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Single-unit measurements have reported many different effects of attention on
contrast-response (e.g., contrast-gain, response-gain, additive-offset dependent on
visibility), while functional imaging measurements have more uniformly reported increases
in response across all contrasts (additive-offset). The normalization model of attention
elegantly predicts the diversity of effects of attention reported in single-units well-tuned
to the stimulus, but what predictions does it make for more realistic populations of
neurons with heterogeneous tuning? Are predictions in accordance with population-scale
measurements? We used functional imaging data from humans to determine a realistic
ratio of attention-field to stimulus-drive size (a key parameter for the model) and predicted
effects of attention in a population of model neurons with heterogeneous tuning. We found
that within the population, neurons well-tuned to the stimulus showed a response-gain
effect, while less-well-tuned neurons showed a contrast-gain effect. Averaged across
the population, these disparate effects of attention gave rise to additive-offsets in
contrast-response, similar to reports in human functional imaging as well as population
averages of single-units. Differences in predictions for single-units and populations
were observed across a wide range of model parameters (ratios of attention-field to
stimulus-drive size and the amount of baseline response modifiable by attention), offering
an explanation for disparity in physiological reports. Thus, by accounting for heterogeneity
in tuning of realistic neuronal populations, the normalization model of attention can not
only predict responses of well-tuned neurons, but also the activity of large populations
of neurons. More generally, computational models can unify physiological findings across
different scales of measurement, and make links to behavior, but only if factors such as
heterogeneous tuning within a population are properly accounted for.
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INTRODUCTION
Visual spatial attention is associated with a bewildering array of
different effects on single neurons which appear at odds with the
more uniform modulations observed from population activity
such as those measured with functional imaging. Visual spa-
tial attention, a cognitive process by which prior information
about the relevance of spatial locations is used to improve per-
ceptual performance (Noudoost et al., 2010; Carrasco, 2011), has
been shown to have a variety of effects on neural responses to
image contrasts (contrast-response function) in monkey visual
cortex (Reynolds and Heeger, 2009). Early reports suggested
that contrast-response functions shift horizontally with atten-
tion for visual area V4 (Reynolds et al., 2000; Martínez-Trujillo
and Treue, 2002), termed a “contrast-gain” change. This shift
of contrast-response has an appealing interpretation in that it
suggests that directing attention acts much the same as if you
physically increased the contrast of the stimulus at that location.
Other reports, however, have favored a “response-gain” change

in which there is a multiplicative change in the contrast-response
function so that the largest absolute change in response occurs
at the highest contrasts (Lee and Maunsell, 2010). Still others
have reported additive-offsets of contrast-response dependent on
stimulus visibility (Thiele et al., 2009; Pooresmaeili et al., 2010).
Some experiments have even reported different effects of atten-
tion for different neurons in the same experiment (Williford and
Maunsell, 2006; Reynolds and Heeger, 2009). In contrast to the
diversity of effects of attention reported in single-units, multiple
studies using population-scale measurements such as functional
imaging of cortical activity in human visual cortex (but see
Itthipuripat et al., 2014) have reported an additive-offset effect of
attention in which contrast-responses increase equally with atten-
tion at all contrast levels (Buracas and Boynton, 2007; Li et al.,
2008; Murray, 2008; Pestilli et al., 2011). Similar additive-offsets
were also apparent in population averages of single-units (e.g.,
see Figure 6 in Williford and Maunsell, 2006). Computational
models of attention (e.g., Itti and Koch, 2001; Boynton, 2009;
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Eckstein et al., 2009) offer unifying frameworks to understand
various effects of attention; can the seeming difference between
single-unit and population-scale response changes with attention
be reconciled by theoretical predictions?

The normalization model of attention (Lee and Maunsell,
2009; Reynolds and Heeger, 2009) provides an elegant expla-
nation for the diversity of single-unit response changes with
attention. The key insight of the model is that the size of the
area which a subject attends to (attention-field size) is an uncon-
trolled variable which can account for differences in experimental
results. In particular, changes in the attention-field size can affect
the divisive normalization computation which has been used to
explain response-saturation (that responses do not continue to
grow linearly with higher contrast: Albrecht and Hamilton, 1982)
and various other non-linear properties of neurons in visual
cortex (Heeger, 1992; Carandini and Heeger, 2012). When the
attention-field size is small relative to the spatial extent of neural
input due to the visual stimulus (stimulus-drive size), response-
gain changes will dominate since the effect of attention will be
strongest in the neuron well-tuned to the stimulus (E in numera-
tor of Equation 1, Materials and Methods: Normalization model
of attention) and not in the larger pool of neurons which pro-
vide the normalization signal that divisively inhibits through the
denominator of the normalization equation (S in Equation 1).
Conversely, for a large attention-field, the normalization signal
will be large and will act to suppress responses at high contrasts,
resulting in larger response-saturation and thus a contrast-gain
like effect. In sum, the variety of attentional effects on the
contrast-response of single-units in monkey cortex can be well
explained by the model.

While the normalization model of attention provides a plau-
sible explanation for response properties of single-units, what
predictions does it make for population responses such as those
measured with functional imaging? The normalization model of
attention was initially developed to explain the responses of sin-
gle neurons with tuning matched to the stimulus; i.e., receptive
field matched both in location and feature selectivity to the stim-
ulus (as is typically done in single-unit physiology experiments).
However, neural populations have neurons with heterogeneous
tuning for any given stimulus—some neurons within the pop-
ulation will have tuning matched to the stimulus while other
neurons will, to varying degrees, be mismatched. This hetero-
geneity of tuning will have consequences for the predictions of the
normalization model of attention since different neurons in the
population will experience different balances of stimulus-drive
and attention-field. For example, neurons whose receptive-field
location and feature selectivity is matched to the stimulus and
locus of attention will have overlapping inputs of stimulus-drive
and attention-field, while neurons responding to the periphery
of the stimulus may encounter larger attention-field modulations
but less stimulus-drive. Likewise, the normalization pool for each
of these neurons will have differing balances of stimulus-drive and
attention-field. Therefore, differences in tuning properties would
result in very different predictions of attentional modulation for
different neurons in the neuronal population.

Here, we investigated the behavior of the normalization model
of attention for neural populations with heterogeneous tuning

for the stimulus. We used functional imaging to directly mea-
sure the ratio of attention-field and stimulus-drive size in human
visual cortex for a contrast-discrimination task. We constrained
the parameters of the normalization model based on these
measurements and examined the predicted effects of attention
for a population of simulated neurons as well as the summed
response over the whole population. We found that under real-
istic parameter settings, the model could predict opposite effects
of attention on the contrast-responses of different neurons in
the same population; response-gain for neurons well-matched
to the stimulus and contrast-gain for neurons not well-matched
in either (or both) receptive field location or orientation pref-
erence. Averaging over model neurons, as is implicitly done
by population-scale measurements, predominantly resulted in
additive-offset of contrast-response, similar to those reported in
functional imaging studies (Buracas and Boynton, 2007; Murray,
2008; Pestilli et al., 2011) and evident in averages across single-
units (Williford and Maunsell, 2006). This additive-offset effect
in the population average occurred across several orders of
magnitude of the ratio of attention-field and stimulus-drive
size. Thus, we conclude that the predictions of the normal-
ization model for well-tuned single-units and heterogeneous
neural populations can differ substantially. Furthermore, for a
wide range of model parameters, the predictions of the normal-
ization model of attention well-predict the additive effects of
attention seen in measurements of human cortical population
activity.

MATERIALS AND METHODS
NORMALIZATION MODEL OF ATTENTION
We used publicly available computer code from the websites of
the authors of the normalization model of attention (http://www.

cns.nyu.edu/heegerlab or http://www.snl-r.salk.edu/∼reynolds/
Normalization_Model_of_Attention). For a full description of
the model and parameters, see Reynolds and Heeger (2009). The
model predicts a neuron’s response to visual stimuli such as ori-
ented Gabor patches with different modulations due to spatial
or feature-based (e.g., Treue and Martínez Trujillo, 1999; Liu
et al., 2011) attention. In particular, we were interested in sim-
ulating model predictions of the effect of spatial attention on
each neuron’s response profile to different stimulus contrasts
(contrast-response function). Parameters were set according to
settings depicted in Figures 3D–F of Reynolds and Heeger (2009)
unless otherwise noted here. In brief, each model neuron receives
stimulus-drive based on a Gaussian tuning preference for both
orientation (with tuning width of 60◦, defined as half-width at
60.7% of maximum) and space [tuning width of 0.75◦ visual
angle, taken from published values of population RFs measured
in human V1 for the eccentricity of our stimulus (Dumoulin and
Wandell, 2008)]. A small baseline activity that can be modified by
attention (5e−7% contrast) is added to this stimulus-drive. This
baseline activity increments the neuron’s contrast-response to any
given stimulus (regardless of contrast, and even when no stimulus
is present) by adding to the actual contrast of the stimulus; thus,
units are percent contrast. The response of any given model neu-
ron is the stimulus-drive divisively normalized by a suppressive
drive from similarly-tuned model neurons:
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R(x, θ) = E(x, θ)

S(x, θ) + σ
(1)

where R(x, θ) is the response of a model neuron with the center
of its RF located at location x and having preferred orientation
θ. E(x, θ) is the stimulus-drive as defined above. S(x, θ) is the
suppressive drive which comes from model neurons with sim-
ilar tuning preference. In particular, it is the multiplication of
the stimulus-drive of all model neurons with a kernel represent-
ing the spatial (Gaussian with standard deviation of 20◦) and
featural (all orientations) extent of the pool of model neurons
contributing to the suppressive drive. σ is the contrast-gain of the
model neuron and controls the left-right position of the contrast-
response function. The response is thresholded to mimic the
spiking threshold of neurons. In our simulation, the visual stim-
ulus input was set to mimic the visual stimulus presented to our
subjects (see below) in orientation (single orientation) and spa-
tial extent (6◦ full-width). The attention-field size was set to be a
Gaussian 1.4 times the size of the stimulus-drive; a factor based
on our measurements of the ratio of the spatial width of the
cue- and contrast-sensitivity which were taken as measures of the
attention-field and stimulus-drive size, respectively (see Results:
Spatial extent of stimulus-drive and attention-field in cortex).
Each model neuron’s stimulus-drive was multiplied by the magni-
tude of the attention-field, which varied according to the distance
of the center of its RF relative to the center of the attention-field
(located at the center of the stimulus). Population responses were
obtained by averaging together all the responses of model neurons
in the simulation.

To evaluate whether contrast-gain, response-gain, or additive-
offsets better accounted for the predicted modulation with atten-
tion in single-unit and population responses, we asked how
much of the variance in the tuning related to attention could be
accounted for by these three attention effects. In particular, we fit
a Naka-Rushton type equation (Naka and Rushton, 1966) of the
following form to the model contrast-response functions:

R(C) = Rmax
Cn

Cn + Cn
50

+ Roffset (2)

where R is the model response, C is the contrast, Rmax is the
maximum contrast-dependent response, C50 is the contrast at
which responses reaches half maximum, n controls the steep-
ness of the function and Roffset is the response at 0% contrast.
The parameters were set to be the same for both attended and
unattended model responses, except that Rmax was allowed to
change for the response-gain model, C50 for the contrast-gain
model and Roffset for the additive-offset model. To calculate the
variance accounted for by each of these three models, we com-
puted one minus the residual variance of the model divided by
the actual variance. Residual and actual variance was computed
as the variance of the difference between responses in attended
and unattended conditions with or without the model response
subtracted, respectively.

HUMAN SUBJECTS
Five human subjects (ages 21–36, three male) with normal or
corrected-to-normal vision participated in the study. Subjects all
gave prior written consent and experimental procedures were
approved in advance by the RIKEN Brain Science Institute
Functional MRI Safety and Ethics Committee. Each subject par-
ticipated in multiple MRI sessions including one session for
acquiring a high-resolution anatomical scan, another session for
retinotopic mapping and 5–7 sessions of the main experiment.

TASK
Subjects performed a contrast-discrimination task as illus-
trated in Figure 1. Four contrast gratings (spatial frequency = 2
cycles/◦, size = 3◦ radius, 6◦ eccentricity in each visual quadrant,
contrasts = 12.5, 25, and 50%) were presented in two separate
temporal intervals (Stim1 and Stim2, each 600 ms). All stimuli
maintained the same contrast in the two intervals except one—the
target stimulus, which had a slightly higher contrast in one of the
two intervals. After stimulus offset, during the response interval, a
green line indicated the location of the target. Subjects were asked
to report the interval in which the target had the higher contrast.
The difference in contrast presented between the two intervals
was adjusted to a threshold level using a 1-up-2-down staircase
procedure (Levitt, 1971). The target location and only the target

FIGURE 1 | Task design. Subjects performed a contrast-discrimination task
in one of four locations. On each trial, four contrast gratings appeared in two
temporal intervals (Stim1 and Stim2) separated by an inter-stimulus interval
(ISI). During one of the two intervals (Stim2 for this figure), the contrast in
one location (target, upper-right for this figure) was incremented by a
threshold contrast. After both stimulus presentation intervals, a green
response-cue indicated the target location and subjects reported the interval

during which they perceived the higher contrast with a key press (Resp). At
the beginning of each trial (Cue), a white line pointed to one (or, on alternate
trials, more than one) of the possible target locations, thus varying the prior
information given to subjects regarding which location they would be asked
to respond about. Trials were separated by an inter-trial interval (ITI) which
lasted 1.5 s for tasks performed outside the scanner and 1.5–12.0 s,
pseudo-randomized, inside the scanner.

Frontiers in Computational Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 12 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hara et al. Population-scale simulation of normalization model of attention

location was shown with a contrast difference between the two
temporal intervals. Cues (white line) presented at the beginning
of the trial (1 s before stimulus presentation) and throughout the
trial (until beginning of response interval, total duration of 2.5 s)
indicated which target would need to be discriminated. Subjects
were told to attend to cued locations and ignore as much as possi-
ble the other locations. In interleaved trials, the cues could point
to one, two or four of the locations.

MRI MEASUREMENTS AND PRE-PROCESSING
All MRI measurements were made with a Varian Unity Inova
4 Tesla whole-body MRI system equipped with a head gradi-
ent (now Agilent Technologies, Santa Clara, CA, USA). High-
resolution 3D anatomical images were acquired with a birdcage
radio frequency (RF) coil (Nova Medical, Inc., Wilmington,
MA, USA) and imaging parameters were set to acquire two
T1-weighted images (MPRAGE TR 13 ms, TI 500 ms, TE 7 ms,
flip angle 11◦, voxel size 1 × 1 × 1 mm, matrix 256 × 256 × 180)
and one T2∗-weighted image (FLASH TR 13 ms, TE 7 ms, flip
angle 11◦, voxel size 1 × 1 × 1 mm, matrix 256 × 256 × 180).
The T1-weighted images were averaged together and divided
by the T2∗-weighted images to reduce global inhomogeneities
in image contrast (Van De Moortele et al., 2009). Gray- and
white-matter surfaces were generated from these images using
FreeSurfer (Dale et al., 1999), from which flattened representa-
tions of the cortical surface could be constructed for visualization
of data. Flattened representations were also used for defining of
regions of interest which intersected with the gray-matter, such
as visual areas and the regions within these areas that represented
the visual stimuli in the task. Surfaces and flat maps were used
only for these purposes—all data analyses and processing was
conducted on the original untransformed data.

We measured blood-oxygenation-level-dependent (BOLD,
Ogawa et al., 1990) signals by acquiring functional images (T2∗-
weighted) using a volume RF coil to transmit and a 4-channel
receive array (Nova Medical) with an EPI imaging sequence
(2-shot, SENSE acceleration factor 2, TE 25 ms, voxel size 3 ×
3 × 3 mm, matrix 64 × 64). For the retinotopy experiments, 21
slices were acquired with a flip angle of 55◦ and volume acqui-
sition time after SENSE acceleration of 1572 ms. For the main
experiment, 16 slices were acquired with a flip angle of 51◦ and
a volume acquisition time after SENSE acceleration of 1200 ms.
Slices were oriented approximately perpendicular to the calcarine
sulcus and covered early occipital visual areas. Cardiac and respi-
ratory fluctuations measured with a pulse oximeter and a pressure
sensor, respectively, were removed in post-processing (Hu et al.,
1995). Motion compensation (Nestares and Heeger, 2000), linear
detrending and high-pass filtering (cutoff of 0.01 Hz) were also
applied. Percent signal change was computed by dividing each
voxel’s time-course by its mean intensity.

Retinotopic mapping (Engel et al., 1994; Wandell et al., 2007)
was used in conjunction with functional localizers to separately
define the locations within each visual area (V1–V3, hV4, and
V3A) that responded to the stimulus (Gardner et al., 2008; for
detailed procedures see: Pestilli et al., 2011). In each retinotopic
scan, either a clockwise or counter-clockwise rotating wedge or
expanding or contracting ring was shown for 10.5 cycles lasting

25.2 s. Typically, at least two sets of the wedge stimuli and one set
of the ring stimuli were shown. After dropping the first half cycle
of response, we took the Fourier transform of each response time
series and determined the amplitude and phase values at the stim-
ulus frequency (10 cycles/scan). Coherence was calculated as the
amplitude at the stimulus frequency divided by the root sum of
the amplitudes squared at all stimulus frequencies. Coherence and
phase values were displayed on a flattened surface of the occipital
cortex and visual field boundaries were drawn by hand accord-
ing to published criteria (Wandell et al., 2007). In addition, we
localized each stimulus within each visual field by referencing a
session localizer which was run once or twice within each session.
The session localizer consisted of a full contrast grating shown
in sequence at each of the stimulus locations for 10.5 cycles last-
ing 24 s. Using coherence and phase values of the response at the
stimulus frequency displayed on flattened surfaces, the location of
response to each stimulus was drawn by hand. These regions were
used in other analyses to report the response to each stimulus.

Event-related responses were computed for each stimulus loca-
tion and each attentional condition and contrast using proce-
dures reported in detail elsewhere (Gardner et al., 2005). Briefly,
responses were computed as trial-triggered averages assuming
that any response overlaps sum linearly. These event-related time
series were then fit with single-gamma functions and the peak of
the fit function was used as a measure of BOLD response ampli-
tude for each trial type. The r2 of the model fit was used to
evaluate significance of responses.

MEASURING SPATIAL EXTENT OF STIMULUS-DRIVE AND
ATTENTION-FIELD
We estimated the spatial extent of task-related attributes of mea-
sured BOLD signals—the BOLD amplitude, contrast-sensitivity,
and cue-sensitivity (defined below)—by plotting these three
attributes on a per-subject, per-voxel basis. These attributes were
later used to estimate the spatial extent of stimulus-drive and
attention-field for the normalization model. The BOLD ampli-
tude was simply the magnitude of the average hemodynamic
response elicited in that voxel averaged across pedestal contrast
and cue condition. The contrast-sensitivity was the slope of
the contrast-response function (in units of % signal change/%
contrast) measured for each voxel (r2 > 0.7). The slope of
the contrast-response function was obtained by plotting BOLD
response amplitudes for each pedestal contrast, regardless of cue
condition (amplitude of responses estimated from single-gamma
fits to responses as shown in Figure 2E, top row), as a function
of contrast (on a linear axis) and performing a linear regression.
We used a linear rather than the typical sigmoid function (see
Equation 2) because of the limited number of samples of contrast-
response that we had acquired and because our contrast-response
measurements were roughly in the range where this function
appears linear. Cue-sensitivity was computed as the difference in
magnitude of BOLD responses for cued and uncued conditions,
regardless of the pedestal contrast or the number of cues that
were used (Figure 2E, bottom row). Cue-sensitivity was positive if
cueing resulted in an increase in BOLD response amplitude. The
calculations for contrast- and cue-sensitivity were dependent on
knowing the retinotopic location of each voxel so that the contrast
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FIGURE 2 | Example of spatial characteristics of task-related signals.

Flattened representation of the occipital cortex of the right hemisphere of a
single subject showing the coherence to the localizer stimulus (A), average
response magnitude across trials for the task (B), contrast-sensitivity (C,

slope of the contrast-response function) and cue-sensitivity (D, difference
between BOLD amplitudes for cued and uncued locations, regardless of cue
condition and pedestal contrast). Solid white lines indicate the retinotopic
boundaries for V1 (a dotted line traces the calcarine sulcus), V2 (dorsal and

ventral), V3 (dorsal and ventral), V3A (dorsal), and hV4 (ventral), which
converge at the fovea (white circle with a “+” for fixation cross). (E) Shows
BOLD responses for example V1 locations (white circles in A–D) which
correspond to the 1, center, 2, edge, 3, periphery, and 4, extreme-periphery
of the response to the contrast grating. BOLD responses in (E) are separated
by pedestal contrast (top row) or by whether the response was to a cued or
uncued location (bottom row). Error bars indicate standard error of mean over
repeated trials.

and cue condition could be specified. Therefore, these attributes
were calculated only for voxels in visual areas V1, V2, and V3
whose quadrant localizations could be determined.

The three attributes were averaged across subjects to ana-
lyze the mean extent of their effects as a function of radial
eccentricity from the grating center. The grating eccentricity was
estimated by averaging the eccentricities of voxels in V1, V2, and
V3 whose localizer coherence exceeded 0.5. Each voxel was binned
into one of seventeen eccentricity bins centered at the grating
(Figure 3, 0◦ visual angle). The average BOLD response ampli-
tude, contrast-sensitivity, and cue-sensitivity were calculated for
each bin, resulting in sensitivity profiles as a function of radial dis-
tance from the grating center. These profiles were averaged across
subjects, then fitted: the contrast- and cue-sensitivity profiles were
fit with a single Gaussian (Figures 3A,B; mean fixed at 0◦ visual
angle, offset fixed at 0, σ and amplitude were fit parameters), and
the BOLD response amplitude profile was fit by a sum of two
Gaussians, the first Gaussian accounting for the large response

seen near the fovea and the second Gaussian accounting for the
response evoked by the stimulus grating (Figure 3C; Mean of first
Gaussian constrained to be < −2◦ visual angle, i.e., foveal to the
grating location. Mean of second Gaussian fixed at 0◦ visual angle.
Offsets, σ and amplitudes for both Gaussians were fit parameters).

We note that a similar analysis using polar angle rather than
eccentricity was attempted but the nature of the topographic
maps (polar angles did not offer as much cortical distance as
eccentricity) and the fidelity of the topographic information
(eccentricity maps were more reliable than polar angle maps)
made it difficult to clearly distinguish the spatial characteristics
of the various signals, especially when farther removed from the
cortical locations found in the localizer.

Confidence intervals for the Gaussian fits of spatial pro-
files in Figures 3A–C (two-tailed, 5%) were obtained by stan-
dard nonparametric bootstrapping procedures. Responses were
resampled with replacement 10,000 times, and for each itera-
tion, the response amplitude and contrast- and cue-sensitivity
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FIGURE 3 | Group analyses of spatial characteristics of task-related

signals. Gaussians were fit (bootstrap CI 95%) to the mean across
subjects of contrast-sensitivity (A), cue-sensitivity (B), and BOLD
amplitudes (C) binned by eccentricity. An eccentricity of 0◦ represents the
center of the response to the stimulus as determined by the localizer. The
shade of each point reflects the reliability of the eccentricity measured for
that bin (coherence threshold of 0.4). In (C), a sum of two Gaussians was
used to account for the large activity near fixation (yellow dashed line) and
the activity in response to the contrast grating (solid blue). (D) All fits were
normalized and superimposed to visualize the range of each effect. The
dark gray shaded area corresponds to the spatial extent of the contrast
grating, and the light gray shaded area represents the subject’s viewing
range in the scanner.

profiles were recalculated and refitted with Gaussians. To com-
pare the spatial extent of these profiles, the sigma parameter of
the narrower distribution was subtracted from the sigma of the
wider distribution, and a one-tailed p-value was obtained where
the sorted difference changed from positive to negative (i.e.,
p < 0.0001 if the difference was positive in all 10,000 iterations).

RESULTS
MEASURING THE SPATIAL EXTENT OF STIMULUS-DRIVE AND
ATTENTION-FIELD IN HUMAN CORTEX
We measured attention-field and stimulus-drive size in five
human subjects with functional magnetic resonance imaging
(fMRI) as they performed a contrast-discrimination task under
different attentional cueing conditions (Pestilli et al., 2011; Hara
and Gardner, 2012). Subjects were presented with four gratings
of different contrasts (either 12.5, 25, or 50%) in two stimu-
lus intervals (Stim1 and Stim2, Figure 1). After stimulus offset,
a response-cue (green line, Resp interval, Figure 1) indicated a
single location and subjects used a button press to report the
temporal interval in which the stimulus at that location had
higher contrast. To manipulate spatial attention, subjects were
cued in advance (white line, Cue interval Figure 1) as to which
stimuli were potentially relevant. Subjects were able to use these
spatial cues to improve their behavioral performance. On aver-
age, contrast-discrimination thresholds were reduced 2.7 fold
when cues pointed to a subset of locations containing the target

compared to when cues pointed to all locations and provided no
useful prior information (for details see Hara and Gardner, 2012).

We measured BOLD responses to these stimuli across the cor-
tical surface and found that responses changed from positive to
negative as a function of the distance from the center of stim-
ulation. Within retinotopically-defined visual areas, we defined
cortical locations that responded well to the localizer stimulus
(high coherence to localizer stimulus, Figure 2A) as being within
the “stimulus band.” Responses in these cortical locations showed
the expected positive response (warm colors, Figure 2B and loca-
tion 1, Figure 2E) with the classical hemodynamic response func-
tion shape. In cortical locations which were retinotopically more
eccentric than the stimulus band, responses diminished in mag-
nitude and, unexpectedly, turned negative (cool colors, Figure 2B
and locations 2–4, Figure 2E; see Discussion: Spatial distribution
of attentional signals in visual cortex for a discussion of these neg-
ative responses). We note that positive responses were also present
near the fovea where the fixation cross had persisted through-
out the task as well as some parts of non-retinotopically-defined
cortex (Figure 2B). We interpret these to be related to fixation
processes.

To measure stimulus-drive, we computed responses separately
for different stimulus contrasts (Figure 2E, top row) and exam-
ined the degree to which responses were modulated by stimulus
contrast. We computed the modulation to contrast as the slope of
the contrast-response function and called this the voxel’s contrast-
sensitivity. Voxels with large, positive contrast-sensitivities (hot
colors, Figure 2C and location 1, top row of Figure 2E) were
mostly located within the stimulus band. Contrast-sensitivities
decreased and approached zero outside of the stimulus band (cool
colors, Figure 2C and location 3 and 4, top row of Figure 2E).
Occasionally, we measured responses with a somewhat reversed
relationship with contrast (smallest response with largest con-
trast, e.g., location 2, top row of Figure 2E) just outside the
stimulus band. But these reversed responses were not consistently
observed and did not come out in the group analysis (Figure 3),
suggesting that they were either extremely infrequent or simply
reflecting noise in the measurements.

To measure the attention-field we examined whether responses
were modulated by the cue. For each voxel, we separated
responses by whether the location had been cued or not cued
(Figure 2E, bottom row) and took the difference in these
response amplitudes and called this the voxel’s cue-sensitivity.
Cue-sensitivities were largest in voxels located inside the stimulus
band (e.g., location 1, Figure 2E, bottom row) and were positive
even in voxels located outside the stimulus band (Figure 2D, hot
colors). Positive cue-sensitivities, therefore, were also seen in vox-
els whose BOLD response amplitudes were negative (e.g., location
4 in bottom row of Figure 2E). Thus, the spatial extent of pos-
itive cue-sensitivities extended well beyond areas with positive
contrast-sensitivity—that is, the attention-field was larger than
the stimulus-drive size.

The group-averaged data confirmed the above observations, in
particular, that the attention-field was larger than the stimulus-
drive size. In each subject, we binned BOLD response amplitude,
contrast-sensitivity and cue-sensitivity according to eccentric-
ity. Averaging across subjects, we found that BOLD response
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amplitude (Figure 3C) showed peaks of activity both at the stim-
ulus band (0◦ eccentricity) and near the fovea (−6◦ eccentricity),
as described above. These were well fit by a sum of Gaussians
profile (r2 = 0.93) with standard deviations of 2.17 and 2.03◦,
respectively. Cue-sensitivity (Figure 3B) and contrast-sensitivity
(Figure 3A) were also well fit with Gaussian profiles centered at
the stimulus band (r2 = 0.70 and 0.77, magenta and turquoise
curves, respectively) with standard deviations of 4.92 and 3.44◦,
thus confirming that the attention-field was larger than the
stimulus-drive size (magenta vs. turquoise line, Figure 4D; one-
tailed p < 0.0001 on sigma values obtained on fits on 10,000
bootstrapped samples).

THE NORMALIZATION MODEL OF ATTENTION PREDICTS
ADDITIVE-OFFSETS IN CONTRAST-RESPONSE FOR POPULATION
MEASUREMENTS
We used the cue-sensitivity and contrast-sensitivity measure-
ments to constrain the attention-field and stimulus-drive size
parameters of the normalization model of attention. In particular,
we used the ratio of spatial extent of cue-sensitivity to contrast-
sensitivity (4.92/3.44 ∼= 1.4, as estimated by the Gaussian fits in
the previous section) as a measure of the size of the attention-
field relative to the spatial extent of the feed-forward stimulus-
drive in the model. We followed the approach of Reynolds and
Heeger (2009), in which the model was not explicitly fit to the
data, but instead, parameters were set to qualitatively reproduce

experimental results in an effort to gain an intuition about
its behavior. Rather than examining just the behavior of the
single model neuron well-tuned to the stimulus as has been
done previously (Reynolds and Heeger, 2009), we also examined
neurons whose spatial (Figure 4A, abscissa) and orientation-
tuning (Figure 4A, ordinate) preferences were not well-matched
to the stimulus, as would actually occur in the brain, and whose
response would contribute to population activity such as those
measured in functional imaging.

Model neurons with receptive fields well- or poorly-tuned to
the stimulus showed different types of spatial attention effects on
their contrast-response functions. Well-tuned neurons showed a
response-gain effect (center of Figure 4A with gray background,
replotted in Figure 4C). Poorly-tuned neurons either in space or
in orientation showed a more contrast-gain effect (e.g., top of
Figure 4A with gray background, replotted in Figure 4B). This
difference in the effect of attention can be attributed to the relative
dominance of the attention-field and stimulus-drive for different
model neurons. Neurons well-matched to the stimulus received
a strong stimulus-drive and relatively weak normalization sig-
nal, resulting in a response-gain effect. Poorly-matched neurons
received weaker stimulus-drive and larger normalization signal
due to the large attention-field, resulting in a contrast-gain effect.

To determine the model prediction for BOLD measure-
ments which explicitly average across space and implicitly over
orientation preference, we examined the average response over

FIGURE 4 | Normalization model of attention predicts both contrast-gain

and response-gain like effects, which, when summed together across

space and orientation selectivity, result in an additive-offset of

contrast-response with attention. Contrast-response functions with (red)
and without (black) attention for simulated neurons in the model are plotted in
(A) as a function of the overlap of that neuron’s RF (x-axis) and match of

orientation preference (y-axis) with the stimulus. The central neuron’s
response (redrawn in C) had a response-gain like effect when the
attention-field and stimulus-drive size ratio were set according to the
measurements made to match parameters from the BOLD data. Other
neurons, (B), had a more contrast-gain like effect. The sum of all model
neurons, (D), showed a vertical shift in contrast-response with attention.
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all model neurons. This average encompassed both predictions
which had response-gain effects (largest effect at the highest con-
trasts) and contrast-gain effects (larger effects at intermediate and
lower contrasts) as well as baseline effects due to the inclusion of
the modifiable baseline component which was meant to replicate
baseline attention effects seen in single-unit studies (Luck et al.,
1997; Reynolds et al., 2000; Williford and Maunsell, 2006). These
three effects of attention summed together caused the response
averaged across all model neurons to show an additive-offset
effect of attention at all contrasts in the contrast-response func-
tion (Figure 4D), as has been observed in imaging experiments
(Buracas and Boynton, 2007; Murray, 2008; Pestilli et al., 2011)
and is evident in averages of single-unit measurements (Williford
and Maunsell, 2006).

DIFFERENT PREDICTIONS FOR WELL-TUNED NEURONS AND
HETEROGENEOUS POPULATIONS DEPENDING ON MODEL
PARAMETERS
Having found that the normalization model of attention could
account for additive-offsets of contrast-response across hetero-
geneous populations, we next examined key parameters of the
model to see how robust this result was to the choice of model
parameters. In particular, we examined two parameters: the ratio
between the size of attention-field and stimulus-drive and the
modifiable baseline response. The ratio of size of attention-field

and stimulus-drive was no longer constrained to the value derived
from the experimental data. Instead we tested the effect of this
parameter over several orders of magnitude. Furthermore, we
explored how the modifiable baseline, the amount of response
added that can be modified by attention across all contrasts,
affected the predicted attentional effect. The modifiable baseline
allows for effects of attention when there is no stimulus, as has
been seen in numerous single-unit (Luck et al., 1997; Reynolds
et al., 2000; Williford and Maunsell, 2006), and functional imag-
ing studies (Kastner et al., 1999; Buracas and Boynton, 2007; Li
et al., 2008; Murray, 2008; Pestilli et al., 2011). The modifiable
baseline is added to the stimulus-drive and could also be modi-
fied by attention. It is specified in units of percent contrast just
like the stimulus-drive.

Simulating activity of well-tuned neurons
We manipulated the above two parameters for a simulation
of a model neuron with receptive field well-matched to the
stimulus. Simulation results matched reports in previous work
(Reynolds and Heeger, 2009) over a wide range of parameters.
With no modifiable baseline (top row of Figure 5A), changing the
ratio between attention-field and stimulus-drive from 0.1 to 10.0
caused the neuron with receptive field aligned to the stimulus to
go from response-gain (left, compare yellow curve with attention
to white curve without attention) to contrast-gain (right).

FIGURE 5 | Attention effect for best-matched neuron (A) and

population average (B) predicted by model in which attention is not

restricted to neurons whose tuning matches the orientation of the

stimulus. Axes represent model parameters: the amount of baseline
response subject to attentional modulation (y-axis) and ratio of size of
attention-field to stimulus-drive (x-axis). The ratio is visualized (bottom,
along the x-axis of A) for cases where the size of stimulus-drive is larger
(left) or smaller (right) than the attention-field size. For each set of
parameters, the contrast-response function with (yellow curve) and

without (white curve) attention was predicted by the model. Also for
each set of parameters, a bar graph showing the degree to which each
of the three attention effects models—contrast-gain (red), response-gain
(green) and additive-offset (blue)—explains the variance in the tuning
related to attention are shown. The model which best explains the
variance is indicated by a single letter inset in the corresponding bar (C,
R, and A for contrast-gain, response-gain and additive-offset, respectively).
For each set of parameters, the attentional effect is also visualized by
the background color (see legend below B).
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We quantified the effect of attention on the model neuron
by fitting Naka-Rushton equations (Equation 2, Materials and
Methods: Normalization model of attention) to the generated
contrast-response functions; attention effect was modeled either
as a contrast-gain change (change in C50, causes left-right shifts),
a response-gain change (change in Rmax) or an additive-offset
(change in Roffset, causes up-down shifts). In Figure 5, inset
histograms show for each of the three attention effects (differ-
ence between yellow and white curves) the variance that could
be accounted for by each parameter alone. This analysis con-
firmed that as the ratio of attention-field to stimulus-drive size
increased, contrast-gain rather than response-gain accounted for
more of the variance. This effect was visualized (Figure 5) by
setting the background color according to the r2 (see figure leg-
end); color gradation shows clear response-gain effect (green, left
side of Figure 5A) switching to contrast-gain (red, right side of
Figure 5A) as the ratio of attention-field to stimulus-drive size
increases.

Adding various levels of modifiable baseline (ordinate,
Figure 5A), predictably increased the attention effect at low con-
trasts to the point that at some baseline levels, effects of attention
were equally large across the whole contrast-response function,
resulting in effects that appear more like additive-offsets rather
than contrast-gain or response-gain like effects. In Figure 5, the
inset capital letters in the bar graphs indicate which of the three
attentional effects accounts for most of the variance (i.e., for con-
ditions where the inset is a letter A, additive-offset accounted
for the most amount of variance). Thus, changing the ratio
of attention-field to stimulus-drive size and modifiable baseline
both resulted in canonical attention effects as has been shown in
the original description of the normalization model of attention
(Reynolds and Heeger, 2009).

Simulating activity of heterogeneous neural populations
To evaluate the model predictions for population-scale measure-
ments, we examined the average simulated activity across a large
neuronal population with heterogeneous tuning. The results of
this simulation on the predicted attentional effects were qual-
itatively very different from those for well-tuned single-units
(Reynolds and Heeger, 2009). Response-gain effects were no
longer found with small ratio of attention-field to stimulus-drive
size (Figure 5B, left side). This was due to model neurons which
were not-perfectly-tuned to the stimulus in the population whose
attention effects are suppressed at high contrasts. These not well-
tuned neurons receive only weak stimulus-drive regardless of the
attentional condition, yet they received more divisive suppression
with attention because their normalization pool included neurons
whose gain had been increased by the attention-drive. Averaged
across the whole population, these neurons which have reduced
activity at high contrasts tend to cancel-out the response-gain of
the well-tuned model neurons, resulting in a population effect
that looked more like contrast-gain than response-gain.

With increased baseline effects (ordinate, Figure 5B), effects of
attention are apparent across all contrast levels, resulting in effects
of attention which were additive-offsets of population contrast-
responses. Therefore, changes in contrast-response with atten-
tion, when averaged across heterogeneous neuronal populations,

differed substantially from predictions for a single, well-tuned
neuron. This can be readily appreciated by noting the overall dif-
ference in background colors in Figures 5A,B. In particular, the
shift from response-gain (green) to contrast-gain (red) for the
well-tuned neuron in Figure 5A is largely lost in the population
averages in Figure 5B which shows predominantly contrast-gain
(red) and additive-offset (blue) effects.

Simulating attention effects when neurons were restricted in both
space and feature tuning
We further explored the prediction of the normalization model
of attention by restricting attentional allocation to specific stimu-
lus features. The population simulation described above assumes
that the effect of attention is restricted in space but not to the ori-
entation of the stimulus (i.e., the well-tuned neuron had receptive
field matched to the stimulus location, not stimulus orientation).
If the allocation of attention was also restricted in the feature
domain, will there still be large differences in the prediction for
the well-tuned single-unit and the population average?

We tested the effect on the well-tuned model neuron and aver-
age of the population of heterogeneously-tuned neurons when
attention was also restricted along the orientation feature. In this
case, the well-tuned model neuron showed response-gain effects
along the whole continuum of attention-field size to stimulus-
drive ratios. This is in contrast to the previous simulation in
which effects ranged from contrast-gain to response-gain effects
(read left-right, Figure 6A compared to Figure 5A). This was due
to the suppressive-drive being effectively weaker when attention
was also restricted in the orientation domain. This caused even
very large ratios of attention-field to stimulus-drive size (even
when ratio was 10) to still not be able to normalize responses
at high contrasts. Thus, predicted attention effects across the
whole set of parameters we tested were generally consistent with
response-gain (note green background, Figure 6A).

Averaged across the population, however, large response-gain
effects were more strongly normalized so that across a large set of
parameters, the attention effect looked either like weak response-
gain or additive-offset (Figure 6B). Particularly for the attention-
field to stimulus-drive size ratio derived from our experimental
data (1.4, 4th column in Figure 6B), attention effects were pre-
dominantly best-accounted for by additive-offsets rather than
response-gain effects. This is in contrast to the response-gain
effect predicted for the model single neuron which was well-tuned
to the stimulus (1.4, 4th column in Figure 6A). By examining
the color of the backgrounds in Figures 6A,B, one can appreciate
the difference in predicted attention effects between well-tuned
single-units (which largely showed response-gain effects, green,
Figure 6A) and the population average (which showed mostly
additive-offset effects, purple/blue, Figure 6B).

DISCUSSION
We have extended the normalization model of attention, which
has previously been used to predict effects of attention on sin-
gle neurons well-tuned for the stimulus (Reynolds and Heeger,
2009), to make predictions for populations of heterogeneously-
tuned neurons. First, we used existing functional imaging data
to obtain realistic estimates of the key variable of the model,
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FIGURE 6 | Attention effect for best-matched neuron (A) and population average (B) predicted by model in which attention effects are restricted to

neurons whose tuning matches the orientation of the stimulus. All conventions are same as Figure 5.

the size of the attention-field relative to the stimulus-drive, in
human visual cortex for a specific task and stimulus condition
(Pestilli et al., 2011; Hara and Gardner, 2012). Second, we used
these estimates to predict the response of populations of neu-
rons whose tunings were not all well-matched to the stimulus
spatial position and features. We found that whereas the single
well-tuned neuron behaved just as described by Reynolds and
Heeger (2009), other neurons in the heterogeneous population
exhibited diverse attention effects. For example, while a single,
well-tuned neuron showed a response-gain effect, neurons which
were not well-tuned to the stimulus showed contrast-gain effects.
Averaging across the entire population of neurons with heteroge-
neous tunings resulted in attention effects which were consistent
with an additive-offset (vertical shift of contrast-response). This
effect has been reported in a variety of functional imaging experi-
ments, where measurement technique implicitly averages activity
across populations of neurons (Buracas and Boynton, 2007; Li
et al., 2008; Murray, 2008; Pestilli et al., 2011), and also is evident
in averages of single-unit measurements (Williford and Maunsell,
2006).

We further explored the critical parameter space of the model,
shifting the ratio of the attention-field to the stimulus-drive
size over two orders of magnitude and adjusting the amount
of baseline response subject to attentional modulation. Across
these model parameter settings, we replicated model simulations
showing the expected response-gain or contrast-gain effects in
the single well-tuned neuron, as has been previously reported.
However, we also found that when responses were averaged across
the population of neurons, effects could appear significantly dif-
ferent from the predictions for well-tuned neurons. This was
true whether we simulated attention as acting across all neurons
regardless of orientation preference (Figure 5) or if we restricted
attention to neurons with orientation-tuning matched to the
stimulus (Figure 6). In general, these simulations show that pre-
dictions for single-units and populations can differ substantially
and suggest that these potential differences must be taken into

account when extrapolating model performance for single-units
to population activity, particularly for models such as the nor-
malization model of attention which were introduced to explain
single-unit responses.

SPATIAL DISTRIBUTION OF ATTENTIONAL SIGNALS IN VISUAL CORTEX
In the task we studied, subjects were not explicitly instructed as
to how spatial attention should be deployed. However, there were
always explicit cues (circles) presented throughout the trial as to
the location where targets would appear so subjects had strong
prior information about how to deploy attention in a spatially
specific way. Moreover, targets were always oriented gratings with
the same orientation so subjects could also potentially improve
performance by restricting their attention within the predictable
features (orientation and spatial frequency) of the stimulus. This
would be a useful strategy assuming costs to deploying attention
(Attwell and Laughlin, 2001; Lennie, 2003); that is, if restricting
attention modulation to the smallest possible number of neurons
representing the stimulus of interest will reduce costs of attention
deployment while maximizing benefits (Pestilli and Carrasco,
2005).

In previous analyses, we have found that behavioral perfor-
mance in a similar attention task can be accounted for by an
efficient-selection mechanism in which the primary purpose of
attentional modulation is to boost signal amplitude for a pooling
computation so that larger responses are weighed more heavily
(Pestilli et al., 2011). In this context, a number of attentional
deployment strategies might be possible. For example, subjects
might try to attend to a spatial region smaller than that of the
stimulus. This might have beneficial effects in that it would
increase the gain of only those neurons that are tuned explicitly
to the stimulus; in the efficient-selection framework, this would
permit the selection of well-tuned neurons for further processing
rather than neurons not-well-tuned to the stimulus. An opposite
strategy would be to attend to a larger area than the stimulus.
This strategy could increase the cost of attentional allocation
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but would benefit the subject by permitting response summa-
tion across neurons tuned to various locations and features. Our
analysis of the functional imaging data provides a way to directly
assess the size of attention-field relative to the stimulus-drive size
and we found a ratio of approximately 1.4.

If the attention-field size is larger than the stimulus-field size,
how might the brain suppress pooling of responses from the
attention-field area which do not correspond to the stimulus? One
characteristic of the spatial modulations across the cortex that we
unexpectedly found was that responses went from positive to neg-
ative as we moved away from the center of the stimulus-response
area. This mirrors so-called negative BOLD responses (Shmuel
et al., 2002) in which very large stimuli result in suppression of
responses outside the immediate stimulus-response area (Shmuel
et al., 2006). Interpreted in the framework of our efficient-
selection model, these negative responses could be another means
to improve the sensory responses by suppressing pooling of
responses not associated with the stimulus. The efficient-selection
model weights responses according to the magnitude of response
so that negative responses would not pass through the efficient-
selection pooling rule. This would allow for better representation
in the read-out of these visual areas, as the negative responses cor-
respond to areas that are only weakly associated with the stimulus,
yet still strongly modulated by attention.

It is possible that under different behavioral conditions, sub-
jects may employ different attentional modulation strategies,
expanding or contracting their attention-fields as needed (Eriksen
and St James, 1986; Brefczynski and DeYoe, 1999; Cavanagh and
Alvarez, 2005). Analyses of response modulation in functional
imaging of cortical activity even suggest that humans can attend
to multiple separate locations (Müller et al., 2003; McMains and
Somers, 2004). With complex attentional modulation strategies,
the effects predicted by the normalization model of attention
could potentially be quite diverse, particularly for the effect on
population-scale activity such as those measured by functional
imaging. Whether response-gain, contrast-gain, or additive-offset
effects dominate attentional modulations would be a complex
function of the amount of attention-field and stimulus-drive that
each neuron receives.

MATCHING STIMULUS TO RECEPTIVE FIELD PROPERTIES
Single-unit experiments often employ an experimental strategy
of matching stimuli to receptive field properties of single-units.
This experimental strategy may have consequences for the inter-
pretation as to how neural responses link to behavior as measured
in such experiments. Whenever a stimulus is presented, many
neurons will respond to that stimulus even if tuning properties
are not particularly well-matched. Therefore, to understand com-
putations that the brain must perform for proper perception,
one needs to measure responses of neurons poorly-tuned to the
stimulus as well as neurons well-tuned to the stimulus.

Our simulation of the normalization model of attention shows
that under realistic ratios of attention-field to stimulus-drive size,
well-tuned neurons can have response-gain effects while other
neurons can show contrast-gain effects. Thus, another possible
way to explain the diversity of experimental results found in the
literature about single-unit changes in contrast-response with

attention is that some of the variability may arise from mis-
matches of the stimulus properties with the tuning properties
of individual neurons. Indeed, in some experiments, a contin-
uum of changes in contrast-response were reported (Williford
and Maunsell, 2006). Importantly, in this report (their Figure 6),
the sum across all neurons shows effects across all contrast levels
(additive-offset) much as we found for the sum across all neu-
rons in our simulations. This is consistent with previous findings
in single-unit physiology of attention which indicate that when
activity is averaged across a sufficiently large and heterogeneous
population of neurons, effect of attention can be seen across many
contrast levels (Reynolds et al., 2000) including at baseline when
no stimulus is present (Luck et al., 1997).

If attention can cause categorically different changes to
response properties when receptive fields are matched or mis-
matched to the stimulus, how does the brain extract neces-
sary information from a population of heterogeneously-tuned
neurons? Optimal read-outs can be obtained by appropriately
weighting neurons according to how much information they are
expected to contain pertaining to the task at hand (Seung and
Sompolinsky, 1993; Purushothaman and Bradley, 2005; Jazayeri
and Movshon, 2007; Scolari and Serences, 2009, 2010; Graf et al.,
2011; Scolari et al., 2012; Verghese et al., 2012). For our model,
this means that predicted attention effects would dictate how neu-
rons are weighted. For contrast discrimination, different neurons
would have to be weighted differently depending on the con-
trast to be discriminated—for a low-contrast stimulus, a neuron
with a contrast-gain effect may be more informative than a neu-
ron with a response-gain effect. Thus, deriving optimal-weighting
for neurons would require advance knowledge of the contrast
of the stimulus as well as the attention effect that the neuron
would undergo—each neuron can undergo either a contrast-gain
or response-gain change depending on experiment conditions.
According to our simulations, the type of change in contrast-
response may be quite difficult to anticipate given the complex
interplay between attention-field and stimulus-drive that a het-
erogeneous population of neurons might encounter.

SUMMARY
To understand how perception and behavior arise from the
action of large populations of neurons, theoretical models for
single-units need to be extended to encompass computational
principles governing large populations. Indeed, models of popu-
lation dynamics (Mante et al., 2013) or how information might be
decoded from populations (Rigotti et al., 2013) offer explanation
for diverse tuning properties of prefrontal neurons. In some con-
ditions, population activity and behavioral read-outs may sim-
ply mimic the activity expected from single well-tuned neurons
(Herrmann et al., 2010; Itthipuripat et al., 2014). However, our
exploration of the normalization model of attention has revealed
that, over a wide-range of model parameters, predictions for mea-
sures of neural activity summed across many neurons may differ
substantially from those of single well-tuned neurons. Therefore,
differences in predictions for population responses compared to
well-tuned single-units need to be carefully accounted for when
linking population activity to behavioral data through computa-
tional models.
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