
ORIGINAL RESEARCH ARTICLE
published: 07 November 2013

doi: 10.3389/fncom.2013.00152

Temporal binding of sound emerges out of anatomical
structure and synaptic dynamics of auditory cortex
Patrick J. C. May* and Hannu Tiitinen

Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science, School of Science, Aalto University, Aalto, Finland

Edited by:

David Hansel, University of Paris,
France

Reviewed by:

Emili Balaguer-Ballester,
Bournemouth University, UK
Le Wang, Boston University, USA

*Correspondence:

Patrick J. C. May, Brain and Mind
Laboratory, Department of
Biomedical Engineering and
Computational Science, School of
Science, Aalto University, PO Box
12200, FI-00076 Aalto, Finland
e-mail: patrick.may@aalto.fi

The ability to represent and recognize naturally occuring sounds such as speech depends
not only on spectral analysis carried out by the subcortical auditory system but also on
the ability of the cortex to bind spectral information over time. In primates, these temporal
binding processes are mirrored as selective responsiveness of neurons to species-specific
vocalizations. Here, we used computational modeling of auditory cortex to investigate
how selectivity to spectrally and temporally complex stimuli is achieved. A set of
208 microcolumns were arranged in a serial core-belt-parabelt structure documented in
both humans and animals. Stimulus material comprised multiple consonant-vowel (CV)
pseudowords. Selectivity to the spectral structure of the sounds was commonly found
in all regions of the model (N = 122 columns out of 208), and this selectivity was only
weakly affected by manipulating the structure and dynamics of the model. In contrast,
temporal binding was rarer (N = 39), found mostly in the belt and parabelt regions. Thus,
the serial core-belt-parabelt structure of auditory cortex is necessary for temporal binding.
Further, adaptation due to synaptic depression—rendering the cortical network malleable
by stimulus history—was crucial for the emergence of neurons sensitive to the temporal
structure of the stimuli. Both spectral selectivity and temporal binding required that a
sufficient proportion of the columns interacted in an inhibitory manner. The model and
its structural modifications had a small-world structure (i.e., columns formed clusters
and were within short node-to-node distances from each other). However, simulations
showed that a small-world structure is not a necessary condition for spectral selectivity
and temporal binding to emerge. In summary, this study suggests that temporal binding
arises out of (1) the serial structure typical to the auditory cortex, (2) synaptic adaptation,
and (3) inhibitory interactions between microcolumns.
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INTRODUCTION
The essence of natural sounds lies in their temporal structure.
For example, speech sounds have a rich spectral mix of harmonic
components, band-pass noise, and silent periods (Fant, 1970;
Kent and Read, 1992). The temporal order in which these compo-
nents are delivered determines whether vocalizations amount to
intelligible speech and, ultimately, what their semantic interpre-
tation is (Marslen–Wilson and Welsh, 1978; Klatt, 1979). Other
examples of sounds whose temporal structure lends them a mean-
ingful interpretation include music and animal communication
sounds. To process such sounds, the brain must therefore rely
not only on spectral analysis, but also on temporal binding of
spectral information over varying time spans. It seems that the
cochlea, in the initial part of the auditory pathway, provides
a filter bank which feeds information into multiple tonotopic
streams of the subcortical auditory system; these in turn pro-
vide auditory cortex with a representation of the distribution of
sound energy across frequency which is robust against intensity
changes (for a review, see Young, 2008). Spectral analysis would
therefore seem to be a redundant task for auditory cortex, and
it has been suggested that its function is to perform temporal

binding (Nelken, 2004). In indirect support of this, there is a
wealth of observations from cortex confirming the fact that nerve
cells respond selectively to temporally complex sounds (McKenna
et al., 1989; Rauschecker et al., 1995; Wang et al., 1995; Brosch
and Schreiner, 1997, 2000; Rauschecker, 1997; Brosch et al., 1999;
Tian et al., 2001; Kilgard and Merzenich, 2002; Bartlett and Wang,
2005; Brosch and Scheich, 2008; Recanzone, 2008; Sadagopan and
Wang, 2009). Behaviorally, temporal binding appears to oper-
ate concurrently on many time scales, as is made evident by our
ability to make sense of speech both on the word and sentence
levels. What remains unclear are several central aspects of the neu-
ral basis of temporal binding: What determines the time span of
binding? How is the variety of time scales of binding achieved?
How does learning and memory interplay with temporal binding?
How does temporal binding in the auditory modality differ from
that in the visual modality? However, before we can even begin to
answer these questions—either experimentally of through com-
putational modeling—we must first address the very basic issue
of what temporal binding is in terms of brain activity.

An intracortical window into the structure of the auditory
cortex is provided by the results from primates (Pandya, 1995;
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Hackett et al., 1998; Kaas and Hackett, 2000): Subcortical infor-
mation originating from the cochlea arrives via the inferior col-
liculus and the thalamus to at least three core areas of auditory
cortex (including primary auditory cortex) in the lateral sulcus,
each containing sharply-tuned, tonotopically organized cells. The
core areas are surrounded by eight belt areas comprising several
tonotopic fields. Belt areas receive feedforward input from the
core and are also modulated by reciprocal connections between
neighboring belt areas. In turn, belt areas are bordered by lat-
eral parabelt areas, which lack direct input from the core and are
therefore driven specifically by the belt. Thus, feedforward activa-
tion in auditory cortex is sequential due to the core-belt-parabelt
progression of activity. However, this feedforward connectivity is
complemented by feedback connections which progress in reverse
order, from the parabelt to the belt, and from the belt to the core.
Further, as areas in each stage are interconnected most densely
with their nearest neighbors, several parallel core-belt-parabelt
streams are formed, with an overall rostral-caudal subdivision
being evident. A similar organization has been identified in
humans: The primary auditory cortex, in the postero-medial part
of Heschl’s gyrus (HG), is made up of three tonotopically orga-
nized fields and is surrounded by belt areas on the lateral part
of HG and along the planum temporale (PT) and the superior
temporal gyrus (STG; Galaburda and Sanides, 1980; Rivier and
Clarke, 1997; Sweet et al., 2005). Serial activation, consistent with
a core-belt-parabelt structure, is evident in intracortical (Yvert
et al., 2005; Guéguin et al., 2007; Gourévitch et al., 2008) and non-
invasive (Inui et al., 2006; Chevillet et al., 2011) measurements in
human auditory cortex. Thus, the auditory cortex of both humans
and non-human primates seems to be uniquely characterized by
multiple parallel streams of information flow with a distinctly
serial, three-level structure. This can be contrasted with the visual
and somatosensory cortices, where primary areas not only con-
nect to immediately surrounding belt areas but also bypass these
by connecting directly with anatomically more distant areas (see
Kaas and Hackett, 2000).

Auditory cortex is characterized by adaptation, the short-term
modification of the responsiveness of neurons by auditory stim-
ulation, which is mostly suppressive in nature and lasts up to
seconds. This phenomenon—also known as forward suppression
and forward masking—seems to be stimulus-specific and can be
observed both intracortically and non-invasively. In single-cell
recordings in the cat primary auditory cortex, the response to a
probe tone can be diminished if it is preceded by a masker tone
(Calford and Semple, 1995; Brosch and Schreiner, 1997, 2000;
Ulanovsky et al., 2003). When the probe and the masker tone
are both set to the characteristic frequency of the cell, the magni-
tude of this forward suppression effect as well as the recovery time
from it (53–430 ms) are maximized. Similar probe-masker effects
can be observed in MEG and EEG measurements in humans: The
most prominent response in the auditory event-related poten-
tial is the N1 and its magnetic counterpart N1m (also known
as N100 and N100m). The N1(m) peaks at round 100 ms after
stimulus onset and, compared to other event-related responses,
is a particularly sensitive indicator of adaptation: the magni-
tude of the N1(m) is diminished already after a single stimulus
repetition, and the recovery from this adaptation takes several

seconds (for a review, see May and Tiitinen, 2010). Adaptation
observed in cortex seems to be cortical in origin rather than
being an effect which is produced subcortically and merely passed
on to the response patterns of cortical neurons. (Brosch and
Schreiner, 1997; Ulanovsky et al., 2004; Wehr and Zador, 2005;
see also Calford and Semple, 1995). Synaptic depression is the
most likely candidate for the mechanism of adaptation (Wehr
and Zador, 2003, 2005). This conclusion is supported by mea-
surements on the time scales of adaptation (Ulanovsky et al.,
2004): Stimulus-specific adaptation has several concurrent time
scales, ranging from a few milliseconds to tens of seconds, which
seem to reflect those present in the stimulation. Importantly,
these time scales match the several co-existing time constants
which describe the lifetime of synaptic depression of corticocor-
tical synapses (Tsodyks and Markram, 1997; Varela et al., 1997;
Markram et al., 1998). Further, computational modeling studies
show that synaptic depression alone can account for the response
patterns associated with stimulus-specific adaptation (Mill et al.,
2011, 2012).

Temporal binding performed by auditory cortex is indicated
by intracortical results. Cells in core and belt areas of audi-
tory cortex exhibit enhanced responses to sounds when these
are presented as part of sound sequences rather than as iso-
lated stimuli, as has been found in the case of pure tones
(McKenna et al., 1989; Brosch and Schreiner, 1997, 2000; Brosch
et al., 1999; Brosch and Scheich, 2008; Sadagopan and Wang,
2009) noise sequences, (Kilgard and Merzenich, 2002), and
amplitude-modulated sounds (Bartlett and Wang, 2005). These
cases demonstrate temporal combination sensitivity (CS), that is,
an auditory stimulus elicits a weak response when it is presented
in isolation but a strong response when it is immediately pre-
ceded by a specific sequence of sound. Temporal binding is also
required by core and belt neurons which show selectivity to the
direction of frequency modulation (e.g., Tian and Rauschecker,
1994, 1998, 2004; Kowalski et al., 1995; Godey et al., 2005).
Responses to species-specific vocalizations also point to spectral
and temporal binding. Single-cell measurements in rhesus mon-
key reveal that cells in the belt and parabelt respond selectively to
monkey calls (Rauschecker et al., 1995) and also show temporal
CS (Rauschecker, 1997). Also, cells which respond preferentially
to monkey calls compared to their time-reversed versions can
be found in the marmoset (Wang et al., 1995) and macaque
(Recanzone, 2008). In the rhesus monkey, a preponderance of
cells selective to call identity has been found in a pathway that
extends from the lateral belt areas anterior to the core, and extends
to anterior prefrontal cortex (Tian et al., 2001). This kind of selec-
tivity might, hypothetically, tie in with non-invasive results from
the human brain on selectivity to the acoustic-phonetic content
of speech content (Leaver and Rauschecker, 2010). Also, results
from the human brain indicate the presence of areas in the ante-
rior temporal cortex which are selectively activated by speech
(Binder et al., 2000), its acoustic-phonetic content (Leaver and
Rauschecker, 2010; DeWitt and Rauschecker, 2012), and melodic
structures (Patterson et al., 2002).

However, the neural mechanisms of temporal binding are cur-
rently unknown. Delay lines have been suggested as a solution,
whereby a vocalization-selective cell is activated by the concurrent
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arrivals of delayed and on-time representations of the respec-
tive initial and later portions of the vocalization content (Leaver
and Rauschecker, 2010). Similar delay mechanisms have also
been suggested as an explanation of FM response selectivity (e.g.,
Voytenko and Galazyuk, 2007; Ye et al., 2010) and of the auto-
correlation analysis underlying pitch perception (e.g., Licklider,
1951; Meddis and Hewitt, 1991). Given the time span of human
and monkey vocalizations, this explanation would require cortical
activation delay lines of (at least) several hundred milliseconds.
As this is physiologically somewhat implausible in view of the
10-ms delay between cochlea and cortex activations (Liégeois-
Chauvel et al., 1994), it may be prudent to investigate other
possibilities. We recently suggested that the mechanism of tem-
poral binding in auditory cortex is provided by stimulus-specific
adaptation expressed through activity-dependent depression of
synaptic strengths on the single-cell level and modifications of
the N1(m) response on the mass-action level (May and Tiitinen,
2007, 2010). In this scheme, each stimulus modifies the auditory
cortex so that subsequent stimuli are processed in a system which
bears the memory traces of past events. Expressed in terms of
artificial neural networks, the activation of the network modifies
the network weights in a local manner. Consequently, the struc-
ture of the network evolves with the stimulation and, thus, the
input–output transformation becomes dependent on the set of
past input patterns and their temporal order. A related princi-
ple has been suggested to underlie pitch perception: the cortical
activity elicited by incoming stimuli uses top-down connections
to modulate the dynamics of subcortical areas; this results in a
temporal window of integration which adapts according to cur-
rent stimulation and allows for pitch perception to occur across
a wide range of stimulus periodicities (Balaguer-Ballester et al.,
2009).

Here, we explore how the neural mechanisms of temporal
integration might be explained by the hierarchical structure of
auditory cortex combined with synaptic depression. We mod-
eled auditory cortex as a system comprising multiple core, belt,
and parabelt areas. Further, the structure of auditory cortex
was approximated through (1) topographic connectivity between
areas, (2) feedback connections from parabelt to belt and from
belt to core, (3) a presence of multiple parallel core-belt-parabelt
streams, and (4) a serial core-belt-parabelt structure. In sim-
ulations of the model, we varied the structure of the model,
the decay time of synaptic depression, and the proportion of
inter-column inhibitory connections in an attempt to capture
the features which are important for the emergence of cortical
sensitivity to the spectral and temporal structure of complex,
naturally-occurring sounds. As stimulus material, the simula-
tions used pseudowords comprising random combinations of
consonant-vowel (CV) pairs. The core, belt, and parabelt regions
of the model were probed for the ability of their constituent neu-
ral populations to respond selectively to the stimuli, that is, to
differentiate the stimuli in terms of the amplitude of stimulus-
elicited activity. Importantly, we tested how well these regions
performed temporal binding of the stimuli. This was achieved by
presenting CV components of the stimuli in isolation as well as
time-reversed versions of the stimuli: a stronger response to the
original, intact stimulus compared to these modifications (which

retained the original spectral structure) indicated temporal bind-
ing ability. We hypothesized that synaptic depression would be
crucial for temporal binding. Also, we expected that the parallel
and serial connectivity pattern of auditory cortex would be useful
for temporal binding.

METHODS
MODEL DYNAMICS AND STRUCTURE
Dynamics
We simulated auditory cortex with a model comprising N =
208 “microcolumns,” each containing a population of excitatory
(pyramidal) cells and a population of inhibitory interneurons.
The basic unit of the model was the pooled activity of such an
excitatory or inhibitory population described through the Wilson
and Cowan firing rate model (Wilson and Cowan, 1972). Thus,
for each population, firing rate g depended on the state vari-
able u through a non-linear monotonically increasing function
g(u) = tanh (2/3) (u − θ) when u > θ, g(u) = 0 otherwise,
where θ = 0.1 is a threshold constant. With the state variables
of the excitatory and inhibitory cell populations described by
the vectors u = [u1 . . . uN ] and v = [v1 . . . vN ], respectively, the
dynamic equations describing neural interactions are

τmu̇(t) = −u(t) + Wee · g[u(t)] − Wei · g[vi(t)] + Iaff(t),
τmv̇(t) = −v(t) + Wie · g[u(t)]

(1)

where τm = 30 ms is the membrane time constant, Wee > 0 is the
matrix of excitatory synaptic weights connecting the pyramidal
populations to each other, Wie > 0 represents the weights from
pyramidal populations to interneuron populations, and Wei > 0
are the weights from the interneurons to the pyramidal cells.
Further, Iaff is the vector describing afferent input arriving to cor-
tex from the auditory pathway. Synaptic depression was assumed
to affect the interactions between the pyramidal cells and was real-
ized by modifying Wee by a time-dependent depression term a(t)
so that the effective synaptic weight between columns i and j is
aij(t)wij and depends on the presynaptic activity through

ȧij(t) = 1 − aij(t)

τa
− kaij(t)g

[
uj(t)

]
, (2)

where τa = 0.8 s is the time constant of adaptation and k = 20 is
a constant (for similar models of auditory cortex, see May et al.,
1999; Loebel et al., 2007; May and Tiitinen, 2010). An example
of the time course of adaptation is shown in Figure 1B: In this
instance, continuous pure-tone stimulation results in a relatively
fast onset of adaptation, with a(t) reaching a minimum within
around 100 ms. Recovery after stimulation was slower, with a(t)
taking several seconds to approach its resting state of a = 1.

Structure
The 208 columns were divided into 13 cortical areas, each con-
taining NF = 16 columns, where each column comprised one
excitatory and one inhibitory population (as described above).
The structure of the model was determined at three levels of reso-
lution: connections within a column, connections within an area,
and connections between areas. Synaptic weights were strongest
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FIGURE 1 | Time course of model variables. In this example, the model
was presented with a 600-ms pure tone of frequency 5700 Hz. (A) The
panel shows the behavior of an excitatory population in the core area for
which the pure tone is the preferred stimulus. The state variable u exhibits
a transient response peaking at around 50 ms. This response is then
followed by sustained activity which rapidly dies away after stimulus offset.
(B) The adaptation (suppression) term of a synaptic connection made by
the excitatory population starts out at 1.0, the resting value. After stimulus
onset, it reaches a minimum of around 0.2 at around 100 ms; after stimulus
offset, adaptation recovers slowly (taking several seconds to reach the
resting value again). The gray bar indicates stimulus duration.

within a column, with intra-column recurrent excitation medi-
ated through diagonal values of Wee set to wjj = 6. Inhibition was
assumed to be local, with the interneurons of each column pro-
jecting only to the pyramidal cells of that column. Thus, as shown
in Figure 2A, the only non-zero values of Wei were on the diago-
nal and had a magnitude of 10. The local, interneuron-targeting
excitatory connection within the column had a magnitude of 2
(i.e., the diagonal values of Wie). As shown in Figure 1A, these
parameter values resulted in columns in the core region respond-
ing to preferred pure tone stimulation with a transient response
followed by sustained activity of stimulus duration (see Wang
et al., 2005).

Within each area, inter-column connections originated from
the pyramidal cells though Wee and Wie. In each of these matrices,
these intra-area connections were described by the 13 subdivi-
sions along the diagonal, where each subdivision can be thought
of as constituting a 16 × 16 “intra-area” matrix (Figure 2A).
The probability of a directed connection between two columns
was p0 = 0.75. Connection probability had a Gaussian drop-off
from the diagonal with a standard deviation of σ = 0.6 p0NF

(Levy and Reyes, 2012). These excitatory connections could either
be functionally excitatory (via Wee) or functionally inhibitory
(via Wie), that is, they targeted the pyramidal or interneuron pop-
ulation of the receiving columns, respectively. Note that in the
following, functionally inhibitory connections refer to the exci-
tatory connections made from one column to the inhibitory
interneuron population of another column. Evidence for such
lateral inhibitory interactions has been found in A1 (Kurt et al.,
2008; Moeller et al., 2010), and was assumed to hold for all
areas in the model. These excitatory (Wee) and interneuron-
targeting, functionally inhibitory (Wie) lateral connections had
a magnitude of 0.5 and 2.0, respectively. The probability that
an intra-area connection was functionally inhibitory rather than
excitatory was pinh = 0.8. All inhibition in the model was local
in the sense that inhibitory populations projected within the col-
umn (i.e., Wei had diagonal values only), and were targeted by

pyramidal populations from within the same area (i.e., the only
non-zero values of Wie were in the 13 subdivisions along the
diagonal). Thus, with the assumption that all inter-area con-
nections were functionally excitatory, this resulted in an overall
proportion of 50% inhibitory connections in the entire model.
Simulations, not shown here, demonstrated that allowing for
global inhibitory connections between areas had no effect on
model performance.

Inter-area connectivity was modeled on results from primates
(Hackett et al., 1998). Connections between areas were assumed
to be functionally excitatory and thus were described through off-
diagonal values of Wee. Afferent tonotopically organized input Iaff

targeted three interconnected “core” areas only. These were inter-
connected with eight surrounding “belt” areas which, in turn,
were interconnected with two “parabelt” areas (Figure 2B). With
no direct connections between the core and parabelt, the model
had a serial structure. Strong and weak connectivity as indicated
by the results of Hackett et al. (1998) was equivalent to connec-
tion probabilities p1 = 0.1 and p2 = 0.05, respectively. With core
and belt connections occurring only between neighboring areas
in the layout illustrated in Figure 2B, this resulted in multiple
core-belt-parabelt streams of connections with a roughly “ros-
tral” and “caudal” subdivision. Connections between areas were
topographic (De la Mothe et al., 2006) with most connections
occurring near the diagonal on the relevant subdivision of Wee

(Gaussian drop-off, σ = 0.6 pNF). Thus, as shown in Figure 2A,
each inter-area subdivision of Wee was characterized by a diag-
onal structure. Assuming a 10-ms signal delay from cochlea to
cortex (Liégeois-Chauvel et al., 1991), the above setup resulted
in onset latencies of 17, 39, and 54 ms for the core, belt, and
parabelt region, respectively (measured through g of the excita-
tory population of the microcolumn which generates the maximal
response in each region). These onset latencies agree well with
non-invasive results from the human auditory cortex (serial acti-
vation 17–48 ms; Inui et al., 2006; see also May and Tiitinen,
2010).

STIMULI
The current study used 12 American-English CV combinations
of voiced stop consonants /b/, /d/, and /g/ and vowels /a/, /ae/,
/i/, and /u/ (Stephens and Holt, 2011). These were randomly
combined into eight CVCV pseudowords with an average dura-
tion of 663 ms (range: 570–712 ms). The stimuli were normalized
with respect to their root-mean-square values. To model the spec-
tral analysis carried out by the subcortical auditory pathway,
the stimuli were transformed into spectrograms with 16 fre-
quency channels (spanning frequencies 20–13600 Hz) and 1-ms
time resolution. This crude approximation provided a tonotopic
representation of the stimuli capturing the time-evolution of
their spectral content. An example of the time-frequency repre-
sentation of a pseudoword is shown in Figure 3A. To study the
sensitivity of the model to the temporal structure of stimula-
tion, the stimuli were also presented as time-reversed versions
(Figure 3B). Also, the pseudowords were divided into their con-
stituent CV stimuli and these were presented separately to the
model (Figures 3C,D). Thus, the total stimulus set comprised 28
vocalizations. All stimuli had a linear onset and offset ramp of
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FIGURE 2 | The model structure. (A) The 208 × 208 weight matrices Wei,
Wie, and Wee of the model determine the intra- and inter-area connectivity
between the columns which were divided into 13 areas: three core areas
(C1-3), eight belt areas (B1-8), and two parabelt areas (Pb1-2). Afferent input
(not shown) targets the three core areas. Inhibition is local in the sense that
the inhibitory interneuron population of each column targets the population of
excitatory neurons of the same column. Thus, Wei has non-zero values along
the diagonal only. Inhibition is local also in the sense that the interneuron
population receives excitatory input from within the same area only, and
hence Wie has a diagonal structure. Connections between excitatory
populations occur within the column (diagonal values of Wee), within each
area (diagonal subdivisions of Wee), and between areas (off-diagonal

subdivisions of Wee). Because of topographic connectivity, each subdivision
of Wee has a diagonal structure. Connections below and above the diagonal
subdivisions are feedforward and feedback connections, respectively. Dots
represent non-zero values. (B) A schematic diagram of the model (equivalent
to Wee above) shows the inter-area connectivity of the model. Mimicking
auditory cortex, the network consisted of core (C1-3), belt (B1-8), and parabelt
(Pb1-2) regions, each divided into multiple areas with denser and sparser
interconnections (denoted by large and small arrowheads, respectively). With
afferent input targeting the core areas only, there were multiple streams of
feedforward activation, all of them progressing serially from the core to the
belt and from the belt to the parabelt. Connections between areas were
topographic and bi-directional.

5 ms. The stimulus spectrograms were normalized to unity and
presented to the three core areas, with each frequency channel
targeting one column per core area.

ANALYSIS
To study the selectivity of the model to the speech stimuli,
we calculated the Preference Index (PI) for each column on
the basis of the firing rate g of the pyramidal cell population.
The PI, utilized in primate studies to measure selectivity to
species-specific vocalizations (e.g., Rauschecker et al., 1995; Tian
et al., 2001; Recanzone, 2008), is derived by first identifying the

preferred stimulus (PS), that is, the stimulus that elicited the max-
imal response. The PI is then defined as the number of stimuli
to which a neuron yielded a response whose maximum ampli-
tude was at least 50% of the maximal response. With our set of
eight stimuli, an index value of 1–3 indicated “strong” preference,
that is, the column responds selectively to only a small subset of
the stimuli; an index of 4 and above indicated “weak” preference,
where the column’s ability to distinguish between stimuli is low
(see Rauschecker et al., 1995). A column showing strong prefer-
ence to a subset of the stimuli is evidence for spectral selectivity,
but this does not yet entail sensitivity to temporal structure.
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FIGURE 3 | The time-frequency representation of the afferent

stimulation targeting each core area. This example shows the activation
due to (A) the pseudoword /diba/, (B) its time reversed version, and (C,D)

the separate CV stimuli /di/ and /ba/.

Temporal binding in a column was demonstrated when the
column exhibited temporal CS. To meet the requirements of CS,
a column had to produce a large response, in terms of the max-
imal value of the firing rate g of the pyramidal cell population,
only when the spectral content of the PS was delivered in a spe-
cific order (Rauschecker, 1997) or when the PS was presented in
its original form as opposed to its time-reversed version (Wang
et al., 1995). Accordingly, we used the time-reversed pseudowords
and the constituent CV syllables to measure whether the columns
of the model exhibited CS. A column was considered temporally
sensitive if the magnitude of the response (i.e., the maximal value
of g) to the PS was more than double that to the reversed ver-
sion of the PS and to the constituent CV elements presented in
isolation.

To study how temporal binding emerges out of the model,
three experiments were carried out in which (1) model struc-
ture, (2) adaptation decay time, and (3) the proportion of

functionally inhibitory Wie connections were varied in turn. In
each experiment, the effect of these variations on two mea-
sures were quantified: first, the proportion of spectrally selective
columns for which PI < 3; second, the proportion of temporal CS
columns, that is, those whose responses required temporal bind-
ing. As shown in Figure 4, the structure of the original, intact
model (Case 0, Figure 4A) was varied in the first experiment by
manipulating the tonotopic mappings, the feedback connectiv-
ity, the parallel stucture, and the serial structure of the model.
This resulted in four modified versions of the model: in Case
1 (Figure 4B), the topographic connectivity between areas was
transformed into random connectivity. In Case 2 (Figure 4C), the
parabelt-belt and belt-core feedback connections were removed.
In Case 3 (Figure 4D), the parallel structure was removed by
redistributing the connections so that all areas became inter-
connected with equal connection density. To maintain the serial
structure, no interconnections between the core and parabelt
were allowed in this case. Finally, in Case 4 (Figure 4E), the serial
structure was removed by having afferent connections target not
only the three core areas, but also the belt and parabelt areas.
In these modifications, the intra-area connectivity, including the
inhibitory connections, were left intact. Thus, the global pro-
portion of inhibitory connections remained at the default (Case
0) level of around 50% in Cases 1, 3, and 4. In Case 2, where
the excitatory feedback connections were cut, the proportion of
inhibitory connections rose to 56%. In the second experiment,
the intact model was again used, but the adaptation time constant
was manipulated in five logarithmic steps in the 50–800 ms range.
In the third experiment, the proportion of functionally inhibitory
connections (i.e., those described in the inter-neuron targeting
Wie) was varied by changing pinh from zero to one in 10 steps.

The various model structures were quantified by using the
scaled small-world index σ (Watts and Strogatz, 1998; Rubinov
and Sporns, 2010). Small-worldness seems to be a characteristic
of cortical connectivity and is thought to contribute to the effi-
ciency of cortical functioning (Hilgetag and Kaiser, 2004; Sporns
and Zwi, 2004; Sheppard et al., 2012). Small-world networks
inhabit the continuum between regular architectures and ran-
dom networks, and are characterized by node clusters and by all
nodes being within close reach of each other in terms of node-
to-node distance. That is, unlike regular networks, small-world
networks have short average node-to-node path lengths λ and,
unlike random networks, they have a high clustering coefficient
γ which expresses the probability that connection neighbors of a
node are also connected to each other. The index σ is the ratio
γ/λ with values >1 indicating a small-world structure (both γ

and λ are scaled relative to equivalent values in random net-
works). Here, the small world index was calculated for the total
directed connectivity between columns, irrespective of whether
the connections were functionally excitatory or inhibitory. Thus,
the analysis targeted a combination of the weight matrices Wee

and Wie.
To further explore the effect of small-world connectivity on the

emergence of stimulus and combination selectivity, we varied the
structure of a 208 node network which was identical to the intact
model of auditory cortex except for its inter-column connectivity.
That is, Wei was left untouched as were the diagonal values of Wee
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FIGURE 4 | The column-to-column connection matrices of the intact

model (Case 0) and of the structural modifications of the model

(Cases 1–4). The columns were divided into 13 areas designated into
core, belt, and parabelt regions. (A) Case 0 represents the intact model
and represents the connectivity shown schematically in Figure 2. The
parallel structure of the model comes about by the connections targeting
nearest neighbor areas (i.e., no connections in light gray sections). The
serial structure arises out of afferent input targeting the core areas only
(not shown) and by the lack of core-parabelt interconnections (dark gray).
Blue and red dots signify functionally excitatory (Wee) and inhibitory
connections (Wie), respectively. The total number of connections is

represented by nz. (B) In Case 1, the topographic connections from one
area to another have been replaced by random connections. (C) In Case
2, the belt-core and parabelt-belt feedback connections have been
removed. (D) In Case 3, the parallel structure has been abolished by
redistributing the connections so that areas are interconnected equally
densely irrespective of inter-area distance. The serial structure is
maintained in this modification. (E) In Case 4, the serial structure of the
model has been removed by targeting afferent input to all the regions,
that is, to the core, the belt, and the parabelt. The intracortical
connections in this case were left unchanged, resulting in a connection
matrix similar to the intact version of the model.

and Wie. To gain the off-diagonal terms of Wee and Wie, a sin-
gle 208 × 208 matrix L was first constructed and manipulated in
terms of its small-world index σ. At the regular network extreme,
columns were connected to each other in a nearest neighbor
fashion within 10 column distance: Lij > 0 iff |i − j| ≤ 10, 0 oth-
erwise. This resulted in a network with nz = 4466 connections. To
gain variation in the small-world index of the network, nrw con-
nections between random column pairs where reassigned to other
pairs. The probability prw of this rewiring was varied from 0 to 1.
As a result, the small-world index increased from an initial σ = 2
at prw = 0 to σ = 5 at prw = 0.1. As prw was further increased to
prw = 1, σ decreased monotonically to σ = 1. For each instance
of prw, the matrix L was separated into the diagonal terms of Wee

and Wie. To keep the proportion of functionally inhibitory con-
nections the same as in the intact model, 50% of L connections
were randomly assigned to Wee (with a magnitude of 0.5) and
50% to Wie (magnitude 2.0).

Because of the stochastic nature of the synaptic weight dis-
tributions, each variation of the model was generated 30 times.
These sets provided the mean measurement values and standard
errrors of the mean (sem) reported in the Results section. In each
of the three experiments, a set of 30 models with the default
settings was generated anew to provide a built-in replication

of the performance of the original model. Repeated-measures
analysis of variance (ANOVA) was used to analyze the effects
of structure, adaptation time constant, proportion of inhibitory
connections and region (i.e., core, belt, parabelt) on (1) the pro-
portion of spectrally selective columns and (2) the proportion of
columns exhibiting temporal binding. Newman–Keuls post-hoc
tests were performed when appropriate. In addition, the effect
of the small-world index σ on the number of spectrally selec-
tive and temporally sensitive columns in a random network were
inspected via regression analysis.

RESULTS
A set of eight CVCV pseudowords were used as stimulus material.
The behavior of the model was quantified by examining the firing
rates of the excitatory (pyramidal) cell populations of each micro-
column. With the default parameter values, the microcolumns of
the model exhibited a variety of response profiles, as shown in
Figure 5. A majority of the columns were strongly selective to the
pseudowords (Figures 5A,B), that is, they responded to only three
or fewer of the stimuli (PI ≤ 3; N = 122 ± 2 sem out of 208). A
minority of the columns showed temporal CS (CS; N = 39 ± 3):
they responded prominently to their PS but, importantly, pro-
duced either weak or no responses to the isolated CV elements
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FIGURE 5 | A demonstration of various response profiles from three

columns. (A) This example shows the activity of the pyramidal cell
population of a parabelt column which displayed both spectral selectivity and
temporal binding. Top: the column responded to the stimulus /diba/ at a
latency of around 500 ms, but generated no response to any of the other
seven pseudowords. Thus, the column was spectrally selective, showing
strong preference with PI = 1. Bottom: the column responded to its
preferred stimulus (blue curve), but failed to respond to the time-reversed
version of this pseudoword or to the CV constituents presented in isolation
(red curves). Thus, the column showed temporal CS indicating the presence

of temporal binding. (B) An example from the belt shows a column which
again is spectrally selective, responding to a subset of three pseudowords
(PI = 3). However, in this case, the column responds not only to the preferred
stimulus/diba/ but also to the time-reversed version of this pseudoword and
to the CV syllable/ba/. Thus, the activity of the column does not indicate
temporal binding. (C) In this example, the column shows weak preference,
responding equally strongly to all eight pseudowords (PI = 8). Also, strong
responses are elicited by reversed pseudowords and the CV constituents.
Thus, the column was neither spectrally selective nor showed temporal
binding.

of the PS and to its time-reversed version (Figure 5A). This was
in contrast to columns which were selective to particular stim-
uli (i.e., PI ≤ 3) but which did not fulfill the requirements of
CS (N = 86 ± 2; Figure 5B), as well as to columns which were
not selective to the stimuli (PI > 3; N = 86 ± 2; Figure 5C). The
scaled small-world index had a value of σ = 3.2 indicating that
the model was of the small-world type.

Inspecting the model behavior at a finer resolution, spectral
selectivity was evident in all regions: In the core, 71% (±1%
sem) of columns exhibited strong preference, that is, they had a
PI in the 1–3 range. In the belt and parabelt, strong preference
was evident in 55% (±1%) and 56% (±1%) of columns, respec-
tively. Columns exhibiting temporal CS were also present in all

regions. However, they were relatively rare in the core region (P =
5 ± 1%) but more frequently found in the belt (P = 23 ± 2%)
and the parabelt (P = 24 ± 2%).

As shown in Figure 6, the variations in the structure of the
model had differential effects on spectral selectivity and tempo-
ral CS. The proportion of spectrally selective columns (PI ≤ 3)
varied slightly according to structure [F(4, 116) = 25.3, p <

0.001] and this variation depended on region [F(8, 232) = 14.2,
p < 0.001]: In the core region, this proportion remained in the
60–70% range for all structural modifications, and in the belt
and parabelt it remained in the 50–60% range. In contrast,
temporal binding showed a more complex dependence on struc-
ture [F(3, 116) = 54.5, p < 0.001; region-structure interaction
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FIGURE 6 | The effect of structure on spectral selectivity and temporal

binding. (A–C) The proportion of columns exhibiting spectral selectivity
(PI ≤ 3) was weakly affected by the structural modifications (shown in
Figure 4). In all modifications (Cases 1–4, gray bars), spectral selectivity in
the core (A), the belt (B), and the parabelt (C) region remained at the high
level found in the intact version of the model (Case 0, white bars). (D–F) In
contrast, temporal binding was more sensitive to structural changes, as was

evident in the core (D), the belt (E), and the parabelt (F). In most
modifications (Cases 1–3), the proportion of CS columns remained at the
same magnitude level as in the intact model (Case 0). However, when the
serial structure was removed, very few CS columns could be found in any
region. Thus, a serial structure seems to be necessary for temporal binding.
(G) The small world index σ remained high for all versions of the model. Error
bars indicate sem.

F(8, 232) = 27.4, p < 0.001]. When inter-area topographic con-
nections were randomized (Case 1), feedback connections were
abolished (Case 2), or when the parallel structure was removed
(Case 3), the proportion of CS columns in the belt and para-
belt shrank from around 25% to around 20% (belt: Case 0 vs.
Case 3 p < 0.05, p = n.s. for other comparisons to Case 0;
parabelt: p < 0.01 for all comparisons to Case 0). In the core,
this proportion remained below 10% in all cases. Importantly,
when the serial structure of the model was corrupted by hav-
ing afferent input target not only the core but the belt and
parabelt also (Case 4), the proportion of CS columns drasti-
cally shrank to below 2% in the core, the belt, and the para-
belt region (core: p < 0.05; belt and parabelt: p < 0.001 in
all comparisons to Case 0). None of the structural variations
affected the small-world nature of the network, with σ > 3 in
all cases. Overall, the proportion of CS columns was larger in
the belt and parabelt than in the core [F(2, 58) = 165.1, p <

0.001].
As shown in Figure 7, the proportion of spectrally selective

columns increased as a function of the adaptation time constant
τa [F(4, 116) = 34.4, p < 0.001] although there were differential

effects of τa in the core, belt, and parabelt region [F(8, 232) = 21.4,
p < 0.001]. An increase of τa from 50 to 800 ms had little impact
on spectral selectivity in the core region, where the proportion of
columns with PI ≤ 3 remained at around 70% (p = n.s. for all
post-hoc comparisons). In contrast, spectral selectivity increased
as a function of τa in both the belt and the parabelt region: the
proportion of spectrally selective columns rose from 35 to 57% in
the belt region (p < 0.001), and from 39 to 59% in the parabelt
(p < 0.001). Also, temporal CS exhibited dependence on adapta-
tion [F(4, 116) = 63.7, p < 0.001] which was differentially affected
by region [F(8, 232) = 43.2, p < 0.001]. In the core region, very
few columns with CS were detected when τa was below 400 ms
(P < 1%), and emerged only when τa was increased to 800 ms
(P = 5%). In the belt, the proportion of CS columns monotoni-
cally increased as a function of τa from 0 to around 24%. A similar
effect was observed in the parabelt, where CS columns increased
from 0 to 27%. For comparison, we also ran a set of simulations,
where the adaptation had been removed (i.e., aij = 1, ∀i, ∀j). In
this situation, no CS columns were found in the model. In gen-
eral, compared to the belt and parabelt, the core region contained
a larger number of spectrally selective columns [F(2, 58) = 1228.0,
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FIGURE 7 | The effect of synaptic depression (adaptation) on spectral

selectivity and temporal binding. (A–C) The proportion of columns
showing spectral selectivity (PI ≤ 3) was differentially sensitive to the
adaptation time constant τa according to cortical region. In the core (A), this
proportion remained above 70% for all values of τa In the belt (B) and
parabelt (C) the frequency of spectrally selective columns increased from 40

to 60%. (D,E) In all regions, the proportion of temporal CS columns was an
increasing function of the adaptation time constant. With τa = 50 ms, no
such columns could be detected in the core (D), the belt (E), or the parabelt
(F). When τa was increased to 800 ms, CS columns constituted 5% of the
core and around 25% of the belt and parabelt. Thus, adaptation contributes
to both spectral selectivity and temporal binding. Error bars indicate sem.

p < 0.001] and a smaller number of columns exhibiting temporal
binding [F(2, 58) = 166.3.0, p < 0.001].

There was a strong dependence of both spectral selectivity
and temporal CS on the probability of functionally inhibitory
connections pinh in the model (Figure 8). In general, the num-
ber of spectrally selective columns was an increasing function
of pinh [F(7, 203) = 589.2, p < 0.001]. When pinh was below 0.4,
the model contained no spectrally selective columns. As pinh was
increased to unity, the proportion of these columns increased
monotonically to around 80% in the core. In the belt, the num-
ber of spectrally selective columns increased and reached a peak
of around 60% at pinh = 0.7. Similarly, in the parabelt, a peak
of around 60% was reached at pinh = 0.9. The proportion of CS
columns exhibited clear unimodal behavior [F(5, 145) = 15.5, p <

0.001]: for values below pinh = 0.4, there were no CS columns. As
pinh was increased beyond 0.4, the proportion of these columns
in the core reached a maximum of around 10% at pinh = 0.6. In
the belt and parabelt, a maximum of around 28% occured when
pinh = 0.9.

To explore how stimulus and combination selectivity are
affected by small-world connectivity, we varied the structure of
a 208-node network which was identical to the intact model of
auditory cortex except for its inter-column connectivity. In effect,
the off-diagonal (lateral) terms of Wee and Wie were combined
and redistributed into a connectivity matrix L. At the regular
network extreme, columns were connected to each other in a
nearest neighbor fashion (reflected in L having non-zero val-
ues along a diagonal stripe). To gain variation in σ, connections
between random column pairs where reassigned to other pairs.
The probability prw of this rewiring was varied from 0 to 1 (at

prw = 1, non-zero values of L were randomly distributed). As
shown in Figure 9A, the small-world index σ increased from an
initial σ = 2 to σ = 5 at prw = 0.1; the index σ decreased mono-
tonically to σ = 1 as prw was further increased to prw = 1. The
small world index correlated with neither the number of spec-
trally selectivity columns [R2 = 0.03, F(1.3) = 11.1, p < 0.001;
Figure 9B] nor the number of CS columns [R2 = 0.001, F(1.3) =
0.4, p = n.s.; Figure 9C].

DISCUSSION
The binding of spectral information over time represents a
computational challenge which the auditory cortex seems to
be especially adept at dealing with. As the underlying mecha-
nisms allowing this have remained obscure, the current study
explored how the structure and dynamics of auditory cortex
contribute to the ability of the brain to represent sounds char-
acterized by a complex, time-evolving structure. We constructed
a model of interacting cortical microcolumns with a connec-
tivity pattern mimicking the core-belt-parabelt structure found
in the auditory cortices of humans and non-human primates
(Figure 2). This organization entails the presence of several par-
allel streams of feedforward activation progressing in a serial
manner from the core to the parabelt (for reviews, see Pandya,
1995; Kaas and Hackett, 2000; Eggermont and Ponton, 2002).
Further, the excitatory synapses between pyramidal cells exhib-
ited activity-dependent depression (adaptation). This adapta-
tion depended on past pre-synaptic stimulation and evolved
with a relatively long time constant of 800 ms (see May and
Tiitinen, 2010). The model showed selectivity to both the spec-
tral and temporal aspects of stimulation, and thus allowed us to
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FIGURE 8 | The effect of functionally inhibitory connections on

spectral selectivity and temporal binding. (A–C) The number of
spectrally selective columns increased as a function of the probability pinh

of inhibitory connections made between columns within the same area.
In the core (A), the belt (B), and the parabelt (C) region, no spectral
selectivity was found for pinh < 0.4. For larger values of pinh, a maximum

of around 80% was reached in the core, and 60% in the belt and
parabelt. (D–F) Temporal binding depended on pinh in all regions, and was
missing for pinh < 0.4. In the core (D), the proportion of temporal CS
columns reached a maximum of 8% at pinh = 0.6. In the belt (E) and
parabelt (F), maxima of around 27% occurred when pinh = 0.9. Error bars
indicate sem.

probe further what the contributing factors to temporal binding
might be.

When the model was presented with a selection of eight
CVCV pseudowords, each having a unique spectral composition,
a majority of the columns (122 out of 208) were found to be
selective to the stimuli in the sense that each responded only
to a small stimulus subset (PI ≤ 3). This selectivity resembles
that found in primate auditory cortex for species-specific com-
munication sounds (Rauschecker et al., 1995; Wang et al., 1995;
Rauschecker, 1997; Tian et al., 2001; Recanzone, 2008). While
this result implies that the columns of the model are able to per-
form spectral segregation of stimuli, this selectivity in itself does
not yet entail that the columns were performing temporal bind-
ing of spectral information. To probe for temporal binding we
used time-reversed versions of the pseudowords as well as the
CV constituents of the words, presented in isolation (Figure 3).
These modified stimuli were thus spectrally identical to the origi-
nal stimulus set, but either lacked the original temporal structure
or amounted to presenting parts of the original stimulus with-
out the correct historical context. Therefore, responses to the
original, intact stimulus combined with weak responses to the
modified stimuli implies combination selectivity (CS), that is,
selectivity to the specific ordering of the spectral information in
time. The simulations showed that a number of columns (39 out
of 208) exhibited CS, and these were mostly found in the belt
and parabelt regions. In summary, the model seems to be able to
both segregate the stimuli according to spectral structure and to
perform temporal binding of this structure. The model predicts
that spectral selectivity is a common feature of auditory cortex,

found in 59% of columns, in the core, belt, and parabelt regions.
In contrast, temporal binding is evident in a far smaller propor-
tion of columns (19%), which are mostly located in the belt and
parabelt.

Our simulations are in line with the intracortical results of
Recanzone (2008), who inspected the temporal binding ability of
cells in several areas belonging to either the core or belt region
of the auditory cortex of the macaque monkey. Using monkey
calls and their time-reversed counterparts, he found that only 10–
20% of cells exhibited temporal CS. While this agrees with our
results, Recanzone found no difference between the core and belt
areas in terms of CS. This discrepancy with our results might be
due to the default settings of the current model. For example,
by decreasing the probability of intra-region inhibitory connec-
tions from 0.8 to 0.6, thereby reducing the global proportion of
inhibitory connections from 50 to 37%, the difference between
the frequency of CS columns in the core and belt is reduced (see
Figures 8D–F). However, it must be emphasized that Recanzone
presented alert animal subjects with behaviorally significant stim-
uli. In contrast, the simulations of the current study were designed
to address the basic mechanisms of temporal binding, and as such
did not include top–down effects mediating stimulus significance
and attention.

The original, intact version of the model incorporated several
features of auditory cortex including: (1) topographic connec-
tivity between areas, (2) the feedback connections from parabelt
to belt and from belt to core, (3) the presence of multiple par-
allel core-belt-parabelt streams, (4) the serial core-belt-parabelt
structure in itself. When these features were corrupted each in
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FIGURE 9 | The dependence of spectral selectivity and temporal

binding on the small-world index σ. (A) Variations in the small-world
index were generated by starting off with a regular network where columns
were connected to only their nearest neighbors and then rewiring column
pairs randomly with the probability prw. This resulted in networks which
either had a clear small-world structure (σ = 5) or were random (σ ≈ 1).
(B,C) Neither spectral selectivity nor temporal binding were affected by the
small-world index. Measurements are given as total number of columns out
of 208. Error bars indicate sem.

turn (Figure 4), spectral selectivity remained intact (Figure 6).
In contrast, temporal binding appeared to be more sensitive to
structural variations. In the core, the proportion of columns
with temporal CS was little affected by the absence of topo-
graphic connections, feedback connections, or the presence of
multiple parallel streams. In the belt and parabelt, there was a
small decrease in this proportion (from 25 to 20%). In stark con-
trast, when the serial structure of the model was abolished by
adding afferent input to the belt and parabelt, the proportion of
CS columns collapsed to a negligible level (<2%) in all regions
of the model. It would be interesting to see whether this sen-
sitivity applies also in the case of other manipulations in serial
strucure, for example if the core areas were directly connected
with the parabelt. It is surprising that feedback connectivity had a

relatively small effect on model performance, given that feedback
connections from cortex to subcortical areas have a strong effect
on the tuning properties of subcortical neurons (Suga, 2012) and
their temporal window of integration (Balaguer-Ballester et al.,
2009). The current results tentatively suggest that cortico-cortical
feedback does not participate in spectral and temporal processing
as such but that its functional significance lies elsewhere, per-
haps in mediating attentional effects and the task relevance of
the stimuli. In addition, a potentially interesting aspect of the
model was its small-world structure, the intact version having
a scaled small-world index value of 3.2. Therefore it was char-
acterized both by clustering and short column-to-column path
lengths. However, simulations using random networks revealed
that small-worldness in itself contributed to neither spectral selec-
tivity nor temporal binding (Figure 9). In sum, while the ability
of the model to perform spectral and temporal segregation was
robust in the face of structural modifications, it seems that the
serial structure of auditory cortex is a necessary condition for
temporal binding to occur.

We varied the time constant of adaptation τa in the 50–800 ms
range and found that the number of CS columns increases mono-
tonically as a function of τa (Figure 7). Indeed, shortening the
decay time to 50 ms completely abolished the temporal bind-
ing found in the model. The maximum value of τa (800 ms)
was slightly larger than the average stimulus duration (660 ms).
A question for further investigation is therefore whether opti-
mum performance in terms of the number CS columns depends
on the ratio between stimulus duration and the adaptation time
constant. For example, if τa were further increased, would the
number of CS columns keep growing, or would it plateau out
or even start shrinking? The spectral selectivity to the stimuli
fared better at the reduction of adaptation decay time. In the
core region, selectivity remained at or above 70% for all val-
ues of τa. In the belt and parabelt, selectivity was reduced from
around 60% to around 40% as τa sank from the default value
of 800 ms to 50 ms. Thus, temporal binding was more sensi-
tive than spectral selectivity to variations in the adaptation decay
time. Importantly, these results imply that adaptation with a long
decay constant—matching the time span of the stimuli—could
provide the central mechanism through which cells in auditory
cortex become sensitive to the temporal structure of sound. These
results imply that stimulus-specific adaptation which is observed
both intracortically (Ulanovsky et al., 2004) and non-invasively
(May and Tiitinen, 2010) not only leads to diminished responses
when stimuli are repeated in laboratory conditions, but actu-
ally plays a central role when the brain forms representations
of naturally occurring sounds with a rich spectral and temporal
structure.

Inhibition was assumed to be local in the sense that
functionally inhibitory connections (i.e., interneuron-targeting
excitatory connections) to a column always originated from
the area of origin of that column. The global propor-
tion of functionally inhibitory connections in the model was
around 50%. While intra-area inhibition has been estab-
lished (Kurt et al., 2008; Moeller et al., 2010), there is
no experimental justification for the lack of long-range
inhibitory connections or for the 50% proportion of inhibitory
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connections used in the model. Indeed, as discussed above, this
estimate may be too high in view of the results of Recanzone
(2008). With these considerations, additional simulations were
run in which inhibition was switched from local (intra-area) to
global. Except for increasing somewhat the proportion of CS
columns in the core, these produced no change in model perfor-
mance and are not shown in this study. We also parametrically
varied the propensity pinh of inhibitory connections within each
area, and found that this had a clear effect (Figure 8). Both spec-
trally selective columns and those showing temporal CS were
negligible in number when the probability of inhibitory con-
nections was below 0.5. As pinh was increased, the proportion
of selective columns increased and peaked at around 28% when
pinh = 0.9. Thus, the presence of inhibitory connections between
columns appears to be crucial for both spectral selectivity and for
temporal binding.

Our simulations replicate the results from the primate brain
whereby cells in the anterior auditory and prefrontal cortex
respond selectively to vocalizations (Rauschecker et al., 1995; Tian
et al., 2001). Given that most neurons prefer more than one
stimulus (both experimentally and in simulations), it is unlikely
that speech sounds are represented via “grandmother cells” in a
place code. It is more likely that a population code is used, and
one might speculate that this exhibits the robustness necessary
for speech recognition to occur in noisy environments—one of
the primary and most difficult challenges in current research on
automatic speech recognition (Scharenborg, 2007). Therefore, an
explanation of how the brain identifies speech sounds despite a
great variation in their acoustic structure, might benefit from the
model of temporal binding presented here. This model together
with methods employed in May and Tiitinen (2010) could, hypo-
thetically, be tested with recent MEG results showing how human
cortex is activated by noisy speech sounds (Miettinen et al., 2010,
2011, 2012; Tiitinen et al., 2012).

It should be emphasized that temporal binding and spectral
selectivity to speech stimuli in the current model was not the
result of training, that is, long-term adaptation to the statisti-
cal structure of the stimulus environment. Rather, selectivity was
instantaneously available, the presence of a serial structure cou-
pled with synaptic depression and inter-column inhibition being
sufficient conditions for it to emerge. In this aspect, the cur-
rent model fits into the general framework of state-dependent
computations (also known as reservoir computing, echo-state
networks, and liquid-state machines) which are a promising new
approach for teaching artificial neural networks to make non-
linear and chaotic mappings (Jaeger and Haas, 2004; for a review,
see Lukoševicius and Jaeger, 2009) and may be useful as models of

brain function (for a review, see Buonomano and Maass, 2009).
Indeed, an interesting extension of both the current model and
of state-dependent computations generally may be to study how
long-term exposure to a particular stimulus environment (e.g., in
terms of species-specific vocalizations or a native language) affects
temporal binding and the mapping of complex stimuli.

In conclusion, the current simulations suggest that spectral
selectivity is a robust feature which survives a wide range of sim-
ulated parameter changes. In contrast, temporal binding seems to
require tuning of the structure and dynamics of auditory cortex:
It is strongly dependent on the presence of synaptic depres-
sion (adaptation) with a slow decay time arching over at least
the time span of the stimuli. Adaptation modifies the interac-
tion weights between microcolumns in a stimulus-specific way.
Thus, the input-output mapping of auditory cortex—occurring
on the fast time scale of firing rate changes—is not static but,
rather, depends dynamically on the immediate stimulus history.
Temporal binding can therefore be seen to emerge out of the
presence of slow and fast dynamics in the auditory cortex neu-
ral network. The exact connection of adaptation time spans and
stimulus length remains an interesting question which could be
approached by using stimuli with a larger variation in duration
than that of the current stimulus set. Further, the serial structure
of auditory cortex whereby feedforward activation progresses in
an orderly manner through several processing stages appears to be
necessary for the ability of cells in the belt and parabelt to perform
temporal binding. This was evident not only in simulations where
the serial structure was tampered with but also when looking at
the simulations as a whole. Compared to the core region, the belt
and parabelt—which were at least one synaptic connection fur-
ther away from afferent input than the core—exhibited temporal
binding more often and this ability was more sensitive to param-
eter changes. Thus, it seems that the serial structure contributes
to temporal binding by “isolating” the downstream parts of the
auditory system from stimulus-following afferent input, thereby
creating a subsystem (i.e., the belt and parabelt) where all excita-
tory inputs to pyramidal cells arrive via adaptive synapses. These
observations might partly explain why structural seriality seems
to be a peculiar feature of auditory cortex (Kaas and Hackett,
2000): as the temporal dimension of stimulation is the defin-
ing feature of auditory information, a system which has evolved
to process sound will probably utilize structural solutions which
support the emergence of temporal binding.
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