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Cell death and synapse dysfunction are two likely causes of cognitive decline in AD. As
cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity.
Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore
activity. This homeostatic mechanism is believed to sense levels of activity-dependent
cytosolic calcium within the cell and to adjust neuronal firing activity by increasing
the density of AMPA synapses at remaining synapses to achieve balance. The scaling
mechanism increases the firing rates of remaining cells in the network to compensate
for decreases in network activity. However, this effect can itself become a pathology,
as it produces increased imbalance between excitatory and inhibitory circuits, leading
to greater susceptibility to further cell loss via calcium-mediated excitotoxicity. Here,
we present a mechanistic explanation of how directed brain stimulation might be
expected to slow AD progression based on computational simulations in a 470-neuron
biomimetic model of a neocortical column. The simulations demonstrate that the addition
of low-intensity electrostimulation (neuroprosthesis) to a network undergoing AD-like
cell death can raise global activity and break this homeostatic-excitotoxic cascade. The
increase in activity within the remaining cells in the column results in lower scaling-driven
AMPAR upregulation, reduced imbalances in excitatory and inhibitory circuits, and lower
susceptibility to ongoing damage.
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1. INTRODUCTION
1.1. SYNAPTIC SCALING IN ALZHEIMER’S DISEASE
Neuronal homeostatic synaptic scaling is a local feedback mecha-
nism which senses levels of activity-dependent cytosolic calcium
within the cell and adjusts neuronal firing activity accordingly.
This is achieved by producing alterations in excitatory AMPA
receptor accumulation in response to changes in firing activ-
ity occurring over hours to days (Turrigiano, 2008), leading to
changes in the excitability of the neuron.

During learning, synaptic scaling plays an important role in
balancing potentiation. By constantly shifting mean activation
toward a target activity level, while maintaining the learned rel-
ative distribution of presynaptic weights, global levels of activity
can be regulated (van Rossum et al., 2000; Rowan and Neymotin,
2013). During periods of hypoactivity (e.g., in degenerative disor-
ders), synaptic scaling is also capable of raising the sensitivity of
neurons via AMPA receptor upregulation, so that activity levels
can be restored (Turrigiano, 2008).

Synaptic scaling has been postulated to play a key role in the
progression of Alzheimer’s disease (AD). The presence of Aβ has
been shown to be a key mediator of calcium excitotoxicity in
Alzheimer’s disease (Demuro et al., 2010), and may explain the

progression of the disease throughout functional neural networks
(Small, 2008; Savioz et al., 2009). When neurons die and synapse
efficacy is reduced in connection with β-amyloid (Aβ) and tau
pathology in Alzheimer’s disease, functionally connected neurons
within the local network suffer a corresponding decrease in acti-
vation. As cells upregulate the number of AMPA receptors at
synapses in order to compensate for this, the excitatory-inhibitory
balance of the local network surrounding the cell is altered (Palop
and Mucke, 2010). This can lead the cell to transition more easily
to a high-excitation bursting state consisting of sustained firing
or bursting at the neuron’s saturation rate in synchrony with
other connected cells (Fröhlich et al., 2008). This phenomenon
has been observed in mouse models of AD, particularly in cells
proximal to amyloid plaques, and correlates with the increased
incidence of seizures in AD patients (Busche et al., 2008). These
pathological states of high excitability, coupled with dysfunc-
tions in Aβ-mediated calcium regulation, lead to greater influx
of Ca2+ into the cell plasma, making the triggering of cell death
(apoptosis) more likely. As this propensity to over-excitability
increases in proportion to levels of compensatory synaptic scal-
ing (Trasande and Ramirez, 2007), previously-healthy neurons
which have scaled up to compensate for decreased local activation
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will also become destabilized and more susceptible to excitotox-
icity, thus leading to a feed-forward cascade of apoptosis and
neurodegeneration.

Small (2008) suggested targeting synaptic scaling mechanisms
in AD as a potential method for preventing disease progression,
but evidence suggests that this would have severe consequences on
learning and regulation of synaptic activity (Turrigiano, 2011). It
is likely that unconstrained potentiation during learning without
compensatory downscaling would actually make neurons more
likely to transition to damaging hyperactive states (Rowan and
Neymotin, 2013). Instead, we propose targeting the root cause of
this unbalancing homeostatically-induced up-scaling by counter-
acting the decreased activation of remaining healthy neurons with
long-term low-intensity prosthetic neurostimulation.

1.2. NEUROSTIMULATION TO ACT ON SCALING MECHANISMS
Recent trials in probable Alzheimer’s patients have reported sus-
tained increases in neural activity following continuous (for 1
year) deep brain stimulation (DBS), with corresponding cognitive
improvements (Smith et al., 2012). Other trials using transcranial
magnetic stimulation (TMS) again showed improved cognitive
performance after six months of daily applications of magnetic
stimulation (Rabey et al., 2013). A review of trials using tran-
scranial direct current stimulation (tDCS) also showed positive
effects on cognitive performance, with effects persisting up to 4
weeks after stimulation (Hansen, 2012). These types of stimula-
tion act by partially depolarizing the neural membrane, making it
easier for natural synaptic events to trigger an action potential.
However, as these trials are still in their early stages, the ques-
tion of whether these treatments are merely masking the cognitive
symptoms, or are actually halting the progression of the disease,
remains to be answered.

In this work we use computational simulations to investigate
the possible mechanisms by which applying mild sustained elec-
trical neurostimulation to the cortex may be able to slow the
progression of AD. Low-intensity informationless stimulation is
able to restore activity and information transfer which was lost
due to neighboring cell death and synapse dysfunction (Kerr
et al., 2011), so we wondered whether such stimulation would
also allowing global activity levels in the cortex to be maintained
at a higher level after onset of Alzheimer’s disease. Rather than
neurons therefore having to scale up to account for lost acti-
vation, and thus destabilizing the excitatory-inhibitory balance
and becoming susceptible to calcium excitotoxicity, the artifi-
cial stimulation causes the cells’ scaling mechanism to suppress
AMPAR upregulation, meaning levels of scaling are decreased and
susceptibility to damage is reduced.

The effects of such neurostimulation on synaptic scaling and
learning in Alzheimer’s disease have not yet been investigated.
In this work, we show how a 470-cell simulation of a neocorti-
cal sensory column incorporating homeostatic synaptic scaling
is damaged by the progression of AD, and how electrostimula-
tion can significantly slow the rate of this damage progression. We
also investigate whether global stimulation is required, or whether
more localized stimulation could also achieve the same results,
and we show whether learning is adversely affected in the presence
of such stimulation.

2. MATERIALS AND METHODS
2.1. MODEL DESCRIPTION
The spiking model used in this work is an extension of the neo-
cortical model used in Neymotin et al. (2011a). It is based on the
notion of a single cortical column (Binzegger et al., 2004; Lefort
et al., 2009; Neymotin et al., 2011b) and consists of 470 neurons in
three types (excitatory pyramidal cells E, fast-spiking inhibitory
interneurons I, and low-threshold spiking inhibitory interneu-
rons IL). Each of these neural types is distributed across the four
neocortical layers in the model (layers 2/3, 4, 5, and 6), giving a
total of 13 distinct neuronal populations (Figure 1). Numbers of
cell in each type per layer are given in Table 1. The population
sizes and wiring densities between and within layers were taken
from multiple biologically-validated sources, as documented in
Neymotin et al. (2011b). Figure 2 shows the relative density of
connectivity between and within the different cell populations in
the network.

Each cell was modeled as a single-compartment integrate-and-
fire neuron with fast inhibitory GABAA receptors, fast excitatory
AMPA receptors, and slow excitatory NMDA receptors, each pro-
ducing a voltage step in the cell membrane potential Vm followed
by a decay according to a synapse-specific delay constant. For
speed, the cell state variables were only updated at the time of
input events, with connectivity weights obtained using a just-in-
time strategy to avoid the requirement to hold the entire of a
massive weight matrix in memory, allowing fast and memory-
efficient running even for large networks (Lytton et al., 2008).
Biological behaviors such as adaptation, bursting, depolarization

FIGURE 1 | Raster plot showing distinct firing rates of different

excitatory and inhibitory layers within the cortical column.

Table 1 | Numbers of cell per type in each layer.

Layer I2L I2 E2 I4L I4 E4 I5L I5 E5a E5b I6L I6 E6

Pop size 13 25 150 14 20 30 13 25 65 17 13 25 60

E2 = excitatory cell in layer 2/3, I2 = fast spiking interneuron in layer 2/3, I2L =
low-threshold spiking interneuron in layer 2/3, etc. E5a and E5b are two subtypes

of layer 5 pyramidal neurons.
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FIGURE 2 | Normalized probabilities of connectivity between and

within the different cell populations in the network. Vertical and
horizontal axes represent cell types and color represents the normalized
probability that a neuron from a given column will project to a neuron from
a given row.

Table 2 | Cell resting potential, threshold, and refractory period, for

each cell population.

Cell type V RMP (mV) V θ (mV) τ refrac (ms)

I2L −65 −47 10

I2 −63 −40 10

E2 −65 −40 50

I4L −65 −47 10

I4 −63 −40 10

E4 −65 −40 50

I5L −65 −47 10

I5 −63 −40 10

E5a −65 −40 50

E5b −65 −40 50

I6L −65 −47 10

I6 −63 −40 10

E6 −65 −40 50

blockade, and voltage-sensitive NMDA conductance were simu-
lated using a simple rule-based system (Lytton and Stewart, 2005,
2006).

Input events at synapses depotentiated the cell membrane
voltage Vm by a specified reversal potential Esyn, depending on
the neurotransmitter type. The cell’s default resting membrane
potential VRMP was given as a baseline, from which Vm was
updated. If Vm exceeded the spiking threshold Vθ following a
synaptic event, the cell emitted a spike before entering a refractory
period of τrefrac ms. The cell could not fire during the refractory
period. This was used to set an upper limit on firing frequency.
Resting potential, threshold and refractory periods for cells in
each population type are given in Table 2.

Table 3 | Reversal potential, Vsyn decay constant, synaptic delay and

external input frequency for each synapse type.

Synapse type Esyn (mV) τ syn τdelay (ms) f ext (Hz)

AMPA 65 20 3–5 240–360

NMDA 90 300 3–5 40–60

GABAA (soma) −15 10 3–5 100–150

GABAA (dendrite) −15 20 1.8–2.2 100–150

Each AMPA, NMDA, and GABAA synapse had its own volt-
age state Vsyn, which was added to the cell’s membrane potential
Vm. After each synaptic event, Vsyn decayed exponentially with
time constant τsyn. GABAA events were simulated in two differ-
ent ways: directly at the cell soma with a fast decay time-constant,
and at the dendrite with a slower time-constant, giving two sepa-
rate Vsyn states. Synaptic events had a small delay before updating
Vm, chosen uniformly from a distribution τdelay.

Network activity was driven by spikes from neighboring cells,
as well as subthreshold external inputs representing activation
from other areas of the brain, necessary to prevent intrinsic activ-
ity from dying out. Spikes generated by a Poisson process were
provided at each synapse of each cell, maintaining average input
frequencies drawn uniformly from a distribution fext. Reversal
potential, Vsyn decay constant, synaptic delay and external input
frequency for each synapse type are given in Table 3. In some
simulations, an additional low-amplitude (but super-threshold)
training signal was applied to layer 4 excitatory neurons (E4),
representing sensory input to the neocortex.

Further details of the cell model, including activity blockade,
relative refractory periods, and after-hyperpolarization rules, in
addition to wiring densities, are given by Neymotin et al. (2011b)
and Neymotin et al. (2011a).

2.2. SYNAPTIC SCALING
The model was extended to implement synaptic scaling at E cell
AMPA synapses by multiplying each cell i’s postsynaptic input by
a scale factor ci, representing the multiplicative accumulation of
AMPA receptors at synapses. Changes in the scale factor were cal-
culated following the formula of van Rossum et al. (2000), with

ai(t) as the cell’s instantaneous firing rate at time t, a
goal
i as the

target firing rate, β as the scaling strength, γ as the “integral con-

troller” weight, and dci(t)
dt as the rate of change of the synaptic

weight:

dci(t)

dt
= βci(t)[a goal

i − ai(t)] + γ ci(t)

∫ t

0
dt[a goal

i − ai(t)] (1)

in which the first term modifies the synaptic weight according to

the current disparity between a
goal
i and ai(t), and the second term

allows historical under- or over-shoots of activity to pull on the
weight updates more strongly, the longer they continue.

Scaling was applied inversely at GABAA synapses by multiply-
ing postsynaptic input by 1

ci
to enable the scaling of excitatory and

inhibitory synapses in opposite directions. This allows mimicking
of the effect of activity-dependent global growth factors such as
BDNF, which is known to enhance activity in inhibitory circuits
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as excitatory output increases (Rutherford et al., 1998; Turrigiano,
2008, 2011; Chandler and Grossberg, 2012). This produces a dif-
ferent result to merely varying the firing threshold of the neuron:
with homeostatic scaling only at excitatory synapses, an increase
in E cell excitation would lead to a corresponding increase in exci-
tation of the inhibitory cells. This would then suppress E activity
once more, and effectively counteract the scaling effect. But by
scaling down the inhibitory synapses onto E cells at the same
time as scaling up the excitatory synapses, the increased I cell
activity (resulting from increased E cell activity) will be weighted
lower by the E cells, thereby maintaining the increase in E cell
activity caused by scaling, whilst also maintaining I cell firing
rates.

The following parameter values were used for synaptic scaling:
strength β = 4.0 × 10−8/ms/Hz; integral controller weight γ =
2.0 × 10−10/ms2/Hz; activity sensor time constant τa = 100 ×
103 ms. Individual cell scale factors were bounded to 100, to pre-
vent biologically-unrealistic levels of scaling (representing AMPA
receptor accumulation) increasing to infinity.

Instantaneous firing rates for each cell i were sensed using van
Rossum’s slow-varying sensor ai(t), which increased monotoni-
cally with spikes at times tx (given by the Dirac delta function δ),
and decayed otherwise (van Rossum et al., 2000):

τa
dai(t)

dt
= −ai(t) +

∑
x

δ(t − tx) (2)

The sensor decays exponentially as it is updated at each non-firing
timestep. However, the use of event-driven just-in-time synapses
in the model (Lytton et al., 2008; Neymotin et al., 2011a) meant
that cell states were only updated at each spike event rather than
at every timestep, so inter-spike decay of the activity sensor could
only be calculated periodically. The activity sensor was therefore
modified to cope with periodic-timestep updates. Here, the first
term decays the sensor according to the time since the last spike
t − t′, and the second term increments it for the new spike, with
both terms updated concurrently on the occurrence of a spike at
time t:

ai(t) = ai(t′)e− 1
τa

(t − t′) + 1 − ai(t′)
τa

(3)

Figure 3 shows the activity sensor values of a simulated uniform-
random spiking neuron operating under the constant-timestep
update policy (2), and the equivalent activity values under the
periodic-update policy (3). The activity rises identically in both
cases when spikes occur, but the periodic sensor does not decay
until the next spike event occurs, giving the step-like appear-
ance. The values at the spike times are therefore correct down to
round-off error at the spike times.

To set the target firing rate a
goal
i for each neuron, and thus

also the global total activity A goal, there are two options. The first
would be to provide an arbitrary firing rate target (say, 0.5 Hz)
for each cell, but this would be likely to fundamentally affect the
network dynamics by over-riding the natural firing rate of each
neuron. Instead, the intrinsic dynamics of the network were used

FIGURE 3 | Activity sensor updating at every simulation timestep

(Equation 2; black) and at every spike for activity-driven just-in-time

synapses (Equation 3; magenta).

to provide information on the natural firing rates of neurons,
which (once stabilized over time) were then taken as the target
activity rates. Initially, with synaptic scaling off, activity sensors
began at ai(t0) = 0 Hz. They were then adjusted over 1600 s of
simulated time based on the actual activity of the cells, according
to Equation 3. Synaptic scaling was then switched on, with the
value of the activity sensor at that time used as the ongoing target
firing rate:

a
goal
i = ai(t = 1600 s) (4)

The global activity target (section 2.2.1) was then set as

A goal =
∑

i

a
goal
i (5)

2.2.1. Global synaptic scaling driven by neurotrophic factors
Small (2008) predicts that not only should cells homeostati-
cally scale back up to their target activity in order to com-
pensate for lost activation, but that the network as a whole
should also scale up its activity in response to damage, in
order to maintain a global absolute firing rate and therefore
maintain information processing throughput. Individual cells
are therefore required to alter their activity targets, so they can
scale up beyond their original “design” firing rate to compen-
sate for the global loss of activity. Such a mechanism would
require scaling to be governed by a global activity signal in
addition to the local signal generated by each cell’s activity
sensor. This global signal takes the form of a combination
of a reduction in the release of the activity-dependent neu-
rotrophin BDNF, and an increase in the release of the growth
factor TNF-α from neighboring glial (support) cells (Turrigiano,
2008).

Such neurotrophic scaling was incorporated into the simula-
tions by calculating a global scaling signal C as a proportion of
global activity A, and comparing this to the baseline target global
activity A goal:

A(t) =
∑

i

ai(t) (6)

C(t) = A goal

A(t)
(7)
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Synaptic scaling for each cell (Equation 1) was then adjusted to
include the global scaling signal C as a multiplier of the usual

target activity a
goal
i :

dci(t)

dt
= βci(t)[C(t) · a

goal
i − ai(t)] + γ ci(t)

∫ t

0
dt[C(t) · a

goal
i − ai(t)] (8)

This had the effect of allowing the target activity level of a cell
to be adjusted dynamically up and down in response to global
scaling signals, as hypothesized by Turrigiano (2008), but with
the scaling mechanism still applied locally at each cell based on
changes in its postsynaptic input.

2.3. CELL DEATH
Small (2008) hypothesized that, as cells are driven to over-activity
beyond their target firing rates, the subsequent influx of activity-
dependent calcium ions – exacerbated by the β-amyloid pathol-
ogy present in AD (Demuro et al., 2010) – triggers an apoptopic
cell-death mechanism. The cell is programmed to die safely and
cleanly in order to prevent more damaging necrosis, in which the
cell dies, its membrane breaks down, and parts of the dead cell
are leaked into the intracellular space, provoking further dam-
age. Such over-activity may be caused by chronic over-activation
following significant compensatory scaling, or by activity peaks
caused by synchronized network-wide bursting, or even by cells
being over-activated by strongly-innervating neurons to which
they are connected.

In simulations with excitotoxicity, cell death for inhibitory
and excitatory cells was modeled by calculating, at the time of
each synaptic event, the ratio of the error between the cell’s cur-
rent activity value and its target activity, normalized by its target
activity:

aerr
i = ai(t) − a

goal
i

a
goal
i

(9)

If aerr
i was greater than a threshold value, set in simulations to

1.5 times the goal activity, then a probability of cell death Pdeath
i

was calculated, equal to the activity error multiplied by a dele-
tion rate constant τdel. Pdeath

i was also multiplied by the scaling
factor value of the cell, to model the effects of scaling-dependent
excitotoxicity, and by the time since the last synaptic update at
timet′i :

P death
i (t) = τdel · aerr

i ci(t − t′i) (10)

To prevent external inputs from dominating the dynamics as
internal connectivity was reduced, the external input weights were
globally reduced in proportion to the number of remaining cells
N(t) in the network, subject to a scaledown rate constant τext :

wext(t) = 1 − N0 − N(t)

N0
∗ τext (11)

In order to start the feed-forward process of cell death, it was
necessary to provoke compensatory up-scaling throughout the

network. During normal running, the activity levels, ai, and sub-
sequent scaling multipliers, ci, of each cell fluctuate slightly. At the
time of disease onset, the 15 cells with the highest ci were deleted
manually, using the assumption that these cells would be most
susceptible to scaling-related pathology. This caused a reduction
in global activity, causing the remaining cells to scale up above
baseline levels, and enabling the onset of the damage cascade via
Aβ-mediated cell death.

The deletion process was initiated after 17,600 s of baseline
activity (with scaling initiated after the first 1600 s), to allow
synaptic scaling sufficient time to stabilize, and to identify the cells
which would scale up the most. τdel took the value 1 × 10−4, giv-
ing a level of deletion of approximately 78 ± 10% of cells after 2
days of simulated time. Altering τdel was found to have only linear
effects on the global deletion rate.

2.4. ELECTROSTIMULATION
Electrostimulation was implemented in the form of a regular
Poisson-generated pulse applied to all of the excitatory cells in
the specified population(s). The frequency of stimulation and
unitless weight multiplier [broadly analogous to the stimulation
strength in tDCS or TMS applications, typically around 2 mA
(Hansen, 2012)], could be varied. The mechanism of action of
tDCS and TMS is to partially depolarize the cell membrane,
thus essentially lowering the activity threshold required to fire
an action potential. Ideally, this would be implemented in the
model as a direct modifier of the membrane potential, but due
to limitations in the simulation environment it was necessary
to apply the stimulation indirectly via AMPA synapse injection.
As AMPA receptors were subject to homeostatic scaling, this
would also have led to scaling of the electrostimulation. However,
stimulation should be scaling-independent as it operates directly
on the cell membrane. Therefore, it was necessary to “de-scale”
the electrostimulation weight at each cell’s AMPA synapses by
multiplying by 1

ci
.

In some simulations, electrostimulation was applied to only
a single layer of the model, in order to differentate between
localized and global stimulation (e.g., modeling a local neuro-
prosthesis vs. global tDCS). To identify the most appropriate layer
of the model for stimulation, mutual information measures were
obtained for each individual excitatory cell between that cell and
the rest of the network. This was achieved using the Fourier
spike-train analysis method of Yu et al. (2010); Crumiller et al.
(2011). The network was driven by high-intensity stimulation to
elicit spike trains which displayed causality between each cell and
the remainder of the network. The results of this information-
probing, averaged over 20 runs, showed layer E2/3 cells to have
the highest contribution of information to other cells within the
network (Figure 4). Additionally, E2/3 is one of the thickest layers
of the cortex, making it physically easier to target with a prosthetic
implant.

2.5. COMPUTATIONAL SETUP
An activity sensor time constant τa of 100 s (van Rossum et al.,
2000) leads to a simulation timescale of several hours for synaptic
scaling: far closer to the expected biological timescale than pre-
vious studies (Fröhlich et al., 2008; Turrigiano, 2008; Chandler
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FIGURE 4 | Average information contribution (in bits/s) per cell over 20

runs, arranged by cell population. Only excitatory cell populations were
tested. E2/3 is the layer with the highest information contribution, followed
by E5a.

and Grossberg, 2012). To achieve this length of simulation, the
model was extended to allow periodic flushing of all spike data
to disk, enabling very long runs (unlimited except for available
disk space). A typical simulation of 44 h ran approximately 1–2
times faster than real time and produced around 2–4 GB of spike
data per run. Experiments were run on the BlueBEAR cluster at
the University of Birmingham, UK. The model was implemented
in NEURON 7.2 (Carnevale and Hines, 2006) for Linux, and is
available on ModelDB (https://senselab.med.yale.edu/modeldb).

2.6. INFORMATION TRANSFER
To discover whether electrostimulation negatively affects infor-
mation processing within the network at baseline, normalized
transfer entropy (nTE) measures were obtained at baseline with
and without stimulation.

Standard transfer entropy (Equation 12) reveals the direction
and quantity of information transferred between two processes
X1 and X2:

TEX1→X2 = H
(
X2f |X2p

) − H
(
X2f |X2p, X1p

)
(12)

in which the subscripts f and p refer to the future and past
outcomes of X1 and X2. In our experiments, X1 and X2 were
represented by multi-unit activity vectors (bin size 10 ms) for each
neuronal population in turn, so that each population’s total infor-
mation transfer to all other populations could be determined.

In the case that both processes X1 and X2 are in fact driven
by a third hidden process which determines the time course
of X1 and X2, the standard transfer entropy calculation makes
an invalid assumption regarding the contribution of X1–X2. To
avoid this situation, normalized transfer entropy (nTE) was devel-
oped by Gourévitch and Eggermont (2007). The nTE measure
eliminates bias by shuffling the representation of the process X1
and subtracting its average over many shuffles from the estimate

of transfer entropy, finally normalizing the value by the entropy
of H(X2f |X2p):

nTEX1→X2 = TEX1→X2 − 〈
TEX1s→X2

〉
H

(
X2f |X2p

) (13)

where X1s denotes the shuffled form of X1.
In simulations measuring information transfer, the network

was driven with sensory input inserted via layer E4. This was a
90-s local field potential recording obtained during a previous
experiment (Kerr et al., 2011) from a single electrode inserted into
the VPL nucleus of the thalamus of a female Long-Evans rat, and
filtered using a 3rd-order Butterworth bandpass filter with cutoffs
at 5 and 200 Hz.

3. RESULTS
The simulation was run 50 times for each experiment, with each
run taking different random seeds determining initial wiring lay-
out, external Poisson noise inputs, cell placement, and internal
synaptic strengths on each run.

The deletion rate constant was set to τdel = 0.0001 which,
under normal conditions, resulted in a smooth progression to
near-complete cell death within the timescale of one run of
the 44-h simulation (Figure 5). Clearly this is far faster than
biological cell atrophy in AD, but such a deletion rate was
required to be able to show the effects of disease progression
within the available time. It should be noted that the speed
of deletion is linearly proportional to τdel, and that the fol-
lowing experiments only compare relative speeds of progression
with/without stimulation, not absolute speeds. Unless other-
wise stated, the following parameters values were used: synap-
tic scaling strength β = 4.0 × 10−8/ms/Hz; integral controller
weight γ = 2.0 × 10−10/ms2/Hz; activity sensor time constant
τ = 100 × 103 ms; electrostimulation weight = 2.0, electrostim-
ulation frequency = 3 Hz, external input scaledown constant
Text = 0.25.

3.1. SYNAPTIC SCALING RESTORES LOST ACTIVITY
To provide a baseline against which to compare further experi-
ments, deletion was performed by selecting a fixed number of
cells at random at each deletion timestep. Three inhibitory or
excitatory cells were picked at uniform random every 1600 s, over
100 rounds of deletion during the simulation, giving a total of
300 deleted cells (around 64% of the network) by the end of
the simulation (Figure 5). Next, scaling was added to the net-
work and random cell death was replaced with scaling-driven
progression of pathology, as detailed in the Methods. Synaptic
scaling was used to bring each excitatory cell back toward its target
firing rate.

Despite greater cell death during AD-like deletion (on average
around 78% of cells by the end of the simulation), the compen-
satory synaptic scaling maintained average firing rates for much
longer than in the absence of scaling. Analysis of the scaling
factor values ci across all E cells showed a dramatic increase in
multiplicative compensatory scaling during the deletion process,
averaging nearly 30 times the baseline value by the end of the
simulation period.
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A B

FIGURE 5 | (A) Mean firing rates across all E cells during deletion with (blue)
and without (green) compensatory scaling. Error patches show standard error
of the mean E cell activity over 50 runs. It should be noted that cell death is
greater in the case of AD-like deletion with compensatory scaling (78% of E

cells on average) compared to uniform deletion (64% of E cells deleted);
average firing rates are better maintained with synaptic scaling despite
greater damage. (B) Scaling factors during AD-like deletion increase rapidly
after the onset of damage.

3.2. GLOBAL NEUROSTIMULATION SLOWS PROGRESSION OF
DAMAGE

To test whether electrostimulation is capable of replacing lost
activity during damage, suppressing excessive synaptic scaling,
and therefore slowing the progression of damage, the simula-
tion was run for a further 2 days with synaptic scaling enabled.
Continuous stimulation was provided after 17,600 s at various
frequencies from 0.5 to 30 Hz, and at various unitless intensities-
from 0.5 to 6.0. The levels of cell death for each run (of 50, each
with different random initial seeds) were compared to the levels of
cell death in the equivalent run without stimulation; the resulting
differences are shown in Figure 6.

Electrostimulation at low frequencies (1–10 Hz) reduced the
rate of cell death in E cells (Figure 6A) by up to 5%. However,
at 10 Hz and above, there was an increase in the death rate of I
cells. This was due to the I cells having to provide extra inhibitory
activity to balance the increased drive from the electrostimula-
tion, suggesting that stimulation at these higher frequencies is
detrimental to the network during disease progression. A similar
effect was seen with stimulation weight (Figure 6B), with increas-
ing weight successfully slowing the rate of E cell death by up to
18% at all intensities tested, but actually contributing to faster I
cell death at weights above 4.0.

Examining the effects of electrostimulation on excitatory fir-
ing activity and rates of compensatory synaptic scaling shows that
the stimulation is capable of further maintaining E cell activity
in combination with synaptic scaling (Figure 7A), with average
E firing rates after 2 days of damage at around 0.43 Hz with
stimulation, compared to 0.38 Hz without stimulation. Similarly,
synaptic scaling is shown to be suppressed by electrostimulation
(Figure 7B).

These results suggest that electrostimulation could lead to a
reduction in the rate of cell death in synaptic scaling-driven
AD-like atrophy situations, through providing additional com-
pensatory activity and reducing the need for unbalancing com-
pensatory synaptic scaling. However, the choice of frequency
and intensity of stimulation is important, as stimulation at too

high a frequency or intensity may instead cause further damage,
particularly through over-stimulation of the inhibitory system.

3.3. LOCALIZED STIMULATION VIA NEUROPROSTHESIS
Global stimulation in a clinical setting (e.g., via tDCS) requires
repeated visits to a treatment center, and such high-energy stim-
ulation is neither targeted, nor currently certified as safe for more
than 20 min of stimulation per 48 h (Utz et al., 2010). High-
intensity and/or long-duration stimulation has been shown to
induce brain lesions in rats (Liebetanz et al., 2009). A more prac-
tical solution for long-term low-intensity treatment for AD may
be to induce continual low-intensity stimulation via an implant,
such as is currently achieved with Parkinson’s disease patients.
To investigate whether non-global stimulation could have similar
therapeutic effects to global stimulation, we inserted a simulated
prosthetic stimulation into the cell population E2/3, as this layer
is known to be a driver of neural activity throughout the rest
of the microcircuit (Weiler et al., 2008; Neymotin et al., 2011b),
and information-contribution measures show that it is the most
influential layer on overall network activity (Figure 4).

The results in Figure 8 indicate that, although the localized
stimulation reduced E cell death up to 10 Hz (weight = 2.0) or up
to weight 4.0 (frequency = 4 Hz) by up to 3%, the effect on cell
death is reduced in comparison to global stimulation (Figure 9).
Similarly, the effect on mean firing rates and reduction of scaling
is present, but smaller than in the whole-brain stimulation case
(Figure 9B). This is not surprising in itself, but it shows that local
stimulation could still make a usable alternative to whole-brain
stimulation.

3.4. EFFECTS OF STIMULATION ON INFORMATION TRANSFER
To discover whether electrostimulation negatively affects infor-
mation processing within the network at baseline, normalized
transfer entropy (nTE) measures were obtained at baseline with
and without neuro-stimulation (see Methods).

In these simulations, the network was driven with sensory
input inserted via layer E4. This was a 90-s local field potential
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A B

FIGURE 6 | Change in dead E (red) and I (blue) cells after 2 days of AD-like scaling-driven damage, compared to cell death levels without stimulation,

across varying frequencies (A) and weights (B) of electrostimulation. Error bars show standard deviation over 50 runs.

BA

FIGURE 7 | Average activity (A) and scaling factors (B) of E cells during AD-like scaling-driven deletion without (green) and with (blue)

electrostimulation (4 Hz, strength 2.0).

A B

FIGURE 8 | Local electrostimulation of layer E2/3: change in dead E (red) and I (blue) cells after 2 days of AD-like scaling-driven damage, compared to

cell death levels without stimulation, across varying frequencies (A) and weights (B) of stimulation (50 experimental runs).

recording obtained during a previous experiment (Kerr et al.,
2011) from a single electrode inserted into the VPL nucleus of
the thalamus of a female Long-Evans rat. The inclusion of this
sensory signal raised the baseline firing rates and increased the
effectiveness of communication between cells, so that informa-
tion transfer could become visible compared to baseline. Addition

of neuroprosthetic stimulation did not interfere with the flow
of information from the E4 sensory signal, with the nTE mea-
sures remaining largely unchanged in the presence of stimulation
(Figure 10). In addition, to determine whether stimulation in
the case of AD-like damage is capable of maintaining informa-
tion processing capabilities, nTE measures were obtained at a
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FIGURE 9 | Average activity (A) and scaling factors (B) of E cells during AD-like scaling-driven deletion without (green) and with (blue) localized E2/3

electrostimulation (4 Hz, strength 2.0).

FIGURE 10 | Normalized transfer entropy (nTE) measures for each cell

population with (green) and without (blue) replay of a recorded rat

LFP signal inserted via layer E4. The sensory signal reveals the true
information transfer rate of the network in the presence of an informative
signal. Addition of informationless electrostimulation on top of the sensory
signal does not affect the ability of the network to transfer information.
Error bars show standard error of the mean over 50 runs.

point mid-way through the damage cascade (1 day), in situations
with and without stimulation (4 Hz, weight 2.0; Figure 11A). The
results show a clear improvement in the information transfer
within the network with prosthetic stimulation, in comparison
to the network without stimulation in which the nTE values were
nearly 0. With stimulation, the nTE values during damage were
close to the pre-damage baseline nTE values, albeit with greater
variance.

Although the mean information transfer in the damaged net-
work with stimulation remained comparable to baseline, there
was a notable shift of the peak nTE values from the E4 population
toward the E2/3 and E5a populations. The resulting distribution
of information contribution across populations mirrors that seen
in Figure 4, which was obtained under conditions of high inten-
sity stimulation. This suggests that under a regime of stimulation,

the network became more and more driven by internal signals
rather than the external E4 sensory signal, which could be a pos-
sible warning sign for the generation of stereotyped activation
patterns seen in autism (Qiu et al., 2011; Shepherd, 2013).

After 2 days of simulated damage, the change in proportion of
dead E and I cells was calculated (Figure 11B). As before, increas-
ing the intensity of stimulation led to a decrease in E cell death
rates of up to 5%, but the negative effect on I cells was more
pronounced even at low stimulation intensities when the network
was driven with a sensory signal via E4.

4. DISCUSSION
In atrophic disorders such as Alzheimer’s disease, cell death leads
to compensatory up-scaling of excitatory AMPA receptors in
remaining cells. This is hypothesized to induce instabilities as
small, localized fluctuations in cell activity become magnified
and lead to hyperactivity of nearby healthy neurons. In the pres-
ence of Aβ (which mediates calcium excitotoxicity in Alzheimer’s
disease), these transient hyperactive events cause excitotoxic cell
death in remaining healthy cells and send the network into a
feed-forward cascade of damage.

We have described a mechanism by which therapeutic low
intensity, low frequency electrostimulation could act on home-
ostatic synaptic scaling mechanisms to reduce the pathological
effect of excessive compensatory scaling in these diseases. The
achieved reductions in E cell death are modest both in the
whole-brain (e.g., tDCS) and the safer localized stimulation (e.g.,
neuroprosthesis) case: between 2 and 5% depending on the type
and location of stimulation. However, this reduction in cell death,
coupled with the general restoration of activity by the electros-
timulation, is sufficient to maintain average firing rates of E
cells better than with synaptic scaling alone, and crucially is also
able to maintain average information transfer rates between cell
populations compared to the baseline disease case.

It should be noted that the exact frequencies and intensities
of stimulation chosen in this work are specific to the present
model, and cannot be directly translated into a clinical set-
ting. Stimulation in a different model, or in a clinical setting,
would necessitate experimentation to find appropriate values.
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A B

FIGURE 11 | (A) Normalized transfer entropy (nTE) measures for each cell
population at baseline with the rat LFP signal inserted via layer E4, before
damage (blue), and after one day of damage with (red) and without (green)

therapeutic electrostimulation (4 Hz, weight 2.0). (B) Average change in cell
death for E (red) and I (blue) cells after 2 days of AD-like damage with
electrostimulation and E4 sensory signal, compared to baseline (50 runs).

Our results show the changes in cell death for relative changes in
stimulation frequency and intensity above the baseline AD state.

Such stimulation could be applied via either localized pros-
thetic stimulation, or by global whole-brain stimulation (e.g.,
tDCS). Localized prosthetic stimulation has clear benefits in
portability and directness of action compared to whole-brain
stimulation, which currently requires tightly-controlled sessions
of stimulation in a clinical setting. Our model has shown that
such localized stimulation in layer E2/3 can still have positive,
albeit reduced, effects on cell death rates, although our model has
not looked at the ability of such stimulation to act across multi-
ple columns of the cortex, so it is possible that multiple prostheses
would need to be used across the brain. Prosthetic stimulation has
a good track record in treatment of Parkinson’s disease (Modolo
and Beuter, 2009), albeit at high frequencies which our model
suggests will actually enhance damage in degenerative disorders,
so the development of a low-frequency neuroprosthetic device for
treatment of Alzheimer’s disease already has precedent.

Clearly, testing the long-term outcomes of such stimulation
would be difficult, as such a clinical trial would take many years
to complete. Nevertheless, initial 1-year studies have indicated
positive responses in suspected AD patients to gentle electrostim-
ulation (Hansen, 2012; Smith et al., 2012; Rabey et al., 2013). The
proposed mechanism of action of electrostimulation on suppress-
ing excessive synaptic scaling could be tested in vitro by applying
non-fatal signal-blocking toxins to a neuronal cell culture. The
resulting increases in synaptic scaling as the cells compensate for
the reduction in activity, measured as changes in AMPA-mediated
synaptic currents, could be obtained according to the method
of Turrigiano et al. (1998). Repeating the experiment with a
second cell culture, but in the presence of low-intensity electros-
timulation, should yield smaller changes in the upregulation of
AMPA receptor concentrations. It would also be interesting to
note whether firing rates are more stable in this case than in
the case without electrostimulation. Finally, it has already been
shown by Yu et al. (2010) and Crumiller et al. (2011) that their
Fourier information measure can be applied to networks of bio-
logical neurons. Information measures for each cell in the culture
could be obtained using this method, and compared with the

predictions made in this paper for the distribution of infor-
mation transfer with/without electrostimulation and before/after
damage.

One interesting observation from our model is of a shift of
the network dynamics from being externally-driven via E4 input,
to becoming more strongly internally-driven (primarily via E2/3
and E5a) during long-term stimulation, suggesting a possible risk
factor for stereotyped activity associated with disease (Qiu et al.,
2011; Shepherd, 2013), resulting from such stimulation.

The model does not currently include the effects of tau pathol-
ogy, which is expected to operate more on synapses than on
whole cells. However, we expect the results to be largely similar, as
synaptic dysfunction leads to lower activation of cells, with sub-
sequent compensatory scaling and greater excitability still leading
to excitotoxicity.

4.1. JUSTIFICATION FOR OUR APPROACH
Due to the high computational costs of running multiple long (2-
day) simulations, the model used in this work consisted of only
a single cortical column. The model exhibits recurrent connec-
tivity within layers and feed-forward connectivity between layers
based on anatomical data. Previous work with the same model
(but using much shorter simulation runtimes) has shown how, in
a multi-columnular architecture which includes additional feed-
forward lateral connectivity between columns, excitation spreads
first within, and then across, columns (Neymotin et al., 2011b).
Since our hypothesis is based on the principle that reduced exci-
tation in the presence of AD pathology leads to destabilizing
compensatory upscaling in the remaining cells, it follows that
reduced excitation within one column would lead to reduced
intra-columnular lateral excitation as well, and therefore the same
spread of pathology not only within, but between columns.

We also note that AD involves a complex process that
occurs at multiple temporal (from seconds to years) and spatial
(molecular, cellular, network, brain area, behavior) scales (Lytton
et al., 2014). Due to the complexity of the different subsystems
involved, our model is only a coarse approximation that neces-
sarily leaves out many of the details and interactions that occur
in vivo. However, within its own scale, our model offers several
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experimentally-testable predictions, which may suggest further
research to be performed in vitro or in vivo.

The Hodgkin-Huxley (HH) model provides a rich formal-
ism for describing electrical dynamics in neurons contributing to
action potential generation. The HH formalism also allows spec-
ification of multiple classes of ion channels, some of which admit
calcium. Calcium is an ubiquitous second messenger, involved
in regulating neuronal learning, plasticity, and which also con-
tributes to excitotoxicity and ischemia, which are associated
with different disease processes. Although electrical and calcium
dynamics are crucial for fully understanding how AD develops
in neurons, adding these dynamics into our model would dras-
tically increase computational costs. In addition, some of the
details are left out in order to simplify the model and allow us
to focus on homeostatic synaptic scaling, which only requires
spiking neurons. By using our simplified model and deriving pre-
dictions from it, more detailed models could be developed with
HH neurons, and using the same rules of synaptic scaling.

A strength of our approach is that we can look at much longer
simulation runs (due to lower computational costs) as well as
more parameter variations. Therefore, for the purposes of our
investigation, we have investigated network effects that are pre-
sumed to work via synaptic scaling. Networks of the neuron
models we are using display similar dynamics with networks of
HH neurons (Neymotin et al., 2011b; Rowan and Neymotin,
2013). Since the effects we are interested in can be simulated with
a less detailed neuron model without connecting to intracellular
calcium dynamics, we believe our simplifications are justified.
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