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Brain-machine interfaces (BMIs) are an emerging technology with great promise for
developing restorative therapies for those with disabilities. BMIs also create novel, well-
defined functional circuits for action that are distinct from the natural sensorimotor
apparatus. Closed-loop control of BMI systems can also actively engage learning and
adaptation. These properties make BMIs uniquely suited to study learning of motor and
non-physical, abstract skills. Recent work used motor BMIs to shed light on the neural
representations of skill formation and motor adaptation. Emerging work in sensory BMIs,
and other novel interface systems, also highlight the promise of using BMI systems to
study fundamental questions in learning and sensorimotor control. This paper outlines the
interpretation of BMIs as novel closed-loop systems and the benefits of these systems
for studying learning. We review BMI learning studies, their relation to motor control, and
propose future directions for this nascent field. Understanding learning in BMIs may both
elucidate mechanisms of natural motor and abstract skill learning, and aid in developing
the next generation of neuroprostheses.
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Recent technological advances have made it possible to directly
connect brains with machines. Recorded neural activity can be
used to control external devices in real-time, and neural stimula-
tion can be applied based on external events to convey informa-
tion into the brain. These brain-machine interfaces (BMIs) have
a wide range of potential applications, including rehabilitative
and restorative therapies for patients with neurological deficits.
Cochlear implants, for instance, are widely used to restore hearing
to patients with severe hearing loss. Recently, there have been
demonstrations of BMIs used to restore movement in para-
lyzed humans by using neural signals to control external devices
(Hochberg et al., 2006, 2012; Collinger et al., 2012).

Much as there are many potential applications for BMI tech-
nology, there are a variety of possible implementations. BMIs
can be used to replace motor or sensory systems, or both simul-
taneously. Motor (efferent) BMIs use recorded neural activity
to control external devices, while sensory (afferent) BMIs use
neural stimulation to transmit information to the brain. Many
different types of neural signals can be used for efferent control
including electroencephalography (EEG), electrocorticography
(ECoG), local-field potentials (LFPs), or single- and multi-unit
action potentials. Neural activity has been successfully used to
control a variety of devices in real time, including virtual objects
(Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003;
Leuthardt et al., 2004; Wolpaw and McFarland, 2004; Hochberg
et al., 2006; Jarosiewicz et al., 2008; Kim et al., 2008; Schalk
et al., 2008; Ganguly and Carmena, 2009; Suminski et al., 2010;

O’Doherty et al., 2011; Gilja et al., 2012; Engelhard et al., 2013;
Rouse et al., 2013; Wander et al., 2013), robots (Carmena et al.,
2003; Taylor et al., 2003; Millán et al., 2004; Velliste et al., 2008;
Collinger et al., 2012; Hochberg et al., 2012), wheelchairs (Millán
et al., 2009), or to drive movements of the user’s body via
muscle stimulation (Moritz et al., 2008; Ethier et al., 2012). Sim-
ilarly, neural stimulation for sensory BMIs can be implemented
using electrical approaches, such as intracortical microelectrode
stimulation (ICMS), or via optogenetic methods. Stimulation at
different levels of the central nervous system (CNS) has been
used to convey auditory (Wilson et al., 1991), visual (Weiland and
Humayun, 2008; Tehovnik et al., 2009), tactile (Romo et al., 2000;
O’Doherty et al., 2011; Venkatraman and Carmena, 2011; Berg
et al., 2013), and proprioceptive (London et al., 2008) feedback
to users. Recent work also shows that sensory and motor BMIs
can be combined (O’Doherty et al., 2011), which holds great
promise for restoring function to paralyzed individuals lacking
somatosensory feedback.

Decades of work in BMIs has produced impressive demonstra-
tions, but also reveals that interfacing the brain with machinery
is not a simple matter of restoring broken connections. Indeed,
these interfaces create new systems that can engage learning and
adaptation (Fetz, 2007). Interestingly, BMIs are distinct from the
natural sensorimotor apparatus, yet still involve select compo-
nents of the CNS. Understanding these unique systems may be
particularly important for engineering development of successful
neuroprosthetic systems (Ganguly and Carmena, 2009; Gilja et al.,
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2012). They may also provide unique advantages for exploring
fundamental questions in neuroscience. BMIs provide scientists a
rare opportunity to create novel, well-defined functional circuits
that are separate from, but parallel to, their natural counterparts.

BMIs may be particularly useful for studying questions of
motor learning and skill formation. While studying the natu-
ral sensorimotor system has revealed significant insights, many
questions about the neural mechanisms of skill learning remain
(Wolpert et al., 2011). For instance, how are learned skills stored
in the brain, and what brain areas facilitate their formation and
recall? What are the neural underpinnings of performance opti-
mization and refinement? BMIs create novel, functional circuits
for action and/or sensation that can be used to study skill learning
de novo and subsequent adaptation. Because these systems are
defined by the experimenter, they may also reduce ambiguities
inherent in neurophysiological motor learning studies caused by
the complexities of the highly distributed natural motor control
system. BMIs define a simpler, known mapping between neural
activity and behavior, allowing for careful study of learning-
related changes in neurons directly and in-directly contributing
to behavior. BMI systems can be more readily interrogated and
manipulated by the experimenter to provide new insights into the
neurophysiological basis of learning.

Interestingly, BMIs can also be used to define systems that
operate irrespective of the natural sensorimotor apparatus.
Indeed, motor BMIs can be operated without movement (Taylor
et al., 2002; Carmena et al., 2003; Ganguly and Carmena, 2009;
Koralek et al., 2012). This property of BMIs might be useful for
studying learning of more abstract, cognitive skills. Very little is
known about how we acquire skills independent of movement,
like solving puzzles. Closed-loop BMIs can be used to define
new input-output relationships, or transforms, for the CNS to
learn and solve irrespective of the natural sensorimotor system.
Moreover, selection of different neural inputs for BMI could be
used to study learning in a variety of brain areas and systems. We
refer to skill learning in these novel systems controlled irrespective
of movement as neuroprosthetic skills. Studying these neuropros-
thetic skills may be particularly useful for understanding how
abstract, non-physical skills are learned, and their neural repre-
sentations.

Recent work in BMIs demonstrates the potential utility of
this paradigm for studying learning, with a growing number
of papers providing evidence about the neural mechanisms of
adaptation and skill consolidation. Emerging work in sensory
BMIs and other closed-loop interface systems also show great
promise. Here, we discuss the interpretation of BMIs as novel
closed-loop systems partially removed from the CNS. We review
the key aspects of these systems that make them uniquely suited
to motor learning studies, summarize work demonstrating their
potential, and explore future avenues of research.

BMIs CREATE NOVEL CLOSED-LOOP CONTROL SYSTEMS
Despite variability in implementation, at their core, all sensori-
motor neuroprostheses are simple closed-loop control systems
(Figure 1). In motor BMIs, neural activity is recorded and an
algorithm, “the decoder”, is used to map the neural activity into
a control signal to move the actuator. Feedback is provided to

FIGURE 1 | Schematic representations of BMI systems. Components of
the natural CNS are shown in black/grey; artificial, experimenter-controlled
elements are colored. (A) Motor (efferent) BMIs map recorded neural
activity into control signals for a device via a decoding algorithm. These
systems typically use natural sensory systems, such as vision, to provide
feedback to the user, creating a closed-loop system. (B) Sensory (afferent)
BMIs use the natural motor apparatus to perform actions, but close the
control loop using feedback conveyed via neural stimulation. Environmental
variables are encoded into patterns of stimulation delivered to select brain
regions. The artificial feedback can also be combined with natural sensory
stimuli (grey dotted). (C) Afferent and efferent BMIs can be combined,
where actions are decoded from neural activity and feedback is provided via
encoded neural stimulation. Again, the artificial sensory feedback can be
combined with natural sensory systems (grey dotted).

the user to create a closed-loop control system (Figure 1A).
These systems typically use natural sensory systems, such as vision
and/or audition, for feedback. Sensory BMI systems, in contrast,
use algorithms to “encode” relevant information into neural
stimulation patterns that are delivered to the brain (Figure 1B),
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and actions are implemented using the natural motor apparatus.
This neural stimulation can also be combined with other native
sensory feedback. These two approaches can be combined such
that actions are implemented by a BMI controller, and feedback is
provided using neural stimulation (Figure 1C).

The closed-loop nature of BMI systems is essential to their
operation and makes them a particularly useful tool for studying
learning. The feedback in BMI systems allow users to modify
their behavior to achieve desired goals. Many studies show that
rats, non-human primates and humans can learn to volitionally
control neural activity using biofeedback at the level of single-
unit action-potentials (Fetz, 1969, 2007; Fetz and Finocchio, 1971,
1975; Chapin et al., 1999; Gage et al., 2005; Cerf et al., 2010;
Moritz and Fetz, 2011; Koralek et al., 2012), local field potentials
(Engelhard et al., 2013; Flint et al., 2013), ECoG (Leuthardt et al.,
2004; Schalk et al., 2008; Rouse et al., 2013), and EEG (reviewed
in Wolpaw et al., 2002; McFarland and Wolpaw, 2011). Volitional
control can also decouple single-unit activity from its typical
functional roles (Fetz and Finocchio, 1971, 1975). Increasing
research shows these volitional control plays a role in closed-
loop BMI operation. For instance, subjects can learn to modulate
neural activity in order to improve efferent BMI performance for
a given decoder (Ganguly and Carmena, 2009).

It is also crucial to understand BMI systems’ relation to the
natural sensorimotor system. Consider motor BMIs for upper
limb reaching. Natural arm movements are orchestrated by a
host of brain areas, the spinal cord, and limb biomechanics; and
somatosensory, proprioceptive and visual feedback play critical
roles in the control. In BMI, subjects typically control an arti-
ficial device via visual observation alone, whose movements are
governed by the activity of only a small subset of neurons in
motor cortical areas (e.g., primary motor cortex). While BMIs
can engage other cortical and subcortical areas (Ganguly et al.,
2011; Koralek et al., 2012; Wander et al., 2013), the relationship
between movement and neural activity imposed in BMI differs
significantly from that of natural movements. These BMI systems
may be able to replace motor function, but do so by creating a new
control system that is distinct from natural arm movements. Yet,
this novel system still incorporates elements of the natural system.
For instance, motor BMIs (e.g., driven by activity from primary
motor cortex) and arm movements both engage motor cortical
areas. The control of BMI systems may, then, share key similarities
to the control of natural movements. Research does suggest strong
connections between natural motor learning and learning BMIs,
as reviewed in Green and Kalaska (2011); Jackson and Fetz (2011)
and the discussions below. BMI systems are separate from, but
parallel to, the native functions they imitate.

Historically, work in BMIs have not fully appreciated the
novel aspects of closed-loop BMI systems1. Many have focused
on mimicking the natural system (reviewed in Jackson and
Fetz, 2011), developing decoding algorithms to predict limb

1There are, however, notable exceptions of researchers that recognized the
importance of closed-loop BMI learning and adaptation early on (e.g. Taylor
et al., 2002; Wolpaw et al., 2002; Carmena et al., 2003). The EEG community
has also recognized and integrated these aspects more readily (Wolpaw et al.,
2002; Millán and Mouriño, 2003).

movements or motor intentions from neural activity. However,
increasing research shows that a decoder’s prediction power does
not necessarily translate to improved closed-loop performance
(Koyama et al., 2009; Ganguly and Carmena, 2010; Cunningham
et al., 2011). This has led some to re-examine BMI systems and the
underlying assumptions of biomimetic approaches (Jackson and
Fetz, 2011; Gilja et al., 2012). Recent work incorporating closed-
loop perspectives shows great promise for improving BMI per-
formance (Gilja et al., 2012). Understanding BMIs as closed-loop
systems distinct from their natural counterparts may be essential
for applications of BMI technology. Moreover, this insight opens
up many possibilities for using it as a tool to study learning.

One of the most interesting and potentially valuable aspects of
BMIs is that they allow experimenters to fully define functional
circuits for action. The control system created by closed-loop
BMIs are specified by the experimenter. Efferent BMIs define: (1)
the neural activity used for control—i.e., the system input, (2) the
mapping of how neural activity influences performance, manipu-
lated via the decoder, (3) the variables controlled by the brain, and
(4) the types of feedback provided to the user. Similarly precise
control is available for afferent BMI systems, which stipulate what
information is transmitted, how, and to what brain areas. This
control also allows for more complete observation and analysis
of the system during learning. For instance, neurophysiological
studies during motor adaptation can feasibly monitor a small
subset of the neurons within the highly distributed motor system
(Wise et al., 1998; Gandolfo et al., 2000; Li et al., 2001; Paz et al.,
2003; Padoa-Schioppa et al., 2004; Paz and Vaadia, 2004). Though
informative, this captures only a portion of neural learning mech-
anisms. Moreover, the direct relationship between the activity
of individual neurons in motor cortical areas and behavior is
also still a topic of significant debate (e.g., reviewed in Shenoy
et al., 2013), complicating mechanistic interpretations of neural
activity changes with learning (Jarosiewicz et al., 2008). BMI
systems artificially constrain the neural input and/or output, and
in doing so provide full knowledge of the input-output mapping
governing the system behavior. This may allow for more direct
assessments of learning-related changes. The ability to create sim-
plified control circuits could highlight principles and mechanisms
that may be less clear in a more complex control system. However,
leveraging the full potential of this aspect of BMIs also requires
understanding how BMI relates to the natural motor system. We
return to this critical question in the discussion below.

Finally, by creating new functional circuits, BMIs define novel
tasks for the CNS to learn. Many classic sensorimotor learning
paradigms apply perturbations to the natural motor system—
for example, in the form of forces (e.g., Shadmehr and Mussa-
Ivaldi, 1994) or visuomotor transformations (e.g., Krakauer et al.,
2000)—and study how the nervous system learns these modifi-
cations (recently reviewed in Wolpert et al., 2011). How subjects
learn these tasks may be shaped by prior experience, since these
tasks modify the subjects’ natural motor repertoire (Shadmehr
et al., 2010; Wolpert et al., 2011). These paradigms have proven
very useful for understanding how the motor system adapts, but
may be less ideally suited to investigating how the CNS learns
an entirely new skill, or how motor performance is refined in
absence of perturbations (Shmuelof et al., 2012). For instance,
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how does the brain initially learn the dynamics of the motor
system? How does the CNS learn to refine and optimize control?
Because BMIs create a new control system distinct from the
natural, well-learned sensorimotor apparatus, it is uniquely suited
to studying these questions. The ability to define novel transforms
removed from the natural sensorimotor apparatus also opens the
possibility to study neuroprosthetic skills and learning beyond the
sensorimotor system.

STUDYING LEARNING WITH BMI SYSTEMS
BMIs define novel functional circuits for action that actively
engage subject learning and can be precisely manipulated in
experiments. Recent studies in motor BMIs leveraged these
unique properties to study skill learning and adaptation. Emerg-
ing work in afferent and efferent-afferent BMIs, as well as other
interface systems also show the promise of BMI technology in
learning studies.

Motor learning is thought to have distinct forms, including
adaptation and skill formation, which may have different under-
lying neural mechanisms (Krakauer and Mazzoni, 2011). The
same is likely true for BMI systems and abstract learning. While
adaptation and skill can be separated in the natural motor system,
these distinctions are currently less well-defined in BMI. Only
a small number of studies have addressed learning in BMI, so
information is limited, and few have attempted to model BMI
learning processes. For the purposes of the proceeding discussion,
we define “skill learning” as the process of learning to control
a BMI system de novo, evidenced by the gradual formation of
proficient performance. We use “adaptation” to refer to learning
associated with compensating for perturbations to a previously-
learned BMI system with proficient performance. Similarly, as
noted above we use the term “neuroprosthetic skill” to refer to
proficient BMI performance irrespective of physical movement.
Such neuroprosthetic skills may be linked to more abstract forms
of learning and skill. How our definitions of learning in BMI relate
to adaptation and skill formation in the natural motor system,
and the relationship of neuroprosthetic and abstract skills are
fascinating and open questions we address in the discussion of
future directions.

NEUROPROSTHETIC SKILL FORMATION
There are clear behavioral signatures of skill—robust, reliable
performance that can be rapidly recalled. But the neural represen-
tations underlying skill formation remain uncertain. The motor
cortices appears to be involved in the formation and retention
of motor memories and skills (Krakauer and Shadmehr, 2006),
but what is the substrate of that memory? How the brain forms
and stores memories is a critical question in motor learning, and
neuroscience at large.

Ganguly and Carmena investigated this question by examining
how subjects learned skilled BMI control (Ganguly and Carmena,
2009). Non-human primate subjects operated a closed-loop cur-
sor BMI using single-unit activity from the motor cortex without
overt arm movements. Critically, the mapping between cursor
movement and neural activity—the “neuroprosthetic circuit”—
was held constant for many days. Subjects became proficient in
BMI control over days. The behavior showed many similarities

to natural motor learning, with intra- and inter-session learning,
and rapid recall of performance each day. Moreover, after achiev-
ing proficient control, a subject was able to learn a second decoder
without disrupting the performance with the initial decoder.
Together, these results suggest that BMI control was achieved via
consolidation of a neuroprosthetic skill, identified by proficient,
rapidly-recalled control of a disembodied actuator irrespective of
natural movement.

The mapping between neural activity and output in BMI
allows for thorough investigation of the neural underpinnings
of neuroprosthetic skill. The direction tuning—relationship
between firing rate and direction of target motion—of neurons
contributing to the BMI decoder (“BMI neurons”) shifted as sub-
jects improved their BMI performance. Direction tuning changed
significantly early during learning, but became more stable as
performance reached a plateau. Skill consolidation resulted in the
formation of a stable neural “map” of the decoder that could
be rapidly recalled. Changing BMI decoders daily disrupted skill
and neural map formation, suggesting they are specifically tied
to learning the input-output transform defined by the neuro-
prosthetic circuit (Ganguly and Carmena, 2009).This map was
significantly different from that of natural arm movements. Yet,
subjects could readily switch between arm and neuroprosthetic
control, and neural activity showed corresponding rapid shifts
between two different maps (Ganguly et al., 2011).

BMI also allows observation of brain areas not directly con-
tributing to the task. What occurs in other parts of the motor
cortex as a subject learns a neuroprosthetic skill? Examining
the activity of neurons in motor cortex but not contributing to
the decoded output during transform learning revealed large-
scale changes in their firing properties and relation to the task
(Ganguly et al., 2011). Non-BMI neurons’ preferred direction
(cursor motion causing maximal firing) changed compared to
arm movements, similar to BMI neurons. However, proficient
neuroprosthetic control was associated with a reduction in non-
BMI neurons’ modulation depths compared to BMI-neurons.
Interestingly, the reduction in modulation depth was dependent
upon the non-BMI neurons’ distance from BMI neurons. This
effect was apparent in late, but not early, stages of learning,
suggesting that it was linked to neuroprosthetic skill formation.
Transform learning triggered a large-scale, reversible modification
of the cortical network centered on the BMI neurons. Recent work
in humans suggests that neuroprosthetic learning may also result
in the formation of a more broadly distributed cortical network
that extends well beyond the areas directly involved in control
(Wander et al., 2013).

These results give tantalizing suggestions about the neural
substrates of a skill. But where and how does this learning
take place? Does neuroprosthetic learning involve similar brain
structures as natural motor learning? To address these questions,
Koralek et al. developed a BMI paradigm where rodents learned to
control the pitch of an auditory cursor to reach one of two targets
by modulating activity in primary motor cortex in the absence
of physical movement (Koralek et al., 2012). They examined the
activity of the dorsolateral striatum—a structure linked to motor
skill learning—during learning of this abstract skill. Striatum
neurons were modulated during neuroprosthetic control, and
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the activity in motor cortex—the output system—increased its
coherence with the dorsolateral striatum as learning progressed.
These coherence changes were also found to be specific to motor
cortex neurons contributing to the decoder, consistent with
the formation of a BMI-specific network (Koralek et al., 2013).
Deletion of striatal N-methyl-aspartic acid (NMDA) receptors,
which are necessary for corticostriatal long-term potentiation,
severely impaired the development of this corticostriatal
plasticity, and completely disrupted the subjects’ ability to learn
neuroprosthetic skills. These results suggest that corticostriatal
circuits are involved in learning skills, even when they do not
require physical movement. Moreover, these results show that
the process of transform learning not only elicits changes in
motor cortical networks, but also recruits elements of the natural
motor system outside of the cortex, such as the basal ganglia.
Neuroprosthetic skill learning, then, may utilize the built-in
mechanisms for natural motor learning.

Together, these studies give preliminary evidence for cortical
substrates of learning and the involvement of deep-brain struc-
tures in their formation. They also demonstrate that BMIs provide
a platform to study the formation of skills. Many questions
remain—for instance, the physiological mechanisms driving cor-
tical network formation are uncertain. The relationship between
this neuroprosthetic skill, natural motor learning and abstract
skills also remains to be fully explored. Expansions of this long-
term transform learning paradigm can be used to further probe
how this learning occurs.

ADAPTATION IN BMI
BMIs can also be used to study adaptation to carefully controlled
perturbations. A recent series of studies took advantage of the
ability to manipulate the decoder to probe the behavioral and
neural mechanisms of adaptation learning in BMI (Jarosiewicz
et al., 2008; Chase et al., 2012; Golub et al., 2012). Non-human
primates controlled a cursor-based BMI driven by single-unit
activity. After subjects achieved proficient control, the researchers
perturbed the decoder by rotating the resulting cursor velocity for
a given neural input, and examined if and how neural activity
changed. This is akin to visuomotor rotations commonly used
in motor learning (Krakauer et al., 2000). What’s more, they
perturbed the input-output mapping of only a subset of units
within the decoder to study if and how adaptation differed for
perturbed and non-perturbed units. The behavioral responses to
these decoder perturbations showed remarkable parallels to that
of natural visuomotor rotations, with subjects initially producing
curved trajectories that straighten over time. Removing the per-
turbation also revealed after-effects—curvature opposite that of
the applied rotation—that quickly decayed.

The BMI paradigm allowed for careful examination of the
adaptation strategies used by subjects and their neural correlates.
While previous studies demonstrated shifts in motor cortex activ-
ity during natural motor adaptation, BMI provides knowledge
of the precise mapping between neural activity and behavior,
which can be used to more clearly interpret neural changes. There
are several possible ways to solve a rotational perturbation task,
including a global strategy of re-aiming to a new target, or local
strategies to either reduce the contribution of perturbed units, or

selectively rotating the action-directions of the perturbed units.
Analysis revealed evidence for both global and local adaptation.
Interestingly, global re-aiming dominated and the degree to which
the different strategies were employed showed some dependence
on the number of units perturbed. This suggests that there may
be limits to the degree of neural adaptation, at least in the short
time-frame of these experiments (Chase et al., 2012).

Behavioral manipulations in BMI control and clever analyses
also allowed for quantification of the subjects’ control strategies
and the time-scale of learning in this paradigm. Golub and col-
leagues removed visual feedback for the initial portion of reaches,
and then used the timing of feedback corrections upon receiving
visual feedback to quantify the control time-delay in BMI (Golub
et al., 2012). This allowed the researchers to assess whether the
subject based control operations on the perceived, delayed visual
feedback or on estimates of the current cursor position, which
would suggest the formation of an “internal model” of cursor
movement. Their results suggest that subjects do indeed form
internal predictions of cursor movement. Moreover, by analyzing
the above-described decoder perturbation data, theses analyses
also showed that learning may be accompanied by modification
of this internal model and a method to quantify the time-scale of
such adaptation.

By manipulating the decoding algorithm, these studies identi-
fied key neural components of learning and adaptation. However,
additional work is needed to examine the underlying mecha-
nisms. For instance, are changes in cortical firing driven by input
to those areas or via synaptic plasticity? Are the different types
of adaptation—global vs. local—achieved through the same or
different means? What are the neural signatures of the “internal
model” underlying BMI operation, and modified during adap-
tation? The ability to fully control the BMI system may prove
extremely useful for answering these questions. Examination of
non-BMI units in up-stream brain areas and within the same
cortical area might shed light on the scale and specificity of
adaptive mechanisms. Electrophysiology techniques could also be
used to explore synaptic plasticity. The clear distinction between
BMI and non-BMI units, and perturbed versus non-perturbed
units will be essential for honing in on how physiological changes
shape the circuit.

SENSORIMOTOR INTEGRATION AND SENSORY TRANSFORM
LEARNING
The majority of learning-related BMI studies focus on efferent
control. However, sensory BMIs can also be used to investigate
key questions about sensorimotor learning and integration. Neu-
ral stimulation—via ICMS or optogenetic techniques—can be
used to evoke percepts and influence cortical processing (Wilson
et al., 1991; Romo et al., 2000; London et al., 2008; Weiland
and Humayun, 2008; Tehovnik et al., 2009; Berg et al., 2013).
Moreover, artificial neural stimulation can be integrated with nat-
ural sensory feedback to facilitate active-sensing tasks (O’Doherty
et al., 2011; Venkatraman and Carmena, 2011). Emerging work
also suggests that the integration of natural sensory information
and artificial stimulation is modulated by the reliability of the sen-
sory information (Dadarlat et al., 2012), in strong agreement with
many observations of natural sensorimotor integration (Sabes,
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2011). Together, these studies show that stimulation can convey
useful information to subjects, making it possible to create closed-
loop sensory BMI systems that operate parallel to the natural
sensorimotor systems.

Interestingly, several studies suggest that the percepts evoked
by artificial stimulation have only a slight similarity to their nat-
ural counterparts. For example, rats trained to respond to move-
ment of the whiskers initially also responded to ICMS stimulation,
but quickly learned to discern the two stimuli (Venkatraman and
Carmena, 2011). Non-biomimetic approaches to neural stimu-
lation have been shown to be effective (O’Doherty et al., 2011;
Dadarlat et al., 2012). Thus, sensory BMIs also involve transform
learning, where subjects learn a novel mapping between the
artificially-evoked neural activity and environmental variables.
However, studies of the underlying learning mechanisms involved
in afferent BMIs are forthcoming. Closed-loop BMI studies have
tremendous potential to illuminate the learning processes in sen-
sory systems and the underlying neural mechanisms. Combining
afferent and efferent BMIs (O’Doherty et al., 2011) is a similarly
promising platform that may allow for careful study of how
sensory inputs are transformed into actions.

BEYOND BRAIN-INTERFACING: TRANSFORM LEARNING TOOLS
The ability to create novel functional action circuits extends
beyond BMI. Other signals from the CNS, such as muscle activity
or limb kinematics, can be used to control artificially-defined
systems. Myoelectric interfaces, for example, map electromyo-
grams of select muscles to the motion of computer cursors via
linear decoding algorithms (Radhakrishnan et al., 2008; Nazar-
pour et al., 2012). The joint angles of the human hand can also
be artificially mapped to a cursor position (Mosier et al., 2005;
Mussa-Ivaldi and Danziger, 2009; Liu et al., 2010). Much like
BMI, these approaches create closed-loop control systems that are
different from the natural sensorimotor system and can be used
to investigate how the CNS learns to novel, abstract transforms.
Subjects can readily learn to control these novel interfaces, even
with arbitrary and non-intuitive mappings (Mosier et al., 2005;
Radhakrishnan et al., 2008)

These two interface systems show tremendous potential for
studying fundamental questions of motor learning and control.
Myoelectric interfaces have been used to explore theories about
muscle synergies and optimal control (Radhakrishnan et al., 2008;
Nazarpour et al., 2012). Their work shows that subjects use
coordinated patterns of muscle activity shaped to maximize task
performance—hallmarks of optimal, synergy-based control—
even in motor tasks disconnected from the natural sensorimotor
apparatus. Kinematic interfaces have been used to explore how the
motor systems deals with redundancy (Mosier et al., 2005; Mussa-
Ivaldi and Danziger, 2009; Ranganathan et al., 2013). These
mappings are highly redundant, and knowledge of the mapping’s
structure allowed researchers to separate subjects’ movements
into task-relevant and -irrelevant components. Transform learn-
ing was accompanied by significant reduction in task-irrelevant
movements, suggesting that subjects learned to constrain their
movements to those that contributed to cursor movements.
Kinematic interfaces have also been used to study adaptation
to perturbations, revealing previously unobserved distinctions

between adaptation to different types of manipulations (Liu et al.,
2010). The authors suggest that the extensive experience with
reaching may influence motor adaptation and learning studies.
Novel interfaces may provide new and critical insights into motor
learning that cannot be readily assessed by studying the natural
motor system.

Subjects operating BMIs, myoelectric-, and kinematic-
interfaces all show clear hallmarks of skill learning. However,
several have noted differences in the learning rates and strategies
of these systems (Green and Kalaska, 2011; Jackson and Fetz,
2011; Chase et al., 2012). The fundamental differences in the
control inputs, and their relation to the natural motor system,
may be a key factor in these learning differences (Jackson and
Fetz, 2011). The mechanisms underlying learning may depend
significantly upon the type of inputs the user controls. Moreover,
learning and adaptation in the natural motor system may involve
multiple learning mechanisms given its highly distributed and
hierarchical nature. Exploring learning in these different types of
interfaces may help elucidate plasticity, learning, and adaptation
mechanisms at different levels of the CNS.

The differences in learning across interface types also high-
lights the importance of fully understanding subject-models and
instructions used in BMIs and the systems they define. A variety
of animal models have been used in motor BMI studies—some
allow subjects to move unrestricted (Gilja et al., 2012), while
others block movement either via restraints (Jarosiewicz et al.,
2008; Velliste et al., 2008) or temporary paralysis (Moritz and
Fetz, 2011; Ethier et al., 2012). This has caused debate in the
community, primarily focused on identifying models that best
inform translation to paralyzed individuals (Nuyujukian et al.,
2011). However, these different models may also have an impact
on BMI learning studies. Consider a motor BMI where the subject
is allowed to move their body unrestricted during control. While
the BMI system only uses neural activity to control the actuator,
the subject can adopt a kinematic-level learning strategy. That is,
they may learn the task as a transform mapping between their
body’s motion and the cursor, rather than learning the relation-
ship between neural activity and cursor movement. Though both
systems are interesting for studying learning, they may be solved
in fundamentally different ways. Similarly, the context of BMI
control, and its relationship to natural movement must also be
considered. The presence of cognitive cues that distinguish BMI
and natural movement contexts (e.g., movement restraints or
removing the apparatus used for movement) could significantly
shape learning strategies. Care must be taken to develop interface
systems that are clearly defined.

FUTURE DIRECTIONS AND CONCLUSIONS
Use of BMI and other interface systems for studying learning is a
nascent field. The latest developments clearly demonstrate their
utility and potential. However, they only scratch the surface of
many critical questions. There are many new avenues of explo-
ration in BMI learning that have not yet been addressed.

RELATING BMI LEARNING TO MOTOR AND ABSTRACT LEARNING
One critical question is how the BMI learning observed in these
early studies relates to well-documented types of motor learning,
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such as adaptation and skill-formation (Krakauer and Mazzoni,
2011). These types of learning are thought to have different
underlying mechanisms and neural implementations. Connect-
ing BMI learning to these well-documented and modeled forms of
learning could both facilitate better understanding of the neural
mechanisms driving different types of learning, as well as more
formal study of BMI learning. Here, we have defined skill as
learning proficient BMI control de novo, and adaptation as com-
pensating for perturbations to a well-learned BMI system with
proficient control. The underlying learning mechanisms in these
systems, however, may not be directly associated with adaptation
and skill as defined in the natural motor system. For instance, are
tuning changes that accompanied neuroprosthetic skill acquisi-
tion in Ganguly and Carmena (2009) solely a reflection of the
neural representations of skill? Or does learning neuroprosthetic
skill involve multiple learning mechanisms? Early learning could
be driven by adaptation, where subjects modify existing neural
patterns from their natural motor repertoire, reflected by tuning
changes. Later refinements of control, however, might be more
similar to skill formation, with increased precision of recruited
neural activity patterns, consistent with the highly stable tuning
maps observed in late learning.

Addressing these questions will require better understanding
of how subjects learn BMI transforms. A particularly important
question is if and how BMI learning is linked to natural move-
ment. While BMIs can be controlled without overt movements,
their relationship to movement and the natural system is unclear.
Are BMIs controlled by repurposing existing motor repertoires,
or via direct operant conditioning of neural activity to create
new neural networks—or some combination? Understanding
BMI’s relationship to the natural motor system will be critical
for teasing apart the underlying mechanisms involved in BMI
learning and relating them to those of natural motor learning.
Better understanding this relationship is also crucial for relating
neuroprosthetic skill (BMI learning irrespective of movement) to
abstract skills.

Existing studies provide mixed evidence for how BMI control
relates to the natural motor system. A recent study by Hwang
et al. (2013) explored control strategies in a discrete-control BMI
system driven by neural activity from the parietal reach region
(PRR). The experimenters used the well-established visuomo-
tor properties of PRR neurons to probe the strategy used to
learn different decoders to select one of two possible actions.
Their results suggested that subjects solved the task by aiming
to alternate targets in order to select the desired target location.
That is, BMI control relied explicitly on natural motor strate-
gies. This strategy was further suggested by persistent activity of
neurons not directly contributing to the target selection, which
would not be expected by operant conditioning-based learning.
Interestingly, these results differ substantially from studies with
continuous-control BMIs, where long-term learning was accom-
panied by differential modulation of BMI units within motor
cortex (Ganguly et al., 2011) and striatal interactions specific to
BMI output neurons (Koralek et al., 2013). Similarly, decoder
perturbation studies in motor cortices suggest that learning was
not limited to global re-aiming strategies alone (Jarosiewicz et al.,
2008; Chase et al., 2012). While these observations do not pre-

clude the possibility that BMI learning is shaped by the natural
motor repertoire, they strongly suggest that BMIs may create new
neural networks rather than purely repurposing established ones.
However, learning arbitrary decoders has been shown to require
similar neural structures to that of natural motor learning, like
the striatum (Koralek et al., 2012). BMI learning, then, may still
leverage similar neural circuitry to that of the natural motor
system.

Differences in learning across these studies highlights the need
for careful consideration of the BMI system and task design, and
how they may influence learning. These studies differed in both
the brain areas used (PRR versus primary- and pre-motor cortex)
and the types of feedback provided (discrete versus continuous),
both of which may strongly influence learning. The type of
feedback and subject instructions, in particular, can significantly
influence learning in the natural motor system (Krakauer and
Mazzoni, 2011; Taylor and Ivry, 2011). The type of feedback pro-
vided in BMI has also been shown to significantly impact learning,
as rats were unable to learn a novel BMI task without continuous
feedback (Koralek et al., 2012). If and how BMI learning is
influenced by the brain area(s) used for control is also an open
and interesting question—one that may be particularly important
for understanding BMI learning’s relationship to abstract skills.
Much like natural motor tasks, BMI learning may be shaped
by system properties such as the control signals, feedback, and
subject instructions. Careful manipulations of these properties
may be particularly important to fully elucidate the mechanisms
of BMI learning.

FURTHER OPEN QUESTIONS IN BMI LEARNING
The brain can learn arbitrary transforms, as evidenced by many
demonstrations of non-biomimetic interface learning (Fetz, 1969,
2007; Radhakrishnan et al., 2008; Ganguly and Carmena, 2009;
O’Doherty et al., 2011). The limits of such transform learning,
however, are unclear. The majority of neurons in motor cortices
can be modulated via biofeedback (Moritz and Fetz, 2011), but it
is unknown if there are constraints on coordinated network activ-
ity that might limit transform learning. Exploring the relationship
between BMI decoders and neural changes during learning may
shed light on these questions. Does neural activity reach an
“optimal” solution to a decoder, or do network dynamics limit
adaptation? Similarly, little is known about how the structure of
a transform influences learning. Are some decoder or encoder
structures more readily learned? Does the relationship to natu-
ral representations matter? Is learning dependent on the neural
ensembles and brain areas used for control? Exploring the rela-
tionship between transform structure, neural inputs, and learning
might further elucidate how the CNS learns such mappings. This
may also be particularly important for relating BMI learning to
that of the natural motor system and abstract learning as noted
above.

Combining BMI transform learning with established motor
learning paradigms and physiological techniques will also better
elucidate the neural substrates of skills. Interference and disrup-
tion of partially-consolidated motor memories is a well-studied
and fascinating phenomenon (Krakauer and Shadmehr, 2006).
What are the physiological mechanisms of skill consolidation and
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disruption? Neuroprosthetic skill learning shows clear parallels to
motor learning and consolidation (Ganguly and Carmena, 2009;
Ganguly et al., 2011). Exploring the physiological differences—
for instance, synaptic modifications—in networks between con-
solidated and non-consolidated BMI decoders may help identify
the mechanisms of stable memory formation. Finding causal
interventions that can perturb skill consolidation will also be
essential. It may also be possible to use neural stimulation to
modify and shape neural network structure (Jackson et al., 2006)
and study the resulting effects on skill consolidation.

BMIs create novel functional circuits for action that can be
carefully manipulated to study the mechanisms of skill learning.
Exploring learning in BMIs can make great contributions to our
understanding of motor and abstract skill learning. What’s more,
this knowledge may be particularly useful for developing reha-
bilitative and restorative therapies. For instance, understanding
principles of transform learning and the underlying neural mech-
anisms may be particularly useful for developing rehabilitation
strategies where subjects must relearn motor control (e.g., stroke).
These insights will also help to design neuroprostheses that are
easier to learn. Knowledge of the neural mechanisms of skill
consolidation and disruption may also be essential for making
BMIs that can be controlled in a variety of settings. The basic
science and technological applications of BMI have a naturally
symbiotic relationship.
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