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Synchronization has been suggested as a mechanism of binding distributed feature
representations facilitating segmentation of visual stimuli. Here we investigate this
concept based on unsupervised learning using natural visual stimuli. We simulate
dual-variable neural oscillators with separate activation and phase variables. The binding of
a set of neurons is coded by synchronized phase variables. The network of tangential
synchronizing connections learned from the induced activations exhibits small-world
properties and allows binding even over larger distances. We evaluate the resulting
dynamic phase maps using segmentation masks labeled by human experts. Our
simulation results show a continuously increasing phase synchrony between neurons
within the labeled segmentation masks. The evaluation of the network dynamics shows
that the synchrony between network nodes establishes a relational coding of the natural
image inputs. This demonstrates that the concept of binding by synchrony is applicable in
the context of unsupervised learning using natural visual stimuli.
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1. INTRODUCTION
One of the central questions in neuroscience is how informa-
tion about a given stimulus is processed in a distributed network
of neurons such that it is perceived not only as a collection of
unrelated features but as a unified single object. The concept of
binding by synchrony has been proposed as a mechanism to coor-
dinate the spatially distributed information processing in the cor-
tex (Milner, 1974; Von Der Malsburg, 1981). Experiments in cat
visual cortex have confirmed that inter-columnar synchroniza-
tion indeed corresponds to a relational code that reflects global
stimulus attributes (Gray et al., 1989; Singer, 1999; Engel and
Singer, 2001). However, the physiological recordings in these early
studies were based on the presentation of artificially designed
stimuli. In a more recent study Onat et al. (2013) showed in
experiments that long-range interactions in the visual cortex are
compatible with Gestalt laws. This suggests that the concept of
binding by synchrony is also feasible in the case of natural visual
stimuli. It is still the center of a heated debate to what extend
synchronized activity represents a neural code of binding and
segmentation. Especially, how the neural system can learn this
relational coding when it is exposed to new stimuli is still an
open question. The most prominent possibility is that tangential
cortico-cortical connections in the visual cortex lead to synchro-
nized activity that implements Gestalt laws. Löwel and Singer
(1992) showed in cats with artificially induced strabismus that
selective stabilization of tangential connections occurs between
cells that exhibit correlated activity induced by visual experience.
Furthermore, König et al. (1993) found that the synchroniza-
tion of cortical activity is impaired in these cats with artificial
strabismus. These findings indicate that there is an important

interplay between unsupervised learning of tangential connec-
tions on behavioral time scales and their role in synchronization
phenomena on fast time scales.

The physiological experiments on binding by synchrony have
been accompanied by theoretical studies early on. Sompolinsky
et al. (1990) investigated how a model of coupled neural oscilla-
tors is able to process global stimulus properties in synchroniza-
tion patterns using abstractly defined neuronal activation levels
and predefined coupling strengths for the simulated network.
These simulation results showed that the coupling of neural oscil-
lators provides a viable mechanism implementing a coding of
perceptual grouping. Such previous work includes studies rang-
ing from networks build out of very simple elements to detailed
simulations containing many compartments per unit.

To investigate the functional role of synchronization and its
relation to coding, it is important to choose the right level of
abstraction in the model. A simplification from detailed spik-
ing neuron models to coupled phase oscillator models allows
us to analyze neuronal synchronization in a broader context of
a normative model involving unsupervised learning from natu-
ral stimuli. A review of these coupled neural oscillator models
was done by Sturm and König (2001), where the authors show
the derivation of simplified phase update equations from biolog-
ically measurable phase response curves. The simplifications in
coupled phase oscillators are based on the assumption that neu-
rons are close to their oscillatory limit-cycle and that a change
in the phase of the neuronal inputs induces only a small pertur-
bation to the neuronal phase. The phase update equation in our
model is based on the Kuramoto model of coupled phase oscilla-
tors (Kuramoto, 1984) in the sense that our model also assumes
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a very simple sinusoidal phase interaction function. This approx-
imation of the phase interaction by a sinusoidal function allows
us to use mathematical simplifications in the simulation of the
model.

Very similar to the work of Sompolinsky et al. (1990), we
extend the standard formulation of the Kuramoto model with a
second variable per neuron to encode the activation of the oscil-
lators. Therefore, in our model the state of a neuron is represented
by 2 degrees of freedom, which are separated into activation and
phase variables. This discrimination between coding of receptive
field features by activation and coding of relationships by phase is
a biologically motivated segregation of their different functional
roles. Maye and Werning (2007) specifically compare the syn-
chronization properties of these coupled phase oscillator models
with mean-field oscillator models based on the Wilson-Cowan
model (Wilson and Cowan, 1972). They state that the simplified
coupled phase oscillators allow decoupling the simulation time
constants of fast oscillatory time scales from slow rate coding time
scales. Another advantage is an easier analysis of the synchroniza-
tion patterns, because the direct encoding of the phase variables
means that all contextual relationships are coded at the same time.
Consequently, we use the dual variable phase model, because it is
suitable to answer fundamental questions about the interactions
between synchronization phenomena and contextual coding in
neural systems.

In contrast to these phase oscillator models, most recent work
on segmentation in networks of coupled neural oscillators is
based on the so called “local excitatory global inhibitory oscilla-
tor network” (LEGION) or similar variants of this model, which
was first proposed by Wang and Terman (1997). In LEGION the
dynamics of each oscillatory period of individual units is simu-
lated in detail by time-varying variables describing the internal
states of each neuron. In contrast, in our model the oscillatory
period is not simulated, but represented only implicitly in the
phase variables. Nonetheless, several aspects which we analyze in
this work were previously also investiged in LEGION. Namely,
similar to Li and Li (2011) we use a small-world topology, to
reduce the computational cost while still allowing binding by syn-
chrony over large distances. We also use parallel computations
to speed up the simulations, which was also previously done in
LEGION by Bauer et al. (2012).

The above-mentioned previous theoretical studies mostly
investigated the processing of artificial stimuli in close anal-
ogy to the physiological experiments. These stimuli are heavily
dominated by artificial geometric patterns as bars and gratings.
However, the concept of binding by synchrony makes much more
general claims about grouping of sensory representations of nat-
ural stimuli. By now a fair number of databases with images
considered to be natural is available. However, a problem with
generic natural stimuli is that segmentation is not only dif-
ficult, but no general ground truth is available. The LabelMe
database (Russell et al., 2008) is rather unique, as it contains a
large collection of images together with human labeled anno-
tations of image segments. In theoretical studies these labels
may serve as a ground truth to evaluate how the relative phases
between neurons are coding relational structures on natural
stimuli.

The processing of natural stimuli in neural systems can be
described as a normative approach in which the representation
of the input is learned by an optimization of computational
principles (Einhäuser and König, 2010). It has been successfully
employed in modeling receptive field properties of simple and
complex cells in primary visual cortex. Furthermore, response
properties of neurons in higher areas and other modalities have
been suggested to follow similar rules. This approach might be
extended to include the computational principles that under-
lie tangential interactions that directly influence synchronization
phenomena. This might answer the question whether the concept
of binding by synchrony can work in principle with unsupervised
learning and natural stimuli.

In this study we investigate whether the concept of binding
by synchrony, as has been investigated using abstract stimuli, is
viable for natural stimuli. The most important novelty of our
approach is the combination of these different concepts described
above into one single simulation model to allow the investiga-
tion of their interplay: Specifically, we combine normative model
approaches of unsupervised learning from natural stimuli with
the concept of binding by synchrony in a network of coupled
phase oscillators. Importantly, the data driven approach, that
utilizes general principles, minimizes the number of heuristics
and free parameters. We present large-scale simulations of neu-
ral networks encoding real-world image scenes. In the first stage
of our algorithm forward projections generate activation lev-
els of neurons corresponding to the primary visual cortex. In
the second stage these activation levels are used in a simula-
tion of tangential coupled phase oscillators. We present results
with forward projections based on designed Gabor filters that
are a good approximation of receptive fields in the primary
visual cortex. To allow later canonical generalization in higher
network layers, we also present results with forward projections
learned in a normative model approach with a sparse autoen-
coder using natural image statistics. In addition to these learned
forward weights, the structural connectivity of the phase simu-
lations is also learned unsupervised using the correlated activ-
ity induced by natural stimuli. Performance of the network is
tested using images taken from the LabelMe database. Thereby
we can investigate how synchronization phenomena might be
utilized in sensory cortical areas to bind different attributes of
the same stimulus and how it might be exploited for scene
segmentation.

2. MATERIALS AND METHODS
The overall network architecture of our simulation model consists
of two main parts: (1) Feedforward convolutional filters (red lines
in Figure 1) are used to generate the activation levels for neu-
rons in a layer corresponding to the primary visual cortex. On
top of each pixel is a column of neurons which encode different
features of a local patch in the input image (black bottom cuboid
in Figure 1). Each feature type is described by a weight matrix
which is applied using a 2-dimensional-convolutional operation
on each rgb-color-channel of the input image. (2) The obtained
activation levels in this 3-dimensional structure (black top cuboid
in Figure 1) are subsequently used to simulate sparse connections
(green lines in Figure 1) between coupled phase oscillators.
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FIGURE 1 | Network structure. Feedforward convolutional filters (red) are
applied on the input image vx,y,c (bottom) to generate the activation levels
hx,y,j of feature columns (red blocks in the top). These activations hx,y,j are
then transformed to activations of oscillators gx,y,j using simple local

regularization steps. The intralayer connections ek,j
δx,δy (green) simulate

these coupled phase oscillators which synchronize or desynchronize image
features.

We start with the description of the stimulus material
(section 2.1). This is followed by the description of the coupled
phase oscillator model (section 2.2) and the sampling mecha-
nism generating the horizontal sparse connections (section 2.3).
Afterwards we describe the underlying mechanism of the feedfor-
ward generation of activation levels (section 2.4).

2.1. NATURAL STIMULUS MATERIAL
As stimulus material in our simulations we use images of subur-
ban scenes from the LabelMe database (Russell et al., 2008). Due
to computational time constrains we have to restrict the evalua-
tions to a small subset of all available images in the database. In
addition, the database is not fixed but new images and segmenta-
tion masks are often added. We use only the first 50 images in the
folder 05june05_static_street_boston so that we have a consistent
and fixed dataset of well defined images.

These images have initially a resolution of 2560 × 1920 pixels.
We first resize the images to 400 × 300 pixels to further reduce
the computation time of the simulations. Subsequently we sub-
tract the mean pixel values and apply a smoothed zero-phase
(ZCA) whitening transformation (Bell and Sejnowski, 1997).
For an input image X the whitened pixel values are given by
XZCA = UDUTX, where U is a matrix containing the eigenvec-
tors of the covariance matrix of the image statistics and D is a
diagonal matrix with diagonal elements 1√

λi + 0.1
where λi are

the corresponding eigenvalues. This transformation applies local
center-surround whitening filters that decrease the correlations in
the input images. We implement this whitening transformation
using a convolutional image filter.

The images in the LabelMe database come along with human
labeled segmentation masks. These segmentation masks corre-
spond to objects that are perceived as a unique concept with an
associated abstract label like “tree,” “car” or “house.” We use these
supervised segmentation masks for later evaluations of binding in
the simulated phase maps. Please note that in our network simu-
lations this segmentation information is not used at any moment

in time. Instead, the network connectivity is based solely on
unsupervised learning using the statistics of neuronal activations.

2.2. COUPLED PHASE OSCILLATOR MODEL
Our network of coupled phase oscillators is based on the oscillator
model described by Sompolinsky et al. (1990). In the follow-
ing, we use the same motivational derivation of the phase update
equations. We model the probability of firing Px,y,k(t) per unit
time of a neuron at image position (x, y) encoding feature type k
at time t by an isochronous oscillator. In our simulations we rep-
resent the state of the neuronal oscillators by seperated activation
variables gx,y,k and phase variables �x,y,k. These two variables are
linked to the biological interpretation of firing probability by the
equation

Px,y,k(t) = gx,y,k
(
1 + λ · cos(�x,y,k(t))

)
, (1)

where the parameter 0 < λ < 1 controls the relative strength of
the temporal oscillation in relation to the overall firing probabil-
ity of the neuron. The phase progression is a periodic function
�x,y,k(t) = �x,y,k(t + 2π). In our work, the calculation of the
activation levels gx,y,k significantly differs from the simple arti-
ficial tuning curves used in Sompolinsky et al. (1990). A detailed
description of how these activation levels are obtained will be pre-
sented in section 2.4. The activation levels gx,y,k are normalized
by dividing by the local sum of all activation levels at each image
position such that

∑
k gx,y,k = 1∀x, y ∈ Z. In the simulations pre-

sented in this work the activation levels of each neuron are only
computed once from the input image using feedforward projec-
tions (red lines in Figure 1) and are then kept constant during the
simulation of the phase model. This simplification of constant
activation levels is based on the assumption that the stimulus
presentaion on behavioral timescales (≈ seconds) remains con-
stant during the phase synchronization which happens at very fast
timescales (i.e., gamma frequency ≈ 40 Hz). Another argument to
support this assumption is that the visual cortex seems to oper-
ate in a regime of self-sustained activity (Stimberg et al., 2009)
and therefore we can assume constant activation levels during the
phase simulation.

After these activation levels V are computed, we simulate the
horizontal coupling between the phase oscillators. The phase con-
nections in our network are described by a weighted graph G =
(H, E) where the neurons gx,y,j ∈ H are the vertices organized in a

three dimensional block (Figure 1). An edge e
(j,k)
δx,δy ∈ E describes

synchronizing (positive) or desynchronizing (negative) connec-
tions from neurons gx,y,j to neurons gx + δx,y + δy,k. The phase of
each neuron is then modeled according to a differential equation
describing weakly coupled phase oscillators (Kuramoto, 1984)

d�x,y,k(t)

dt
= ω − 1

τ

∑
e
(j,k)
δx,δy∈E

gx,y,k · e
(j,k)
δx,δy · gx − δx,y − δy,j ·

sin
(
�x,y,k(t) − �x − δx,y − δy,j(t)

)
, (2)

where τ is the time scale of the phase interactions and ω is the nat-
ural frequency of the modeled neural oscillations. We assume that
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all neurons have the same intrinsic natural frequency ω and the

interaction strength gx,y,k · e
(j,k)
δx,δy · gx − δx,y − δy,j is proportional to

the activation levels of the pre- and post-sysnaptic neurons. Note
that our model is in contrast to the more common formulation
of the Kuramoto model with heterogeneous frequencies and fixed
homogenous all-to-all interaction strengths.

A major difference to the phase update equation used in
Sompolinsky et al. (1990) is that we neglect the noise term in
the differential equation of each oscillator. The noise term in
Sompolinsky et al. (1990) is used as the primary source of desyn-
chronization in the network. In contrast, in our work, we use a
normative model to learn not only synchronizing but also desyn-
chronizing connections (see section 2.3). For an easier analysis
and interpretation of the results, it is advantageous to have only a
single source for the desynchronization in the network. Therefore,
we decided to use a deterministic phase model, although it was
previously shown that noise is an important factor to control
the network coherence. In addition to a simpler interpretation
it reduces the number of model parameters and is also more
compatible to further applications of gradient descent learning to
change the strength of the phase interactions.

We can further simplify the equation by using the fact that we
model isochronous oscillators with homogeneous frequencies. In
Equation 2 all phase variables �x,y,k(t) have a constant phase pro-
gression with frequency ω. We can use a simple transformation
to a new variable, which represents only the phase offsets between
neurons:

ϕx,y,k(t) = �x,y,k(t) − ωt. (3)

This new phase variable ϕx,y,k(t) describes the relative phase of
neuron k to the global fixed network oscillation with frequency
ω. Substitution into the equation above leads to a simplified phase
update equation

dϕx,y,k(t)

dt
= −1

τ

∑
e
(j,k)
δx,δy ∈ E

gx,y,k · e
(j,k)
δx,δy · gx − δx,y − δy,j ·

sin
(
ϕx,y,k(t) − ϕx − δx,y − δy,j(t)

)
. (4)

In this equation it can be seen that the timescale τ of the phase
interaction strength is decoupled from the oscillatory timescale
1/ω. Please also note, that a change of the parameter τ would
not qualitatively change the results of our simulations. Instead it
would just linearly change the units of the time axes. Therefore,
we show the simulation results with the time axis measured in
iterations, which could be linearly scaled to arbitrary time units
to best fit to different biological measurements.

This phase update equation is used in our simulations to
model the horizontal connections in the network. It allows
directly specifying synchronizing interactions from neuron gx,y,j

to neuron gx + δx,y + δy,k with a positive connection weight e
(j,k)
δx,δy

and desynchronizing interactions with a negative weight respec-
tively. We simulate these coupled differential equations using a
4th-order Runge-Kutta method.

2.3. HORIZONTAL INTERACTION STRENGTHS
We use correlation statistics of the induced activation levels to set
the intralayer connection strengths similar to a simple Hebbian

learning rule. We write ρ
(k,m)
x,y to denote the Pearson cross-

correlation between the activations of feature type k at image
position (x̃, ỹ) and the activations of feature type m at the shifted
image position (x̃ + x, ỹ + y). Each correlation value in this ten-
sor is calculated from the correlation statistics over approximately
1 million network activations induced by 50 natural images and
presented at 236 × 86 image positions.

These horizontal connections make up the coupling between
the neural oscillators. Instead of full connectivity, we use stochas-
tically sampled sparse directed connections from the correla-
tion matrix. To exclude noise in the correlation matrix, we
use the Benjamini-Hochberg-Yekutieli procedure (Benjamini and
Yekutieli, 2001) under arbitrary dependence assumptions with a
false-discovery rate of 0.05.

The probability of a positive (+1) or a negative connection
(−1) in the connectivity graph G = (H, E) is then given by

P
(

e
(j,k)
x,y = ±1

)
= η± ·

max
(

0,±ρ
(j,k)
x,y

)
∑

x̃,ỹ,m max
(

0,±ρ
(m,k)
x̃,ỹ

) , (5)

where η+ specifies the total number of afferent synchronizing
connections and η− the total number of afferent desynchronizing
connections per neuron. Therefore, synchronizing connections
exist only between naturally correlated features and desynchro-
nizing connections between anti-correlated features.

We sample this sparse tangential connection pattern such
that it is invariant to spatial shift transformations. The convo-
lutional structure of the forward projections leads to activation
and phase variables that are stored in a 3-dimensional block (top
of Figure 1) with two dimensions given by the spatial extend of
the image and one feature dimension. This convolutional struc-
ture can be exploited for the sparse horizontal connections to
significantly speed up the computation. Therefore, we specify the
properties of the coupled oscillator connections only for a generic
feature column. These connections are then applied at each image
position. Specifically, in our implementation each sampled tan-
gential connection is specified by 5 variables: the horizontal and
vertical connection length in image directions and the indices of
the afferent and efferent feature maps and the connection weight.
This has the advantage that the phase update equation can be
implemented as a vectorized convolutional operation although
the connection pattern is highly sparse.

2.4. FEEDFORWARD CONNECTIVITY
We compare the binding and segmentation performance of the
coupled neural oscillator model using two different ways to gen-
erate the activation levels for the neurons. We first describe
hand-crafted feedforward Gabor weights (section 2.4.1) and then
the unsupervised learning of receptive fields using a convolutional
autoencoder (section 2.4.2). Finally, activation functions are pre-
sented to further regularize the resulting feature representations
(section 2.4.3).
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2.4.1. Gabor filters
For reference we use a set of Gabor filters with specified orienta-
tion, frequency and color tuning to generate the activation levels
for the phase simulation. Thereby we can analyze the phase oscil-
lator network based on a regularly defined set of features that can
be parameterized.

We generate linear convolutional weights (marked in red in
Figure 1) using an approximate Gaussian derivative model, which
was shown to be a good fit for the receptive fields of simple cells
in the primate visual cortex (Young, 1987). We use only non-
directional three-lobe monophasic receptive fields (Young and
Lesperance, 2001) to reduce our model parameters. We imple-
ment the Gaussian derivative model using difference-of-offset-
Gaussians with a slightly larger center compared to surround
to code color offsets. The receptive fields that are used in our
simulations have a size of 12x12 pixels and are defined by

Wx,y = g2σ(y) · (−5 · gσ(x + σ) + 10.1 · gσ(x) − 5 · gσ(x − σ)
)
,

(6)
where gσ(x) is a one dimensional Gaussian distribution with stan-
dard deviations σ = 1.5 pixels (or g2σ(y) with standard deviation
of 2σ = 3 pixels) and the coordinates x and y are rotated giving a
total of 8 orientations in steps of 22.5◦. The convolutional filters
are applied to the images with a stride of 2 pixels in both image
dimensions and are followed by a sigmoidal activation function
to scale the values to a reasonable interval between 0 and 1. We
apply each orientation filter separately to all color channels (red,
green, blue). Furthermore, we add features for the complemen-
tary color channels similar to the on-off discrimination in the
visual pathway from the retina to the visual cortex. The direct lin-
ear dependency between these pairs of opponent-color channels
is removed later with additional activation functions described in
section 2.4.3. In summary, we have a total of 48 convolutional
feature channels per image position: 8x orientations, 3x rgb-color
channels, 2x opponent-color channels. This overcomplete neu-
ral representation of the input images is used to generate the
activation levels for the phase simulations.

Cortical measurements show that the distribution of
non-directional monophasic simple cells is roughly uniformly
distributed between zero-, first- and second order Gaussian
derivatives (Young and Lesperance, 2001). We performed the
simulations presented here also with mixed receptive fields of
zero-, first- and second-order Gaussian derivatives and obtained
similar results. We present here only results with second order
Gaussian derivatives, because this reduces the number of model
parameters drastically.

2.4.2. Autoencoder filters
As a comparison to these regular hand-designed Gabor filters we
analyze the oscillatory network based on activation levels gen-
erated by unsupervised learned autoencoder weights. A good
overview of the concepts described in this section can be found
in Le et al. (2011b), where the authors analyze different opti-
mization methods for convolutional and sparse autoencoders. An
autoencoder learns a higher level representation from the stimu-
lus statistics such that the input stimuli can be reconstructed from
the hidden representations. In addition, we optimize the sparsity

of the activation levels in this representation, which was shown
to learn connection weights which resemble receptive fields in the
visual cortex (Olshausen and Field, 1996; Hinton, 2010; Le et al.,
2011a).

A common trick in unsupervised learning in neural networks
are shared connection weights to reduce the number of param-
eters that have to be learned, which can be accomplished by a
convolutional feed-forward network in the case of images (LeCun
et al., 1998; Lee et al., 2009). The structure of our convolutional
autoencoder is shown in Figure 2. The feedforward projections
that generate the activation of feature map j consist of convolu-
tional filters Wx,y,c,j (red lines in Figure 2) with input features c ∈
{1, 2, 3} (rgb-colors) and a bias term bj and is followed by a sig-
moidal activation function. Therefore, the hidden layer activation
map of feature j ∈ {1, 2, . . . , J} is described by

hx,y,j = f

(
3∑

c = 1

Wx,y,c,j ∗ vx,y,c + bj

)
. (7)

The hidden layer activation h of each input image sample is also
a 3 dimensional block (horizontal and vertical image dimensions
and the feature type). The weight matrix W is a 4 dimensional
structure which describes the connection weights from a convo-
lutional input block to one output column in the hidden layer.
The convolutional image operations (∗) are applied in the image
directions x and y between all combinations of input feature maps
c and all output feature maps j.

We use linear activation functions for the backward projec-
tions (blue lines in Figure 2) so that the output matches the scale
of the input images (zero-mean). We use another set of weights

Ŵx,y,j,c and bias terms b̂c to describe these backward connections.
Therefore, the activation in the reconstruction layer is given by

v̂x,y,c =
J∑

j = 1

Ŵx,y,j,c ∗ hx,y,j + b̂c, (8)

FIGURE 2 | Structure of the convolutional autoencoder. Convolutional
forward weights (red) compute the hidden layer activation levels and
convolutional backward weights (blue) generate the reconstruction of the
given input. The reconstruction layer is compared to the centered part
(dashed block) of the input layer.
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where J = 100 is the number of different feature types. During
the learning stage only the valid part (no zero padding) of the
convolutions are used for the forward and backward projections
to avoid edge effects of the image borders on the learned weights.
Similar to the Gabor filters the convolutional filters have a size of
12x12 pixels and are applied using a stride of 2 pixels leading to a
reduction in the resolution of the hidden layer.

We use the sum of 3 optimization functions to learn the
forward and backward weights of the autoencoder. The first opti-
mization term which is minimized is the reconstruction error
averaged over all positions and training samples s and is given by

�1 =
〈

1

2

∥∥∥v̂(s)
x,y,c − v(s)

x,y,c

∥∥∥2
〉

x,y,s
. (9)

The second term optimizes the sparseness of the hidden units as
described by Hinton (2010) and Le et al. (2011a) with

�2 = β ·
∑

j

KL
(

h̃
∥∥∥〈h(s)

x,y,j〉x,y,s

)
, (10)

where KL is the Kullback-Leibler-divergence between two

Bernoulli distributions with expected values h̃ and 〈h(s)
x,y,j〉x,y,s.

We set the desired average activation h̃ = 0.035.
The third term is a weight decay (L2-norm) of all forward and

backward weights and is given by

�3 = λ

2
·
⎛
⎝∑

x,y,c,j

W2
x,y,c,j +

∑
x,y,j,c

Ŵ2
x,y,j,c

⎞
⎠ . (11)

This optimization term pushes all connection weights toward zero
such that only the connections which help to extract useful fea-
tures remain. Therefore, it provides a regularization mechanism
during learning.

For the simulations presented in this paper we use a rela-
tive weighting between these optimization functions given by
β = 90 and λ = 0.3. The gradients of the optimization functions
are calculated using back propagation of error signals and were
checked using numerical derivatives. The sum of the three terms
described above is minimized with the limited memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS), which uses an
approximation to the inverse Hessian matrix (Liu and Nocedal,
1989). We use the minFunc library of Mark Schmidt1 with default
parameters for line search with a strong Wolfe condition. We
use L-BFGS because it converges much faster in comparison to
standard gradient descent, especially in the case of autoencoders
with sparseness constrains (Le et al., 2011b). Another advantage
of L-BFGS is that extensive tuning of learning parameters as in
standard gradient descent methods is not necessary.

The training data consists of 1000 color patches (60 × 60
pixels) sampled from the folder 05june05_static_street_boston of
the LabelMe database (Russell et al., 2008). This corresponds to
625.000 training samples per convolutional fragment where the

1http://www.di.ens.fr/~mschmidt/Software/minFunc.html

forward weight matrix is applied. After 500 iterations the features
are mostly oriented patches and sensitive to different colors.

2.4.3. Regularization of activation levels
Although the Gabor and autoencoder filters are both followed
by a sigmoidal activation function, we further sparsify the acti-
vation levels hx,y,k with feature types k ∈ {1..K} in a similar way
to local cortical circuitry. We want to constrain the number of
active neurons, rather than the mean activation levels. Therefore,
we subtract at each image position the average local activation lev-
els. Subsequently a half-wave rectification is applied to constrain
the activation levels again to the positive domain with roughly
half of the neurons inactivated:

h̃x,y,k = max

(
0, hx,y,k −

∑K

j = 1
hx,y,j

)
. (12)

Consequently the hard sparseness (Rehn and Sommer, 2007)
is artificially increased and these inactivated neurons do not
take part in the coupling of phase oscillations (see section 3.1).
Thereby the number of possible interactions in the phase simula-
tions is reduced.

As a last step we have to normalize the activation levels at every
image position similar to local contrast adaptation in the visual
system. We want to make sure that the overall local activation
is uniform over the visual field such that an efficient coding of
regions of high contrast and regions of low contrast is possible
simultaneously. Therefore, we divide all activation levels by the
sum of activations over all features at each image location:

gx,y,k = h̃x,y,k∑K
j = 1 h̃x,y,j

. (13)

As a result we have sparse activation maps with a large proportion
of inactive neurons and the same average local activations at all
image positions.

3. RESULTS
In a first step we analyse the properties of the activation pat-
terns induced by the natural images (section 3.1). Subsequently
we evaluate the correlation statistics of these induced feature acti-
vations (section 3.2) and the resulting sparse connectivity pattern
(section 3.3). Based on this connectivity pattern we show simu-
lations of the coupled phase oscillator model and the resulting
dynamic phase maps (section 3.4). Finally, evaluations of these
binding maps are presented based on human labeled segmenta-
tion masks (section 3.5).

3.1. SPARSENESS OF ACTIVATION
The simulation of the coupled phase oscillators is based on the
activation levels that were generated from natural images. The
phase coupling is highly dependent on the type of feature rep-
resentation that is used to generate the activation levels. The first
reason is that the connectivity is based on the correlation between
features. The second reason is that also the actual strength of the
dynamic coupling is proportional to the current activation lev-
els. Therefore, the statistics of activation plays a crucial role in the
formation of the dynamic binding maps.
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Hand labeled photographs of suburban scenes from the
LabelMe database (Russell et al., 2008) are used to generate
feature representations with the linear convolutional forward
weights followed by a sigmoidal function. The linear convolu-
tional kernels of the Gabor receptive fields contain only one
spatial frequency and equally spaced orientations (Figure 3A).
In contrast, the learned weights of the sparse autoencoder
(Figure 3B) cover a diverse set of spatial frequencies, colors and
orientations.

We compare the activation levels of features obtained with
the regular Gabor weights and the autoencoder weights. A very
important characteristic of neuronal activations is the level of
sparseness. A high level of activation sparseness means that the
neuron is most of the time very silent and only rarely very active.
This analysis of sparse coding should not be confused with the
graph theoretic sparseness which will be analyzed in section 3.3. A
qualitative comparison of the activation histograms (Figure 4A)
shows that the autoencoder activations are sparser compared to
the Gabor activations. The phase model is based on the assump-
tion that the activation is restricted to the positive domain. Note
that this is in contrast to many normative models of early visual
processing which assume a feature code with a Gaussian distribu-
tion with zero mean. Furthermore, in our model we are mostly
interested in the “hard sparseness” of the activation levels, mean-
ing that the activation is most of the time exactly zero and only
rarely very high (Rehn and Sommer, 2007). A comparison with a
Gaussian distribution restricted to the positive domain with the
same mean (dashed line in Figure 4A) reveals that the feature
activations after the sigmoidal activation function are not nec-
essarily sparse in the context of a positive distribution with this
hard sparseness criteria.

The sigmoidal activation function is followed by the subtrac-
tion of mean, rectification and the division by the sum over
all features. The resulting histograms of these activation levels
(Figure 4B) show an increased hard sparseness for both types of
receptive fields. These additional preprocessing steps are similar
to local regulatory mechanisms in the cortex.

A B

FIGURE 3 | Receptive fields of the feed-forward connections generating

the activation levels for the phase simulations. (A) The regular Gabor
filters are generated with 8 different orientations and 6 different color
channels. (B) The convolutional autoencoder weights are learned by
optimizing the reconstruction cost, sparseness and weight decay.

A quantitative evaluation of the sparseness of the activation
levels is given by the kurtosis. We use the standard measure
of excess kurtosis but without mean normalization because the
phase model assumes a non-negative feature coding by activa-
tion. Therefore, we evaluate the hard sparseness of feature type

j with activation levels h(s)
x,y,j by the kurtosis of a zero-centered

distribution given by

kurtj =

〈(
h(s)

x,y,j

)4
〉

x,y,s(〈(
h(s)

x,y,j

)2
〉

x,y,s

)2
− 3, (14)

where 〈.〉 is the mean over all image positions (x, y) and image
samples s from the labelMe database. The estimated median kur-
tosis over all receptive field types increases for the activations g
after the normalization steps described above in comparison to
the activations h before the normalizations (Table 1). A com-
parison with a Gaussian distribution, which has a kurtosis of 0,
reveals that the additional activation functions indeed increase
the sparseness and lead to a leptokurtic distribution of activa-
tions. Overall the activations generated by the autoencoder are
more sparse in comparison with the hand designed Gabor filters.

The additional activation functions are crucial for the subse-
quent phase simulations. The mean subtraction and half-wave
rectification increase the hard sparseness of activations. This
reduction in the number of active neurons leads to a reduction in

A

B

FIGURE 4 | Histogram of activation levels averaged over all feature

types. The distributions of activation levels are compared to a Gabor
distribution. (A) After sigmoidal activation function. (B) After mean
subtraction, half-wave rectification and division by the sum.
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Table 1 | Median kurtosis of feature activations.

After sigmoid After normalizations1

activations hx,y,k activations gx,y,k

Gabor −1.96 2.61

Autoencoder −0.63 11.62

1After the subtraction of mean, half-wave rectification and division by the local

sum of the new activation levels.

the number of active tangential phase connections. Therefore, the
features in the input image do not only multiplicatively modu-
late the strength of the phase interaction but also deactivate many
phase connections entirely leading to a completely new effective
tangential connectivity pattern.

3.2. STATISTICS OF HORIZONTAL CROSS-CORRELATIONS
The horizontal connections between the coupled phase oscilla-
tors are sampled from the cross-correlations of induced activation
levels as described in equation 5. Therefore, we describe the hor-
izontal correlations in this section and evaluate the anisotropy
of receptive field types. The 4 dimensional cross-correlation ten-

sors ρ
(k,m)
x,y as defined in section 2.3 are shown in Figure 5 for

8 feature types. The Gabor receptive fields have a more regular
correlation matrix (Figure 5A) compared to the learned autoen-
coder receptive fields (Figure 5B). The correlations between the
activations of Gabor receptive fields are itself similar to high fre-
quency Gabor functions. In contrast, the receptive fields learned
by the autoencoder capture different spatial frequencies and a
variety of different colors which is also reflected in the spatial
cross-correlations. In both cases the horizontal cross-correlations
extend over visual space up to three times the receptive field
size. This suggests that the correlations indeed comprise higher-
order correlation statistics of the natural images and not only
interactions between overlapping receptive fields.

To analyze and compare the correlation tensor of the autoen-
coder and the Gabor filters, we calculate statistics for different
correlation distances in visual space. The indices of the tensor are
illustrated in the schematic in Figure 6A. For each distance r in

visual space we calculate statistics over ρ
(k,m)
j where

j ∈ Rr :=
{(

x, y
) ∈ Z

2

∣∣∣∣r − 1

2
≤
√

x2 + y2 < r + 1

2

}
. (15)

The mean absolute value of the cross-correlations decreases for
larger correlation distances r as shown in Figure 6B. The mean
standard deviation of these absolute correlation values over dif-
ferent spatial directions also decreases but with a steeper slope
(Figure 6C). To make a relative statement about the isotropy in
the correlation tensor we also calculate the coefficient of varia-
tion over different directions. Therefore, we define the average
anisotropy at radius r as

anisotropy(r) :=
〈

stdj ∈ Rr

(
ρ

(k,m)
j

)
meanj ∈ Rr

(
ρ

(k,m)
j

)
〉

k,m

(16)

This mean anisotropy averaged over all pairs of receptive field
types has a local maximum at visual distances of around 8–10
pixels (Figure 6D). This suggests that the short range phase con-
nections over this distance help more in the synchronization of
fine structures. The anisotropy has a local minimum at distances
around 15–16 pixels, where more long range phase connections
are dominantly used to fill-in segment pixels with similar colors.

3.3. SPARSELY CONNECTED OSCILLATOR NETWORK
The correlation values are used to sample the sparse connections
for the simulations of coupled phase oscillators. We restrict the
sampled connectivity pattern in simulations of natural scenes to
200 synchronizing and 200 desynchronizing afferent connections
per neuron if not stated otherwise. The phase simulations of natu-
ral image scenes are run in a network of 200 × 150 × 48 neurons
for Gabor features or 200 × 150 × 100 for autoencoder features
respectively. Therefore, the percentage of connections that are
actually formed compared to all possible connections assuming
full connectivity is approximately 0.014% in the case of Gabor fea-
tures and 0.007% for autoencoder features. Thus, this procedure
leads to a very sparse connectivity in comparison to a network of
all-to-all interactions.

We evaluate the sampled connectivity based on natural image
statistics using graph theoretic measures. The connectivity struc-
ture is represented as a graph G = (H, E) as described in sec-
tion 2.3. We compute the statistics not only over the graph
of all connections E but also for the subgraph of synchroniz-

ing connections E+ :=
{

e
(j,k)
x,y ∈ E

∣∣∣e(j,k)
x,y = +1

}
and the subgraph

of desynchronizing connections E− :=
{

e
(j,k)
x,y ∈ E

∣∣∣e(j,k)
x,y = −1

}
individually.

For a graph with edges E we calculate the fraction of intra-
feature connections as

μ =
∣∣∣{ek,m

δx,δy ∈ E
∣∣∣k = m

}∣∣∣∣∣∣{ek,m
δx,δy ∈ E

∣∣∣k �= m
}∣∣∣ · 100%. (17)

The most obvious observation is that the fraction of intra-feature
connections is larger for synchronizing connections in compari-
son to the desynchronizing connections (Table 2). The reason is
that positive correlations, which are used to sample these synchro-
nizing connections, are stronger between the same feature type
shifted over visual space. In contrast negative correlations and
thus desynchronizing connections are less likely to occur between
the same feature type shifted over visual space. Another observa-
tion is that the fraction of intra-feature connections of the Gabor
features is roughly twice as large as in the case of the autoencoder
features. The reason is that we use 100 autoencoder features and
only 48 Gabor features while the total number of sampled syn-
chronizing and desynchronizing connections per feature remains
constant.

A more elaborate evaluation of the sampled connectivity of
our network can be done using the clustering coefficient and the
small-world characteristics (Watts and Strogatz, 1998; Humphries
et al., 2006), which are also shown in Table 2. To define the local
clustering coefficient in an infinite graph G = (H, E), we analyze
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A B

FIGURE 5 | Cross-correlations between different feature activations

shifted in visual space. The shown cross-correlations are based on the
activation levels induced by natural images. Only a subset of 8 features is
shown. The patches on the top and left row show the forward weight
matrix of the receptive fields. The other patches show the spatial

correlation between these features. The feature weights are shown at the
same spatial scale as the shifts in the cross-correlations. (A) The
correlations between 8 oriented Gabor filters of one of the 6 color
channels are shown. (B) The correlations between 8 randomly choosen
autoencoder features are shown.

A B

C D

FIGURE 6 | The statistics of the correlation matrix evaluated for

different distances r in visual space. (A) Schematic to illustrate the
indices of the correlation tensor. In the top schematic the correlation
tensor is indexed by horizontal (x) and vertical (y) offsets in visual
space. In the bottom schematic the correlation tensor is indexed by
j ∈ Rr for a certain distance r in visual space. The other panels

compare the correlation tensor of Gabor filters (gray) and autoencoder
filters (black) for different distances r . All shown statistics are averaged
over all pairs of receptive field types k and m. (B) Mean over all
directions. (C) Standard deviation over different directions for a certain
pair of feature types. (D) The anisotropy averaged over all pairs of
receptive fields as described in the main text.

the connectivity of the neurons in a generic feature column at
position (x, y) = (0, 0). We define the neighbors of neuron g0,0,k

coding feature type k ∈ {1..K} as the set of all neurons which are
directly connected in the graph as

Nk =
{

gx,y,m ∈ H
∣∣∣ek,m

x,y ∈ E ∨ em,k
−x,−y ∈ E

}
, (18)

where we consider outbound (ek,m
x,y ) and inbound (em,k

−x,−y) con-
nections of the neuron. Then we define the local clustering

coefficient of a feature type k in our network as the fraction of the
number of direct connections between neighbors to the number
of pairs of neighbors:

γk =
∣∣{em,n

x,y ∈ E
∣∣gx̃ + x,ỹ + x,m ∈ Nk ∧ gx̃,ỹ,n ∈ Nk

}∣∣
|Nk| · (|Nk| − 1)

(19)

We show the global clustering coefficients γ =< γk >k for
our sampled networks comprising only the synchronizing, only

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 195 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Finger and König Segmentation in neural oscillator network

Table 2 | Graph theoretic statistics of the sparse connectivity pattern.

Gabor Autoencoder

All Sync. Desync. All Sync. Desync.

E E+ E− E E+ E−

Fraction of intra-feature connections μ 6.49% 12.87% 0.10% 3.12% 6.17% 0.07%

Global clustering coefficient γ (in 10−3) 3.21 3.53 0.64 3.18 2.49 1.27

Global clustering coefficient random γrandom (in 10−3) 2.35 1.11 1.25 2.18 1.03 1.18

Mean shortest path length λ 2.01 2.60 2.46 2.17 2.63 2.59

Mean shortest path length random λrandom 2.02 2.53 2.47 2.15 2.62 2.56

Small world index σsw 1.37 3.09 0.51 1.44 2.39 1.07

the desynchronizing or all connections in the second row of
Table 2.

The evaluation of the graph comprising all connections shows
that the mean clustering coefficient is roughly the same for the
Gabor and the autoencoder features. But the evaluation of graphs
individually reveals that the clustering coefficient of only the syn-
chronizing graph is higher for the Gabor features in comparison
to the autoencoder features. And reciprocally, the desynchro-
nizing connections show a stronger clustering in the case of
autoencoder features. An explanation for this difference is that
the autoencoder learns a more diverse set of receptive fields by
optimizing the reconstruction error. In comparison, the regu-
lar Gabor receptive fields cover only predefined colors, spatial
frequencies and orientations, which are not optimized to cover
a broad range of statistics in the input images. Therefore, the
correlation structure in the Gabor activations shows stronger
clustering. For comparison, we also show the corresponding clus-
tering coefficients γrandom of the equivalent networks with the
same connection lengths (measured in pixel distance) but rotated
by random angles and connected to random features.

We can further use the small-world index to measure the capa-
bility of neurons in our network to reach other neurons via a small
number of interaction steps. The small-world index is a quantita-
tive definition of the presence of abundant clustering of connec-
tions combined with short average distances between neuronal
elements, proposed by Humphries et al. (2006). It can character-
ize a large number of not fully connected network topologies. The
connectivity within the 3-dimensional grid of our model is sam-
pled such that it is invariant to shifts in the two image dimensions.
Therefore, we have to slightly adapt the small-world index for our
infinite horizontal sheet consisting of feature columns with iden-
tical connection patterns. We use the definition of the small-world
index

σsw = γ/γrandom

λ/λrandom
, (20)

where the shortest path lengths λ and λrandom measure the num-
ber of network hops needed to connect two neurons within our
sampled network and a random network respectively. We use the
average over all shortest path lengths between all pairs of neu-
rons within one feature column. A network graph must have a
small-world index σsw larger than one to meet the small-world
criteria. The evaluations show that the graph comprising the syn-
chronizing connections exhibits small-world properties while the

desynchronizing connections are closer to a random connectivity
and do not exhibit small-world properties (Table 2). The small-
world property might be helpful in the synchronization of distant
neurons.

3.4. PHASE SIMULATIONS
The resulting connectivity pattern is used in the phase simu-
lations. All shown simulations of the coupled phase oscillator
networks are initialized with random phase variables. The activa-
tion levels are only set once in the beginning and remain the same
throughout the phase simulations. During the simulations attrac-
tors are formed in the phase space and are localized in certain
image regions.

A simulation of the coupled phase oscillator model with local-
ized connectivity and with uniform activation levels shows that
pinwheel structures will form in the phase map (Figures 7A,B).
The connectivity length in the network determines the scale of
the pinwheels. During the simulation these pinwheels attract each
other and annihilate (Wolf and Geisel, 1998). The probability of
the formation of pinwheels decreases for network connectivity
patterns that are less locally dense but more sparse and spread
out.

In the next simulations we use several feature types to encode
different aspects of the input images. To visualize the resulting
3-dimensional structure of phase variables ϕx,y,k we calculate the
circular mean at each image position weighted by the correspond-
ing activation levels:

ϕ
avg
x,y := arg

(∑
k

gx,y,keiϕx,y,k

)
, (21)

where arg is the complex argument. We show the average phase
variables ϕ

avg
x,y coded as color hue to visually represent the circular

structure of the phase.
We use two simple artificial stimuli to demonstrate the basic

function of the phase simulation in the presence of structure in
the activation variables (Figures 7C,D). The stimuli of these sim-
ulations are artificially generated grayscale images containing bar
segments and circle segments (insets in Figures 7C,D). The con-
nectivity in both simulations is based on Gabor receptive fields
with horizontal connectivity obtained from statistics of natural
images. In the simulation of two collinear aligned bars the phase
of the neurons coding the two bars are synchronizing although the
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A B

C D

FIGURE 7 | Simulations of the coupled phase oscillator model. The
phase variables are shown as color hue. (A,B) Phase simulations of a
2-dimensional grid of 200x200 neurons with uniform activation levels after
100 network iterations. A regular local connectivity is used with maximum
length 3 (A) and 10 (B). Simulations in (C,D) use the Gabor receptive fields
and horizontal oscillator connectivity from the correlation statistics. The
input images are artificial stimuli of two collinear aligned bars (C) and of a
dashed circle (D) and are shown as an inset in the upper left corner. The
shown phase maps in (C,D) are the circular mean of the phase variables
weighted by the activation of the corresponding features. Panel (C) shows
the average phase after 20 network iterations and panel (D) after 40
network iterations.

two bars are not directly connected in the image (Figure 7C). This
suggests that the simulation can implement Gestalt laws of group-
ing, because neurons are grouped together by having the same
phase value. Specifically, a human observer could interpret these
two bars as one single continues line. Therefore, the simulation
can be interpreted as implementing the Gestalt law of continuity
because the neurons that are coding the two bars have the same
phase. Please note, that in the simulation the gap between the two
bars is not filled in because our model does not incorporate any
feedback from the phase variables to the activation variables. In
this study we focus on relational coding by phase variables and
therefore neglect any recurrent dynamics in activation variables.

The other simulation uses a dashed black circle as input
(Figure 7D). The phase map shows that all segments of the circle
are synchronizing to the same phase value. The synchronized state
of the circle means that the phase variables at different segments
of the circle code the global attribute and bind the individual
circle segments together. Similarly, humans usually perceive the
circle segments all together as one single object. This indicates
that the phase simulation can also implement the Gestalt law of
closure. Depending on the initialization of random phase vari-
ables, cases exist where the circle does not synchronize to one
coherent phase but forms a continuous phase progression one
or multiple times from 0 to 2π. On one hand these simulations
reproduce the previous studies demonstrating binding properties
of coupled neural oscillators. On the other hand, in these simula-
tions the connectivity is learned based on natural stimuli and not
hand crafted. Hence, it demonstrates that these Gestalt properties
are learned from the statistics of natural stimuli.

We next evaluate the concept of binding by synchrony also on
natural visual scenes. All following simulations in this paper use
color images from the LabelMe database (Russell et al., 2008) and
either the Gabor filters or the autoencoder filters to generate the
activation levels for the network. An example of a suburban scene
is shown in Figure 8A with the corresponding human labeled seg-
mentation masks in Figure 8B. We use the time constant τ = 1/3
for the simulations based on Gabor filters and τ = 1/30 for the
simulations based on autoencoder filters. These values were cho-
sen such that per iteration of the classical Runge-Kutta solver the
phase of not more than 1% of all neurons changes more than
π/2. The units of these time constants are arbitrary because our
model of coupled phase oscillators describes the change in phase
independent of the oscillation period. Examples of the resulting
phase maps are shown in Figure 8C for Gabor activations and
Figure 8D for autoencoder activations. The phase maps of sim-
ulations using autoencoder weights are blurred compared to the
Gaborfilters because the peak of the receptive fields are not nec-
essarily centered within the convolutional weight matrix, leading
to shifts in visual space between different feature maps at segment
boundaries. Yet in both examples an intuitive segmentation of the
original can be recognized again in the distribution of phase val-
ues. We see a constantly increasing phase synchrony in labeled
segments. This example suggests that high-level image objects are
likely to synchronize to a coherent phase.

3.5. EVALUATION OF PHASE MAPS
We evaluate the simulated dynamic phase maps and com-
pare them with human labeled binary segmentation masks of
high level image objects from the LabelMe database. We begin
with an evaluation of the resulting phase maps independently
from the labeled image masks to show global properties
of the coupled phase oscillator model and the influence of
the number of horizontal connections (section 3.5.1). This
is followed by an evaluation of the phase synchrony within
labeled segments with respect to the surrounding of the seg-
ments (section 3.5.2). Finally a local evaluation of the phase
maps at the boundaries of labeled segments is presented
(section 3.5.3).

3.5.1. Phase synchrony
Segmentation and binding of neurons in the network can only
be achieved if the phase variables are not random but also not
completely synchronized. Therefore, we will first evaluate the
local phase synchrony independent of segments in the image. We
define the synchrony in a population M of neurons as

pM =
∣∣∣∣∣
∑

m ∈ M gm · eiϕm∑
m ∈ M gm

∣∣∣∣∣ , (22)

where M is defined as a set of 3-dimensional indices describing
the position of the neurons.

In this section we analyze the simulation shown in Figure 8
in more detail and evaluate how the number of synchronizing
and desynchronizing connections effects the phase synchrony. We
evaluate the local phase synchrony at image position (x, y) for a
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A

C

D

B

FIGURE 8 | Phase simulations of a natural image of a suburban scene.

(A) A natural image from the LabelMe database is used as the input to
generate neuronal activation maps. (B) The LabelMe images are

accompanied by overlapping segmentation masks of labeled image regions.
(C,D) The circular mean of the phase maps evaluated at different network
iterations. Gabor filters were used in (C) and autoencoder filters in (D).

certain radius r by calculating pMx,y,r for neurons at positions

Mx,y,r = {
(x̃, ỹ, k)

∣∣(x − x̃)2 + (y − ỹ)2 < r2,

(x, y) ∈ N
2, k ∈ {1..K}} , (23)

where K is the number of feature maps. We average this quan-
tity over all possible image positions (x, y). This mean local phase
synchrony is shown in Figure 9 for simulations using differ-
ent number of connections, different iterations and for different
radii r.

When the network has reached a steady state, the mean
local phase synchrony depends on the number of synchronizing
and desynchronizing connections (Figures 9A,D). The number
of synchronizing connections increases the average local phase
synchrony. In contrast, the number of desynchronizing connec-
tions can increase or decrease the average local phase synchrony
depending on the number of synchronizing connections. At first
sight, this may be counterintuitive. In the case of few synchro-
nizing connections, the desynchronizing connections repel the
associated phase variables from each other. This ultimately leads
to a clustering in the circular phase space evoked by desynchro-
nizing interactions. In the case of more synchronizing connec-
tions, the main force driving the network are attractor states and
therefore desynchronizing connections decrease the overall phase
synchrony.

The phase synchrony in the steady state condition increases
with the ratio between synchronizing and desynchronizing con-
nections up to a ratio of 16 times more synchronizing than desyn-
chronizing connections (Figures 9B,E). Interestingly, the phase

synchrony in the steady state condition decreases again in simula-
tions with more than 800 synchronizing connections and very few
desynchronizing connections. During the transient phase a very
low or high ratio leads to a faster convergence to a more synchro-
nized state. The slowest convergence is achieved at the cases with
4 times more desynchronizing connections or when the number
of synchronizing and desynchronizing connections is balanced.

The phase simulations show synchronization behavior at a
large variety of different spatial scales (Figures 9C,F). The level
of synchrony at the steady state decreases for increasing radius of
the phase synchrony evaluation. At all spatial scales the time to
reach the steady state synchrony level is roughly the same. Only
very localized regions over 1-2 pixel distances show a slightly
faster convergence to the final phase synchrony level. When not
otherwise stated we select in all simulations and evaluations an
intermediate parameter range with balanced synchronizing and
desynchronizing connections leading to rich dynamics. These
standard parameters are marked with blue circles in Figure 9.

3.5.2. Segmentation index
The dynamic binding and segmentation of the simulated phase
maps of natural images are evaluated using hand labeled segmen-
tation masks. Here a baseline is necessary to accommodate for
the higher probability of synchronization between neurons that
are close by. Consequently we use the labeled image masks on
the corresponding simulated phase maps and compare them to
a baseline using the same image masks on simulations of different
non-matching images.

The segmentation masks in the LabelMe database are speci-
fied as polygons on the images that are initially reduced in our
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FIGURE 9 | The averaged local phase synchrony in circular image

regions for different simulation parameters. All evaluations are based
on the activation levels obtained from the image shown in Figure 8A.
Simulations in the top row (A–C) are based on Gabor weights;
simulations in the bottom row (D–F) are based on autoencoder
weights. Blue circles indicate the standard parameters for subsequent
evaluations. Colorbars of all panels are the same and shown on the
right. The panels in the left column (A,D) show the phase synchrony
after 20 iterations for different number of excitatory and inhibitory

phase connections per neuron. The panels in the center column (B,E)

show the phase synchrony for different ratios of excitatory to inhibitory
connections as a function of network iterations. These ratios correspond
to the diagonal elements marked with red arrows in panels (A,D). And
the shown time course of the average phase synchrony values are
from the same simulations. In the right panels (C,F) the phase
synchrony is shown for different sizes of the local circular region of the
evaluations. The red circle indicates the radius which was used in the
evaluations shown in the other panels.

simulation to a resolution of 400 × 300 pixels. The convolutional
forward projections lead to a further reduction in the feature rep-
resentation to a grid of 200 × 150 pixels. Therefore, we restrict
the evaluations of the phase maps to segmentation masks which
contain at least as many pixels as the specified patch size of the
forward projections (6 × 6 neurons corresponding to 12 × 12
pixels in the input image). In addition, segments occupying more
than half of the respective images are excluded to allow evalu-
ations against a baseline synchrony of the surrounding regions.
The range of labeled segments which is used in our evaluations
is shown as a horizontal bar in Figure 10. Only in evaluations
where the segment sizes are explicitly stated, we also evaluate these
otherwise excluded very small and very large segments.

The number of labeled segments in the database decreases for
larger segment sizes (Figure 10A). Yet the total area occupied by
segments in the different bins increases for larger segment sizes
(Figure 10B). Therefore, when applying labeled masks to non-
matching images small segments are highly likely to fall into
large segments where a large number of tangential connections

is functionally active. Consequently the phase synchrony within
labeled segments is not a sufficient baseline for an unbiased com-
parison with simulations of non-matching images. Therefore, we
need a baseline to control for the unequal distribution of segment
sizes and their occupied region in the images.

To accommodate for the statistics of segment sizes in the
evaluation of the matching and non-matching natural scenes,
we define a segmentation index (Figure 11) that sets the phase
synchrony in segments into the context of the surrounding
neurons. Concretely, the segmentation index evaluates how the
phase of neurons inside of segments is more or less synchro-
nized compared to the synchrony of random neurons inside and
outside of the segment. The neighborhood N of a segment Q
is generated using a diamond shaped grow operation on the
segmentation mask repeatedly until the number of neurons in
N is doubled compared to the original segment Q. Therefore,
N is the union of the segment Q and the surrounding R of
the segment (Q and R are annotated in the example shown in
Figure 11).
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FIGURE 10 | Statistics of labeled image segments. (A) The histogram
of evaluated segments from the LabelMe database for different
segment sizes is shown. (B) The total area occupied by the segments

in the corresponding bins. The range of segment sizes (36–15000
pixels) that are used for subsequent evaluations are marked with a
horizontal bar.

FIGURE 11 | Evaluation using hand labeled image masks. The
evaluations compare the segmentation index of matching simulations and
segmentation masks (top row) to a baseline of non-matching simulations
and segmentation masks (bottom row). The images from the LabelMe
database (left column) are processed using the forward projections. The
resulting features are used to simulate the phase of the coupled neural
oscillators (middle column). The segmentation index of these phase maps
are then evaluated using the segmentations masks from the LabelMe
database (right column). The evaluation of the house in the top left is here
shown as an example. The segmentation index compares the phase
synchrony in the hand labeled region of the house (Q) to a baseline phase
synchrony within the neighborhood (Q ∪ R).

We calculate the phase synchrony values pQj and pNl for ran-
dom subsets Qj ⊂ Q and Nl ⊂ N where j, l ∈ {1, . . . , 100} and
Qj, Nl ∈ N

1000. We define the segmentation index of segment Q
as the difference between the mean synchrony within the segment
Q to the mean synchrony in the neighborhood N = R ∪ Q:

κ(Q, N) = 〈pQj〉j − 〈pNl 〉l. (24)

The segmentation index increases over simulation iterations for
matching and non-matching masks and images (Figure 12A).
The matching conditions have a steeper ascent and reach a higher
segmentation index compared to the non-matching conditions.
The difference between the matching segmentation index and
the non-matching segmentation index increases for both simula-
tions using Gabor weights and autoencoder weights (Figure 12B).
The simulations using regular Gabor receptive fields show larger
differences between matching and non-matching segmentation
indices compared to the autoencoder weights. The ratio between
matching and non-matching segmentation indices is roughly

the same for both types of receptive fields. This demonstrates
systematic binding in the phase maps of matching segments.

An evaluation for different segment sizes individually reveals
more differences between the Gabor and autoencoder features.
The evaluations of the matching conditions show that the seg-
mentation index increases for larger segments in the case of the
autoencoder features but decreases for larger segments in the
case of the Gabor features (Figure 12C). An explanation is that
the autoencoder contains more features with low spatial frequen-
cies while the Gabor features are restricted to one specific spatial
frequency.

The paired difference between matching and non-matching
evaluations shows that the Gabor filter and the autoencoder
have roughly the same performance for large segment sizes
(Figure 12D). For small segment sizes the autoencoder has a
decreased segmentation performance. One possible explanation
might be that the receptive field weights are not centered (com-
pare Figure 3) and therefore different feature neurons might be
slightly misaligned relative to the hand labeled segmentation
masks, which are defined as polygons with arbitrary precision on
the image.

Overall the results show a significant difference between the
matching and the non-matching segmentation indices for all eval-
uated segment sizes. The paired difference between the matching
and the non-matching conditions increases as the simulation of
the randomly initialized phase variables slowly converges to a
state with clusters in the circular phase space. After about 20 net-
work iterations the paired difference in the segmentation index
reaches a high plateau. Therefore, the coupled phase oscillator
model achieves a stable segmentation of the natural image scenes
with a coding of binding by synchrony.

3.5.3. Segment boundaries
To evaluate how well the phase maps segment different labeled
regions at their borders we calculate a metric at random locations
of segment boundaries. We sample 50 random locations from all
boundary lines of the segments in each simulated image from the
LabelMe database. At these locations we use the angle of the seg-
ment boundary to divide a local region into two semicircles with a
radius of 10 pixels such that one half lies approximately within the
segment and the other half outside of the segment (Figure 13A).
The mean phase difference between both semicircles decreases
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FIGURE 12 | Segmentation index. The mean segmentation index is shown
as a function of network iterations averaged over all segments with more
than 36 pixels in the top panels (A,B). The segmentation index is shown as a
function of different segment sizes after 20 network iterations in the bottom
panels (C,D). The panels on the left side (A,C) show the evaluations for

matching images (solid lines) and non-matching images (dashed lines)
individually. Panels on the right side (B,D) show the paired difference
between matching and non-matching evaluations. In all panels the activation
levels are obtained using Gabor filters (gray lines) and autoencoder filters
(black lines). The errorbars in all panels are 95% confidence intervals.

over simulation time (Figure 13B). The paired difference between
the phase difference in matching compared to non-matching
images shows that the phase difference over matching segment
boundaries is significantly larger (Figure 13C).

The evaluation of the phase difference as a function of the
size of this circular region shows that the segmentation perfor-
mance using autoencoder features decreases for very small regions
(Figures 13D,E). This might be due to the above described mis-
alignments between the learned receptive field centers. For very
large evaluation regions the performance decreases for both
receptive field types because the circular regions are likely to
extend beyond the hand labeled segment regions.

It is possible to evaluate the segmentation performance of
the dynamic binding maps without the need for a baseline on
non-matching images if we use an unbiased performance esti-
mator with a clearly defined chance level. Therefore, we measure
how well the phase map can predict the angle of the borders of
segmentation masks. We use the phase variables at randomly sam-
pled locations on segment boundaries (Figure 13A) and compute
the image direction with the largest change in the phase variables.
We define the local variance in phase at image position (x, y) as

ϑx,y = 1 − 1

5 · K
·
∣∣∣∣∣

K∑
k = 1

eiϕx,y,k + eiϕx − 1,y,k + eiϕx,y − 1,k

+ eiϕx + 1,y,k + eiϕx,y + 1,k

∣∣∣∣∣ (25)

where the sum is over all k ∈ {1..K} feature maps. We use the
structure tensor of the local variance in phase to estimate the

principal directions. To compute the structure tensor we use a
Gaussian window function with a standard deviation of 3 pixels
and the second order central finite difference of the local variance
in phase. The eigenvector of the structure tensor gives an estimate
of the border direction of the segmentation mask. The evaluation
of the phase maps shows that the mean error in the estimation of
the boundary angles decreases over simulation time (Figure 13F).
A minimum is reached after around 20 network iterations with
an error of approximately 28◦ in comparison to the chance level
of 45◦. This demonstrates that the phase gradient systematically
aligns itself orthogonal to the segment boundaries.

4. DISCUSSION
Here we investigate the concept of binding by synchrony, as has
been previously studied with abstract stimuli, in the context of
unsupervised learning and natural stimuli. The model consists
of coupled phase oscillators with a connectivity based on natural
image statistics. Specifically, the correlation of neuronal activity
governs the structure of local horizontal connections in the net-
work. Hence the connections are not constructed according to a
heuristic or intuition, but solely data driven. Therefore, we can
expect it to generalize well to other cortical areas. We show that
the sampled sparse connectivity based on positive correlations
in induced activations by natural stimuli exhibits small-world
properties. We hypothesize that the small world property is a sig-
nature of Gestalt laws in the form of regular local correlations
(objects) that can be flexibly combined on a global scale. We
show that these horizontal connections influence the dynamics
of the phase variables such that an effective coding of contextual
relationships between active neurons is implemented by phase
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FIGURE 13 | Local evaluation of the phase segmentation. Results were
obtained using Gabor filters (gray) and autoencoder filters (black). (A)

Illustration of the randomly selected locations on segment borders and the
corresponding semicircles as described in the main text. (B) The local phase
difference at random segment border locations of matching images (solid
lines) and non-matching images (dashed lines). (C) The paired difference

between the local phase differences evaluated on matching and
non-matching images. (D) The mean local phase difference as a function of
different sizes of the local circular regions over which the phase is evaluated.
(E) The paired difference between matching and nonmatching images. (F)

The mean error in the estimated angle of segment boundaries. All errorbars
are 95% confidence intervals.

synchronization. Therefore, our results reveal that the concept of
binding by synchrony is viable for natural stimuli.

The evaluation of phase synchronization as a code for group-
ing and segmentation utilizes hand labeled image segments, cor-
responding to high level objects, as ground truth. The evaluations
reveal that the phase maps are binding active neurons together if
they encode different attributes of the same stimulus. It follows
that the phase variables are coding global stimulus attributes in
contrast to the coding of local stimulus attributes by the rate vari-
ables. The coding of these global contextual relationships is not
directly influenced by the rate variables but only by their indirect
modulation of the phase interactions. Furthermore, we illustrate
that discontinuities are formed in the phase maps at the borders
of segments and that these discontinuities can predict the orien-
tation of segment boundaries. Therefore, our results suggest that
the segmentation driven by bottom up dynamical processes using
natural image statistics matches to a certain degree the top-down
labeling of abstract image objects.

Our study connects three different subject areas: natural image
statistics, dynamical models of neural networks and normative
models of sensory processing. In the following we will discuss
the motivations and implications of our study from each of these
perspectives.

4.1. CHOICE OF NATURAL STIMULI
The choice of “natural” stimulus material is not as obvious as it
might seem. A more natural choice from a biological perspective
would be to use stimulus material generated by a moving agent.
For example videos from a camera mounted to a cat’s head were
used previously to analyze the spatio-temporal structure of natu-
ral stimuli (Kayser et al., 2003). A similar setup from a human
perspective is also possible (Açik et al., 2009). But time vari-
ant stimuli require more computational resources and the high
number of horizontal connections in our simulations is compu-
tationally expensive although it is implemented as a vectorized
operation. In addition, the analysis of the phase segmentation
maps would be more difficult in the case of moving stimuli
because of the unknown time lag between stimulus onsets and
the resulting dynamic phase maps. Therefore, we decided to not
use videos as stimulus material in the present study.

Differences in eye movements given different stimulus classes
might also play a role in shaping the statistics in the visual input
received by the primary visual cortex. There might be important
interactions between saccadic eye movements and the dynamics
of the horizontal connections in the visual cortex. One could sim-
ulate saccadic movements on static images using saliency maps
and use the resulting images for the feedforward processing in
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our model. But as with moving stimuli in general it would com-
plicate the analysis and would not contribute directly to the
understanding of the central questions of binding by synchrony.

The LabelMe database provides a large set of only static images.
It has the advantage that the images are accompanied by labeled
region masks of well defined objects. These high level labeled
masks are often overlapping in the case of part-based segmen-
tations of objects. The segmentation evaluation is tricky in the
case of occluded objects. But the LabelMe database allows us to
investigate the relationship between natural image statistics and
the coding of high level image concepts. Therefore, we think it is
a reasonable choice to use this database in our study.

4.2. BIOLOGICAL PLAUSIBILITY
As with most computational neural network models we have to
ask ourselves in how far it is biologically plausible. To advance
our knowledge about the underlying computation principles in
the cortex, it is always a good choice to model only the level of
detail which is necessary to explain the phenomena under investi-
gation. Thereby we assure that the abstraction level of the model
is as good as possible although it is very likely that some mech-
anisms below the level of detail modeled here play an important
role in synchronization phenomena. We implement in our simu-
lations the influence of correlated neuronal activity on large time
scales to the network connectivity. Based on these connections we
show how the dynamics on fast time scales can code for segmen-
tation and binding. Therefore, we have to model the behavioral
learning time scales (>days) to capture the natural image statistics
and the dynamical network time scales (<seconds) simultane-
ously. Therefore, we consider the chosen network architecture of
segregated rate and phase based coding suitable to investigate the
role of correlated neuronal activity on the network dynamics and
relational coding by synchronization.

The Kuramoto model restricts the dynamical interactions
between coupled oscillators to a scalar phase variable. Breakspear
et al. (2010) review this simplified model of coupled phase oscilla-
tors in the context of models of complex neurobiological systems.
They find that it captures the core mechanisms of neuronal
synchronization and a broad repertoire of rich, non-trivial cor-
tical dynamics. Studies of the Kuramoto model mostly focus
on regularly defined phase interactions without a separate net-
work variable representing the activation levels of the oscillator
neurons. This allows using mean-field approximations to fur-
ther simplify the analysis of the Kuramoto model. In contrast,
our study focuses on the simulation of heterogeneous connec-
tions which are modulated by heterogeneous activation levels
induced by natural stimuli. Therefore, our simulation model is
more similar to the diverse activations and connections found in
biological neural systems but this comes with the drawback that a
mean-field approximation is not warranted.

In principle two biological interpretations of the coupled phase
oscillator model are possible. A conservative standpoint is an
interpretation as a neural field model in which each network unit
of our simulation represents a functional module, i.e., a cortical
column, which is comprised of many biological neurons. In this
case the phase variables would represent the average phase of a set
of biological neurons, i.e., the phase of the local field potential.

A second possible more fine-grained interpretation in which the
phase oscillators represent individual biological neurons might
seem far-fetched and oversimplified on first sight. Nonetheless the
interpretation of the phase variables as spike timings might give
further ideas about possible extensions of our proposed model.
In this interpretation the oscillators represent the limit cycles
of the dynamics of spike generation of biological neurons. The
sinusoidal interaction function can then be related to an inte-
gral over the phase response function of a spiking neuron (Sturm
and König, 2001). Furthermore, the spike interpretation could
motivate the introduction of conduction delays in our model.
This in turn might further allow studying spike-timing dependent
plasticity in the context of a normative model.

Certainly, there are many phenomena that can only be mod-
eled by more detailed spiking neuron models. For example
spike-timing dependent plasticity could only be modeled with
the phase oscillator model if we assume regular oscillatory fir-
ing but not in the case of irregular firing. For example, the
ability of self-organizing recurrent networks (SORN) to learn
spatio-temporal structures in the input depends on spike-timing
dependent plasticity and irregular firing (Lazar et al., 2009).
Similarly, Buonomano and Maass (2009) showed that spatiotem-
poral processing of natural stimuli can emerge from the dynamics
of “hidden” neuronal states, such as short-term synaptic plastic-
ity. Irregular firing is also needed for synfire chains of successively
activated neural assemblies to explain the physiological mea-
surements of spike patterns recurring with millisecond precision
(Abeles, 1982). However, it might be possible to simulate some
properties of synfire chains if we add more hierarchical layers and
phase conduction in the feed forward projections in our model.
Kumar et al. (2010) analyzed the coexistence of firing rate prop-
agation and synchrony propagation in feed forward networks.
Last but not least, self-organized criticality and cortical avalanches
(Beggs and Plenz, 2003) can probably only be modeled with more
detailed spike-based neuron models because the phenomenon
requires a dynamical system of more complex coupled oscillators.

There are also other dynamical models of neural networks
that were analyzed in the context of scene segmentation (Tononi
et al., 1992). Wang and Terman (1997) described the local exci-
tatory global inhibitory oscillator network (LEGION), which is
comprised of units described by two differential equations that
explicitly model a stable periodic orbit alternating between two
phases with rapid transitions between them. This model has the
advantage that fast synchronization of the coupled oscillators
is possible. But it simulates each neuronal oscillation on a fast
timescale and the synchronization of a population of neurons
is only visible at certain simulated time points. In contrast, our
phase model simplifies the phase plane to a continues phase vari-
able averaged over many oscillatory periods, so that the phase
relationships between all pairs of neurons is explicitly represented
at all simulation time points. Another difference is that the imple-
mentation of LEGION involves many discontinuous operations
to reduce the computation time. These discontinues operations
prevent a normative model approach with optimizations using
gradient descent. The full continuous dynamics in our model
allows further optimizations of the horizontal connectivity using
gradient descent methods.
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In our model the forward connections are computed once and
are then fixed during the phase simulation of horizontal connec-
tions. This is a very simplified model compared to the ongoing
simultaneous processing of afferent and recurrent inputs in the
cortex. But it is compatible with the fact that self sustained activ-
ity in the cortex can be measured also in the absence of stimulus
inputs. Furthermore, computational models of cellular and net-
work behavior support the conclusion that the cortical network
operates in a recurrent rather than a purely feed-forward mode
(Mariño et al., 2005). Therefore, it makes sense to simulate the
lateral interactions decoupled from the time scale of forward
projections that generate the activation levels.

We use the correlated neuronal activation levels as the prob-
ability to form horizontal intralayer connections. It was shown
that the measured horizontal connectivity in the visual cor-
tex of cats is indeed proportional to the correlation between
receptive field wavelets in image statistics (Betsch et al., 2004).
Our choice to use a sparse connectivity pattern instead of full
connectivity with heterogenous connection strengths was ini-
tially intended as a computational shortcut to allow large-scale
simulations. This sparse connectivity is in line with biolog-
ical horizontal connectivity and reveals interesting properties
that deserve further investigation. In the brain the binding of
stimulus representations has to be distributed over many cor-
tical areas. It was shown with graph theoretic measures that
the sparse connectivity within the cortex is organized in hubs
and shows properties of small-world networks (Sporns et al.,
2004). One can speculate that this allows binding by tempo-
ral structure even between stimulus representations over distant
cortical regions. Also in our network model the sampled sparse
connection patterns generated from correlated neuronal activ-
ity were shown to have small-world properties in the case of
synchronizing connections. Accordingly, we see in our network
simulations fast synchronizations of distant neurons that are not
directly connected. And in future studies our model could be
extended to simulate even synchronizations between different
cortical regions.

In the cortex a wide range of oscillatory frequencies at dif-
ferent spatial scales occur with cross-frequency couplings. This
is highly prominent in different sleep stages (Belluscio et al.,
2012) and plays an important role in memory encoding (Friese
et al., 2012). Our model is highly simplified in the sense that
all neurons are assumed to have the same oscillatory natural
frequency. We simulate only horizontal connections between neu-
rons with similar physiological properties which are operating
in the same dynamical regime. In this context, the assumption
that all active neurons are close to a similar dynamical limit cycle
seems reasonable. In future work, several cortical rhythms could
be implemented using several phase variables per neuron. One
can conceive different algebraic structures which could efficiently
represent cross-frequency couplings in the cortex. This would
allow investigating fractal binding at different abstraction levels
and segmentation at different scales.

In summary, the architecture of our model captures many
important aspects of biological neural networks. In particular,
it models the dynamical properties used for contextual coding
and the unsupervised learning of statistics in natural stimuli. At

the same time, our model keeps the simplicity required for the
analysis of the network dynamics and allows relatively simple
evaluations of the resulting phase relationships.

4.3. COMPARISON WITH OTHER NORMATIVE MODELS
In recent years the abstraction from complex differential equa-
tions describing biological neural networks to normative models
of rate-based sensory processing improved our knowledge on the
underlying computational principles of the cortex (Olshausen
and Field, 2005). Unsupervised learning of the inherent statistics
in the sensory input seems to be one of the main mechanisms gov-
erning the structural connectivity between neurons in low level
sensory areas of the cortex (Olshausen and Field, 1996; Wiskott
and Sejnowski, 2002; Körding et al., 2004). On the other hand
relatively few studies have investigated the relationship between
unsupervised learning using correlated neuronal activity and the
coding of contextual relationships through binding by synchrony.
In this section we describe differences and similarities between
our model and other normative models of sensory processing in
the brain.

Wyss et al. (2006) and Franzius et al. (2007) show that rate-
coding neurons form a hierarchy of processing stages resem-
bling the ventral visual pathway. These studies use optimization
functions of optimal stability and decorrelation while exposing
the network to natural stimuli. Although these models provide
important insights into the information processing mechanisms
in the cortex, they don’t take into account the processing of con-
textual information and lack an implementation of relational
coding between different features. In a similar way to these stud-
ies, we use the statistics of natural stimuli not only to learn feature
representations but also to explain relational coding in the context
of binding by synchrony. This approach could allow combin-
ing multi-scale image segmentation and object recognition into
a hierarchical neuronal network model. A prerequisite for ana-
lyzing the segmentation by synchrony in a hierarchical network
is an unsupervised learning of the feed-forward connections to
generate the activation levels for higher network layers. We have
shown that the proposed segmentation by synchrony works with
receptive fields obtained from convolutional autoencoders, which
can be stacked to obtain the forward and backward connections
within a hierarchy. This allows a completely unsupervised learn-
ing of feed-forward, feed-back and intralayer connections using
natural image statistics. Binding and extraction of features can be
accomplished simultaneously within the hierarchy.

Biologically inspired autoencoder models were shown to be
efficient for unsupervised learning of receptive fields by minimiz-
ing the reconstruction error of the input (Coates et al., 2010).
Complex valued autoencoders have similar to our model 2 vari-
ables per network node (Baldi and Lu, 2012). To our knowledge
the available publications investigating complex valued autoen-
coders focus mainly on the aspect of learning compressed repre-
sentations of complex valued inputs. They do not directly address
the biological motivation of binding by synchrony. They are
usually strictly defined on the typical complex algebra and are
not described by a differential equation which corresponds to
coupled oscillators. The formalism of complex valued autoen-
coders might be adapted to allow further abstractions of our
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model. This could support our understanding of the underlying
computational principles of visual grouping and segmentation.

A very different and novel approach of coding contex-
tual informations in autoencoder networks are mean-covariance
restricted Boltzmann machines (Ranzato and Hinton, 2010). In
these models latent hidden factors are used to efficiently rep-
resent the contextual information in the input in addition to
the usual representation of pixel means in standard models of
restricted Boltzmann machines. It was shown that the model can
efficiently code pixel covariances in analogy to complex cells and
pixel means in analogy to simple cells. However, the coding of
contextual information in these models is limited to pair-wise
interactions in the input layer. Therefore, this kind of genera-
tive model can capture only a linear combination of second order
statistics so that contextual interactions between a large group of
neurons is only possible through direct connections. In contrast,
the grouping in our model is a dynamic process in which inter-
actions between neurons are possible without a direct connection
between them but through intermediate neurons. The reason is
that our model uses a dynamical system approach with recurrent
connections in contrast to probabilistic modeling of forward and
backward connections.

Some mathematical theories of cortical processing mecha-
nisms also take the contextual information into account. For
example the free energy principle (Friston, 2010) and the theory
of coherent infomax (Kay and Phillips, 2011) explicitly incor-
porate the context into single-variable local processors in the
network. In contrast, the model presented in this paper takes the
context into account in a separate phase variable, which codes
relational properties similar to the dynamics on fast time scales
in biological neural networks. Thereby our simulation allows to
model higher order relational structures with a limited num-
ber of horizontal connections. In contrast, in the mathematical
formalization of coherent infomax the contextual field input
is assumed to be integrated into a single variable output of a
local processor in the network. Thereby it doesn’t allow imple-
menting higher order relations between many local processors
if the computational resources are limited. This limitation is of
course only a matter of the used mathematical formalism and
doesn’t affect the general explanatory power of the free energy
principle or the theory of coherent infomax. Therefore, in a
broader sense our simulation model could be seen as an approx-
imate implementation of these abstract concepts, although we
use a biologically motivated architecture instead of a probabilistic
derivation.

Our study combines aspects of these normative models of
sensory processing and of detailed models of dynamical neu-
ral networks. We use only the statistics induced by natural
images to learn unsupervised the forward and tangential phase
connections. The supervised labeled segmentation masks are
only used to evaluate how phase synchrony corresponds to a
relational coding in the neural representation. Hence, the con-
cept can be phrased completely in the form of a normative
model. In future work, we plan to further formalize the model
and conceive more complex learning rules for the phase inter-
actions. These learning rules could replace the sampling of
sparse connections from the correlation of activation by a more

biologically motivated rule. For example, one could develop
learning rules based on spike-timing dependent plasticity if
phase delays are incorporated in the interactions of the net-
work. This would additionally allow modeling phase locking
between neurons and coding of syntactic relations in the network.
These extensions to our model could provide new insights into
the computational principles underlying higher order cognitive
processes.

5. CONCLUSIONS
Our study revealed that the concept of binding by synchrony
is viable in the context of unsupervised learning using natural
stimuli. We show that the structural connectivity based on cor-
related activity leads to relational coding in a neural network
model of coupled phase oscillators. The presented novel evalua-
tion methodology for image segmentation revealed that the phase
of neurons code global stimulus attributes. This strengthens the
evidence that phase synchronization plays a key role to coordi-
nate the spatially distributed information processing in the cortex.
One could further speculate on how higher level coordination and
binding between cortical areas might evolve from unsupervised
learning based on correlated neuronal activity.
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