
ORIGINAL RESEARCH ARTICLE
published: 28 January 2014

doi: 10.3389/fncom.2014.00005

Spike-timing computation properties of a feed-forward
neural network model
Drew B. Sinha , Noah M. Ledbetter and Dennis L. Barbour*

Laboratory of Sensory Neuroscience and Neuroengineering, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA

Edited by:

Tomoki Fukai, RIKEN Brain Science
Institute, Japan

Reviewed by:

Tomoki Fukai, RIKEN Brain Science
Institute, Japan
Matthieu Gilson, Riken Brain
Science Institute, Japan

*Correspondence:

Dennis L. Barbour, Laboratory of
Sensory Neuroscience and
Neuroengineering, Department of
Biomedical Engineering,
Washington University in St. Louis,
Campus Box 1097, One Brookings
Drive, St. Louis, MO 63130, USA
e-mail: dbarbour@biomed.wustl.edu

Brain function is characterized by dynamical interactions among networks of neurons.
These interactions are mediated by network topology at many scales ranging from
microcircuits to brain areas. Understanding how networks operate can be aided by
understanding how the transformation of inputs depends upon network connectivity
patterns, e.g., serial and parallel pathways. To tractably determine how single synapses
or groups of synapses in such pathways shape these transformations, we modeled
feed-forward networks of 7–22 neurons in which synaptic strength changed according
to a spike-timing dependent plasticity (STDP) rule. We investigated how activity varied
when dynamics were perturbed by an activity-dependent electrical stimulation protocol
(spike-triggered stimulation; STS) in networks of different topologies and background input
correlations. STS can successfully reorganize functional brain networks in vivo, but with a
variability in effectiveness that may derive partially from the underlying network topology.
In a simulated network with a single disynaptic pathway driven by uncorrelated background
activity, structured spike-timing relationships between polysynaptically connected neurons
were not observed. When background activity was correlated or parallel disynaptic
pathways were added, however, robust polysynaptic spike timing relationships were
observed, and application of STS yielded predictable changes in synaptic strengths
and spike-timing relationships. These observations suggest that precise input-related
or topologically induced temporal relationships in network activity are necessary for
polysynaptic signal propagation. Such constraints for polysynaptic computation suggest
potential roles for higher-order topological structure in network organization, such as
maintaining polysynaptic correlation in the face of relatively weak synapses.
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INTRODUCTION
The properties of a neural network, including its connection
structure and the efficacy of transmission between neurons, shape
and constrain its computational properties. These properties are
also likely to be a major determinant for revealing the com-
putational role of specific neural circuits (Fiete et al., 2010).
Unfortunately, neural circuit structure is extremely challenging
to discern in vivo with any precision. Functional manifestations
of network activity, however, are much easier to evaluate in vivo
by measuring network or organism behavior. Conveniently, the
functioning of neural networks can be perturbed and measured
using external manipulation.

Techniques that use external stimulation to persistently
modify neural circuitry rely upon neuroplasticity mechanisms.
Neuroplasticity, the ability for the synaptic efficacies to change
over time, has long been thought to drive long-term changes
in neural systems and to form the basis of learning by allow-
ing network-wide spiking activity to modulate network function
via tuning individual synaptic efficacies (Hebb, 1949; Bliss and
Collingridge, 1993). In spike-timing dependent plasticity (STDP),
Hebbian-like plasticity is induced by precise spike timing between
pre- and post-synaptic neurons (Abbott and Nelson, 2000; Dan

and Poo, 2004; Morrison et al., 2008). STDP has classically been
induced in vitro by isolating monosynaptically connected neurons
in brain slices and stimulating pre- and post-synaptic neurons
sequentially at various time delays (Markram et al., 1997; Bi and
Poo, 1998; Froemke and Dan, 2002). STDP, however, also been
implicated in changes induced in neural pathways during in vivo
stimulation (Caporale and Dan, 2008; Froemke et al., 2013).

One promising class of in vivo stimulation techniques for
manipulating neural function is spike-triggered stimulation
(STS). The goal of STS is to activate natural STDP by artificially
synchronizing the activity of two sites in order to persistently
increase the connectivity between them (Jackson et al., 2006;
Rebesco et al., 2010; Guggenmos et al., 2013; Song et al., 2013).
Unfortunately, the effects of STS are quite variable when applied
to in vivo networks, implying that particular network structures
may be an important contributor to the STS effects that have
been observed. Understanding the neural network configurations
that can give rise to successful STS manipulation is an impor-
tant step toward developing a novel methodology capable of
discerning aspects of neural network connection structure in vivo.
Furthermore, understanding which neural network structures
are particularly amenable to external manipulation will reveal
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the most productive strategies for therapeutically rewiring brain
circuits following injury.

While experimental studies have established that direct neu-
ral network manipulation is possible in vivo, few attempts have
been made to develop frameworks that can predict changes in net-
work activity due to experimenter-induced external perturbation.
For example, network topology appears to influence both ongo-
ing and persistent network controllability (Whalen et al., 2013).
Systematic analyses have likely not been pursued in the experi-
mental setting because, for networks of more than a handful of
live neurons, it is infeasible to elucidate extensive network prop-
erties with current methodologies. In neurophysiological studies
the analysis of network changes emphasizes alterations in quan-
tities usually formulated in terms of single-unit and two-unit
responses, such as interspike interval distributions, Fano factor
analysis or notions of correlation between two neurons (Ahissar
et al., 1992; Honey and Sporns, 2008; Rebesco et al., 2010; Song
et al., 2013). Only recently have complex multi-unit correlation
or information theoretic metrics been extensively developed and
applied to neural systems (Ohiorhenuan and Victor, 2011; Song
et al., 2013). Moreover, even in relatively small networks of tens
or hundreds of neurons, the combinatorial explosion of pair-wise
(or more generally, n-wise) quantities makes the selection of rel-
evant features useful for understanding individual intranetwork
interactions challenging. In addition, even if such quantities could
be selected for and monitored, it is not immediately clear how
they relate back to network dynamics (i.e., patterns of neuronal
firing) and the specific functional role of a network. As such, a
network defined by these quantities does not necessarily provide
a useful framework for understanding processing; neither does
it yield straightforward strategies for network manipulation or
control in plastic networks.

To create a consistent framework that helps explain network
function and can elucidate strategies for modifying neural net-
works, it is desirable to develop an understanding of mechanisms
for how interactions between single and groups of neurons give
rise to network activity in a way that is tractable for analysis and
relevant for the underlying function of the system. In light of these
concerns, a framework that investigates the role of common topo-
logical features in plastic neural networks may provide substantial
insight into how network dynamics arise from topological con-
straints, particularly in the context of network plasticity (Stone
and Tesche, 2013; Whalen et al., 2013). There is evidence of com-
mon topological features at the microcircuit level (ranging from
a handful of neurons to tens of neurons) (Milo et al., 2002;
Douglas and Martin, 2004; Sporns and Kötter, 2004; Song et al.,
2005), though few studies have investigated structure-function
relationships in microcircuits that incorporate knowledge of the
underlying dynamics of the circuit (Whalen et al., 2013).

Although STS was designed with classic two-neuron STDP in
mind, the probabilities involved with randomly sampling mul-
tiple cortical sites implies at least a three-neuron network. We
consider here how the simplest network elements—serial and par-
allel feedforward monosynaptic and disynaptic pathways—can
be substrates for measurable network plasticity in the presence
or absence of natural spiking correlations. The networks studied
are the simplest that could conceivably give rise to STS effects.

To systematically identify the contributions of various struc-
tural (topological) and dynamical (background activity) prop-
erties toward network manipulability, we constructed models of
feedforward network topologies with spiking excitatory neurons
exhibiting STDP and stimulated with STS. We then character-
ized the effects of network-wide perturbations upon the cou-
pling between neurons in these small networks, revealing system
parameter combinations that create STS effects.

METHODS
NETWORK MODEL
To study neural dynamics in a tractable setting, a small feed-
forward network was constructed consisting of several identical
excitatory neurons arranged in the pattern depicted in Figure 1.
For these experiments, neurons labeled “I” are input neurons,
neurons labeled “H” are hidden layer intermediate neurons, neu-
rons labeled “O” are output neurons, and neurons labeled “D” are
downstream from the output. Each neuron is designated first by
its topological distance (i.e., number of synapses away) relative to
the output neuron, and then by its copy number. For example, a
neuron labeled I2,1 is two synapses distant from the single output
neuron and it is the first neuron of its type. The network under
study here comprises a disynaptic neuronal pathway from input
to output (I2,1 → O), a separate monosynaptic pathway (I1,1 →
O), and a disconnected “input” neuron for control experiments
(I0,1) (Technically, the disconnected neuron is infinitely distant
from the output neuron, but we designate it with 0 for notational
convenience). Some experiments involve additional hidden layer
neurons at multiple copy numbers. The terms “pre-synaptic” and
“post-synaptic” in this case are always used in reference to output

FIGURE 1 | Cartoon of network. Schematic for augmented disynaptic
feedforward pathway (aDFP) network structure. Shown are Input (I), Hidden
(H), Output (O), and Downstream (D) neurons. The input neurons are either
unconnected (I0,1; orange node), monosynaptically connected (I1,1;
magenta node), or disynaptically connected (I2,1; blue node) to the output
neuron (O; cyan). Every experiment has at least one disynaptic pathway
with a hidden neuron (H1,1; green node). Additional identically connected
Hidden neurons are only present in some experiments (H1,2,...N ; gray
nodes). Synaptic connections are all unidirectional.
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neuron O. We will refer to this general network architecture as an
augmented disynaptic feedforward pathway (aDFP). Each of the
neurons in this network simulation has identical dynamics:

Cmemb
dVmemb

dt
= − (Erest − Vmemb)

Rmemb
+ Iback + Inetwork + Istim

These leaky-integrate-and-fire (LIF) dynamics capture subthresh-
old responses induced by background activity outside the net-
work (Iback), inside the network (Inetwork), or from experimental
stimulation (Istim). Each neuron “fires” an action potential when
its voltage exceeds a threshold Vthr and has an absolute refrac-
tory period during which no action potential can be generated,
given by τrefrac. Transmission of action potentials across synapses
is accompanied by a synaptic delay tdelay,syn = 1 ms.

Synaptic input to a neuron (from afferent connections or
artificial stimulation) is modeled using a simple alpha-wave char-
acteristic of actual synaptic dynamics (Jack et al., 1975):

I = w · g(t) = w · te
− t

τrise ,

where w is the weight of the synaptic input and g(t) is an alpha
function. It can be shown that g(t) is a solution to a second-
order linear differential equation. Thus, the evolution of g(t)
can be reconstructed by numerically integrating the equivalent
differential equation. As shown by Raman and Gutierrez-Osuna
(2004), the corresponding second-order differential equation can
be decomposed into the following first-order differential equa-
tions and integrated to recover g(t):

dg

dt
= − g

τrise
+ z(t)

dz

dt
= − z

τrise
+ gnormδ(t)

,

where gnorm is chosen to normalize the post-synaptic poten-
tial appropriately and δ(t) is the Dirac delta function, which
evaluates to 1 when the pre-synaptic neuron fires and remains
0 otherwise. To provide baseline spontaneous activity through-
out the network, every neuron in this network is driven by 200
separate background neurons. Each background neuron is mod-
eled as a Poisson process with a rate of λback. In this study,
the manipulability of networks was considered in the presence
of either purely uncorrelated inputs or inputs with a modest
amount of correlation. Correlated background activity was con-
structed by introducing correlated spiking activity between any
two neurons within a given time step using the correlation fac-
tor cback (Gütig et al., 2003). This process results in background
activity having a Pearson product moment correlation approx-
imately equivalent to cback within a time step but a correlation
of approximately 0 between distinct time steps. Unless other-
wise indicated, uncorrelated background activity was given a cback

value of 0, and correlated background activity was given a cback

value of 10−3.5.
These dynamics were simulated using a first-order forward

Euler-based method in MATLAB with a time step of �t = 1 ms.
All parameter values used in the simulation are given in Table 1.

Table 1 | Simulation parameters for LIF neural network model.

Parameter description (name) Parameter value

LIF neuron parameters

Membrane capacitance (Cmemb) 200 pF
Membrane resistance (Rmemb) 100 G�

Resting voltage (Erest) −70 mV
Threshold voltage (Vthr) −55 mV
Absolute refractory period (τrefrac) 2 ms
Synaptic delay (tdelay,syn) 1 ms

Synaptic waveform properties

Synaptic conductance waveform rise time (τrise) 2 ms
Synaptic conductance normalization term (gnorm) 0.000001
Excitatory synapse reversal potential (Eex) 0 mV

Plasticity (STDP) parameters

Potentiation amplitude fit constant (Ap) 0.001
Potentiation decay time constant (τp) 20 ms
Depression amplitude fit constant (Ad ) 0.003
Depression decay time constant (τd ) 20 ms
Maximum synaptic conductance (gmax) 6000 pS

Input parameters

Input firing rate (finput) 0.8 spikes/s
Number of inputs processes per neuron (ntrains) 200

Spike-triggered stimulation (STS) parameters

Correlation delay 20 ms
Correlation probability 100% (50,000 pS)

Simulation parameters

Simulation time step (�tstep) 1 ms

SYNAPTIC PLASTICITY RULE
Synaptic plasticity between real neurons takes many forms, and
the rules that govern these plastic changes vary with neuron type
and brain area. A well-studied type of synaptic plasticity exploited
to induce functional changes in brain networks (see Introduction)
is defined by the precise timing of action potentials in pre-
and post-synaptic neurons influencing the magnitude and direc-
tion of change of the synaptic strength. This “fire together, wire
together” class of rules is referred to as spike-timing-dependent
plasticity or STDP (Markram et al., 1997; Bi and Poo, 1998;
Song and Abbott, 2001; Froemke and Dan, 2002; Turrigiano and
Nelson, 2004). The model neural network analyzed here incor-
porates a form of STDP with a stabilizing weight-dependent
component to prevent synaptic strengths from collapsing or
increasing without bound (Rubin et al., 2001; Gütig et al., 2003).
This weight-dependent STDP rule is given by

�wij =
⎧⎨
⎩

Ap
(
gmax − wij

) · e
− |�t|

tp , �t > 0

Adwij · e
− |�t|

td , �t < 0
,

where wij is the weight of the synapse from neuron i to neu-
ron j and �t is the difference between spike times of neuron
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j and neuron i (i.e., �t = tj − ti). The implementation of this
weight rule in this network uses the latest spike generated by each
neuron to update synaptic weights, a so-called “latest-neighbor”
(Zhu et al., 2006) or “symmetric interpretation” rule (Morrison
et al., 2008). A weight rule of this form was chosen because of its
inclusion of weight-dependence, which has been observed exper-
imentally (Bi and Poo, 1998), and because it yields stable network
dynamics for networks of varying sizes (Rubin et al., 2001; Gütig
et al., 2003). This stability is assured because of the inclusion
of a soft upper bound on the synaptic conductance, gmax. This
soft bound prevents the synaptic weight from increasing uncon-
trollably through scaling the weight change of potentiation by
the difference between the soft bound and the current synaptic
weight. This scenario reflects the biophysical reality that synap-
tic conductances have a maximum value because transmembrane
current cannot reach arbitrarily high values. To accurately reflect
the assumption that plasticity-induced changes occur at the post-
synaptic neuron, the STDP rule is defined such that weight
updates occur after synaptic transmission of the pre-synaptic sig-
nal (i.e., it takes into account synaptic delay when considering the
relevant pre-synaptic spike time for updating). Figure 2 shows the
relation between spike timing difference and weight change for a
variety of initial synaptic weights.

FIGURE 2 | Gütig weight rule visualization. Visualization of a
weight-dependent STDP rule for various synaptic weights. This variant of
the STDP rule consists of two separate exponential curves with identical
time constants (τp/d = 20 ms), and is scaled appropriately based upon the
sign of the difference in spike timing between pre- and post-synaptic
neurons (positive vs. negative). The weight dependence of the rule is
implemented through a scaling of the time-dependent weight change by a
linear or affine function of the current synaptic weight. As synaptic weight
grows, the maximum weight change due to potentiation decreases and the
maximum weight change due to depression increases. Based upon the
weight dependence of the rule, a given synaptic weight stays bounded
between 0 and gmax = 6000 pS.

The shape of the function used to update the synaptic weight
can take many forms and is observed to be dependent both on the
type of neuron and the brain region in which the neuron resides
(Abbott and Nelson, 2000). The shape of the weight rule used
throughout these studies matches one that has been observed
between neocortical excitatory cells (Froemke and Dan, 2002).

MODELING OF NETWORK PERTURBATION BY ARTIFICIAL
STIMULATION
In traditional experimental paradigms testing STDP in vitro,
current injections into the pre- and post-synaptic neurons are
delivered at a fixed time difference and fixed repetition rate to
induce changes in synaptic strength (Markram et al., 1997; Bi
and Poo, 1998; Froemke and Dan, 2002). Attempts to exploit
STDP in vivo using a more naturalistic paradigm by triggering
stimulation at one site from recorded activity at another site
have successfully altered function within primate motor cortex
(Jackson et al., 2006). While inspired by the STDP rules at sin-
gle synapses, the functional effect observed by Jackson et al. is
clearly not confined to individual synapses but must be a mani-
festation of multiple synapses throughout the network. Using this
phenomenon as a prototype for network-scale perturbation, our
model implements a STS paradigm whereby the “stimulation”
(output) neuron was triggered to fire action potentials tdelay =
20 ms later than the “recording” (input) neuron. STDP-associated
synaptic changes in neocortex fall off exponentially with a time
constant of ∼20 ms (Bi and Poo, 1998; Froemke and Dan, 2002).
To induce a reasonable change in synaptic strength, we selected
a delay of tdelay = 20 ms for our model stimulation experiments.
This delay has been reported to induce LTP for monosynaptic
connections (Bi and Poo, 1998) and to increase similarity in neu-
ronal responses between neurons isolated in separate locations
(Jackson et al., 2006).

Artificial stimulation using injected current was modeled to
a first approximation by considering the resulting depolariza-
tion to be identical to the activation of a synaptic conductance.
The strength of this conductance increase, wstim,max = 50,000 pS,
causes the “stimulation” neuron to reach threshold and fire an
action potential with 100% probability (i.e., so that every “record-
ing” neuron spike results in a “stimulation” neuron spike). Thus,
because the signal transmission for this protocol is determinis-
tic once conditioned on “recording” cell firing, the perturbation
caused by this stimulation is stronger than any of the other
subthreshold probabilistic inputs that the “stimulation” neuron
receives.

SIMULATION PROTOCOLS
Before performing experiments on an aDFP network, weights
for the background processes were constructed with a 1-neuron
simulation receiving projections from 200 background processes
firing at 0.8 spikes/s. Once the evolution of these “background
weights” stabilized (defined by at least 5000 s of no discernible
change in the mean weights of all synapses), these derived
weights were then used to generate a single realization of an
aDFP network with background processes firing at 0.8 spikes/s.
Following stabilization of synaptic weights in the network (“net-
work weights”), this “base” network was run for 5000 additional
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seconds, followed by a 10,000 s experimental intervention and a
10,000 s post-interventional period. During all segments of the
simulation, from generation of the aDFP network through the
post-interventional period, background and network synaptic
weights all remained plastic according to the full STDP rule as
defined above.

Two types of manipulations were considered in this study. In
one intervention, the firing rate of output neuron O was increased
by increasing the background firing rates of projections onto this
neuron from 0.8 spikes/s to 0.95 spikes/s. In remaining experi-
ments, STS was performed by recording the spiking of a single
input neuron (e.g., neuron I0,1) and triggering stimulation in
neuron O following every spike from the input neuron during
the entire 10,000-s interventional period. Weights and firing rates
of individual synapses and neurons were sampled at 400 and 20 s,
respectively, for visualization and figure generation.

METRICS OF FUNCTIONAL CHANGE
To assess how perturbations to the network affect its dynamics,
we quantified differences in spike timing (DSTs) due to changes
in driving activity, as illustrated in Figure 3. Since STDP relies
upon the relative timing between two neurons, it is reasonable to
infer that differences in activity giving rise to changes in synap-
tic weights can be observed by changes in the distribution of
DSTs measured between a pair of neurons. For a given experi-
ment, multiple realizations of a network were created and used to
rebuild the time-dependent distribution of DSTs. Data were then
blocked into bins of 10 s for the calculation of DSTs and distribu-
tions were created with spike-time difference resolutions of 1 ms.
To clearly elucidate the presence of structured spike timing rela-
tionships, all DST distributions were plotted as log probability vs.
DST, except in Figure 11.

RESULTS
To better understand the effects of artificial electrical stimulation
on perturbing cortical networks, we constructed a microcircuit
model with a feedforward topology (shown in Figure 1; see
Methods). This network, referred to as an aDFP network, was
stimulated using a variety of protocols. This network is composed
of an isolated neuron, a single monosynaptic connection, and a
variable number of disynaptic connections from neurons in the
input layer to the neuron in the output layer.

Networks with differing background correlations and topolo-
gies were simulated until steady-state dynamics were achieved.
Prior to evaluating any given topology, a one-neuron network
was initially constructed to derive a steady-state weight distri-
bution among 200 background inputs onto the neuron, each
spiking at 0.8 spikes/s. The resulting distribution of “background
weights” was used to initialize weights for the background pro-
cesses onto each of the neurons in each full network, and the full
network was then simulated for 75,000 s to obtain stable steady-
state dynamics in a single pathway configuration (Figure 4A) and
a multipath configuration (Figure 4B). In each aDFP network
without background correlation, the mean background weights
settled to steady-state by 15,000 s of simulation time, exhibiting
some random fluctuation brought about by the STDP rule dur-
ing continued spiking activity. The weights of the synapses in

FIGURE 3 | Derivation of DST distribution. Derivation of difference in
spike timing (DST) distributions from spiking data. (A) Within a 10-s interval,
DSTs are calculated for each pair of spikes in both spike trains. As shown,
the time of the spike in Neuron 1’s spike train labeled N is compared to the
times of spikes in Neuron 2’s spike train to generate a set of DSTs. (B) All
of these DSTs within the analysis interval are then combined together and
binned at 1 ms resolution. (C) Binned DSTs are normalized by the total
number of DSTs to yield a DST probability density function.

FIGURE 4 | Baseline model data for an aDFP network. Baseline model
behavior in the absence of correlated background activity. Color schemes
for identifying neurons and synapses are the same as in Figure 1. Network
insets reflect network topologies simulated in each panel. (A) An aDFP
base network with one disynaptic pathway achieves steady-state network
weight behavior by ∼15,000 s. (B) An aDFP base network with 16 parallel
disynaptic pathways achieves similar steady-state network weight behavior
by ∼15,000 s. A single representative parallel disynaptic pathway in this
network is shown with a pair of orange and gray traces.
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the single-pathway network settled to slightly higher values than
those in the multipath network. Before subsequent manipulations
were performed, any 75,000 s “base” network was simulated for
an additional 5000 s to allow for comparison both before and after
manipulation.

EFFECTS OF CHANGES IN OUTPUT NEURON FIRING
In the first set of experiments, we considered the behavior of
an aDFP network containing a single disynaptic pathway driven
only by uncorrelated background activity. We first evaluated the
changes induced by small perturbations in background activity
brought about by increasing the firing rates of some of the back-
ground processes. Simulations were performed in which the firing
rate of background processes onto neuron O were increased from
0.8 to 0.95 spikes/s for 10,000 s (peri-intervention period) and
then the background firing rates were reset back to 0.8 spikes/s
for another 10,000 s (post-intervention period). For compari-
son, a set of control simulations were performed in which the
same network used in the rate-increase experiments was simu-
lated for the same amount of time (20,000 s total for both the
peri- and post-stimulation periods). In the control network, the
average network synaptic weights (“Net”; Figure 5A, top panel),
background synaptic weights (“Back”; middle panel), and net-
work firing rates (“FR”; bottom panel) fluctuated within a stable
range throughout all periods (see Supplementary Figure S1A
for control data plotted separately). In response to an increase
in firing rate of the background processes for output neuron
O, the weights of both synapses converging onto that neuron
(from I1,1 and H1,1) transiently decreased, and the mean back-
ground weight persistently decreased (Figure 5A, top and middle
panels). Moreover, the firing rate of neuron O increased briefly
before settling to an intermediate value of ∼5 spikes/s (Figure 5A,
bottom panel).

As one method of assessing functional connectivity, the
time-varying distributions of differences in spike-timing (DSTs)
were constructed from 2000 s out of the pre-, peri-, and post-
intervention periods of the protocol. DSTs in short time windows
(5 s window length) were combined from multiple trials (10 for
pre- and peri-stimulus periods and a variable number of trials to
ensure a consistent DST count across conditions during the post-
stimulus period). As shown in Figure 5B, an increase in firing
rate alone did not obviously affect the spike-timing relationships
between neurons. The DST distribution of the monosynaptic
neuron pair showed high density at short positive latency, reflec-
tive of the strong interaction enabled by a single monosynaptic
connection. Interestingly, no structure was visible in the DST dis-
tribution from the disynaptic pair. This result follows from low
synaptic strength of the incoming network synapse from I2,1 to
H1,1 and the relatively high number of uncorrelated inputs that
are also being integrated at neuron H1,1.

The manipulability of interactions between neurons in differ-
ent network layers was then investigated by using an artificial
stimulation protocol to perturb network function. This stimu-
lation was conducted by recording action potentials from one
recording or source neuron in the input layer and, following
each spike, delivering a depolarizing stimulus to a designated tar-
get neuron (for all cases, the output layer neuron) with a fixed

FIGURE 5 | Step increase in background FR + control STS of

unconnected neuron pair in an aDFP network with uncorrelated

background activity. Stimulation of output neuron in the absence of
background correlation causes depression of pre-synaptic weights. Color
schemes for identifying neurons and synapses are the same as in Figure 1.
Network insets reflect network topology tested and the experiment
performed to generate the data in each pair of panels. (A) Network
responses to a step increase in firing rate (to 0.95 spikes/s) of background
processes onto neuron O, indicated by dashed lines on the network inset.
Times of increased rates are indicated by the filled backgrounds.
Time-varying synaptic weights (“Net” subpanel shows network weights;
“Back” subpanel shows weights of background processes converging
onto each network neuron) and network firing rates (shown in “FR”
subpanel) are shown for control and intervention experiments (dashed and
solid lines, respectively). Control and experimental simulations start from
the same pre-intervention network and run for a 10,000 s peri-intervention
period and a 10,000 s post-intervention period; the control network does
not experience the same intervention (i.e., step increase in background
firing rates) but runs the same amount of time so that a comparison can
be made despite underlying variability due to random background activity.
Each trace represents the average over n = 10 trials during the peri- and
post-stimulus periods. Segments of simulation used for analysis in (B) are
indicated by black arrows with terminating end-points above top panel. (B)

Difference in spike timing (DST) probability distributions are measured
between each of the input neurons and neuron O during various periods of
the protocol. Each pair of columns gives the DST distributions for a
particular neuron pair during control (left column in pair) and intervention
(right column in pair). For the pre- and peri-stimulus periods, spiking data
from n = 10 trials were combined to generate time-varying distributions;
for the post-stimulus period, a number of trials were used to yield a
constant number of n ≈ 1800 DSTs so that a comparison can be made
between conditions where spiking rates for the output neuron vary. (C)

Network responses in the uncorrelated network during STS from
unconnected neuron I0,1 to the output neuron O. Recording and
stimulation neurons are indicated on inset. Plot conventions match those
used in (A). Segments of simulation used for analysis in (D) are indicated
by black arrows with terminating end-points above top panel. (D) DST
distributions in uncorrelated network during STS protocol driving neuron O
with neuron I0,1. Plot conventions match those used in (B).
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delay (tdelay = +20 ms). This procedure is referred to as STS.
As a control, STS was performed between an unconnected input
neuron (I0,1) and the output neuron O. As shown in Figure 5C,
application of STS coincided with marked depression in both net-
work and background connections to the output neuron (top and
middle panels). The firing rate of the output neuron settled lower
compared to that observed during an increase in the background
firing rate, to a value near the baseline rate of the neurons in
the network. At stimulation offset, the network dynamics nor-
malized to their pre-intervention activities; the network weights,
however, overshot as they evolved toward their initial values (top
panel). In addition, the spike timing relationship between the
disynaptic pair was not obviously affected, while the relation-
ship between the monosynaptic pair was diminished during STS
(Figure 5D). For the unconnected pair, much of the DST density
was centered at +20 ms, and much of the spike timing activity at
positive DSTs disappeared during STS. During the post-stimulus
period, little structure was observed in either the unconnected or
disynaptic pair, but some structure was observed in the monosy-
naptic pair, showing recovery of the monosynaptic interaction
within 2000 s.

As expected, simply increasing the firing rate of the output
neuron did not result in systematic changes in spike timing rela-
tionships among any neuron pairs in the network. The STDP rule
alone does enable changes in synaptic weights and overall firing
rates, but these changes do not translate into new spike timing
patterns across the network.

EFFECTS OF ARTIFICIALLY CORRELATING ACROSS SERIAL SYNAPSES
STS was next performed between an input neuron connected to
the output layer through one or more synapses and the output
neuron. Stimulation of a monosynaptic pathway by recording
from I1,1 and stimulating O increased the weight of the one
synapse bridged by the manipulation, whereas the pre-synaptic
connection from the hidden layer neuron H1,1 to O and the
post-synaptic connection from O to D both decreased in weight
(Figure 6A). The alterations in network weights changed with
a time constant similar to or smaller than that observed in
the unconnected case; the decrease in firing rate observed dur-
ing stimulation, however, showed a longer time-constant. These
changes persisted for a short amount of time after stimulation was
removed, but returned to pre-stimulus conditions after approxi-
mately 5000 s. STS preserved the structure in the timing between
the monosynaptically connected neurons during stimulation, and
increased the density of DSTs at short positive lags (Figure 6B,
middle column). The timing relationships between the other
input-output neuron pairs were not visibly affected (Figure 6B,
left and right columns).

Manipulation of neurons in a disynaptic pathway was mod-
eled by recording from I2,1 and stimulating O. The network
and background synaptic weights projecting onto and originating
from the output neuron all decreased (Figure 6C), mirroring the
effects observed while performing STS between the unconnected
pair of neurons. Moreover, apart from the peri-stimulus artifact
induced in the DST distribution between the disynaptic neuron
pair, the timing relationship between each pair of neurons reca-
pitulated the results in the STS protocol between the unconnected

FIGURE 6 | STS in an aDFP network with uncorrelated background

activity. Monosynaptic and disynaptic STS in a feedforward network with
uncorrelated background activity. Plot conventions are the identical to those
in Figure 5. (A) Network response to STS from the monosynaptically
connected neuron I1,1 to the output neuron O. A substantial increase in the
synaptic weight flanked by the STS protocol was observed. (B) DST
distributions during each phase of the STS protocol. An increase in
probability of short-lag DSTs was observed. (C) Network response to STS
from the disynaptically connected neuron I2,1 to the output neuron O.
Synaptic weights terminating on the output neuron declined considerably.
(D) DST probability distributions before, during, and after monosynaptic
STS, as well as under control conditions where no stimulation occurred. A
transient increase in short-lag DSTs was observed between the
disynaptically connected neurons peri-stimulation, but this change
disappeared post-stimulation.

neurons. Persistence of effects following stimulation in both STS
experiments was also short, and the network returned to baseline
dynamics after approximately 7500 s (Figure 6D).

In this feedforward network with uncorrelated background
activity, STS administered between unconnected input and out-
put neurons yielded synaptic effects similar to those seen follow-
ing a rate increase in the output neuron by scaling up background
activity into that neuron. Both experiments were characterized
by weakening of synapses onto the output neuron as its rate
increased, consistent with the weight-dependent STDP rule. In
the case of increasing background firing rate, however, the per-
turbation from initial dynamics was mitigated directly by slightly
decreasing all of the background weights projecting onto the out-
put neuron, lessening the influence of the perturbing dynamics
on the output neuron. When STS was performed on a pair of
unconnected neurons, modulating synaptic weights anywhere in
the network did not alter the influence of the delivered stimulus
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upon the neuron. Thus, changes in activity and synaptic weights
were much more pronounced in this STS experiment than for
a simple rate increase, both inside and outside of the modeled
network.

In general, STS in this network appeared to increase the coin-
cidence of neuronal firing only when delivered between neurons
that were monosynaptically connected, but appeared to decrease
coincidence of neuronal firing when applied over neurons that
were more distant from each other, even as little as two synapses
away. STS applied between two monosynaptically connected neu-
rons resulted in a strengthening of the synapse between them
and a corresponding increase in the probability of spike-time
pairs between them at small positive DSTs. This was an expected
result because the STS protocol resembles the spike-pairing pro-
tocols used to elicit STDP in classic electrophysiology experi-
ments. When the same STS protocol was applied to disynaptically
connected neurons, however, the network response to this per-
turbation was much more similar to the network response when
spike triggering originated from the unconnected neuron I0,1,
with weakened network synapses and neuronal firing relation-
ships. Notably, the H1,1-O synapse decreased relatively less than
the I1,1-O synapse, which is different from the behavior during
STS triggered by an unconnected neuron.

One trend that was consistent when performing either multi-
synaptic or unconnected STS was the presence of an overshoot in
network weights ∼5000 s after stimulation offset. This overshoot
can be explained by noting that the influence of intra-network
dynamics (measured by network weights) is greater than that
of dynamics attributed to background activity. At stimulation
offset, weights are tracking the firing statistics of the network
and consequently increase above their pre-intervention levels as
background weights recover with a longer time constant. During
disynaptic STS, the synaptic weight from H1,1 to O overshot
before and to a greater degree than the synaptic weight from
I1,1 to O.

Under the conditions tested, then, the STDP rule appears to
apply relatively independently to individual synapses. Another
way of saying this is that neurons in this model greater than
one synapse apart are relatively unconnected and do not greatly
affect each others’ firing patterns by themselves, though STS
can potentially influence the transient recovery of networks
by depressing the overall influence of background activity and
increasing the role of intra-network dynamics. A scenario in
which synapses operate independently therefore appears unlikely
to lead to stimulation-induced functional remapping (Jackson
et al., 2006).

EFFECTS OF GLOBAL NETWORK CORRELATIONS
In vivo networks are not composed of strictly feedforward circuits
with relatively weak functional connectivity between all neurons,
and STDP in the context of a more richly interconnected net-
work might result in stronger network-level effects. In order to
avoid the additional complexities of recurrent network structures
in the current series of experiments, yet capture some of the rich
dynamics of real cortical networks, we next performed the same
series of stimulation experiments on the same network topologies
except with correlated background activity.

An aDFP network with modest global correlation in the
background activity of all network neurons (global background
correlation coefficient cback = 10−3.5) was simulated. The com-
bined influence of 200 background inputs with this correlation
coefficient developed moderate levels of correlation between in-
network neuronal spike trains (correlation coefficient of ∼0.01).
Global correlation is defined such that any two background pro-
cesses are more likely to spike synchronously on average in a
given time bin than if they were purely independent processes.
This could be realized, for instance, by neurons in a primary sen-
sory area that receive divergent projections from the same class of
inputs responding to an external stimulus/cue.

Upon increasing the firing rate of background connec-
tions onto neuron O, minor increases in network weights
were observed while background weights decreased systemat-
ically (Figure 7A; see Supplementary Figure S1B for control
data without experimental data). In contrast to the uncorrelated

FIGURE 7 | Increase background FR + control STS in aDFP network

with correlated (c = 10−3.5) background activity. Stimulation of the
output neuron in the presence of correlation shows increased potentiation
of network weights. Plot conventions are the same as in Figure 5. (A)

Network responses to STS in a network with background correlation to a
step increase in the firing rates of background processes onto neuron O.
(B) DST probability distributions before, during, and after monosynaptic
STS, as well as under control conditions where no stimulation occurred.
Frequency of short-lag DSTs increased for the monosynaptic and disynaptic
input-output pairs, but little difference was observed for the unconnected
neuron pair. (C) Network response of correlated network to STS from
disconnected neuron I0,1 to output neuron O. All synaptic weights
terminating on the output neuron increase peri-stimulation. (D) DST
distributions in correlated network during each phase of the STS protocol
driving the output neuron O with the unconnected input neuron I0,1.
Short-lag DSTs increase peri-stimulation for all input-output neuron pairs.
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case, timing relationships between neurons were not substantially
affected by the increase in firing rate (Figure 7B), though timings
in all three pairs, particularly in the monosynaptic pair, showed
decreased DST density at short positive lags peri-intervention and
increased DST density at short positive lags post-intervention.

During STS between the unconnected pair of neurons, both
network synapses projecting onto the output neuron increased
in weight while the outgoing synapse from the output and the
background weights depressed (Figure 7C). In addition, the fir-
ing rate of the output neuron settled at an intermediate firing rate
greater than its baseline, similar to the case in which the back-
ground firing rate was increased, but different from that observed
with the similar experiment in the uncorrelated aDFP network.
The timing relationships between input-output neurons were vis-
ibly changed during and after STS (Figure 7D). Increased DST
densities at +20 ms during the peri-stimulus period appeared in
all three of the DST distributions for the input-output neuron
pairs, consistent with the presence of additional correlation in
the circuit. Moreover, the density of short positive DSTs increased
immediately post-stimulation for all three pairs (Figure 7D, bot-
tom row).

The simulated aDFP network with global correlation showed
that stimulation of a monosynaptic pathway with STS leads to
increases in both the targeted weight’s connection (I1,1 to O), as
well as other incoming weights onto the output neuron (H1,1 to
O), as shown in Figure 8A. The weight of the outgoing connec-
tion from O to D decreased slightly. The firing rate of the output
neuron also stabilized at an intermediate rate above its baseline,
similar to the observations noted when STS was performed with
the unconnected neuron pair. During monosynaptic STS, simi-
lar densities at +20 ms appeared during stimulation and greater
short, positive DST densities were maintained for at least 2000 s
post-stimulation when compared to the corresponding control
condition (Figure 8B). Direct monosynaptic STS induced equal
or greater changes in the density of DSTs for the monosynaptically
connected neuron pair.

Increases in synaptic weights due to global correlation
were also reflected under disynaptic stimulation conditions
(Figure 8C), where STS induced increases not only in H1,1’s
synapse with the output neuron, but also the ancillary monosy-
naptic connection from I1,1 (Figure 8C). The synaptic weight of
the connection originating from the output neuron decreased by
∼50–100 pS. The firing rate of the output neuron stabilized at an
intermediate rate above its baseline rate. STS induced increases
in short, positive DSTs between both monosynaptic and disy-
naptic neuron pairs, a change maintained for at least 2000 s
(Figure 8D).

In general, the presence of zero-lag correlation created pre-
dictable changes in synaptic weight and spike timing during and
after STS. Synapses projecting onto the output neuron poten-
tiated because of the positive lag between the spiking of the
pre-synaptic neurons (from the input and hidden layer) and
the post-synaptic neuron that was induced by STS; conversely,
the single synapse from O to D depressed as STS induced spik-
ing at a negative lag between spikes generated by the O and D
neurons (since now the pre-synaptic neuron O spikes 20 ms after
the post-synaptic neuron D). Further, the original short-lag spike

FIGURE 8 | STS in an aDFP network with correlated (cback = 10−3.5)

background activity. STS is facilitated by correlation in background activity.
Plot conventions are the same as in Figure 5. (A) Network response to STS
from the monosynaptically connected neuron I1,1 to the output neuron O in
the presence of correlated background activity (200 inputs with
cback = 10−3.5). All synapses terminating on the output neuron increased in
weight. (B) DST distributions during each phase of the STS protocol.
Probability of short-lag DSTs increased considerably for the monosynaptic
pair. (C) Network response to STS from the disynaptically connected
neuron I2,1 to the output neuron O in the presence of correlated
background activity. (D) DST distributions in the correlated network during
each phase of the STS protocol. Disynaptic STS is able to increase the
frequency of short-lag DSTs for all input-output neuron pairs.

timing relationship (peak at +1 ms) observed between input and
output neurons was disrupted during STS because a significant
fraction of spike-time differences were now at +20 ms, effec-
tively creating two smaller peaks in the distribution. After STS,
however, increased intranetwork synaptic weights projecting onto
the output neuron (generated during STS) now facilitated and
strengthened the original spike timing relationship (increasing
the peak at +1 ms).

In contrast with the previous experiments, STS between indi-
rectly connected neurons with background correlation actually
increased the frequency of DSTs within the network, both within
and outside of the pathway connecting the neurons. This find-
ing reflects a direct change in the spike-time relationship between
the two neurons. When the network was driven by correlated
background activity, the STS protocol was able to strengthen mul-
tiple pathways within the network simultaneously. Most notably
compared to the uncorrelated case, disynaptic STS was able
to strengthen connections converging onto the output neuron.
STS was also able to create changes in the short-lag timing
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relationships between disynaptically connected neurons that per-
sisted post-stimulation. Moreover, correlation between the neu-
rons in the disynaptic pathway and the input neuron I1,1 allowed
for simultaneous strengthening of the monosynaptic pathway
converging onto the output neuron.

With shared correlation, STDP acts on similar timing proper-
ties seen within each pathway and was able to strengthen separate
pathways simultaneously. The synapse originating from the out-
put neuron, however, decreased in strength. Depression in the
O to D synapse follows from the fact that, since neuron D fires
at zero lag sufficiently often with respect to other network neu-
rons, STS causes neuron O to fire 20 ms later than neuron D,
causing depression due to the directionality of the plasticity rule.
This property can be harnessed by STS to perturb the network
and meaningfully change the functional relationships between
neurons within and between pathways, but it is still constrained
if the weight rule, like STDP, depends upon the order of spike
timing.

EFFECTS OF PARALLEL FEEDFORWARD PROJECTIONS
Based upon the performance of STS in the correlated aDFP
network, we believed that a network topology with increased
transmission probability of spikes between the input and output
layers could recapitulate the results observed when the network
received structured, zero-lag correlated background activity. We
constructed another aDFP network to investigate this hypothesis
by adding 15 parallel disynaptic pathways to increase topology-
induced correlation between the input neuron I2,1 and the output
neuron O, then excited this network with uncorrelated back-
ground activity. To prevent the confound of an increased rate at
the output neuron due to additional synaptic pathways, a fraction
of the background connections projecting onto O was removed
(64 connections) to fix the firing rate of O at approximately 4
spikes/s, which is comparable to its spiking rate when only a single
disynaptic path exists between I2,1 and O.

When increasing the firing rate of the output neuron, lit-
tle to no depression in background and network weights were
observed (Figure 9A; see Supplementary Figure S1C for con-
trol data without experimental data). The baseline pre-stimulus
activity showed a large density of positive DSTs between the
disynaptically connected neuron pair at short lags, indicative
of a structured timing relationship in the disynaptic circuit
(Figure 9B, top left). Increased output neuron firing rate did
not appear to have substantially changed the spike timing rela-
tionship between any pair of input and output neurons peri- or
post-intervention. Alternatively, STS between the unconnected
neuron pair showed similar trends in weights and firing rates
(Figure 9C) and spike timing relationships (Figure 9D) as those
observed in the single pathway network without background cor-
relation. Moreover, STS with unconnected neuron pairs destroyed
the structured timing relationship within the disynaptic pathway.

When monosynaptic STS was performed on this network, the
targeted monosynaptic connection increased in weight, as seen in
the single pathway network, and the other intra-network synapses
onto or originating from neuron O depressed (Figure 10A).
Background connections decreased in weight, though much less
than in the single pathway case. The decrease in firing rate

FIGURE 9 | Increase background FR + control STS in a multipath DFP

network without correlated background activity. Changes in network
organization by rate increases and STS from the unconnected input neuron
are mediated by multiple disynaptic feedforward pathways. Plot
conventions are the same as in Figure 5. (A) Response of a multipath
network between the disynaptically connected neuron I2,1 and the output
neuron to a step increase in background firing rate of the background
processes onto output neuron O. To compensate for the increased native
rate in O due to increased intranetwork connections, 64 background
connections were eliminated. (B) DST distributions for the multipath during
each phase of the rate-increase protocol. (C) Network response to STS
from unconnected neuron I0,1 to output neuron O in the multipath network.
(D) DST distributions for the multipath network during the STS protocol.

observed at the output neuron is similar to that observed in
the single pathway condition. During STS, the short DST tim-
ing was diminished between the monosynaptic pair but was still
evident (Figure 10B, left columns), while, after STS little change
from the baseline control condition was observed. Alternatively,
in response to disynaptic STS, the synapse from the intermediate
hidden layer neuron H1,1 remained high during STS (∼2300–
2400 pS in comparison to ∼2200 pS in the uncorrelated case;
Figure 10C). The synapse did, however, rebound and overshoot
its steady-state value post-stimulation as it did in the single path-
way case. Moreover, the hidden-layer synapse peaked faster after
stimulation offset compared to its counterpart from I1,1 to O. The
change in firing rate of the output neuron mirrored the change
observed in the monosynaptic multipath case in Figure 10A. The
timing relationship between the disynaptically connected neuron
pair, however, did change due to stimulation. Post-stimulation,
positive DST density at small positive lags increased by nearly
a factor of two and broadened in the DST distribution of the
disynaptic pair (Figure 10D, left columns). The DST distribution
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FIGURE 10 | STS in aDFP networks with varying hidden layer size.

Topologically induced correlation modulates STS in a multipath aDFP circuit.
Plot conventions are the same as in Figure 5. (A) Network response to
monosynaptic STS in the presence of 16 disynaptic feedforward pathways
connecting I2,1 to O. The network response was similar to monosynaptic
STS in the single disynaptic pathway network, but the synaptic weights
converging onto the output neuron from hidden neurons in the disynaptic
pathway decreased much less relative to the single pathway network. (B)

DST distributions in multipath network during each phase of STS from the
monosynaptically connected neuron I1,1, to the output neuron O. The
frequency of short-lag DSTs diminished between the disynaptically
connected neuron pair I2,1 and O. (C) Network response to STS from the
disynaptically connected neuron I2,1 to the output neuron O. The qualitative
response is the same as in the single disynaptic pathway network, but the
synaptic weights converging onto the disynaptic neuron from hidden
neurons in the disynaptic pathways decrease less than single pathway
network. (D) DST distributions for the multipath network during each phase
of the STS protocol. DST changes for the disynaptically connected neuron
pair persist for ∼2000 s post-stimulation.

of the monosynaptically connected pair appeared to be minimally
affected (Figure 10D; middle columns).

Monosynaptic dynamics in the multipath network were
therefore similar to monosynaptic dynamics in the single path-
way network, implying that monosynaptic behavior is relatively
context-independent. For the disynaptically connected neuron
I2,1 and the output neuron, however, a strong spike timing rela-
tionship at short, positive values was easily observed at steady
state in the multipath network. In response to the disynaptic STS
protocol, the DST density at short positive lag increased—a sub-
stantial difference compared with the single pathway network.
Although the same qualitative dynamical behavior was observed

in firing rates and synaptic weights, the absolute changes in these
quantities during and after stimulation were much lower than in
the single pathway network. This finding implies that the addi-
tion of multiple disynaptic pathways in the network induced a
structured timing relationship between distantly connected neu-
rons at baseline, as expected. Further, it also demonstrates that
the dynamics induced by this topological feature under the given
conditions is sufficient to allow systematic manipulation of spike
timing relationships between distant neurons.

DISCUSSION
In this study we considered how the dynamics of simple plastic
feedforward circuits were constrained by topological features and
statistics of neuronal background activity. In particular, we stud-
ied how spike timing relationships and synaptic efficacies within
the network could be modified during changes in network activity
by perturbing the network with a simulated activity-dependent
artificial stimulation protocol known as STS. STS has been shown
to systematically alter neural network activity in vivo (Jackson
et al., 2006; Rebesco et al., 2010; Guggenmos et al., 2013; Song
et al., 2013) by delivering a stimulus related to the endogenous
activity of the circuit, essentially acting as a short circuit or a high-
efficacy synapse that takes advantage of structured spike timing
relationships between targeted neurons. We demonstrated that
baseline function and circuit responses to STS (particularly the
strength and persistence of induced changes) were highly depen-
dent on background statistics or topological features that induced
correlated activity between input and output neuron pairs. A
summary of the effects of these perturbations on circuit spike tim-
ing relationships is provided in Figure 11, and a quantification of
these changes is provided in Supplementary Figure S2.

For all tested networks, monosynaptic connections showed
strong STDP effects, changing both intranetwork weights and the
spike timing relationships of the neurons involved in STS. This
was expected for monosynaptic conditions because STS essen-
tially yields fixed-lag spike pairings similar in principle to spike
pairing used in classical STDP studies. Our ability to recapitulate
computational and experimental results of STDP-inducing pro-
tocols with fixed-delay monosynaptic STS protocols in a network
implies that the manipulability of monosynaptic behavior is rel-
atively context-independent with respect to network conditions.
Responses to disynaptic STS, however, varied with network input
properties and network structure.

For the uncorrelated single-pathway network model, the out-
comes of all non-monosynaptic STS paradigms were qualitatively
similar to the outcome of the control condition where the inputs
to the output neuron were step increased in rate. The changes
observed in synaptic weights governed only by STDP under such
conditions are therefore most likely due to chance collisions
of spike events and not from timing-relevant spike transmis-
sion. These chance events are more likely during STS due to the
increased rate brought about by the stimulation. In further sup-
port of this claim, disynaptic STS did not cause obvious changes
in spike timing relationships despite causing weight changes.

When we added global correlation to the background neu-
rons for the entire network, we saw the effects of STS across
all paradigms, including STS from the unconnected network
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FIGURE 11 | Summary DST distributions for tested networks. Summary of distributions of DSTs across all tested networks for the three input-output
neuron pairs. Each distribution was generated by collapsing DSTs over the first 50 analysis intervals (250 s). Note that the scale of the ordinate axis is linear.

element to the output neuron. In this situation, the network-wide
zero lag correlation may be thought of as a surrogate of common
inputs to all network neurons. Thus, these observations show that
the presence of common input provides a potential mechanism to
take advantage of STS across multiple synapses.

The addition of multiple parallel pathways in the hidden
layer of our model network caused a stronger initial relationship
between I2,1 and O which could be sharpened (i.e., the preference
for a particular spike time increased relative to others) through
disynaptic STS. As shown in Figure 11 (last row, middle column),
the post-STS effect for disynaptic STS increased the frequency
of short-lag DSTs (+5 to +15 ms) for the disynaptic neuron
pair compared to the control case in which no intervention was
performed. When data were aggregated from the post-stimulus
period over several analysis intervals, there was still surprising
similarity in the distributions of DSTs for the disynaptically con-
nected neuron pair between disynaptic and unconnected STS
conditions. We believe that, although the effect is marginal, disy-
naptic STS was able to create a more selective change in DST
frequency than unconnected STS; DST frequency reaches its max-
imum at +8 ms in the first case and falls off faster than the latter
case where the peak DST frequency plateaus over the range of
+9 to +11 ms. If we added more disynaptic pathways or included
intrapathway correlation that was restricted only to the neurons
in the parallel disynaptic pathways, we predict that we could dis-
criminate the effects between disynaptic and unconnected STS
more easily. In addition, compared to the single path network,
changes in DSTs resulting from disynaptic STS in the multipath

network were accompanied by much smaller changes in intranet-
work weights, showing that the circuit more evenly distributed
the overall induced changes among the available synapses from
all the disynaptic pathways. Large network changes in such cases
can therefore result from relatively small alterations in individual
synaptic weights.

These observations suggest that polysynaptic feed-forward
computation based on spike timing is substantially limited by the
amount of shared correlation available to neurons in different lay-
ers. If such shared correlation exists, robust timing relationships
can be sustained between polysynaptically connected neurons
and, moreover, these relationships can be shaped by network per-
turbations (whether natural or experimenter induced). In light
of the experimental observation that STS can successfully manip-
ulate network function, it follows that manipulations of spike
timing relationships across multiple synapses require coordinated
network activity to realize this shared correlation, whether within
pathways connecting two neurons or shared inputs belonging to
both the recording and stimulation neurons. The success of STS
under only some conditions tested implies that this kind of cor-
related activity exists in only some cortical microcircuits at any
given time.

Several of the observations in these single and multipath net-
works depart from theoretical analyses of steady-state weight
distributions performed in previous studies. A study using a
similar weight rule and latest-neighbor spike-pairing scheme
observed different qualitative behavior than this study (Zhu et al.,
2006). In addition, unlike other computational studies that have
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investigated the effects of correlation in networks (Billings and
Van Rossum, 2009; Gilson and Fukai, 2011), the presence of cor-
relation within this network not only led to decreased baseline
synaptic weights but also persistent times of induced changes
after background activity reverted to pre-intervention levels. We
attribute this mainly to the combination of complex dependen-
cies of STDP on the type of weight rule considered, the spike-
pairing scheme used to relate the order and number of spikes
in spike trains to STDP changes, and the presence of synaptic
delay (Burkitt et al., 2004; Zhu et al., 2006; Morrison et al., 2008;
Babadi and Abbott, 2010). In particular, most previous analyses
like those performed by Zhu et al. (2006) do not explicitly incor-
porate or discuss synaptic delay, though it is logical that delay
would have a substantial impact on the neural processing modu-
lated by a timing-based rule like STDP. In fact, a study by Babadi
and Abbott (2010) found that introduction of synaptic delay
into a single neuron model endowed with weight-independent
STDP generated similar behavior (both in effects of correlation
and increased firing rates on synaptic weights) to that observed
here because the presence of synaptic delay on the order of 1
or 2 ms forced some of the monosynaptic interactions into the
depressive side of the STDP window. The findings of Babadi and
Abbott (2010) suggest that the discrepancies between this study
and others could be attributed to the interaction between synap-
tic delay and STDP in our model. The details of the interactions
between delay, the type of weight rule, and intranetwork cor-
relation will likely require further investigation in experimental
studies.

We observed one phenomenon that has not been previously
reported in studies of STDP: transient overshoots or undershoots
in network synaptic weights following STS. We believe that this
phenomenon arises from the presence of multiple separate groups
of synapses terminating on the output neuron (background neu-
rons plus each individual network synapse) operating in distinct
firing rate regimes at intervention offset. These groups capture
the history of spiking activity in their synaptic weights due to the
dependence of the number of STDP updates on pre- and post-
synaptic firing rates. When the system is transiently changing,
groups that fire quickly will update faster and can overshoot or
undershoot as they compensate for slowly firing groups. Thus, the
variety of timescales over which these changes occur between the
different groups endows the system with memory (in the sense of
dynamical systems). For instance, after performing STS between
unconnected neurons (Figures 5A,B), the neurons projecting
onto the output neuron from the monosynaptic and disynaptic
pathways are firing more than the background processes (∼ 4 vs.
0.8 Hz, respectively), but all of these synapses have comparable
synaptic weights. On average, the increased activity of network
neurons results in more STDP updates for network synapses than
for background synapses. When network synapses reach their
baseline values, background synaptic weights are still depressed
compared to background weight baseline values; thus, network
synapses increase in weight to compensate for decreased contri-
butions of background synapses to output neuron activity and
consequently overshoot. Network weights finally return to base-
line after background processes recover and approach steady-state
synaptic strengths.

When observing the effects of perturbation, we assumed that
the primary indicator of network function consisted of spike tim-
ing relationships between network neurons. The primary analysis
used to evaluate these relationships was the distribution of DST
between pairs of neurons in the input and output layers. For neu-
rons connected monosynaptically, this difference in spike times is
directly related to the STDP calculation used to determine sub-
sequent changes in synaptic weight. In response to variable back-
ground activity, DSTs are altered by STDP in response to these
weight fluctuations and thus reflect the time-varying dynamics
of the monosynaptic interaction. Even for non-monosynaptically
connected neurons, this statistic has a direct physiological and
functional relationship to temporal coding that the surrounding
network may be utilizing. Several synapses away from periph-
eral sensory organs, it is still possible to reference the spike
timing of a neuron relative to stimulus onset or to popula-
tion generated signals such as local field potentials (Sukov and
Barth, 2001; Vanrullen et al., 2005). This analysis metric cap-
tures and preserves physiologically and computationally relevant
functional relationships between units within a neural network,
though the question of how these temporal relationships relate
back to the structural and functional properties of the net-
work will most likely need to be elucidated in more complex
networks.

Several assumptions in this set of experiments were used to
perform a systematic yet tractable analysis of how perturbation
may affect spiking timing relationships and synaptic efficacies
in microcircuits. The most significant reduction was the use of
extremely small circuits (on the order of tens of neurons). A
valid concern for this study is whether the observations of small
network dynamics are relevant to larger networks. For instance,
with the enormous number of different network wiring config-
urations, it may seem unintuitive how studying so few neurons
would contribute to understanding arbitrary structure-function
relationships in neural circuits. Experimental findings, however,
suggest that such an approach is logical. The presence of distinct
motifs at the microcircuit level implies some level of non-random
connectivity that is relevant for network function (Milo et al.,
2002; Sporns and Kötter, 2004; Song et al., 2005). It is rea-
sonable to believe that studying the dynamics of small motifs
in isolation would inform their possible roles when composed
together in large networks, allowing experimenters to disam-
biguate properties of network function caused by specific motifs
and providing guidance for both theoretical and experimental
investigations. In point of fact, most electrophysiological stud-
ies of plasticity investigate networks of two neurons (e.g., paired
whole-cell recordings) and would not be practical for explor-
ing networks of even the small sizes presented here, but their
investigation yields fundamental principles for the function of
these building blocks that can be useful for understanding larger
networks.

Moreover, directly manipulating small circuits provides a
greater understanding of the role of synaptic plasticity across
multisynaptic topologies. In many computational analyses of
plasticity in network function, the network considered either
consists of a single neuron supplied by many synthetic back-
ground trains, or networks of hundreds or thousands of neurons
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randomly or totally wired together and driven by spontaneous
background activity (Song and Abbott, 2001; Morrison et al.,
2007; Billings and Van Rossum, 2009; Song et al., 2013). In a
small group of neurons, non-trivial causal relationships between
topology or background activity and overall network dynamics
can be reliably inferred. Rather than just considering whether
an intervention could make a change in an underlying net-
work, we investigated what kind of changes could be induced
in a small network and devised methods to understand how
these changes are mechanistically related to features in that net-
work (both in connectivity and induced spiking activity). By
making this reduction, we performed investigations that could
not easily be made in an experimental setting and made pre-
dictive hypotheses that inform experimental perturbations or
manipulations of real neural networks. This work, nevertheless,
warrants further consideration from future experimental studies,
not only for validation of these observations in small biological
neural networks but also for further exploration of the degree
to which small-network principles can be extended to larger
networks.

Another restriction we made in this study was restricting our
scope of experiments to exclude topologies with recurrent con-
nectivity. While many of the motifs of interest are likely to consist
of recurrent connections, in order to attribute changes in net-
work function to recurrent connectivity, it is first necessary to
investigate which changes are inherent to the presence of feed-
forward connectivity. One disadvantage in the study of small
feed-forward networks is that these networks can lack highly
structured activity (endowed by large-scale network structure)
that serve as a meaningful reference for observing changes due
to perturbation. To address this concern, we supplied our net-
work with activity that was correlated within a time step, but
not with other time steps. It has been thought that such a
method of inducing synchronous activity requires balanced exci-
tation and inhibition to complement its effects within larger
networks. In a previous study, for example, the degree of excita-
tion induced by zero-lag correlated background activity driving
a network of ∼105 neurons modulated the network’s steady-
state between two regimes: either the entire network entered
into a pathological regime if correlation was strong enough
or selective neurons that were spontaneous correlated actually
weakened as other intranetwork weights weakened in response
to the induction of activity unrelated to the rest of the net-
work (Morrison et al., 2007). These results suggest that proper
tuning is necessary to provide suitable steady-state operating
conditions in neural networks, particularly for a network oper-
ating with STDP since the dynamics at the synapse are con-
trolled by many opposing potentiating and depressing updates.
Thus, neural networks likely depend on the native correlations
in background and network activity induced by the selective
convergence of neural activity. While this concern is valid, we
believe that the method used here to induce correlation is a
reasonable first-pass approximation for understanding small net-
work motif responses to structured background activity, and
we expect to investigate how precise spike-time tuning can be
achieved through topology when moving to more extensive net-
work models.

One other observation from real neural networks that was
not included in this study was the presence of inhibitory neu-
rons. Inhibition is thought not only to control the amount of
overall network activity by preventing overexcitation of excitatory
neurons, but also to modulate the coincidence of neural firing
and induce synchrony at the microcircuit and brain area levels
(Buzsaki et al., 1992; Beierlein et al., 2000; Pouille and Scanziani,
2001). In light of these observations, it is possible that the coin-
cidence needed to transmit information between neurons that
are not monosynaptically connected could also be realized by
having inhibitory pathways in the circuit that act on interme-
diary or output neurons to synchronize activity among layers.
On the other hand, inhibition that disrupts the synchrony of a
polysynaptic circuit could potentially decrease polysynaptic sig-
nal transmission and restrict network dynamics. Regardless, while
inhibition is likely to be very important for generating complex
neural dynamics, study of both network connectivity and plastic-
ity of inhibitory neurons is lacking (Lamsa et al., 2010). A more
rigorous analysis using inhibitory neurons is expected to be devel-
oped as greater understanding of inhibitory circuit dynamics and
plasticity becomes available.

In addition, the synaptic rule that we considered here is a sim-
ple pair-based rule that does not consider higher-order effects due
to multispike pairings or other factors such as frequency depen-
dence. Compared to some triplet-based STDP rules, pair-based
STDP tends to have weak dependencies on firing rate and deviates
from experimental results at high firing rates (>20 Hz) (Sjostrom
et al., 2001; Pfister and Gerstner, 2006). In networks with high
firing rates, the predictions of network responses due to pertur-
bation are likely to be skewed as these previous results suggest
that the interactions between opposing LTP and LTD updates
with respect to a single pre- or post-synaptic AP will not sim-
ply be linear, and activity-dependent perturbations such as STS
that act as fixed delays to excite pre- and post-synaptic neurons
will induce more complex changes due to the significance of
these interactions. For our networks where the firing rate is low
(<10 Hz), however, the deviation of modeling results from exper-
imental results is approximately constant and is not likely to be
qualitatively different (Pfister and Gerstner, 2006).

Another limitation in the rule we considered in this study is
that it implicitly bypasses the experimental observation that LTP
due to STDP requires post-synaptic depolarizaton (arising from
concurrent synaptic activity for instance) (Sjostrom et al., 2001;
Clopath et al., 2010). This observation is potentially problematic
when considering the effects of network perturbations on synap-
tic efficacy because it indicates that the precise temporal activity of
one synapse can affect others within a local region of the dendritic
tree. In a network with correlated background activity, STDP’s
dependence on post-synaptic activation is likely to be irrelevant
because widespread global correlation among so many processes
alone can induce the activation necessary to support LTP. On the
other hand, in a network with only topologically induced cor-
relation that is not precisely tuned, this dependence may be a
substantial factor when very few afferents are activated or present;
as suggested by Sjostrom et al. (2001), this situation may apply
when as many as 4–8 afferents are concurrently activated but not
with any constancy. Thus, the effects observed in the uncorrelated
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multipath network, while seemingly substantial, may be subject
to the same stipulations. It is also difficult to compare the quali-
tative characteristics of weight-dependent rules such as the STDP
rule used in this study to those formulated in many of these more
nuanced studies because these studies frequently ignore contribu-
tions due to the synaptic weight (Froemke and Dan, 2002; Pfister
and Gerstner, 2006; Clopath et al., 2010). In light of the complex
contributions of myriad factors (e.g., frequency of stimulation,
spike-timing dependence, voltage dependence, multi-spike inter-
actions), it is likely that a greater biophysical understanding of
plasticity mechanisms is necessary to elucidate the precise effects
of each of these factors on real neural networks [see Karmarkar
and Buonomano (2002) and Rubin et al. (2005) for examples of
relevant biophysical modeling experiments].

While observations in this study may be limited by these
aforementioned assumptions, they potentially have utility in
improving experimental investigations into manipulating neu-
ral networks (i.e., with STS paradigms) and other investigations
seeking to elucidate network function by experimenter pertur-
bation. Manipulation of small or large networks with artificial
electrical stimulation may be constrained by network function as
seen here. For instance, one criterion that may increase manip-
ulability using STS is that the electrical stimulation should be
delivered in the presence of some correlated network activity
(either stimulus-induced or related to neural dynamics). This
could be achieved by presenting a natural (i.e., non-electrical)
stimulus to which two neurons are receptive and establishing
a robust timing relationship in the spiking activity of the two
neurons related to the stimulus, or even further enhanced by
behavioral tasks. A previous study tested this hypothesis (Ahissar
et al., 1992) and showed that the degree of plasticity in audi-
tory cortex, measured in response to an in vivo protocol sim-
ilar to that considered here, was dependent upon whether the
protocol was performed in the presence of behavior that was
related to the stimulus feature (in this case, an auditory dis-
crimination task between pure two different tones or between
tones and band-pass noise). Moreover, these results imply that a
more sophisticated STS-like protocol could be constructed that
would interact with both network dynamics as well as exter-
nal activity to achieve some desired control output. Such a
protocol however, could be hindered by substantial increases
in native networks rates (Figure S3), where the level of back-
ground activity, if not correlated to intranetwork activity, can
dilute the effects of the protocol. It is also conceivable that
the degree of induced change will vary with the probability of
the applied artificial electrical stimulation to elicit spiking at
the target site. Preliminary data for networks similar to those
considered here in which this STS protocol was performed
(uncorrelated monosynaptic and disynaptic networks) suggest a
lowered probability of eliciting spiking would decrease the max-
imal inducible change and increase the time constant of change
(data not shown).

Alternatively, particular cortical dynamics could be reinforced
by triggering within relevant dynamical states. For instance, neu-
ral processing related to resting-state functional activity could be
selectively reinforced by controlled stimulation during periods of
increased activity in areas thought to be influential in activity

of that subnetwork (Raichle et al., 2001). Stimulation could also
be triggered from detected activity in a large-scale recording
modality such as EEG. For example, increases in gamma wave
(30–100 Hz) power coinciding with the negative phase of delta
wave (2–4 Hz) activity has been shown to be related to increased
population spiking activity (Whittingstall and Logothetis, 2009).

A second criterion for increased circuit manipulability may be
the presence of network connectivity that would be predicted to
reinforce signal propagation between two sites. This could consist
of, for instance, the presence of many parallel pathways between
neuron pairs or, on large-scales, different brain areas. If a circuit is
predominately feed-forward, it may be possible to boost the tim-
ing relationship between two neurons in a pathway by finding and
performing STS on neurons that are intermediate in the pathway
and highly interconnected.

Alternatively, methods using perturbation to infer the under-
lying connectivity of a network may be limited by similar con-
straints as those seen here. A recent study by Lepage et al. (2012)
used mean-field approximations of cortical columnar processing
to give a proof of concept for such a perturbation-based cir-
cuit mapping method. As opposed to neuroanatomical studies,
such methods capture the functional connectivity of the network,
which is inherently biased by the ongoing activity in a circuit.
Such a network mapping technique is likely to capture functional
interactions that will approximate the real connectivity of a net-
work, but is conditioned upon the processing of the network
during observation and may need to be refined based on the range
of network activity in the circuit.

This study investigated how network function is constrained
by exogenous activity and network connectivity in small feed-
forward networks. Using this framework, a set of principles was
elucidated that constrains the dynamics the network is capable
of attaining, namely, that feed-forward polysynaptic computation
necessitates intrapathway and intranetwork correlations to trans-
form network input, whether the source is from network input
or topological structure. These principles are potentially useful
for understanding how compositions of these small microcir-
cuits actually operate in vivo, and they also present a preliminary
framework for understanding and controlling neural networks
more broadly. In light of the large sizes of native biological neu-
ral networks, future investigation into network dynamics will
need to extend such frameworks to understand how different net-
work components function together to realize transformations
on their inputs. Further research into principles of control at
a network level and the design of experimentally driven stim-
ulation/perturbation protocols will likely form a foundation for
understanding general network dynamics.
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