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Recent results of imaging technologies and non-linear dynamics make possible to
relate the structure and dynamics of functional brain networks to different mental
tasks and to build theoretical models for the description and prediction of cognitive
activity. Such models are non-linear dynamical descriptions of the interaction of the core
components—brain modes—participating in a specific mental function. The dynamical
images of different mental processes depend on their temporal features. The dynamics of
many cognitive functions are transient. They are often observed as a chain of sequentially
changing metastable states. A stable heteroclinic channel (SHC) consisting of a chain
of saddles—metastable states—connected by unstable separatrices is a mathematical
image for robust transients. In this paper we focus on hierarchical chunking dynamics
that can represent several forms of transient cognitive activity. Chunking is a dynamical
phenomenon that nature uses to perform information processing of long sequences by
dividing them in shorter information items. Chunking, for example, makes more efficient
the use of short-term memory by breaking up long strings of information (like in language
where one can see the separation of a novel on chapters, paragraphs, sentences, and
finally words). Chunking is important in many processes of perception, learning, and
cognition in humans and animals. Based on anatomical information about the hierarchical
organization of functional brain networks, we propose a cognitive network architecture
that hierarchically chunks and super-chunks switching sequences of metastable states
produced by winnerless competitive heteroclinic dynamics.
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INTRODUCTION
Chunking is a dynamical phenomenon that the brain uses for pro-
cessing long informational sequences. The concept of chunk was
introduced by Miller (1956). His key notion is that short-term
storage is not rigid but amenable to strategies such as chunk-
ing that can expand its capacity. Miller’s work drew plenty of
attention to the concept of short-term memory and its functional
characteristics. Chunking involves two processes: concatenation
of units in a block and segmentation of the blocks. In general,
chunking is related to the hierarchical organization of perceptual,
cognitive, or behavioral sequential activity. In particular, in motor
control (see Rosenbaum et al., 1983) sequences can consist of sub-
sequences and these can in turn consist of sub-sub-sequences, etc.
The natural hierarchical organization of long sequences is a result
of the activity of specific brain functional networks. Such net-
works include many different brain areas and some of them are
also organized in a hierarchical manner. A well-known example
is Broca’s area that has been suggested to act as a “supramodal
syntactic processor,” able to process any type of hierarchically
organized sequences (Grossman, 1980; Tettamanti and Weniger,
2006), a hypothesis based on the findings that this region is not
only involved in processing language syntax (Musso et al., 2003),
but also in syntax like aspects of non-linguistic tasks, for exam-
ple, the performance of specific movements and music (Fadiga

et al., 2009) as several fMRI studies (Bahlmann et al., 2008, 2009)
seem to confirm. Clerget et al. hypothesize that motor behav-
ior shares some similarities with language (Clerget et al., 2013),
namely that a complex action can be viewed as a chain of subordi-
nate movements, which need to be combined according to certain
rules in order to reach a given goal (Dehaene and Changeux, 1997;
Dominey et al., 2003; Botvinick, 2008).

What are the mechanisms that transform the extremely com-
plex, noisy, and many-dimensional brain activity into a rather
regular, low-dimensional, and even predictable cognitive behav-
ior, e.g., what are the mechanisms underlying the dynamics of the
mind, including chunking? This is one of the most challenging
questions in today’s neuro- and cognitive science. Recent con-
tinuous advances in non-invasive brain imaging allow assessing
the structural connectivity of the brain and the corresponding
evolution of the spatio-temporal activity in detail.

In our view, metastability is a key element of transient cog-
nitive dynamics participating in chunking processes. The idea
of the spatiotemporal organization of brain dynamic activity
through transient, metastable states emerged more than 15 years
ago (Kelso, 1995; Friston, 1997). According to this scenario, such
dynamics can be represented as a sequential switching between
different metastable states (for a description of the mathematical
basis of this scenario see Rabinovich et al., 2008a,b). Metastable
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transient dynamics represent a balance between the segregation
of focused cognitive processing and the flexible integration of
distributed brain areas. Such integration is necessary for the per-
formance of a specific cognitive function (Bressler and Kelso,
2001; Meehan and Bressler, 2012). The existence of connec-
tions that are prevalent over long periods of time supports the
well-regarded concept of a hierarchical organization of neural
processing (Engel et al., 2001), which is the basis for the under-
standing of the origin of the chunking dynamics. Because the
dimensionality of cognition depends on the number of activated
(in contrast to the potentially observable) metastable states, it
is important to remember that the brain chooses the necessary
metastable states and suppresses those which are irrelevant to the
goal of the cognitive process, resulting in a reduced dimensional-
ity. The low-dimensionality of brain cognitive dynamics is based
on two important issues: first, the manner of the cognitive task
encoding—an external or internal stimulus determining a spe-
cific cognitive task excites a set of elements of the community
networks which are responsible for the performance of such cog-
nitive activities; and second, the existence of a specific hierarchical
organization of the global brain networks that operate for the per-
formance of a specific cognitive task by a moderate number of
brain modes.

Based on experimental data suggesting that the processing of
sequential cognitive activity on computational grounds is imple-
mented in the brain by spatiotemporally pattern dynamics (see
also Sahin et al., 2009), we build here a general dynamical model
that produces hierarchical chunking of sequences, which sug-
gests a plausible neural mechanism of chunking dynamics in the
brain. This model is reasonably low-dimensional, which allows a
detailed dynamical analysis.

MATERIALS AND METHODS
A top-down approach to model transient cognitive dynamics tak-
ing into account the experimental observations described in the
introduction is to use kinetic equations for the description of spa-
tiotemporal mental modes that contain the discussed metastable
states as equilibrium points. The set of brain patterns that sequen-
tially change in the process of the cognitive task performance
determine the spatial structure of the modes and the associated
connection matrix among them. Using such type of models we
can integrate our knowledge about the description of brain activ-
ity based on these new ideas related to heteroclinic sequences and
their interactions, i.e., heteroclinic networks.

As a top-down departing point, we need a mathematical object
that can describe robust transient dynamics and their associated
information processing. Once we have this object, we can imple-
ment it through a set of canonic equations that can be used to
study transient activity at different brain description levels, and in
particular to address chunking dynamics. A mathematical image
of robust transient sequential dynamics must have two principal
features. First, it must be resistant to noise and reliable even in
the context of small variations in initial conditions, so that the
succession of states visited by the system (its trajectory, or tran-
sient) is stable. Second, the transients must be input-specific to
contain information about what caused them. These are two fun-
damental contradictions regarding the use of transient dynamics

for the description of brain activity. Transient dynamics are inher-
ently unstable: any transient depends on initial conditions and
cannot be reproduced from arbitrary initial conditions. On the
other hand, dynamical robustness in principle prevents sensitivity
to informative perturbations. These contradictions can be solved
through the concept of metastability, which was introduced to
cognitive science at the end of the last century (Kelso, 1995;
Friston, 1997, 2000; Fingelkurts and Fingelkurts, 2006; Oullier
and Kelso, 2006; Gros, 2007; Ito et al., 2007).

A stable heteroclinic channel (SHC) is a mathematical object
that meets the above discussed requirements, which can imple-
ment such stable transients. A SHC is defined by a sequence
of successive metastable “saddle” states that are connected by
separatrices. Under proper conditions, all the trajectories in the
neighborhood of these saddle metastable states that form the
chain remain in the channel, ensuring robustness and repro-
ducibility over a wide range of control parameters (Rabinovich
et al., 2008b). The stability of a channel means that trajectories in
the channel do not leave it until the end of the channel is reached.

A simple model to implement SHCs is a generalized Lotka–
Volterra equation with N interactive elements:

dAi(t)

dt
= Ai(t)F

⎛
⎝σi (Sk) −

N∑
j = 1

ρijAi(t)

⎞
⎠+ Ai(t)ηi(t)

i = 1, . . . , N (1)

where Ai(t) ≥ 0 is the activity rate of element i, σi is the gain
function that controls the impact of the stimulus, Sk is an envi-
ronmental stimulus, ρij determines the interaction between the
variables, ηi represents the noise level, and F is a function, in
the simplest case a linear function. The state portrait of the sys-
tem often contains a heteroclinic sequence linking saddle points.
These saddles can be interpreted as successive and temporary
winners in a never-ending competitive game, i.e., winnerless com-
petition (WLC) dynamics (Rabinovich et al., 2001, 2006). In
neural systems, because a representative model must produce
sequences of connected neuronal population states (the saddle
points), the neural connectivity ρij must be asymmetric, as deter-
mined by the theoretical examination of this model (Huerta and
Rabinovich, 2004). Although many connection statistics probably
work for stable heteroclinic-type dynamics, it is likely that con-
nectivity within biological networks is, to some extent at least, the
result of optimization by evolution and synaptic plasticity. It is
important to emphasize that Equation (1) is just an elementary
building block for different levels of the chunking hierarchy that
we will describe below.

Models like the generalized Lotka–Volterra equations allow
establishing the conditions necessary for transient stability, and
display stable, sequential, and cyclic activation of its components,
the simplest variant of WLC. A network with several degrees
of freedom and asymmetric connections can generate struc-
turally stable sequences—transients, each shaped by one input.
Asymmetric inhibitory connectivity helps to solve the apparent
paradox that sensitivity and reliability can coexist in a network
(Huerta and Rabinovich, 2004; Nowotny and Rabinovich, 2007;
Rabinovich et al., 2008b; Rabinovich and Varona, 2011). The
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neurons or modes participating in a SHC are assigned by the
stimulus, by virtue of their direct and/or indirect input from the
neurons activated by that stimulus. The joint action of the exter-
nal input and a stimulus-dependent connectivity matrix defines
the stimulus-specific heteroclinic channel. In addition, asymmet-
ric inhibition coordinates the sequential activity and keeps a
heteroclinic channel stable.

The WLC concept is directly related to the sequential dynam-
ics of metastable states that are activated by inputs that do not
destroy the origin of a competitive process. This paradigm can
explain and predict many dynamical phenomena in neural net-
works with excitatory and inhibitory synaptic connections. Based
on the requirement of the stability, this formalism has been used
(i) to assess the dynamical origin of finite working memory (WM)
capacity based upon WLC amongst available informational items
(Bick and Rabinovich, 2009; Rabinovich et al., 2012); (ii) to build
a dynamical model of information binding for transients that can
describe the interaction of different sensory information flows
that are generated concurrently (Rabinovich et al., 2010a); (iii) to
model the sequential interaction between emotion and cognition
(Rabinovich et al., 2010b); (iv) to represent attention dynam-
ics (Rabinovich et al., 2013); and (v) to assess the dynamics of
pathological states in mental disorders (Bystritsky et al., 2012;
Rabinovich et al., 2013). Here we focus on a model of hierarchical
chunking dynamics that can represent several forms of cognitive
activity such as WM and speech construction.

As we discussed in the Introduction, chunking is grouping
or categorizing related issues or information into smaller, most
meaningful and compact units. Think about how hard it would
be to read a long review paper without chapters, subchapters,
paragraphs, and separated sentences. Chunking is a naturally
occurring process that can be actively used to break down prob-
lems in order to think, understand, and make improvisation more
efficiently. This is because it is easier to process chunked tasks or
perceptional data. In particular, it is much easier to learn and
recall such data. Mathematically, the “chunking principle” can
be viewed as the transformation of a chain of metastable states
along a transient process to the chain of groups of such states.
It is a key dynamical idea that nature may use to make cognitive
information processing more effective in the context of a complex
environment.

Chunking processes in human perception, learning, and per-
formance of a cognitive task can be both automatic and directly
linked to the environmental stimuli, and controllable by a goal-
oriented intrinsic signal (Gobet et al., 2001). It is important to
note that chunking is a strategy that supports increasing speed
and accuracy through the formation of hierarchical memory
structures and complex task-dependent behavioral sequences.
Two competitive processes form temporal chunking sequences—
one separates long sequences into shorter groups of information
items to be easily performed, and the second connects them to
express a long sequence as a unified thought or behavioral action
(Friederici et al., 2011; Chekaf and Matha, 2012).

Hierarchical chunking dynamics can be implemented in a
model of cognitive networks whose information processing relies
on SHCs. Figure 1 illustrates a chunking heteroclinic cognitive
network for two hierarchical informational groups—elementary

FIGURE 1 | Architecture of the three level cognitive network

responsible for the grouping of informational items. Each level of
hierarchy is described by its own Lotka–Volterra type Equations (see 2–6)
with connection matrices ρ, ξ and ς. Black circles represent inhibitory
connections; triangles represent excitatory connections responsible for the
choosing of the informational items. Spheres represent the informational
items or units (metastable stables). Different colors indicate different
chunks. All connections inside the elementary items are inhibitory.

items and chunking (integrated) informational items including
many elementary units interacting through dynamical connec-
tions. It is reasonable to hypothesize that functionally there are
two different cognitive networks from at least two different hier-
archical levels that are responsible for the: (i) organization of the
sequence of items inside chunks, and (ii) the formation of the
chunk sequence. In particular, this hypothesis is supported by an
experiment with chunking during visuomotor sequence learning
(Sakai et al., 2003). It has been shown that each motor cluster is
processed as a single memory unit—a chunk. A learned visuo-
motor sequence is a sequence of chunks that contains several
elementary movements. The authors of this work have shown
that a key role in the process of chunking formation is played by
a brain network including the dominant parietal area, the basal
ganglia, and the presupplementary motor area (see also Ribas-
Fernandes et al., 2011 and Bor and Seth, 2012, where authors
discuss the chunking structure of conscious processes).

Below we suggest a three level hierarchical model for the
description of the chunking dynamics. Inhibition plays a key role
in this model as is responsible for the execution of three functions:
(i) competition between elementary informational items in order
to produce stable sequences of metastable states, (ii) generation
of the chunking sequence, and (iii) control of the performance
of the sequential task. In recent years, the investigation of the
hierarchical control between different levels of representation and
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information processing has become one of the hot subjects in cog-
nitive science. This issue is important for understanding how the
mind controls behavior and itself. In particular, the relationship
between chunking (a sequence-level process) and task-set inhibi-
tion (a task-level process) in the performance of task sequences
was investigated in (Koch et al., 2006; Schneider, 2007; Li et al.,
2010), for a description of “chunks of chunks”—“superchunks”
see Rosenberg and Feigenson (2013).

To understand the emergence of hierarchical chunking dynam-
ics in a model we need to depart from Equation (1) in the
following direction, c.f. Figure 1):

Ẋlk
i = Xlk

i

⎛
⎝σlk

i (S, C) · Ylk −
Nlk∑

j

ρlk
ij (S, C)Xlk

j

⎞
⎠ (2)

τẎ lk = Ylk

⎛
⎝
⎛
⎝Vl − β(C)

Nlk∑
i

Xlk
i

⎞
⎠− Zlk

⎞
⎠ (3)

θ(C)Żlk =
M∑
m

ξkm
l (S, C)Ylm − Zlk (4)

T V̇l = Vl

⎛
⎝
⎛
⎝1 − δ(C)

Ml∑
j

Y lj

⎞
⎠− Wl

⎞
⎠ (5)

�(C)Ẇl =
P∑
q

ςlq(S, C)Vq − Wl (6)

Here Xlk
i characterizes the -th informational item associated with

the k-th chunk and l-th superchunk, σlk
i (S, C) is the growth rate

for each informational item determined by the stimulus S and
the cognitive task C, and ρlk

ij (S, C) is the matrix of inhibitory

connections among basic informational items. In this model Ylk

characterizes the k-th chunk associated to the l-th superchunk
Vl, with corresponding characteristic times τ and T, respectively,
and β(C) represents the strength of the inhibition between the
informational items and the chunk, and δ(C) between the chunks
and the superchunk. Also, Zlk describes the synaptic dynamics for
the k-th chunk associated to the l-th superchunk with ξkm

l (S, C),
the matrix of inhibitory connections between chunks (black cir-
cles in Figure 1); and Wl describes the synaptic dynamics for
the l-th superchunk with ςlq(S, C), the matrix of inhibitory con-
nections between superchunks, the corresponding characteristic
times are θ(C) and �(C). In this model, β(C) and δ(C) are adap-
tation parameters that determine the timing relationship between
a basic informational chain and the chunking and superchunking
modulation. The chunking variables also satisfy the generalized
Lotka–Volterra—canonic equations which allows them to form a
stable sequence. Because of this, in fact, chunking variables play
the role of cognitive controllers. The parameters for Equations
(3)–(5) in the simulations below were chosen with this scope.
Since chunking dynamics has to take into account of the char-
acteristic time of the chunk formation, the competition between
different chunks has to be delayed—we used for this an inhibi-
tion described by a first order kinetic model. At the same time,

the competition among elementary informational items is imple-
mented by fixed weight ρij instantaneous synapses. The same logic
has been applied for the description of the highest level of the
hierarchy—the superchunks.

RESULTS: HIERARCHICAL SEQUENCES—CHUNKING AND
SUPER-CHUNKING
Let us first represent the phase portrait of a simple two-level
chunking dynamics. We carried out numerical simulations of
the model for the dynamics within chunks of informational
items for the following parameters Nk = 3, M = 3 (num-
ber of “chunks” or “episodes”), σ1 = [7.24, 5.85, 8.30], σ2 =
[9.93, 6.00, 5.18], σ3 = [8.29, 7.86, 9.16], and given these val-

ues, ρk
ii = 1.0, ρk

in − iin
= σk

in − 1

σk
in

+ 0.51, and ρk
in + iin

= σk
in + 1

σk
in

− 0.5,

i = 1, . . . , Nlk, k = 1, . . . , M as well as the parameters consid-
ered for the synaptic dynamics described by Equations (3) and
(4): τ = 0.7, θ = 2.0, ξkk = 1.0, ξknkn + 1 = 1.4 and ξknkn − 1 = 0.5,
k = 1, . . . , M and β = 0.01. The results of these simulations are
shown in Figures 2, 3.

Figure 2 shows the phase portrait of the chunking dynamics
when the superchunk formation is absent: the system is described
by Equations (2)–(4), V = 1. This example illustrates a closed
chunking sequence (green) that consists of several heteroclinic
cycles that represent the elementary chunks (blue). In general, the
number of elementary items in each chunk are different and the
chunking sequence can be open.

Figure 3 illustrates the timing between chunks along the
sequence. The emergence of the chunking sequence shown in
Figure 2 is the result of a modulational instability in the two-level
hierarchical network whose dynamics is described by Equations
(2)–(4). This instability is oscillatory. The characteristic period of
the oscillation is �T. The analytical investigation of the depen-
dence of �T on the control parameters τ, θ, β and connection
matrices ρ, ξ is a non-realistic problem because of the non-linear
feedback between the dynamical variables X and Y. However, it
is reasonable to think that the key parameter in this problem is

FIGURE 2 | The projection of a nine-dimensional phase portrait of a

two-level chunking hierarchical dynamics in the space of the

three-dimensional auxiliary variables [see the Equations (2)–(4)]

J1 = Y 1 + 0.04 · (
X1

1
+ X2

1
+ X3

1

)
, J2 = Y 2 + 0.04 · (

X1
2

+ X2
2

+ X3
2

)
,

J3 = Y 3 + 0.04 · (
X1

3
+ X2

3
+ X3

3

)
. Blue represents the elementary

informational item activity—individual chunk. Green represents the
chunking sequence.
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FIGURE 3 | The dependence of the chunking interval timing [see

Equation (1)] on the control parameter β. One can see that the chunking
interval strongly decreases together with the increasing of the adaptation
parameter β. When β increases the effective excitation of variable Y
decreases.

β which determines the level of excitability of variable Y and,
according to the feedback, also controls the excitability of X (term
σlk

i (S, C) · Xlk
i · Ylk) in the right hand side of Equation (2). In

Figure 3 we represent the numerical analysis of the dependence
of �T on the parameter β—increasing β, i.e., decreasing the
excitability leads to the decreasing of the timing interval �T.

We also carried out numerical simulations of a high-
dimensional model that describes the dynamics of chunk
and super-chunk formation with the following parame-
ters: Nlk = 6, Ml = 6 (number of chunks), P = 3 (number
of superchunks), σl1 = [6.94, 5.11, 8.94, 5.86, 8.33, 9.62],
σl2 = [5.48, 5.66, 5.39, 9.89, 9.99, 5.82], σl3 = [7.65, 8.98, 9.21,

6.02, 5.71, 5.12], σl4 = [7.61, 7.73, 5.62, 7.93, 5.80, 5.39], σl5 =
[5.11, 9.99, 5.52, 5.66, 5.50, 8.21], σl6 = [5.84, 9.39, 7.08, 5.16, 8

.37, 6.87], and given these values, ρlk
ii = 1.0, ρlk

in − iin
= σlk

in − 1

σlk
in

+ 0.5

1, ρlk
in + iin

= σlk
in + 1

σlk
in

− 0.5, i = 1, . . . , Nlk, k = 1, . . . , Ml, l=1, . . .

,P, and ρlk
iin

= ρlk
in − 1in

+ σlk
i −σlk

in − 1

σlk
in

+ 2, i �= {in − 1, in, in + 1}, as

well as the parameters considered for the synaptic dynam-
ics between chunks described by the equations τ = 0.8,

θ = 2.0, ξkk
l = 1.0, ξ

knkn − 1
l = 0.5, ξ

knkn + 1
1 = 1.4, ξ

knkn + 1
2 = 1.3,

ξ
knkn + 1
3 = 1.5, k = 1, . . . , Ml, l = 1, . . . , P, ξ

kkn
l = ξ

kn − 1kn
l + 2,

k �= {kn − 1, kn, kn + 1}, and β = 0.01. Finally, the parameters
for the synaptic dynamics between superchunks were T = 5,
� = 10, ςll = 1.0, ςlnln−1 = 0.5, ςlnln + 1 = 1.4, l = 1, . . . , P,
and δ = 0.01. The result of these simulations are displayed in
Figure 4, which shows three levels of information hierarchy:
original informational chain (lower panel), chunked chain
(middle panel), and superchunking chain (upper panel).

As illustrated in Figure 2, the sequence of chunks can be con-
sidered as a heteroclinic cycle of metastable states where each
metastable state itself is a heteroclinic cycle of elementary infor-
mational items. Based on this self-similarity, we can expect that

FIGURE 4 | Time series of the sequences of the three-level

hierarchy—108 items groupped in 18 chunks of 6 items; these chunks

form 3 superchunks of 6 elements each displaying reproducible

dynamics according to the model (2)–(6). Different colors correspond to
different items inside each group (switching the color means moving from
the previous item to the next one).

the chunking chain as a result of a second heteroclinic insta-
bility generates the next level of modulation—the superchunk
sequence. Our expectation is confirmed in Figure 4 that shows
the time series of the three level network (2)–(6) (c.f. Figure 1)
dynamics. In this figure, one can see the generation of sequences
of superchunks. All together, the sequences informational items,
chunks and superchunks can be interpreted as “words,” “sen-
tences,” and “paragraphs.”

For the sake of simplicity we have illustrated here the phe-
nomenon of stability just for a closed-loop clustered chunking-
superchunking sequence. In the general case of open sequence, it
is possible to formulate the sufficient conditions for the existence
and stability of the non-closed channel based on the estima-
tion of the saddle values of the metastable states (elementary
items)—the channel is stable in the case that all of them are
larger than one in absolute value (Afraimovich et al., 2004; Bick
and Rabinovich, 2010). The formulation of the necessary condi-
tions is a more complex problem and is still under consideration.
The imposed stability conditions determine the behavior of the
trajectories inside the neighborhood of the heteroclinic network
independently of the initial conditions as computer experiments
have confirmed (Afraimovich et al., 2004; Bick and Rabinovich,
2010).

The above described numerical results can be justified by an
analytical study of the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋk
i = Xk

i

(
σk

i · Yk −
Nk∑

j = 1
ρk

ijX
k
j

)
,

τ Ẏk = Yk

(
1 − β

Nk∑
i = 1

Xk
i − Zk

)
,

θ Żk =
M∑

m = 1
ξkmYm − Zk

(7)
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i = 1, . . . , Nk, k = 1, . . . , M. For the sake of simplicity, let us
assume that τ = θ << 1, so one can apply geometric singu-
lar perturbation theory (see, for instance, Jones, 1995; Hek,
2010 and references therein). In order to avoid confusion, it is
important to say that the assumption τ = θ << 1 implies that,
in contrast to the dynamics of X, the chunking dynamics is a
composition of fast and slow motions. The fast motions lead
variables Y-th and Z-th to a neighborhood of the slow mani-
fold in the phase space. The evolution of the chunk variables
on this manifold in the vicinity of the metastable states is much
slower than the X variables. This corresponds to the intuitively
clear fact that the “enveloping” variables mimic the averaging

dynamics of X. Computer experiments confirm this explanation
(see Figure 4).

The limit slow manifold has the equations

Yk
(

1 − β
∑Nk

i = 1 Xk
i − Zk

)
= 0,

∑M
m = 1 ξkmYm − Zk = 0, thus,∑M

m = 1 ξkmYm = 1 − β
∑Nk

i = 1 Xk
i . Denote by ξ the

m × m-matrix ξkm. If det ξ �= 0, we find

Yk = 1

det ξ

⎛
⎝ M∑

m = 1

ηmk − β

M∑
m = 1

ηmk
Nm∑
i = 1

Xm
i

⎞
⎠ (8)

Table 1 | Sequential dynamics in neural and cognitive systems.

Phenomenon/image Model References Comments

Voting paradox / Structurally stable
heteroclinic cycle

Kinetic (rate) equation,
Lotka–Volterra model

Krupa, 1997; Stone and Armbruster,
1999; Ashwin et al., 2003;
Postlethwaite and Dawes, 2005

J. C. Borda and the Marquis de
Condorcet (De Borda, 1781; Saari,
1995) analyzed the process of
plurality elections at the French
Royal Academy of Sciences. They
predicted the absence of a winner
in a 3 step voting process
(Condorcet’s triangle)

Learning sequences Hopfield type non-symmetric
networks with time delay including
spiking neuron models

Amari, 1972; Kleinfeld, 1986;
Sompolinsky and Kanter, 1986;
Minai and Levy, 1993; Deco and
Rolls, 2005

Networks proposed to explain the
generation of rhythmic motor
patterns and the recognition and
recall of sequences

Latching dynamics Potts network is able to hop from
one discrete attractor to another
under random perturbation to
make a sequence

Treves, 2005; Russo et al., 2008;
Russo and Treves, 2011; Linkerhand
and Gros, 2013

The dynamics can involve
sequences of continuously latching
transient states

Sequential memory with synaptic
dynamics / Chaotic itinerancy
sequences of Milnor attractors or
attractor ruins

Spike-frequency-adaptation
mechanism Noisy dynamical
systems. Cantor coding

Tsuda, 2009 Proposed to be involved in episodic
memory and itinerant process of
cognition

Winnerless sequential switchings
along metastable states/Stable
heteroclinic channel

Generalized coupled
Lotka–Volterra equations

Afraimovich et al., 2004; Rabinovich
et al., 2008a,b

Information processing with
transient dynamics at many
different description levels from
simple networks to cognitive
processes

Winnerless competitive dynamics
in spiking brain networks

Random inhibitory networks of
spiking neurons in the striatum

Ponzi and Wickens, 2010 Neurons form assemblies that fire
in sequential coherent episodes
and display complex
identity–temporal spiking patterns
even when cortical excitation is
constant or fluctuating noisily

Sequences of sequences /
Hierarchical transient sequences

Recognition of sequence of
sequences based on a continuous
dynamical model

Kiebel et al., 2009 Speech can be considered as a
sequence of sequences and can be
implemented robustly by a
dynamical model based on
Bayesian inference. recognition
dynamics disclose inference at
multiple time scales
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where ηkm is the cofactor of the entry ξmkof the matrix ξ.
Substituting this expression into the first equation of the system
(7) we obtain the system

Ẋk
i = Xk

i

⎛
⎝σk

i

1

det ξ

M∑
m = 1

ηmk −
Nk∑

j = 1

ρk
ijX

k
j − β

det ξ

M∑
m = 1

ηmk
Nk∑

i = 1

Xm
i

⎞
⎠

(9)
i = 1, . . . , Nk, k = 1, . . . , M, which is similar to the binding
model described in Rabinovich et al. (2010a). In particular, the
“in-chunk” dynamics in (9) corresponds to the dynamics in the
modality subspace in Rabinovich et al. (2010a). The main pecu-
liarity of the system (9) is that the rates of coupling coefficients
between different chunks have the common factor β, so if β = 0
then the interaction between different chunks is absent. Similarly
to the study in Rabinovich et al. (2010a), one can impose condi-
tions under which there exists a heteroclinic cycle for each chunk
and successive heteroclinic connections between saddle points
in different cycles. The last claim has the form β > βcr where
βcr depends on the parameters of the system (9). If τ is small
then because of the geometric singular perturbation theory, the
imposed conditions shall guarantee the existence of a hetero-
clinic network in the original system (7) corresponding to the
“in-chunk” and “inter-chunk” dynamics.

Observations on the temporal chunk signal have focused on
the use of pauses in behavior to probe chunk structures in WM.
On the basis of some of these studies, a hierarchical process
model has been proposed, which consists of four hierarchical lev-
els describing different kind of pauses. The lowest level consists
of pauses between strokes within letters. On higher levels, there
are pauses between letters, words, and phrases. Each level is asso-
ciated with a larger amount of processing when retrieving these
chunks from memory (Cheng and Rojas-Anaya, 2006). Writing
may be an effective approach to the study of cognitive phenomena
that involves the processing of chunks. In Cheng and Rojas-Anaya
(2003), it was demonstrated that in the writing of simple number
sequences the duration of pauses between written elements (dig-
its) that are within a chunk are shorter than the pauses between
elements across the boundary of chunks. This temporal signal is
apparent in un-aggregated data for individual participants in sin-
gle trials. Mathematically the time intervals between chunks and
super-chunks are controlled by parameter β (see Equation 3).

DISCUSSION
In this paper we have shown how the architecture of hierarchi-
cal mental model networks affected their associated functions.
The discussed examples illustrate that networks with metastable
states having several unstable separatrices exhibit very diverse
cognitive functions (behavior). Complex heteroclinic networks
allow completely new dynamical phenomena, and one of the pri-
mary challenges is the assessment of the existence and stability
of hierarchical—chunking processes that can represent cognitive
activity.

It is important to remind that the modeling of cycling and
sequential dynamics in behavior and cognition has a long his-
tory (see several representative efforts in Table 1). Most of these

models are based on Hopfield type networks. The main problem
there is to keep the stability of the recall sequences against noise.

The results of chunking dynamics reported in this paper can be
viewed as relevant in the description of different cognitive tasks.
For example, in WM, humans encode items and synthesize them.
With that, we give meaning to ideas and find a relevant place
for them in our cognitive world. In these actions the interaction
between WM and chunking are reciprocal—first of all WM is the
“engine” of chunking, and on the other hand, the chunking makes
WM capacity higher.

The model of chunking dynamics discussed in this paper relies
on heteroclinic dynamics. It is important to emphasize that the
main features of the SHC do not depend on the specific model
used. The conditions of existence and the dynamical features of
SHCs can be implemented in a wide variety of models: from
simple Lotka–Volterra descriptions to complex Hodgkin–Huxley
models, and from small networks to large ensembles of many ele-
ments (Varona et al., 2002; Venaille et al., 2005; Nowotny and
Rabinovich, 2007; Rabinovich et al., 2012). The intrinsic hier-
archical nature of the SHC at different temporal and spatial
scales allows implementing many types of cognitive dynamics.
Within this framework, brain networks can be viewed as non-
equilibrium systems and their associated computations as unique
patterns of transient activity, controlled by incoming input. The
results of these computations can be reproducible, robust against
noise, and easily decoded. Using asymmetric inhibition appro-
priately, the space of possible states of large neural systems can
be restricted to connected saddle points, forming SHCs. These
channels can be thought of as underlying reliable transient brain
dynamics. Table 2 summarizes four types of heteroclinic net-
works that can describe different aspects of sequential dynamics
in cognitive processes: (i) A canonic heteroclinic network that
produces reproducible sequential switching from one metastable
state to another inside one modality (like in a simple WM task);
(ii) A network displaying inhibitory-based heteroclinic binding
dynamics that is responsible for the stable perception of a subject
based on three different modalities; (iii) Two different modalities
dynamically coordinated by excitatory connections; (iv) A chunk-
ing heteroclinic network that controls the grouping of elements of
sequential behavior.

Mathy and Feldman have recently suggested to use the
Kolmogorov complexity and compressibility (Mathy and
Feldman, 2012) for the definition of a “chunk”: a chunk is a unit
in a maximally compressed code. The authors presented a series
of experiments in which they manipulated the compressibility of
stimulus sequences by introducing sequential patterns of variable
length. To explore the influence of chunking on the capacity
limits of WM, and departing from Bick and Rabinovich (2009),
authors in Li et al. (2013) have suggested a model for chunking in
sequential WM. This model also uses hierarchical bidirectional
inhibition-connected neural networks with WLC. Assuming no
interaction between a basic sequence and a chunked sequence,
and the existence of an upper bound to the inhibitory weights the
network, authors show that chunking increases the number of
memorized items in WM from the “magical number” 7–16 items.
The optimal number of chunks and the number of the memorized
items in each chunk correspond to the “magical number 4.”
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Table 2 | Heteroclinics in mind.

Phenomenon Network formalism* Phase portrait Time series

Sequential heteroclinic
switching

Ẋi = Xi

(
σi −

N∑
j = 1

ρij Xj

)

Sequential heteroclinic
binding and information
flow

Ẋ l
i = X l

i

(
σl

i −
N∑

j=1
ρl

ij X
l
j −

L∑
m = 1

N∑
j = 1

ξlm
ij X m

j

)

Heteroclinic cooperation τm
i Ẋ m

i = X m
i ·

[
σm

i −
Km∑
j = 1

ρm
ij X m

j +
M∑

k = 1

Km∑
j = 1

ξmk
ij X k

j

]

Hierarchical chunking
memory and learning

Ẋ k
i = X k

i

(
σk

i · Y k −
Nk∑
j

ρk
ij X

k
j

)

τẎ k = Y k

((
1 − β

Nk∑
i

X k
i

)
− Zk

)

θŻ k =
M∑

m = 1
ξkmY m − Zk

*See the definition of the variables and parameters in the text.

Recent experiments have confirmed the existence of three lev-
els of cognitive hierarchy—see Rosenberg and Feigenson (2013).
In this paper authors reported that infants can unify the represen-
tation of chunks into “super-chunks.”

The chunking models discussed above can be generalized on
more complex cases. In particular, by adding attention control
in the network hierarchy, it is possible to analyze the bind-
ing of sequences of chunks. The brain could use such binding
to perform many cognitive functions like the coordination of
visual perception with speech comprehension, or the coordina-
tion of music chunks and word chunks in singing processes. It
is well-known that viewing a speaker’s articulatory movements
substantially improves a listener’s ability to understand spoken
words, especially under noisy environmental conditions like in
a crowded cocktail party. Ross and coauthors claimed that this
effect is most pronounced when the auditory input is weakest. As
a result of attentional binding—multisensory integration—, sub-
stantial gain in multisensory speech enhancement is achieved at
even the lowest signal-to noise ratios (Ross et al., 2007).

The dynamics of hierarchical heteroclinic networks is also
able to explain and predict the coordination of behavioral ele-
ments with different time scales (for a study about the coordi-
nation of sensorimotor dynamics see Jantzen and Kelso, 2007).
Functionally, such kind of synchronization can be the result of

learning—the changing of the strength of inhibitory connections
between agents at the different levels of the hierarchy in order to
coordinate the dynamics with different time scales (see Figure 3).
Additionally, it is important to note that the winnerless competi-
tive learning process itself can be chaotic (Komarov et al., 2010),
which provides wider possibilities for adaptability.
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