original recordings was used as a criterion to

verify if they were interference signals. Original recordings con-
tained signals of waveforms that were similar to the residual
waveforms (see criteria in METHODS 2.6) were found in 99
of the 102 T2-unselected data groups. On average, SA retrieved
64.5 ± 2.9% of T2-unselected waveforms as they were consid-
ered as false outliers. In combining SA-retrieved with T2-selected
waveforms, 97.3 ± 0.3% of the waveforms per data cluster were
recognized as those sharing the same waveform features and col-
lectively defined as unit activities, which were tentatively taken as
the activities generated from a single fiber. Figure 8 is a flow chart
summarizing the computational steps required for obtaining unit
activities.

There was a pitfall using SA. When the spike amplitude of a
waveform was about twice of the averaged T2-selected waveform,
SA would yield a residual waveform similar to the T2-selected
waveforms. Because original recordings would contain the T2-
selected waveforms, the similar residual waveforms could then be
mistaken as a true interference signal and not be rejected as a true
outlier. This led to a false-positive assignment of the unit activ-
ity by including an apparently different waveform. This error was
easily detected by visualizing all the retrieved waveforms. In the
analyses of all the spiking events using SA, only 5 of 1566 spiking
events in one unit activity as shown in Figure 9 were considered
as false-positive, which was then manually corrected.

ACCURACY OF SPIKE RETRIEVAL
To evaluate the accuracy of spike retrieval using our algorithms,
two series of synthetic data that simulated the real recording
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FIGURE 5 | Comparisons of the computational efficiency using different

k-means clustering subalgorithms. Clustering were based on different
subalgorithms including cityblock distance (City), squared Euclidean distance
(SqE), full spike waveform (Wave), and waveform feature extraction (Fx). Five
data sets with each containing 1223–26585 spikes that formed 4–7 apparent
clusters were compared. Clustering a data set containing 7871 spikes [arrows
in (A–C)] is shown in (D–F). The means of silhouette values were taken as a
clustering goodness measure. (A) Comparisons of clustering based on
City/Fx and SqE/Fx. Plots of the means of silhouette values against the
number of spikes in the data set demonstrate that the goodness of clustering
by City and SqE is largely comparable. (B) Comparisons of clustering based

on Wave/City and Fx/City. Plots show that Fx-based clustering generates
higher silhouette values. (C) Comparisons of computation times required for
clustering based on Wave/City and Fx/City. Less computation time is needed
for clustering with Fx. (D–F) 3-D plots of the data clusters obtained from
different k-means subalgorithms. Colors code for the comparable clusters. A
magnified view of data clusters is shown in the insets at the upper right and
the lower left. Data clusters were obtained from the algorithms based on
Fx/SqE (D), Fx/City (E), and Wave/City (F). Upper right insets containing the
two clusters of higher spike peaks show more perplexing cluster
assignments in (D) and (F) than (E). Also shown in the lower left insets, the
arrows in (F) indicates a cluster containing data of misassignments.

FIGURE 6 | Selection of homogenous spike waveforms by PCA

algorithms using Hotelling’s T2 distance as criterion. (A) 3-D principal
component (PC) plots. (i) Original plot. (ii) The plot after removing outliers.
(B) Spike waveforms of the original data set (i), the data set after removing
outliers (ii), and the outliers (iii). Numbers of superimposed waveforms are
as indicated.

of seven spike groups as shown in Figure 5 were generated
(Appendix D). Each series contained five data sets with or with-
out synchronous spiking activities of groups iv and vii. Figure 10
illustrates two data sets with one containing mainly asynchronous
spiking and the other having substantial amounts of synchronous
spiking. We also compared the accuracy of spike retrieval using
our LabVIEW- and Matlab-based programs (L&M) with that
using Offline Sorter (OS, v3.3.1, Plexon Inc.). For generaliza-
tion, spike amplitudes were expressed in units of signal-to-noise
ratio (SNR). Because the afterspike potentials of the clusters
vi–vii and the spike peak of cluster i were of similar magni-
tudes (Figure 10A), the spike sorting required a predetermined
selection of eight rather than seven centroids for k-means cluster-
ing (Figure 10C). Figure 11 illustrates the spike groups retrieved
using our L&M protocols and the accuracy of spike retrieval com-
pared with that using OS (see Supplementary Material I). Overall,
the accuracy of spike sorting was positively related to the spike
amplitudes. For spikes with peak amplitudes >3.9 SNR, nearly
100% of the spikes were retrieved using L&M, be the data con-
taining synchronous activities or not. While the accuracy of spike
retrieval using OS was largely comparable with the one using
L&M in sorting synthetic data containing mainly asynchronous
spiking, it dropped dramatically in that containing synchronous
spiking (Figure 11B). For instance, the accuracy of spike retrieval
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FIGURE 7 | Retrieval of T2-unselected waveforms by a subtraction

algorithm (SA). 5 examples are illustrated in panels (A–E). Traces in
each panel are the T2-unselected waveforms [solid lines in (i)], the
averaged T2-selected waveforms [dashed lines in (i, ii)], the residual
waveforms acquired by a waveform subtraction in (i) [solid lines in (ii,

iii)], and a retrieved waveform obtained from averaging those similar to
the residual waveforms in the original recordings [dashed lines in (iii)].

Inset in (iii) shows superimposed traces of the similar waveforms
retrieved by SA from a 5-min epoch of the original recordings; the
numbers of superimposed traces are indicated. Panels (A–C) also
demonstrate that the T2-unselected waveforms are decomposed into an
averaged T2-selected waveform compounded by a spike waveform that
appears prior to (A, B) or immediately after (C) the T2-selected
waveform.

FIGURE 8 | A flow chart illustrates how to acquire unit activities. Arrows
indicate categorization of waveforms by different algorithms. Numbers of
superimposed traces are as indicated. Panel in the lower left shows the

averaged spike waveform (black line) and its 99% confidence limits (gray
lines). In this example, 47 of 1339 (3.5%) spike waveforms in the k-means
cluster were excluded.

for cluster iv of the synthetic synchronous data obtained from
L&M and OS was 78.3 ± 3.1 and 32.6 ± 13.6%, respectively (t-
test: P < 0.05, n = 5). Noticeably, an inaccurate spike retrieval
for cluster vi but not for cluster v was obtained from sorting the
synthetic data containing synchronous activity of clusters iv and
vii using OS. This might be caused by an interference of cluster
assignments due to the presence of overlapped spike waveforms
(Supplementary Material I). Clustering using our L&M protocols

that yielded higher accuracy of spike retrieval was apparent as
demonstrated in Figure 10C.

EVALUATION OF UNIT ACTIVITY BY REFRACTORY PERIOD
To verify if the spiking events in a data cluster truly originated
from a single fiber, we first examined if their ISIs violated an
arbitrarily-defined refractory period 3-ms. Among the 102 data
clusters, 69 data clusters did not have ISIs <3-ms, 8 had <0.1%
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FIGURE 9 | An example demonstrating a pitfall of SA in mistaking

apparently different spike waveforms. (A) 2-D waveform feature plot of
afterhyperpolarization against spike peak. The feature plot shows a
concentrated data distribution in the upper left; few scattered in the lower
right. Data points “i–iv” have the spike peak and the afterhyperpolarization
with magnitudes that are nearly double the ones in those data concentrated
in the upper left. Spike waveforms of the data points “i–iv” are shown as

arrows indicated in (C–D) and as those solid lines in the lower panels of (E).
(B–D) 3-D plots of spiking events along the time course. (B) T2-selected
waveforms. (C) T2-unselected waveforms. (D) SA-retrieved waveforms. (E)

The residual waveforms (solid lines in the upper panels) are similar to the
averaged T2-selected waveforms (dashed lines in both upper and lower
panels), which explained a pitfall of SA in mistaking the apparently different
spikes as arrows in (C,D) indicate.

ISIs that were <3-ms, and 25 had >0.1% ISIs that were <3-ms.
We further examined if the incidence of <3-ms ISIs was incurred
by SA. Indeed, in 12 data clusters that all the ISIs acquired from
T2-selected waveforms were >3-ms, addition of the SA-retrieved
waveforms incurred 0.24 ± 0.07% of ISIs that were <3-ms, indi-
cating a potential risk of retrieving false-positive waveforms
in using SA. The minute amounts of false-positive spiking
events were easily corrected manually by removing the outliers
that had larger T2 distances. For simplicity, unless otherwise
mentioned, only the data clusters originally containing <0.1%
ISIs that were <3-ms (n = 77) were included in the following
evaluation.

EVALUATION OF UNIT ACTIVITY BY MULTIMODAL GAUSSIAN
ANALYSIS OF ISI PROBABILITY DISTRIBUTION
Spontaneous spiking of SPNs under our experimental conditions
reveals an ISI probability distribution that is well-described by
Gaussian functions (Su et al., 2007). Because most splanchnic
nerve fibers are the projecting axons of SPNs, we sought to deter-
mine if the unit activity recorded in this study had the same
features. Moreover, to avoid the shadowing effects that lead to an
abrupt absence of ISIs at <3-ms as a result of failure in detecting
overlapped spikes (Bar-Gad et al., 2001), i.e., a false identifica-
tion of the refractory period, whether the ISI probability curves
“declined” promptly toward an ISI range in the refractory periods
was also used as a criterion to evaluate if the unit activity truly
originated from a single fiber.

ISI probability curves were fitted by Gaussian functions with
different number of modes (Figure 12). To evaluate how many
modes provided the best fitting, AICc obtained from each
curve fitting were compared. Table 1 summarizes the criterions
of selecting Gaussian models for ISI probability curve fitting.
Because AICc describes the entropy of error estimates from a
model, the model that generates a minimal AICc was considered
the best. Substantial difference of AICc (�AICc) was obtained
from Gaussian fitting using different numbers of modes, and
thus, an appropriate selection of the particular Gaussian modes
was achieved accordingly (Table 1). Among the 77 ISI probability
curves, 10 (13%) were best fitted by a unimodal Gaussian dis-
tribution, 22 (29%) fitted by bimodal Gaussian, and 45 (58%)
fitted by trimodal Gaussian. All together, 189 Gaussians were
obtained from the fitting of 77 ISI probability curves; the median
of all the Gaussian modes was 1.11 s, which is comparable to
that previously observed in the data obtained from patch-clamp
recordings of SPN spiking activities (Su et al., 2007). Moreover,
all the ISI probability curves consistently showed a leftward expo-
nential decline of probability in the lower ISI range, reflecting a
diminution of firing probability in an exponential decay manner
during the relative refractory periods (Figure 12). By contrast,
Figure 13 shows an example of ISI probability curve with two
distinct modes at 5.3 ms and 4.2 s; this unit had 2.2% ISIs that
were <3-ms. This unit activity was considered as a combined
activity of two fibers with very similar spike waveforms. In sum-
mary, the unit activities that displayed Gaussian firing properties
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FIGURE 10 | Synthetic spiking data with or without synchronous

activities between different spike groups. Synthetic data simulating a real
recording as shown in Figure 5 were generated (Appendix D). (A) Spike
templates (upper panel) and background noise (lower panel). Averaged spike
waveforms of the real data were used as spike templates. The background
noise was acquired after blocking spike generation by adding 100 mM KCl
into the bath solution. Spike amplitudes were expressed in units of
signal-to-noise ratio (SNR). Numerical values in parentheses are the
amplitudes of the spike peaks and how many spikes in that group are
randomly inserted into a 30-min epoch of synthetic data. (B) Traces of

synthetic spiking of asynchronous activities (i) and synchronous activities (ii).
Arrow heads indicate the complex spike waveforms of exceptionally large
peak amplitudes resulting from overlapped spike templates. (C) k-means
clustering of spiking without synchronous (i) or with synchronous activities
(ii). Z -score1–3 are normalized values of peak amplitude, peak roundness,
and afterhyperpolarization. Cluster color coded in red was discarded for
further analysis because it was a collection of the afterspike potential
waveforms of Clusters “vi” and “vii.” Cluster “iv” and “vii” were selected as
the two with synchronous spiking activities, which yielded a dispersed
distribution of data points affiliated with these clusters.

and had ISIs not violating refractory periods were considered as
activities originated from single fibers.

EVALUATION OF UNIT ACTIVITY BY DETERMINING THE CHANGE OF
WAVEFORM FEATURES AS A FUNCTION OF THEIR PRECEDING ISIs
Traditional waveform-based spike sorting that does not consider
spiking history could have flaws (Pouzat et al., 2004; Ventura,
2009). This is largely because spike amplitudes and shapes are
not stationary and may be influenced by their preceding spik-
ing events. We sought to determine if a waveform parametric
value was a function of its preceding ISI. Five waveform features,
including spike peak, peak roundness, prespike amplitude, after-
hyperpolarization, and repolarization rate, were plotted against
their preceding ISIs in a normal-natural log scale to mani-
fest a change of waveform features in the range of short ISIs
(Figure 14). The pattern of data distribution and the extent of
correlation with their preceding ISIs varied between different
waveform parametric plots. By visual inspection, waveform para-
metric values were positively, negatively, or not correlated with
their preceding ISIs. Figure 14 shows an example that the wave-
form features are described as an exponential or a linear function
of their preceding ISIs. The choice of exponential vs. linear equa-
tion for curve fitting was largely based on which equation could
yield a lower AICc, with the exceptions when goodness of fit was

not achieved by fitting using the equation that attained a lower
AICc. Tests of goodness of fit among the 77 units activity showed
that 71 units had at least one of the five waveform features failed
in curve fitting by the exponential or the linear equation, seven
units had all the five waveform parameters fitted by the equations,
and six units had all the five parameters failed in curve fitting.
Among the five waveform features, analyses of spike peak ampli-
tudes demonstrated that only 28 out of 77 units, the least number
of units, failed in curve fitting. Thus, for simplicity, the spike
peak amplitude was chosen as one of the most sensitive waveform
features to evaluate if its change was preceding ISI-dependent.

Figure 15 show examples of incremental or decremental
changes of spike peak amplitudes as a function of their preceding
ISIs. Among the 77 units, short preceding ISIs having augmented
peak amplitude were observed in 18 units fitted by the exponen-
tial equation and the other 18 units fitted by the linear equation,
whereas short preceding ISIs having attenuated peak amplitude
were observed in 8 units fitted by the exponential equation and
the other five units fitted by the linear equation. Therefore, a total
of 49 of 77 unit activities had spike peak amplitudes as a function
of their preceding ISIs. For those units best fitted by the linear
equation, the slopes of their curves were generally low, indicat-
ing a weak dependence of the peak amplitudes on their preceding
ISIs. In summary, using a preceding ISI-dependent change in
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FIGURE 11 | Accuracy of spike sorting using programs written by

LabVIEW and Matlab softwares (L&M) or using Offline Sorter (OS). (A)

Superimposed traces showing the waveforms retrieved by L&M protocols
from the synthetic spiking data with or without synchronous activities. (i–vii),
spike groups. Compared to asynchronous ones, clusters iv and vii shows
many overlapped waveforms resulted from their synchronous activities. (B)

Plot of the sorting accuracy against the spike peak amplitude. Statistical
analyses were based on two series of synthetic data with each containing
five data sets, as one data set of each series shown in Figure 10. Accuracy of

spike sorting resulted from L&M protocols is spike
peak-amplitude-dependent and relatively resistant to the interferences of
synchronous activities, showing that spike peaks of amplitudes greater than
3.93 SNR yield a nearly 100% sorting accuracy. In contrast, accuracy of spike
sorting resulted from using OS was largely comparable to the one using L&M
protocols in sorting asynchronous data but the accuracy dropped significantly
in sorting synchronous data. Asterisks indicate significant differences of
sorting in using L&M and OS. Student’s t-test: ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001.

FIGURE 12 | Using ISI probability curves to evaluate unit activities.

Panels (A–C), examples from three different experiments. In each
example, plots show the fluctuation of instantaneous firing rate (IFR, the
left panels) and the ISI probability distribution (dots, the right panels).
Solid lines in the ISI probability plot depict the curve fitting by Gaussian

functions of unimode (A), bimodes (B), and trimodes (C). All the three
examples demonstrate a leftward decline of ISI probability distribution.
pd, probability density. In this and following figures, the dashed vertical
lines in ISI probability plots crossing the x-axis at e−5.809 s indicate the
3-ms refractory period.
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spike peak amplitudes as a criterion, we confirmed 64% of unit
activities as the activities originated from single fibers.

DISCUSSION
Oligofiber activities were successfully recorded from the
collagenase-dissociated splanchnic sympathetic nerve fascicles in

Table 1 | Statistical features of ISIs and evaluation of multimodal

Gaussian curve fitting of ISI probability distribution by corrected

Akaike information criterion (AICc).

Statistical Gaussian models

features
Unimodal Bimodal Trimodal

Mean ISI (s) 5.719 ± 1.748 1.359 ± 0.207 2.692 ± 0.524

Minimal ISI (s) 0.070 ± 0.041 0.066 ± 0.032 0.146 ± 0.045

Adjusted r 0.9823 ± 0.0054 0.9683 ± 0.0087 0.9695 ± 0.0040

�AICc2−1 11.6 ± 1.8 −42.3 ± 6.4 −17.2 ± 4.6

�AICc3−1 26.6 ± 5.4 −26.6 ± 7.2 −54.0 ± 7.5

�AICc3−2 15.0 ± 4.7 15.7 ± 3.0 −36.8 ± 9.4

n 10 22 45

Analyses were based on data collected from 77 unit activities. ISI proba-

bility curves were fitted by Gaussian equation: y =
k∑

i = 1
ai · e{−0.1/2[(x−bi )/ci ]2},

where k is 1, 2, or 3 representing for uni-, bi-, or trimodal Gaussian, respec-

tively. The Gaussian that generated a minimal AIC was selected as the best

model for ISI probability curve fitting. �AICc are the subtraction values of

the AIC obtained from Gaussian fitting using different number of modes; the

subtractions between Gaussian modes are as the subscript numbers indicated.

the rat thoracic spinal cord preparations in vitro. Using a data-
based, computational process—SA to dissect spike overlapping,
we effectively reduced false outliers in the process of waveform
recognition. Thus, 97% of spiking signals in a k-mean cluster
having homogeneous waveforms were taken as unit activities.
Most unit activities were considered to be originated from single
fibers because of the stochastic homogeneity of waveforms, the
Gaussian firing properties characterized by a declined spiking
in refractory periods, and the preceding ISI-dependent changes
in waveform features. By simultaneously recording several
single-fiber activities, the methodology established here can
tackle issues of spiking synchronicity. With some modifications,
we believe that the oligofiber recording techniques is applicable
to any peripheral nerve preparations aiming for detailing their
single-fiber activities.

METHODOLOGICAL CONSIDERATIONS FOR SPIKE SORTING
This study did not provide a sophisticated mathematical solu-
tion for spike sorting. Instead, we made acquisition of single-fiber
activities more feasible from recordings of collagenase-dissociated
nerve fascicles. The success of this biological approach was appar-
ent as at least one unit activity was recorded in every exper-
iment. This achievement partially relies on a meticulous trial
for the experimenters using small caliber micropipettes to sam-
ple fibers generating spikes of distinguishable magnitudes, rather
than on an ingenious mathematical process of spike waveforms.
Nonetheless, being aided by series of LabVIEW- and MATLAB-
based computer programs for spike sorting, we could extract
spikes of distinct waveform features and confirm their spiking
activities as those originated from single fibers.

FIGURE 13 | Segregated ISI probability distribution obtained from a unit

activity with overlapped spikes. (A) 2-D waveform feature plot showing a
continuum of data distribution. Dots in blue, black, and red represent the
data points of T2-selection, SA-selection, and excluded outliers. Note the
data distributed at the right lower extreme have parametric values (∼230,
−150) nearly double those concentrated in the center (the centroid of blue
dots: ∼120, −70). (B) Plots of ISI probability distribution. Analyses include
data of T2-selection only (blue), T2-and SA-selection (black), and

T2-/SA-selection plus outliers (red). All curves show double peaks. One peak
was centered around 4.66 ms (i.e., e−5.369 s) with a probability distribution
extending into the ISI range that violated the refractory period. (C) IFR time
series plot of T2- and SA-selected data showing aberrant firing of
exceedingly high IFR. Red dashed line indicates IFR = 300 Hz. (D) Original
recording traces showing overlapping of two spikes with similar waveforms,
explaining the continuous variation of parametric values in (A) as a result of
spike overlapping at different phases.
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FIGURE 14 | Evaluation of unit activity by determining if a change of

spike waveform features is a function of their preceding ISIs. (A–E)

Plots of waveform features against their preceding ISIs in a normal-log
scale. Curve fitting of the data distribution used exponential relaxation
functions (A–C) or linear functions (D–E), selected by �AICc. Thick lines
are the simulated curves. r, adjusted regression coefficient. Tests of

goodness of fit: P < 0.001 in (A–B) and (D); P < 0.05 in (C) and (E). (F)

Original traces showing preceding ISI-dependent change of spike
waveforms. Lower panel, the original trace. Upper panel, the spikes
“i–iii” as shown in the original trace are aligned at their peaks (0-ms) to
demonstrate an attenuated peak amplitude in spikes with short
preceding ISIs.

It may be argued that developing the custom-made programs
is a futile effort when many commercial softwares for spike sort-
ing are available. This is not fundamentally true as an apparent
advantage using our own programs is the transparency of the
sorting process as suggested in the report of (Lewicki, 1998).
Besides, the installation cost is much lower and the utilization
of these programs provides much greater flexibility to suit our
experimental needs. Another advantage using these custom-made
programs is the ease to quantify the amounts of potential out-
liers, which are further evaluated using algorithms to determine
if they are the waveforms being contaminated by other interfer-
ence signals (Figure 7). We notice that OS installs this function
by a subjective determination of the “outlier threshold,” which
does not allow users to yield an objective evaluation of the out-
lier waveform or to find clues for exploring how such complex
waveforms occur. To our best knowledge, our process that can
effectively retrieve ∼65% of those dissimilar waveforms being
falsely recognized as outliers is not found in any commercial
available programs.

Various algorithms have been developed in other laboratories
to decompose overlapped spikes for different applications (Atiya,
1992; Takahashi et al., 2003; Zhang et al., 2004; Vargas-Irwin and
Donoghue, 2007; Franke et al., 2010). Most of them are based on
a preprocess construction of waveform templates to determine if a
complex waveform results from overlapping of these templates. In

fact, this turns to be a limitation of these algorithms in that they
can only decompose complex waveforms based on predetermined
templates. Many interference signals may not be readily detectable
because of low magnitudes or low incidence (e.g., Figure 7D).
It is noticeable that there are very inactive neural activities that
barely form data clusters (e.g., Cluster “ii” in Figure 3). These
neural activities being inactive yet not completely quiescent are
unlikely to be recapitulated as waveform templates. Moreover,
nonstationarity of background noise or subthreshold spiking sig-
nals can be the other sources of confounding signals adding to
the otherwise ideal waveforms. All these undetected biological or
non-biological interferences complicate an application of the con-
ventional algorithms in tearing the overlapped spikes apart. Our
algorithms for complex waveform decomposition directly taking
the data obtained from original recordings as reference have no
such limitation.

How accurate is our methodology for spike sorting? An easy
answer for this question is usually not available for any spike sort-
ing algorithms in dealing with the real data. To surmount this
inherent difficulty, we used a synthetic data that simulated the
real recordings. We found that the accuracy of spike sorting using
our protocols was largely related to spike amplitudes, be it with or
without synchronous activities. While it is clear that acquisition
of spiking signals with high SNR values is fundamental to spike
sorting, our simulation approaches also imply that, for signals
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FIGURE 15 | Examples showing an incremental (A) or a decremental

(B) change of spike peak amplitudes as a function of their preceding

ISIs. Panels (A,B) are examples from different experiments. (i) IFR time
series plot. (ii) ISI probability plot; the square symbols are the original
probability distribution and the solid line are the curves obtained from
Gaussian fitting using bimodes (A) or trimodes (B). (iii) 3-D plot of spike
occurrence; waveform traces in inset “a–d” shows spike peaks. In both
panels (A) and (B), spike “c” has the shortest preceding ISI; it has the
highest peak amplitude in (A) and the lowest peak amplitude in (B). (iv)

Plot of spike peak amplitude against preceding ISI. Peak amplitudes
increase (A) or decrease (B) as a function of preceding ISI in an exponential
relaxation manner.

obtained from single-electrode recordings, an overemphasis on
computational algorithms may be futile and risky when spike
sorting was aiming to signals of amplitudes <2 SNR. Noticeably,
in our simulation tests, stationarity of the spike waveforms and
independent assortment of spiking activities between different
spike groups were assumed. In real recordings, a substantial
change in the spike waveforms (e.g., Figures 14, 15), the extent
of waveform similarity between different fibers (e.g., Figure 13)
and the synchrony in spiking may further complicate the spike
sorting and diminish its accuracy.

As a focus on biological approaches, the feature extraction
of spike waveforms in our hand did not totally depend on a
blind PCA that made biophysical interpretation of PCs impos-
sible. The waveform features were empirically determined by the
parametric values obtained from discrete segments of the wave-
forms that might implicate distinct biophysical meanings. For

instance, because the proximity of fibers to the recording elec-
trode is fairly constant using the suction electrodes in this study,
the spike maximum could reflect the nodal action currents, which
might vary between fibers of different sizes (Marks and Loeb,
1976; Kovac et al., 1982). The rate of potential change dur-
ing the rising or decaying phase of the waveforms could reflect
the electronic charging or discharging time constant that also
differed between fibers of various diameters. Indeed, similar to
the process as we took here, it has been shown that taking the
first derivatives of the partial spike waveforms as a feature can
improve spike feature extraction (Yang et al., 2009). Moreover,
the prespike amplitude and the magnitude of afterhyperpolar-
ization could reflect the intrinsic properties of fibers, and thus,
being considered as another distinguishable feature. In summary,
spike sorting algorithms used here were based on some distinct
parameters that could best describe the biophysical features of
individual fiber, rather than a pure waveform-based analysis.
Besides, using the waveform features for spike sorting could min-
imize the computational costs and make data clustering more
efficient (Figure 5).

GROUPING UNIT ACTIVITY BY COMBINING T2-SELECTED
HOMOGENEOUS SPIKE WAVEFORMS WITH SA-RETRIEVED
NONHOMOGENEOUS WAVEFORMS
On the variability of manual spike sorting, average error rates
of 23% false positive and 30% false negative has been noticed
(Wood et al., 2004). To minimize errors, we established a semi-
automatic algorithm. Our classification of spikes was largely
based on the stochastic features of waveforms using T2 dis-
tance to extract homogenous waveforms in a k-means cluster
followed by retrieving nonhomogeneous waveforms using SA. It
should be emphasized that SA did not provide a singular solution.
As an analogy to linear algebra, signals obtained from a single
micropipette are the outcomes of an underdetermined recording
system that is compounded by more than one unknown signal
sources. The solution for a system as such cannot be indepen-
dent. In other words, there could be multiple solutions for an
underdetermined system. We surmount this mathematical obsta-
cle by taking a biological approach and allowing a computer
program to match the spike residuals that might occur during
the recording period. If the events indeed happened, the spike
residuals were considered to be a true interference to the other-
wise homogeneous waveforms. This algorithm was effective in
retrieving dissimilar waveforms and could minimize false nega-
tive data. In this study, this approach actually retrieved ∼65% of
the T2-unselective waveforms and helped to confirm ∼97% of the
spiking events in a k-mean cluster as unit activities.

EVALUATION OF UNIT ACTIVITIES AS ORIGINATED FROM
SINGLE FIBERS
Spike waveforms are not stationary and are likely to be affected
by their preceding spiking events. For example, spike amplitude
tends to decrease at high discharge rate (Fee et al., 1996; Zhang
et al., 2007), probably because of limited availability of Na+ chan-
nels during fast spiking (Miles et al., 2005). We evaluated if a
unit activity truly originated from one single fiber primarily by
two methods. One was seeking the evidence for an influence
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of refractory period in the ISI probability curve, the other was
determining whether the parametric values of waveform features
changed as a function of their preceding ISIs.

On the ISI probability curves that decline toward the refrac-
tory period, we found that all the 77 unit activities could originate
from single fibers. On determining a preceding ISI-dependent
change of waveform features, we confirmed that 71 of 77 unit
activities originated from single fibers because at least one of
their spike waveform features changed as a linear or exponential
function of their preceding ISIs. Why some units did not dis-
play ISI-dependent change in some of their waveform features
were not systemically investigated. It seems that, most of them
have relatively small magnitudes of spike potentials with SNR
<2 or appear to be less active in having lower numbers of spike
potentials (<200 spike potentials in 30-min epoch). Some were
characterized by a highly centered ISI probability distribution
with spiking rarely falling into the short ISI ranges. No viola-
tion of the refractory periods was observed in the units lacking
an ISI-dependent change in their waveform features. Therefore,
the preceding ISI-dependent change of waveform features could
help to verify the unit activities as originated from single fiber,
but was not sufficient as the sole criteria to confirm a single-fiber
activity.

The recording noise can be used as a signature to evaluate the
quality of spike sorting and help the experimenters to judge if the
variation of waveforms could be simply attributed to the white
noise during recording (Pouzat et al., 2002). This type of analysis
is based on the assumption that spike waveforms are stationary. In
this study, we have demonstrated that many of the spike waveform
features change as a function of their preceding ISIs. As estimated
by the standard deviation of recorded signals and compared to the
prespike signals, the nonstationarity of spike waveforms renders
a greater signal variation during the spike occurrence (data not
shown). The nonstationarity of spike waveforms makes the use of
recording noise as a mean to evaluate spike sorting difficult.

NOT ALL AXONAL SPIKE PEAK AMPLITUDES ATTENUATE DURING
FAST FIRING
Although spike peak amplitude is a sensitive waveform param-
eter to reveal a preceding ISI-dependent change, not all units
have their spike peak amplitudes attenuated during fast firing.
Among 49 units with peak amplitudes correlated with ISIs, aug-
mented and attenuated peak amplitudes during fast firing were

found in 36 units and 13 units, respectively. This observation was
not expected. We did not have clear clues regarding why some
axonal spike peak amplitudes augment following shorter preced-
ing ISIs. Nonetheless, it is possible that axonal firing properties
are different from those of somatodendrites (Shu et al., 2007;
Kress and Mennerick, 2009; Sasaki et al., 2011). Experiments in
rat hippocampal neurons or neocortical pyramidal neurons show
that axonal spikes are more resistant to amplitude reduction than
somatic spikes during brief spike trains (Williams and Stuart,
1999; Meeks et al., 2005). Compared to dendrites, axonal con-
duction has higher safety factors that guarantee a high-fidelity
of action potential propagation (Mackenzie and Murphy, 1998).
While the involvement of various channels in axonal spike propa-
gation to account for ISI-dependent waveform variability remains
to be explored, the inconsistency in changes of waveform features
as a function of their preceding ISIs diminishes the applicability of
taking preceding ISI as another variable for axonal spike sorting.

CONCLUSIONS
The feasibility of oligofiber recording techniques and computa-
tional processes enables us to examine the spiking behaviors of
several sympathetic fibers, simultaneously. Using a data-based
SA process that intuitively resolves overlapped spikes, we reclaim
spikes of seemingly dissimilar waveforms. Our computational
algorithms by minimizing false negative data may help to restore
the fidelity of rate coding embedded in contiguous spiking events.
This is especially crucial for information coding in SND, wherein
effective commands are likely encoded in patterns of synchronous
bursts.
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APPENDIX A: k-MEANS CLUSTERING
Z-scores (z) of the six waveform feature parameters obtained
from n spikes occurred in an epoch of continuous recording were
calculated by

zij = (wij − wj)/sj

where i = 1 to n index of spike data, j = 1 to 6 index of the
waveform parameter (w), and sj the jth standard deviation of wij,
calculated by

sj =
[

1

n − 1

n∑
i = 1

(wij − wj)

]1/2

This calculation normalized the weight of each waveform param-
eter and gave a set of n data points in �6. For comparisons, in
some experiments, z-values in a space of �32 were also acquired
by taking account of the spike waveform segments between
1.2-ms prior to and 2-ms after the spike peak, i.e., the paramet-
ric values of the spike waveforms without feature extraction. An
integer k was empirically selected; k-means clustering determined
a set of k centroids in �6 or �32. Each centroid is the component-
wise median of the points in that cluster, so as to minimize the
sum of distance from each data point to its nearest centroids:

n∑
i = 1

d(i, c(i))

where d(i, c(i)) is the cityblock distance that measures the dissim-
ilarity of a data point i to its nearest centroid, denoted by c(i), and
is defined as:

d(i, c(i)) =
D∑

j = 1

∣∣ij − cj(i)
∣∣

where D is the dimension of �6 or �32, ij and cj(i) are the jth-
components of the two points. For comparisons, instead of using
cityblock distance, squared Euclidean distance was used for k-
means clustering in some experiments. Therein, each centroid is
the mean of the data points in the cluster. The computation of k-
means clustering utilizes an iterative algorithm to minimize the
sum of distances. Computation began from randomly-selected
initial centroids, followed by assigning every point to its nearest
cluster and calculating the medians of each cluster. The acquired
medians were then used as the new values of centroids. The
computation repeated until the sum of distance converged.

APPENDIX B: SILHOUETTE VALUES
The silhouette value for each point i is a measure of the similarity
of a point to points in its own cluster compared to points in other
clusters. Computation was based on the following definition:

a(i) = the average distance of point i to the other points in its
cluster A.

d(i, C) = the average distance of point i to points in other clus-
ters C.

b(i) = min
C �= A

d(i, C)

The silhouette value is defined as:

s(i) = b(i) − a(i)

max{a(i), b(i)}
Therefore, the silhouette values range from −1 to +1 for each
point i. Those points with silhouette +1 indicates that they are
far from the neighboring clusters; 0 indicates that they are not
distinctly in one cluster or another; −1 indicates that they may be
assigned to the wrong cluster.

APPENDIX C: PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA) is effective for simplifying
data representation in multivariate space. First, z-scores of the
six waveform parameters for the n spikes appeared in 30-min
epoch were calculated and defined as a 6 × n data matrix X with
zero empirical mean. In the matrix, each row corresponds to a
particular type of measurements; each column corresponds to
the spike detected at a moment during the recording. Second,
a unit vector along whose direction the variance in X is maxi-
mized in �6 was found and this vector was saved as basis p1, i.e.,
the first principal component (PC). Third, another unit vector
that is orthogonal to all previous selected bases and along whose
direction the variance is maximized was found and the vector was
saved as basis pi (i.e., the ith PC). Fourth, the third procedure
was repeated until six bases were found. Finally, an ordered set
of pi, i.e., the principal components of X, and the eigenvectors of
CX ≡ 1

n XXT were obtained. By putting these 6 principal compo-
nents in the rows of orthonormal matrix P, we could get Y = PX
such that CY ≡ 1

n YYT is a diagonal matrix. Therefore, by a linear
combination, the z-scores that represented the original features
of spike waveforms were transformed into 6-D nonparametric
PCs. The Hotelling’s T2 distance for each spike can be obtained
as T2 = n(P − m)′S−1(P − m), where n is the number of spikes,
P is the matrix of PCs, m is the mean vector and S−1 is the inverse
of the covariance matrix.

APPENDIX D: SYNTHETIC DATA
Synthetic spiking data simulating a real recording as shown in
Figure 5 was generated by custom-made programs. First, spike
templates in a waveform segment 12-ms prior to and 13-ms
after the spike peaks were acquired by averaging the homoge-
neous waveforms of those from T2-selected data. Second, the
background noise signals were obtained from the original record-
ing after 100 mM KCl was added into the bath solution for
depolarization-blockade of spike generation. Synthetic spiking
mimicked the mean firing behaviors of different fibers. The firing
period of a spike group or a fiber was determined as an inverse of
their average firing rate. In each firing period, except for the initial
3-ms, one spike template was added to the background noise at a
randomly-selected time point. This protocol repeated until a 30-
min epoch of synthetic data containing seven spike groups was
produced. For each spike group, the program generated a syn-
thetic spiking behavior that was largely tonic or asynchronous
without violating 3-ms refractory periods. While being added
together, some complex waveforms might occur when two or
more spike templates from different groups were collided at a time
point close to each other (e.g., an outlier waveform as arrow head
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indicated in Figure 10Bi). On the other hand, synchronous spik-
ing data was created by shifting the spiking times of one spike
group toward the spiking times of the other to generate a syn-
chronous firing in between. We chose group iv and vii, because
both had relatively high firing rates and apparently different spike
peak amplitudes. First, the abovementioned algorithms that cre-
ate asynchronous spiking times were used. Second, some of the
spiking times in group iv, which appeared near the spiking times
of group vii, were randomly relocated into a period of ≤5 ms

around the spiking times of group vii. A synchronous spiking data
was therefore created, which contained many complex waveforms
as shown in Figure 11. Subsequently, the accuracy of spike sorting
for each spike group was simply obtained from the calculation:

Accuracy =
(

1 −
∣∣∣1 − Nretrieved

Nsynthetic

∣∣∣) • 100%

where N is the number of retrieved or synthetic spikes.
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