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The decision making behaviors of humans and animals adapt and then satisfy an “operant
matching law” in certain type of tasks. This was first pointed out by Herrnstein in his
foraging experiments on pigeons. The matching law has been one landmark for elucidating
the underlying processes of decision making and its learning in the brain. An interesting
question is whether decisions are made deterministically or probabilistically. Conventional
learning models of the matching law are based on the latter idea; they assume that
subjects learn choice probabilities of respective alternatives and decide stochastically with
the probabilities. However, it is unknown whether the matching law can be accounted
for by a deterministic strategy or not. To answer this question, we propose several
deterministic Bayesian decision making models that have certain incorrect beliefs about an
environment. We claim that a simple model produces behavior satisfying the matching law
in static settings of a foraging task but not in dynamic settings. We found that the model
that has a belief that the environment is volatile works well in the dynamic foraging task
and exhibits undermatching, which is a slight deviation from the matching law observed in
many experiments. This model also demonstrates the double-exponential reward history
dependency of a choice and a heavier-tailed run-length distribution, as has recently been
reported in experiments on monkeys.

Keywords: decision making, operant matching law, Bayesian inference, dynamic foraging task, heavy-tailed
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1. INTRODUCTION
Does the brain play dice? This is a controversial question about
the underlying processes of the brain in making a choice from
several alternatives: Does the brain decide deterministically with
some internal decision variables? Or does it calculate the proba-
bility of choosing individual alternatives and cast a “biased die”
(Sugrue et al., 2005)? The former strategy is suggested accord-
ing to our everyday experience. However, it is possible to think
that choices emerge probabilistically by observing a sequence
of decisions in a repetitive task. Herrnstein conducted a forag-
ing experiment where a pigeon was placed into a box that was
equipped with two keys and when a key was pressed it was
rewarded with concurrent variable-interval schedules. He found a
relationship between rewards and choices known as the “operant
matching law” (Herrnstein, 1961). The law states that the frac-
tion of the number of times one alternative is chosen against the
total number of choices matches the fraction of the cumulative
reward obtained from the alternative against the total reward.
Behaviors satisfying the law have been observed in a variety of
task paradigms and across species (de Villiers and Herrnstein,
1976; Gallistel, 1994; Anderson et al., 2002). Several learning
models have been proposed to account for matching behavior

(Corrado et al., 2005; Lau and Glimcher, 2005; Loewenstein and
Seung, 2006; Soltani and Wang, 2006; Sakai and Fukai, 2008a;
Simen and Cohen, 2009). These models have a commonality in
that a model learns the probabilities of choosing each alternative
directly, and then a choice is made stochastically. However, it is
yet unknown whether matching behaviors can be accounted for
by a deterministic model.

Here, we propose deterministic Bayesian decision making
models for a two-alternative choice task. Our models stand on the
incorrect but conceivable postulate that animals have a belief that
the choice made in one trial does not affect a reward in subsequent
trials. The models estimate the unknown reward probabilities
for each alternative and deterministically choose the alternative
that has the highest reward probability according to the winner-
take-all principle. We first study a model with belief that the
environment does not change. Note that this is an extension of
the fixed belief model (FBM) (Yu and Cohen, 2009) for the two-
alternative choice task. We demonstrate that this model satisfies
the matching law in a steady state in static foraging tasks, in
which reward baiting probabilities are fixed, but not in dynamic
foraging tasks, in which the reward baiting probabilities change
abruptly. Then, we devise two models that forget past experience
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and exhibit matching behaviors even in dynamic tasks. Moreover,
these models can explain undermatching, which is a phenomenon
observed across different species (Baum, 1974; de Villiers and
Herrnstein, 1976; Baum, 1979; Gallistel, 1994; Anderson et al.,
2002; Sugrue et al., 2004; Lau and Glimcher, 2005). We test
these models by comparing their predicted reward history depen-
dencies and run-length distributions to those seen in a monkey
experiment.

2. RESULTS
We studied deterministic Bayesian decision making models that
demonstrated matching behaviors in a foraging task. The for-
aging task is a decision making task that simulates a foraging
environment where an animal chooses one out of several forag-
ing alternatives. There are two alternatives in this study although
our results do not depend on this. We employed discrete trial-to-
trial tasks that have often been used in recent experiments (Sugrue
et al., 2004; Corrado et al., 2005; Lau and Glimcher, 2005). Each
alternative has binary baiting state fi (i ∈ {1, 2} is the index of an
alternative), where fi = 1 if a reward is baited and fi = 0 other-
wise. If fi = 0, a reward is baited (fi = 1) at the beginning of each
trial by baiting probability λt

i , where t represents the number of
the trial. If the baiting probabilities are fixed across trials, the task
is called a static foraging task, otherwise it is called a dynamic for-
aging task (Sugrue et al., 2004). Suppose that rt

i indicates whether
a subject receives a reward (rt

i = 1) or not (rt
i = 0), and ct

i indi-
cates whether the subject chooses alternative i (ct

i = 1) or not
(ct

i = 0) in trial t. When the subject chooses a baited alternative,
i.e., fi = 1 and ct

i = 1, the baited reward is consumed (fi ← 0).
This reward schedule is known as a “concurrent variable-interval
schedule”(Baum and Rachlin, 1969).

Whichever alternative the subject chooses in the foraging task,
the choice can affect the reward probabilities of alternatives in
the future. Therefore, the optimal strategy is not to exclusively
choose the foraging alternative that has the highest baiting prob-
ability. A behavioral strategy obeying the matching law is known
to be nearly optimal for this task (Baum, 1981). Formally, the law
states that

R̄t
i∑

j R̄t
j

= C̄t
i∑

j C̄t
j

, (1)

where R̄t
i and C̄t

i correspond to the total reward obtained from
alternative i and the number of choices of alternative i until
trial t. It is known that human and animal behaviors in these
kinds of tasks are well described by the generalized matching law
(Baum, 1974)

log(R̄t
1/R̄t

2) = s log(C̄t
1/C̄t

2)+ log k, (2)

where s is sensitivity and k is bias. Equation (2) is equivalent to
(1) if both s and k are unities.

2.1. SIMPLE BERNOULLI ESTIMATORS
First, we studied a simple normative Bayesian decision making
model to clarify the underlying feasible computation for match-
ing behaviors. Suppose that a subject makes a decision simply

depending on its estimates of the reward probabilities for the
alternatives. The estimate can be formally described as

Pt+ 1
i = p(rt+ 1

i = 1|Rt, Ct), (3)

where Rt is a list of reward vectors rt = (rt
1, rt

2) from trials 1 to t
and Ct is a list of choice vectors ct = (ct

1, ct
2) from trials 1 to t. The

model employs a winner-take-all (WTA) strategy, i.e., it chooses
the alternative that has the highest Pt

i . The model requires an
assumption about a reward assignment mechanism to estimate
Pt+1

i . One simple and conceivable assumption is that a choice is
rewarded according to hidden reward probability μt

i that is irrel-
evant to the past reward and choice history, i.e., p(rt

i = 1) = μt
i .

This assumption is incorrect for our tasks but we have assumed
that the model employs it and predicts μt

i by Bayesian inference.

Hence, Pt+1
i is given by the predictive distribution over μt

i :

Pt+ 1
i =

∫ 1

0
dμμ p(μt+1

i = μ|Rt, Ct). (4)

Note that p(μt+ 1
i = μ|Rt, Ct) can include a model’s belief about

the change of μt
i in between trials. Our first model assumes

that μt
i is time invariant, i.e., p(μt+ 1

i = μ|Rt, Ct) = p(μt
i =

μ|Rt, Ct). The posterior distribution for an alternative is not
updated if the alternative is not chosen. If it is chosen, the
posterior distribution is updated

p(μt
i = μ|Rt, Ct) ∝ p(rt

i |μt
i = μ)p(μt− 1

i = μ|Rt− 1, Ct− 1)

= μrt
i (1− μ)1−rt

i p(μt− 1
i = μ|Rt− 1, Ct− 1).

(5)

We employ the Beta prior, p(μ0
i = μ) = Beta(μ|a, b), which is

a conjugate for the likelihood. Note that we set the hyper-
parameters, a = b = 1, to make the prior non-informative in all
simulations. Therefore, the posterior becomes a Beta distribution:

p(μi = μ|R̄t
i , C̄t

i ) = Beta(μ|R̄t
i + a, C̄t

i − R̄t
i + b). (6)

From Equations (4) and (6), we obtain

Pt+ 1
i = R̄t

i + a

C̄t
i + a+ b

. (7)

This model is a natural extension of FBM (Yu and Cohen, 2009)
to the two-alternative choice task (for this reason, we will refer to
our model as FBM). An alternative is repeatedly chosen while its
predictive distribution is higher than those of the other due to the
WTA strategy. Because the empirical probability of reward for an
alternative converges to its baiting probability in repeated choices,
Pt

i gradually approaches to λi and the variance of Pt
i decreases. As

a result, FBM tends to choose exclusively the high payoff alter-
native after a large number of observations. Hence, the matching
law [Equation (1)] is satisfied in t →∞ because such a exclusive
choice unboundedly increases both R̄t

i and C̄t
i of the high payoff

alternative.
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We simulated FBM in static and dynamic foraging tasks. The
time course for the predictive distributions is shown in Figure 1A.
As can be expected, both predictive distributions approach the
respective baiting probabilities and FBM behavior converges to
exclusive choice of the high payoff alternative in static foraging
tasks. However, the steady-state choice behavior of animals in
static concurrent VI schedules has not been thought to be exclu-
sive (Baum, 1982; Davison and McCarthy, 1988; Baum et al.,
1999). It might be that there are not enough trials for choice
behavior to actually reach a steady state. Figures 1B,C plot the
log ratios of rewards and choices in both tasks. The marginal
histograms indicate the FBM’s strong preference for the alterna-
tive that has the highest baiting probability, because most pairs of
log ratios lie near the endpoints of the matching line. We found
that bias is nearly zero and sensitivity is nearly one in the static
foraging tasks (Figure 1B) by least-square fitting the generalized
matching law [Equation (2)] to the data. Therefore, the model
exhibits matching behavior in the static foraging tasks. However,
the model no longer exhibits matching behavior in dynamic for-
aging tasks, a result that is inconsistent with the behavior of
monkeys (Corrado et al., 2005) (Figure 1C). This can be because
the model adheres to past experience and cannot adapt rapidly to
changes in the environment.

2.2. EXTENDED BERNOULLI ESTIMATORS
One possible way of improving the model to enable it to rapidly
adapt to changes in the environment is to introduce a forgetting

FIGURE 1 | Simulation results for FBM. (A) Time course of predictive
distributions for alternatives #1 (red solid line) and #2 (blue solid line) in
static foraging task. Dashed lines indicate baiting probabilities of
alternatives #1 (dark red) and #2 (dark blue). Upper and lower dots
respectively represent choices for alternatives #1 and #2 in that trial and
colored dots (red or blue) represent that the model received a reward at
that trials. (B) Reward log ratios as a function of count log ratios in static
and (C) dynamic foraging tasks. Blue symbols represent pairs of log ratios
calculated in block where baiting probabilities are fixed and distributions of
dots are represented by marginal histograms. Red line indicates best-fitted
line to points and inner text shows its slope, i.e., sensitivity parameter of
generalized matching law. Dashed line is identity line.

mechanism for past rewards and choice history. We therefore
assume a simple extended model, which utilizes only the L most
recent rewards and choices for the estimates. Hence, the predictive
distribution becomes

Pt+ 1
i = (

∑L− 1
l= 0 rt− l

i )+ a

(
∑L− 1

l= 0 ct− l
i )+ a+ b

. (8)

We refer to this model as windowed FBM (WFBM).
Another possibility may be derived from the idea that humans

and animals may innately believe their environment is volatile.
Here, we propose a model that estimates time-varying reward
probabilities. Although there are several ways to model a belief
of a volatile environment, we assume our model believes that μt

i
remains unchanged with probability α, or else (with probability
1− α) changes completely. This idea is derived from the dynamic
belief model (DBM), proposed by Yu and Cohen as a model of
sequential effect (Yu and Cohen, 2009). Our model is a natu-
ral extension of DBM to a two-alternative choice task. Thus, we
refer to our model as DBM. The transition of μt

i is modeled as a
mixture of the posterior and prior distributions

p(μt+ 1
i = μ|Rt, Ct) = αp(μt

i = μ|Rt, Ct)

+ (1− α)Beta(μ|a, b), (9)

where 0 ≤ α ≤ 1 represents the model’s expectations of the sta-
bility of the environment. However, the posterior distribution is
no longer a Beta distribution:

p(μt
i = μ|Rt, Ct)

= p(μt
i = μ|rt

i , ct
i = 1, Rt− 1, Ct− 1)ct

i p(μt
i = μ|Rt− 1, Ct− 1)1−ct

i

=
[(

p(rt
i = 1|μt

i = μ)

p(rt
i = 1|Rt− 1, Ct− 1)

)rt
i
(

p(rt
i = 0|μt

i = μ)

p(rt
i = 0|Rt− 1, Ct− 1)

)1−rt
i
]ct

i

p(μt
i = μ|Rt− 1, Ct− 1)

=
[(

μ

Pt
i

)rt
i
(

1− μ

1− Pt
i

)1−rt
i

]ct
i

p(μt
i = μ|Rt− 1, Ct− 1), (10)

where we use Equation (3). Then, predictive distribution Pt
i is cal-

culated with Equations (4), (10), and (11). Note that these models
are equivalent to FBM when L→∞ and α = 1.

Figure 2 has the time courses for the predictive distributions of
WFBM and DBM, and the posterior distributions of DBM in the
dynamic foraging task. Neither model is stuck on one alternative
and can follow the changes in schedules as expected. There is a
clear difference in the predictive distribution trajectories. Because
WFBM exploits recent samples, its predictive distribution for
the unchosen alternative can approach the true baiting probabil-
ity. DBM’s predictive distribution for the unchosen alternative,
on the other hand, is only retracted to the mean of the prior,
i.e., 0.5. Both models demonstrate matching behaviors even in
the dynamic foraging task (Figure 3). More precisely, the behav-
iors slightly deviate from the matching law toward an unbiased
choice. This phenomenon is known as undermatching (Baum,
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FIGURE 2 | Simulation results for WFBM and DBM in dynamic foraging

task. Simulation parameters were set to L = 60 and α = 0.99. (A) Time
course of predictive distributions of WFBM and (B) DBM. Details in figure
are described in caption of Figure 1A. (C) Time course of posterior
distributions of DBM for reward probabilities of alternative #1 (top) and #2
(bottom). Brown dashed lines are baiting probabilities for respective
alternatives.

1979). Because the models’ parameters L and α control the effect
of past experience, the degree of undermatching is controlled by
the parameters. The sensitivities that were fitted in the experi-
ments were in a range of about 0.44 to 0.91 (Hinson and Staddon,
1983; Corrado et al., 2005; Lau and Glimcher, 2005). Hence, we
basically focused on parameter regions 10 ≤ L and 0.9 ≤ α.

The dependence of choices on reward history has been studied
in several monkey experiments. An exponential shaped depen-
dency was first reported (Sugrue et al., 2004) and then heavier-
tailed dependencies were reported (Corrado et al., 2005; Lau and
Glimcher, 2005). We tested our models by calculating the depen-
dence of choices on reward history (Figure 4A). Suppose that
dependency is expressed with a linear filter kernel κ(i) as in previ-
ous studies. The kernel is calculated by minimizing the following
Wiener-Hopf equation,

1

2

∑
t

[
(ct

1 − ct
2)−

K∑
i= 1

κ(i)(rt− i
1 − rt− i

2 )

]2

. (11)

Then, we fit the exponential filter and double-exponential filter
that were introduced by Corrado et al. (2005) to the normalized
kernel:

FIGURE 3 | Analytical results for matching behavior of WFBM and

DBM in dynamic foraging tasks. (A,B) Reward log ratios as a function of
count log ratios. Details in figure are described in caption of Figures 1B,C.
Simulation parameters were set to L = 40 and α = 0.99. (C,D)Sensitivity as
a function of parameters of WFBM and DBM.

ε1(i) = exp(−i/τ0)∑K
k= 1 exp(−k/τ0)

,

ε2(i) = ρ
exp(−i/τ1)∑K

k= 1 exp(−k/τ1)
+ (1− ρ)

exp(− i/τ2)∑K
k= 1 exp(−k/τ2)

, (12)

where τ0 and τ1 ≤ τ2 are time constants and 0 < ρ < 1 is the
combining rate. Note that ε2 is identical to ε1 when τ1 = τ2.
The double-exponential filter is rather more well-fitted than
the single one for WFBM and DBM (likelihood ratio test,
p� 0.001; adjusted r2 for double and single exponential fil-
ters are 0.99 and 0.98 for WFBM, and 0.94 and 0.85 for
DBM). The kernel for WFBM has a negative value around L
but it disappears if L is much longer than K. The kernel for
DBM drops sharply and decays slowly. The sharp drop proba-
bly arose from the exponential decay of reward history, which
is embedded in the posterior distributions [Equation (10)].
Because a decision is made due to the difference in two pre-
dictive distributions and both distributions decay at the same
rate, the effect of one predictive distribution would have per-
sisted slightly longer and hence the kernel included a longer
exponential component. This characteristic is qualitatively con-
sistent with the experimental results Corrado et al. (2005).
The fitting parameters for the two monkeys in Corrado et al.
(2005) were ρ = 0.4, τ1 = 2.2, and τ2 = 17.0 (monkey F),
and ρ = 0.25, τ1 = 0.9, and τ2 = 12.6 (monkey G). Although
there were no suitable WFBM and DBM parameters that
exactly matched their fitting parameters to those of the mon-
keys, similar values were obtained for smaller L and larger α

(Figure 4B).
It is known that the probability of switching alternatives is

nearly constant against the number of consecutive choices for one
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FIGURE 4 | Results of Wiener-Hopf analysis for WFBM and DBM in

dynamic foraging task. (A) Symbols represent normalized Wiener-Hopf
kernel and red line represents best fitted double-exponential filter.
Double-exponential filters are better fitted to data than single-exponential
filter (likelihood ratio test, p� 0.001). Insets show time constants for each
exponential component and their combining rate. Simulation parameters
were set to L = 60 and α = 0.99. (B) Fitted parameters of
double-exponential filter ρ, τ1, and τ2 to simulation data of WFBM (left
column) and DBM (right column). Abscissas represent parameters of
WFBM or DBM.

alternative (run length) in the concurrent VI schedule (Heyman
and Luce, 1979). Hence, run lengths are distributed exponentially
but, in a dynamic foraging task, the distribution seems to be a
mixture of exponentials (Corrado et al., 2005). The distribution
of WFBM does not monotonically decrease and there is a peak
where the run length is nearly equal to L. Therefore, the distri-
bution is neither an exponential nor a mixture of exponentials.
This nature is consistent on different values of L. However, DBM
demonstrates an exponential like distribution. We fitted single
and double exponential functions,

φ1(l) = ν0 exp(−ν0(l− 1)),

φ2(l) = γν1 exp(−ν1(l− 1))

+ (1− γ)ν2 exp(−ν2(l− 1)), (13)

to the distribution, where l ≥ 1 is the run length, ν0 and ν1 < ν2

are the rate parameters and γ is the combining rate. The distribu-
tion is well-fitted by the double exponential function (Figure 5B;
likelihood ratio test, p� 0.001; r2 for the double and single
exponential functions are 0.99 for the former and 0.96 for the

FIGURE 5 | Run-length distributions of windowed FBM and DBM in

dynamic foraging task. Simulation parameters were set to L = 60 and
α = 0.99. (A,B) Bars represent densities of run length for alternative #1.
Single (green line) and double-exponential (red line) functions fitted to
run-length distributions of DBM. Double-exponential function is fitted better
than single one (likelihood ratio test, p� 0.001). (C) Log probability density
of run-length distribution of DBM (black line) and linear-nonlinear Poisson
models (red and green lines) that are fitted to monkeys’ experimental data
in Corrado et al. (2005). (D) Fitted parameters of double-exponential
function with different values of α. Left ordinate indicates value of rate
parameters ν1 (green line) and ν2 (blue line), and right indicates value of
combining rate γ (red line).

latter). The run-length distribution in monkey experiments has
few frequencies of a very short run length; however our models
have the largest frequency at the run length of 1 (Figures 5A,B).
This difference can be due to the absence of change-over-delay
(COD) in our schedule. If our model had and exploited prior
knowledge about COD as well as the proposed model for the
previous experiment (Corrado et al., 2005), the frequency at a
run length of 1 could disappear. We simulated linear-nonlinear-
Poisson (LNP) models that were fitted to the monkeys’ experi-
mental data in Corrado et al. (2005) and compared run-length
distributions (Figure 5C). Note that COD was not considered for
the LNP models that was different from Corrado et al.’s approach
Corrado et al. (2005). Because the absence of COD could affect
the occurrence of short run lengths, log probability densities
were compared to count differences at long run lengths. The cal-
culated mean squared differences of DBM against LNP models
for two monkeys corresponded to ∼0.67 and 0.16. The double-
exponential function is better than the single one in different α

and the fitted parameters are slightly affected by α (Figure 5D).

2.2.1. Harvesting performance
Figure 6A compares the harvesting performance of the models,
which is normalized by the performance of a near-optimal prob-
abilistic decision making model. The near-optimal model knows
the details of the schedules, i.e., both the baiting probabilities
and the change points. It distributes its choices according to the
choice probabilities that on average maximize the total reward
(Sakai and Fukai, 2008a). Due to such given knowledge, none of
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the other models can exceed the performance of the near-optimal
model. We carried out paired t-tests between the models, in which
the means of total reward for an identical schedule were paired.
The FBM and WFBM (L = 60) are more inferior than the ran-
dom choice model that chooses by tossing an unbiased coin. The
DBM (α = 0.99) outperforms FBM, WFBM, and LNP models
(p� 0.001) but the differences from the LNP models are very
small. Harvesting performance is less when a model memorizes a
more distant past (Figure 6B).

3. DISCUSSION
We demonstrated that deterministic Bayesian decision making
models can account for the matching law. We confirmed that a
simple Bernoulli estimator with a deterministic decision policy
demonstrated matching behavior in a static foraging task. We also
studied an extended model that includes a belief about a chang-
ing environment. The belief effectively works to wipe out the past
experience of the model and hence the model can capture three
characteristics of behaviors observed in the experiments. First,
our model accounts for undermatching, which is a well-known
phenomenon in which choices deviate slightly from the matching
law (Baum, 1974, 1979; Sugrue et al., 2004). Several studies have
addressed possible causes of undermatching, i.e., limitations in
the learning rule (Soltani and Wang, 2006), mistuning of param-
eters (Loewenstein, 2008), and diffusion of synaptic weights
(Katahira et al., 2012). This study suggested the cause from a com-
putational perspective, i.e., undermatching was the consequence
of a belief in environmental volatility. Second, our model exhibits

FIGURE 6 | Normalized harvesting performance of each model. (A)

Average normalized total rewards earned by each model divided by average
total rewards of near-optimal model. Near-optimal model uses strategy that
maximizes average total rewards proposed by Sakai and Fukai (2008a) with
previous knowledge on details of schedule. Error bars indicate standard
deviations around mean. Simulation parameters were set to L = 60 and
α = 0.99. (B) Harvesting performance of WFBM and DBM as a function of
their parameters. ∗∗∗p� 0.001.

double-exponential shaped reward history dependency. This is
consistent with recent monkey experiments (Corrado et al., 2005;
Lau and Glimcher, 2005). Third, the run-length distribution of
our model is better fitted by a double-exponential function than
a single exponential function. This is also consistent with the
previous study (Corrado et al., 2005) although our task did not
include changeover delay, which can strongly affect the frequency
of shorter run lengths. Quantitatively validating our model such
as checking its goodness of fit to raw experimental data would be
worthwhile.

The previous models implicitly or explicitly use the strategy of
probabilistic choice selection and they learn the choice probability
of respective alternatives that satisfy the matching law (Corrado
et al., 2005; Lau and Glimcher, 2005; Loewenstein and Seung,
2006; Soltani and Wang, 2006; Sakai and Fukai, 2008a; Simen and
Cohen, 2009). Such probabilistic models use a scaling parameter
that maps internal decision variables to appropriate choice prob-
abilities and the parameter generally requires fine-tuning (Soltani
and Wang, 2006; Fusi et al., 2007). In contrast, as our models
act deterministically according to decision variables, no tuning is
required for a parameter at the decision stage.

We argued that matching behavior can be explained by a deter-
ministic choice strategy at the computational level. Loewenstein
and Seung (2006) proposed biologically inspired synaptic learn-
ing rules for neural networks at the neural implementation level.
They proved that neural networks developed by covariance-based
learning with the assumption of a low learning rate demonstrated
matching behaviors. However, this assumption causes the choice
to be affected by relatively distant past rewards and the kernel
for reward history dependency consequently flattens. A more
microscopic spiking neural network model, in which double-
exponential dependency in foraging tasks is demonstrated, has
been proposed (Soltani and Wang, 2006). However, there is a
huge gap between the computational principles of our determin-
istic macroscopic models and their stochastic microscopic model.
This gap can be filled by using a method of reducing spiking neu-
ron models to the diffusion equation (Roxin and Ledberg, 2008).
There have been some other neural network models that can show
heavy-tailed dependency of choices on past experience. A reser-
voir network (Jaeger et al., 2007), which can reproduce neural
activity in the monkey prefrontal cortex, preserves the memory
trace of a reward with one or two time constants (Bernacchia
et al., 2011). The composite learning system of faster and slower
components is flexible to abrupt changes in the environment
(Fusi et al., 2007). These models could be a possible neural
implementation for our model. Furthermore, our models are
an extension of that by Yu & Cohen who argued that decision
variables of their model can be approximated by a linear expo-
nential filter, and that there are neural implementations for that
operation (Yu and Cohen, 2009).

Because matching behavior often deviates from optimal
behavior in the sense of total reward maximization (Vaughan,
1981), it is not likely to be a consequence of optimization.
However, our model acts optimally in terms of Bayesian decision
making with an incorrect assumption about the environment,
indicating that matching behavior is a bounded optimal behavior.
This idea is consistent with the theory of Sakai and Fukai (2008b)
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who found any learning method neglecting the effect of a choice
on future rewards displays matching behavior if choice proba-
bilities are differentiable with respect to parameters (Sakai and
Fukai, 2008b). Note that the choice probabilities of our model are
not differentiable. Hence, we confirmed that their theory could be
correct in such extreme cases.

4. MATERIALS AND METHODS
4.1. DETAILS OF SIMULATION
The reward schedule is analogous to the experiment by Corrado
et al. (2005). We randomly set the baiting probabilities that sat-
isfied λ1 + λ2 = 0.3 and their ratios were 1:8, 1:6, 1:3, 1:2, 1:1,
2:1, 3:1, 6:1, and 8:1 in a static setting. There were 10, 000 trials
in the simulations. The baiting schedule in the dynamic setting
was divided into blocks, in which the baiting probabilities were
fixed, and their sum and ratios were the same as those in the static
setting. The block length was uniformly sampled from [50, 300]
and there were 300 blocks in the simulations. We did not include
change-over-delay (COD), i.e., the cost to switch from one alter-
native to another, which was different from Corrado et al. (2005).
The hyper-parameters were set to a = 1 and b = 1 in all the
simulations.
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