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In everyday life, humans and animals often have to base decisions on infrequent relevant
stimuli with respect to frequent irrelevant ones. When research in neuroscience mimics
this situation, the effect of this imbalance in stimulus classes on performance evaluation
has to be considered. This is most obvious for the often used overall accuracy, because the
proportion of correct responses is governed by the more frequent class. This imbalance
problem has been widely debated across disciplines and out of the discussed treatments
this review focusses on performance estimation. For this, a more universal view is taken:
an agent performing a classification task. Commonly used performance measures are
characterized when used with imbalanced classes. Metrics like Accuracy, F-Measure,
Matthews Correlation Coefficient, and Mutual Information are affected by imbalance, while
other metrics do not have this drawback, like AUC, d-prime, Balanced Accuracy, Weighted
Accuracy and G-Mean. It is pointed out that one is not restricted to this group of metrics,
but the sensitivity to the class ratio has to be kept in mind for a proper choice. Selecting
an appropriate metric is critical to avoid drawing misled conclusions.
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1. IMBALANCE IS COMMON
In their book on signal detection theory, Macmillan and
Creelman debate that comparison is the basic psychophysical pro-
cess and that all judgements are of one stimulus relative to another
(Macmillan and Creelman, 2004). Accordingly, many behavioral
experimental paradigms are based on comparisons (mostly of two
stimulus classes), like the yes–no, same-different, forced-choice,
matching-to-sample, go/no-go, or the rating paradigm. When the
correctness of such tasks is of interest, the overall proportion of
correct responses over the two classes, i.e., the Accuracy (ACC) is
the most straightforward measure. It can be easily computed and
gives an intuitive measure of the performance as long as the two
stimulus classes occur with equal probability. However, compared
to the controlled situation in a lab where often judgements have to
be made on balanced stimulus classes, natural environments pro-
vide generally different and more uncertain situations: the brain
has to select the relevant stimuli irrespective of the frequency of
their occurrence. Humans and animals are experts for this sit-
uation due to selection mechanisms that have been extensively
investigated, e.g., in the visual (Treue, 2003) and the auditory
(McDermott, 2009) domain. The behavioral relevance in a nat-
ural environment is not necessarily a matter of balance: if one is
looking for an animal in the woods, the brain would have to reject
many more of the irrelevant stimuli (wood) to successfully detect
the relevant stimulus (animal). If the correctness of behavior con-
cerning the two classes is estimated for such an imbalanced case,
a measure like the ACC is misleading, because it is biased toward
the more frequent class (Kubat et al., 1998, for discussion): miss-
ing an animal after correctly identifying many trees will not be
revealed using the ACC. This is not only relevant under natural

situations, but also for classical experimental paradigms, e.g., in
oddball conditions which are essentially based on the fact that one
class is more frequent than the other. In addition, such problems
get even worse when one compares two situations with different
class ratios or for dynamic situations where ratios may change
over time, such as, e.g., in visual screening tasks (Wolfe et al.,
2005).

To summarize, the question is how to estimate performance
appropriately for imbalanced stimulus classes, i.e., which met-
ric to use. Approaches to deal with imbalanced classes have been
suggested in a number of disciplines taking different perspectives
(outlined in section 2). In this broader context, a more general
view of a human, animal or an artificial system will be taken in
the following: an agent that discriminates incoming (stimulus)
classes. Given the high number of performance measures sug-
gested in the literature of various disciplines, the choice of an
appropriate metric (or a combination) is not straightforward and
often depends on more than one constraint. These constraints
have to be considered carefully to avoid drawing false conclusions
from the obtained metric value.

2. EXISTING APPROACHES TO DEAL WITH IMBALANCE
Existing approaches addressing the imbalance problem can be
divided into three types: modification of the underlying data,
manipulation of the way the data is classified, or application of a
metric that should not be affected by imbalanced classes. When
the data are modified, the single instances are resampled to a
balanced situation before classification or evaluation (Japkowicz,
2000; Japkowicz and Stephen, 2002; Guo et al., 2008; Sun et al.,
2009; Khoshgoftaar et al., 2010). The approaches here use either
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oversampling of the infrequent class or undersampling of the fre-
quent class, or a combination of both. On the classifier level,
imbalance can be treated by introducing certain biases toward the
infrequent class using internal modifications or by introducing
cost matrices for different misclassification types. This approach
is often used for artificial agents where the classification algo-
rithm can be influenced in an explicit and formal way, e.g., by
using cost-sensitive boosting (Sun et al., 2007). These two types of
approaches represent the most common in the fields of machine
learning, where one has full access to the training data, the test
data and the classification algorithm.

However, when one does not want to re-balance the data after
the experiment, the third type of approach is the most favor-
able for investigating the behavior of humans, animals or artificial
systems. This is the typical situation in neuroscience where the
behavior is investigated as is (within the specific scope of the
experiment). Across research areas different treatments have been
proposed for evaluating imbalanced classes such as genetics (Velez
et al., 2007; Garcia-Pedrajas et al., 2012), bioinformatics (Levner
et al., 2006; Rogers and Ben-Hur, 2009), medical data sets (Cohen
et al., 2003, 2004; Li et al., 2010), data mining, and machine learn-
ing (Bradley, 1997; Fawcett and Provost, 1997; Kubat et al., 1998;
Gu et al., 2008; Powers, 2011). In neuroscience, recent approaches
evaluating the performance of brain-computer interfaces are try-
ing to find a more direct and intuitive measure of performance
in imbalanced cases (Zhang et al., 2007; Hohne and Tangermann,
2012; Salvaris et al., 2012; Feess et al., 2013). However, the deci-
sion for a single metric is often avoided by keeping the numbers
for the two classes separated (e.g., Bollon et al., 2009; Kimura
et al., 2010).

Still there is no unified concept of how to deal with this
problem and which metric to choose, although this would be
highly beneficial: a performance measure insensitive to imbalance
enables straightforward comparisons between subjects or exper-
iments, since individual differences in class ratio have no effect.
While it is also feasible to avoid the imbalance problem by eval-
uating one class and ignoring the other, it bears the risk that
performance qualities might be misjudged, as illustrated in sec-
tion 4. An agent might yield a high performance concerning one
class, but might completely fail on the other. However, in real
world situations, it is equally important that the agent accepts the
relevant signals and rejects the irrelevant ones. In most cases, the
metric applied should directly reflect this overall behavior.

3. PROPERTIES OF EXISTING METRICS
To perform the task, the agent has some learned decision bound-
ary to separate the two classes as is formalized in Figure 1A. Due
to noise the agent labels instances to the wrong class, so that over-
lapping distributions with false positive (FP) and false negative
(FN) decisions are obtained besides the correct ones (TP and TN).
The confusion matrix comprises these four values and is the basis
for most performance metrics (compare Figure 1A). Since the
comparison of two matrices is difficult without a way of combin-
ing its elements, a metric is often used to compress the confusion
matrix into a single number.

The choice of the metric itself heavily depends on the ques-
tion addressed. Yet, this choice can be justified by certain criteria

serving as guidelines: the metric should (1) evaluate the results of
the agent and not the properties of the data, i.e., it should judge
true performance improvements or deteriorations of the agent,
(2) be as intuitive to interpret as possible, and (3) be applied
such that comparisons with the existing literature remain possi-
ble. After this choice has been made, the results essentially depend
on the metric properties. In extreme cases, if it has been a bad
choice, another metric might lead to opposite conclusions.

Metrics that compress the confusion matrix into a single num-
ber are defined in Figure 1B. The ACC reflects the percentage of
the overall correct responses and does not distinguish between
the two classes. For separate handling of the two classes and thus
a better approach to cope with imbalanced classes, the following
two metrics have been suggested which compute the mean of the
TPR and TNR. The Balanced Accuracy (BA), on the one hand,
uses the arithmetic mean (Levner et al., 2006; Velez et al., 2007;
Rogers and Ben-Hur, 2009; Brodersen et al., 2010; Feess et al.,
2013). The G-Mean (Kubat and Matwin, 1997; Kubat et al., 1998),
on the other hand, computes the geometric mean. The character-
istics of the two measures differ slightly: while the BA is still very
intuitive to interpret since ACC and BA are equal for balanced
class ratios, the G-Mean is additionally sensitive to the difference
between TPR and TNR. It has also been suggested to use differ-
ent weights for TPR and TNR, so that the BA becomes a special
case of the Weighted Accuracy (WA) (Fawcett and Provost, 1997;
Cohen et al., 2003, 2004). The additional parameter of the WA
can be used to emphasize one class during evaluation.

When the decision criterion of the agent can be influenced,
the receiver operating characteristic (ROC) curve (Green and
Swets, 1988; Macmillan and Creelman, 2004) is a good start-
ing point for evaluation. It shows the performance under a
varying decision criterion (Figure 1B). As a performance met-
ric, the area under the ROC curve (AUC) is used (Swets, 1988;
Bradley, 1997). Instead of comparing a single measure from a
confusion matrix like the other metrics discussed here, it cap-
tures the trade-off between correct responses to both classes
with the disadvantage that some decision criterion has to be
varied. Calculation of this multi-point AUC is therefore not
straightforward and has to be solved by numerical integration
or interpolation. Two simplifications have been suggested to
infer the AUC from a single data point: the interpolation of the
ROC is either performed linearly which results in the same for-
mula as the BA (Sokolova et al., 2006; Sokolova and Lapalme,
2009; Powers, 2011), or by assuming underlying normal distribu-
tions with equal standard deviations (Macmillan and Creelman,
2004). The latter approach is often used in signal detection the-
ory and psychophysics by rating detection performance with the
sensitivity measure d′ (Green and Swets, 1988; Stanislaw and
Todorov, 1999; Macmillan and Creelman, 2004). Each value of
d′ corresponds to one specific ROC curve with area AUCz (see
Figure 1B).

In contrast to ROC analysis, computation of the F-Measure
(Rijsbergen, 1979; Powers, 2011) only requires three numbers
from the confusion matrix (TP, FN and FP), because with the F-
Measure one is solely interested in the performance on the
positive class. It is often used in information retrieval when the
negative class is not of interest, e.g., because the TNs cannot
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FIGURE 1 | Confusion matrix and metrics. (A) The performance of an
agent discriminating between two classes (positives and negatives) is
described by a confusion matrix. Top: The probabilities of the two classes
are overlapping in the discrimination space as illustrated by class
distributions. The agent deals with this using a decision boundary to make
a prediction. Middle: The resulting confusion matrix shows how the
prediction by the agent (columns) is related to the actual class (rows).
Bottom: The true positive rate (TPR) and the true negative rate (TNR)
quantify the proportion of correctly predicted elements of the respective
class. The TPR is also called Sensitivity or Recall. The TNR is equal to the
Specificity. (B) Metrics based on the confusion matrix (see text) grouped
into sensitive and non-sensitive metrics for class imbalance when both
classes are considered. When the two classes are balanced, the ACC and
the BA are equal with the WA being a more general version introducing a
class weight w (for BA: w = 0.5). The BA is sometimes also referred to
as the balanced classification rate (Lannoy et al., 2011), classwise balanced

binary classification accuracy (Hohne and Tangermann, 2012), or as a
simplified version of the AUC (Sokolova et al., 2006; Sokolova and
Lapalme, 2009). Another simplification of the AUC is to assume standard
normal distributions so that each value of the AUC corresponds to a
particular shape of the ROC curve. This simplification is denoted AUCz and
it is the shape of the AUC that is assumed when using the performance
measure d ′. This measure is the distance between the means of signal
and noise distributions in standard deviation units given by the z-score.
The two are related by AUCz = �(d ′/

√
2) where � is the normal

distribution function. An exceptional metric is the illustrated MI, because it
is based on the calculation of entropies from the confusion matrix. It can
be used as a metric by computing the difference between the prior
entropy H(X) determined by the class ratios and the entropy of the agent’s
result H(X|Y) (calculated from the confusion matrix). The boxes and
connecting lines indicate the respective entropy subsets. The MI I(X;Y) is a
measure of what these two quantities share.

be determined easily. In this respect, it has been suggested as
a metric for imbalanced classes. As indicated in Figure 1B, the
F-Measure combines the TPR with the proportion of all positive
classifications that are correct, called precision (PR) or positive
predictive value, using the harmonic mean of the two. Similar to

the geometric mean, the harmonic mean is sensitive to differences
of its entities.

An attempt to infer the goodness of performance from the cor-
relation between the true class labels and the agent’s decisions is
provided by Matthews Correlation Coefficient (MCC). The MCC
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(also known as phi correlation coefficient) comes from the field of
bioinformatics (Matthews, 1975; Gorodkin, 2004; Powers, 2011)
and evaluates the Pearson product-moment correlation between
the true labels and the classification outcome. For computation of
the MCC, the two classes are not handled independently, as one
can see from the equation in Figure 1B.

Finally, the quantification of mutual information (MI) is, like
the MCC, an attempt to compare the true world with the agent’s
decision. The difference is in the concept: MI, denoted by I(X;Y),
is based on the comparison of information content measured
in terms of entropy. The entropy of the true world is the prior
entropy H(X) which is solely computed from the ratio between
the two classes. The agent predicts H(X|Y) (calculated from the
confusion matrix) using his own entropy H(Y). MI is a measure of
what the classification result and the true class distribution have
in common (compare Figure 1B). It is often used in neuroscience
to characterize the quality of neural responses (Pola et al., 2003;
Quiroga and Panzeri, 2009; Smith and Dhingra, 2009) or has been
suggested for the prediction of time series (Bialek et al., 2001). As
a performance measure, MI has been suggested for discrimina-
tion tasks as a tool to complement classical ideal observer analysis
(Thomson and Kristan, 2005) and to evaluate classification per-
formance (Metzen et al., 2011). Since the raw value obtained for
MI is depending on the prior entropy H(X) (determined from the
class ratio), it is straightforward that MI values for different class
ratios should be compared using a normalized MI (nMI) (Forbes,
1995).

4. DIFFERENT METRIC—DIFFERENT RESULT
The outcome of a study should not be affected by an improper
choice of the metric. Here, the sensitivity of the described met-
rics to class imbalance is illustrated with two examples that can
be easily reproduced. In the first example, it is mimicked that
a task has been performed and the investigator ends up with a
confusion matrix and has to judge a performance. It is assumed
that the agent performs with the same proportion of correct and
incorrect responses irrespective of the ratio between the classes
(TPR = 0.9; TNR = 0.7). Therefore, the agent would obtain twice
as many TPs and FNs, when, the occurrence of the positive class
is doubled. The metrics introduced in section 3 were used to esti-
mate the performance for each of the different class ratios applied.
Sensitivities of these metrics to changes in the underlying class
ratio are depicted in Figure 2A. ACC, F-Measure, MCC and MI
behave sensitive to the introduced imbalance, because they are
not built from a separate evaluation of the two classes. By con-
trast, G-Mean, BA (WA) and AUC (d′) stay constant revealing
what actually happened: the agent did not change its behavior.
This example illustrates how important it is to carefully select the
metric with respect to the data.

The second example illustrated in Figure 2B takes a different
perspective. What happens to the value of the respective metric
when the class ratio is fixed, but the agent changes its strat-
egy to the extreme case of responding solely with one class no
matter which data it received? To illustrate this, the same confu-
sion matrix as in the first example was used and the class ratio
fixed to 1:4. The performance changes relative to pure guess-
ing (TPR = TNR = 0.5) are computed for an agent labeling all

instances as negative or positive, respectively. Most metrics show
what should be revealed: the modified agent is not better than
guessing. However, the values obtained for ACC, F-Measure and
G-Mean show a deviation from guessing. Most misleading is the
obtained ACC of 0.8 for the case where all instances were classi-
fied as negative. This indicates a meaningful decision of the agent,
and, yet, the ACC is purely based on the fact that the negative
instances are four times more frequent. Even worse, the estimated
performance of this failing agent is better than the one of the real
agent (0.74).

5. CONCLUSIONS: METRICS INSENSITIVE TO IMBALANCED
CLASSES

Many treatments to the imbalance problem have been suggested,
but only some of them are applicable when one wants to evaluate
the behavior of an agent that cannot be changed and comes as is,
like it is often the case in neuroscientific studies. Then, the influ-
ence of different class ratios can be minimized by two approaches:
either one can re-balance the data afterwards with the drawback
of neglecting the true distributions in the task, or a metric can be
chosen which is largely insensitive to the imbalance problem. The
variety of used metrics makes this choice not straightforward. As
has been illustrated, some metrics like the ACC are highly sen-
sitive to class imbalance, while others like the BA are not. More
generally, it appears that a reliable choice for imbalanced classes is
a metric that separately treats positive and negative class as TPR
and TNR, like WA, BA, G-Mean, d′, and AUC. Out of these, the
BA is probably the most intuitive, because it can be interpreted
similar to the ACC as a balanced percent correct measure. For the
more general WA the respective weights have to be fairly deter-
mined, so if the two classes are equally important the BA is a
proper choice.

Despite the fact that the situation is more complicated when
more than two classes are considered, some of the principles illus-
trated here remain useful. Although the transfer of the suggested
metrics to a multi-class scenario is not straightforward, it still
holds that metrics that equally treat the existing classes as perfor-
mance rates are robust to changes in the individual class ratios.
In addition, it would be favorable if the value of the metric is
independent of the number of classes, such that, e.g., the same
metric value in two experiments with different numbers of classes
refers to the same performance. For the BA in an experiment
with m classes, this could be achieved by summing up all m rates
and dividing them again by m. As an alternative approach, many
multi-class problems can be boiled down to a two-class problem
for evaluation, e.g., by dividing the individual class examples into
relevant and irrelevant before evaluation.

Finally, it should be stressed that the purpose of this review
is to outline the implications when using imbalanced classes,
and not to render metrics as generally inappropriate. Finding an
appropriate metric for a particular question is complicated and
often multiply constrained. Sometimes it may be necessary to use
multiple metrics to complete the picture. When choosing a met-
ric, one has to be aware of its particular drawbacks to know the
weaknesses of one’s own analysis. This is of critical importance,
because the applied metric is the basis for all performance judge-
ments in the respective task. Therefore, it should be informative,
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FIGURE 2 | Performance, Class Ratios, and Guessing. Examples of metric
sensitivities to class ratios (A) and agents that guess (B). Effect of the
metrics AUC and d ′ are represented by AUCz using the simplification of
assumed underlying normal distributions. The value for d ′ in this scenario is
0.81. Similarly, the BA also represents the effect on the WA. (A) The agent
responds with the same proportion of correct and incorrect responses, no
matter how frequent positive and negative targets are. For the balanced case

(ratio 1:1) the obtained confusion matrix is [TP 90; FN 10; TN 70; FP 30].
(B) Hypothetical agent that guesses either all instances as positive (right) or
as negative (left) in comparison to the true agent used in (A). Class ratio is
1:4, colors are the same as in (A). The performance values are reported as
difference to the performance obtained from a classifier guessing each class
with probability 0.5, i.e., respective performances for guessing are: [ACC 0.5;
G-Mean 0.5; BA 0.5; F-Measure 0.29; MCC 0; AUCz 0.5; nMI 0].

comparable and concurrently give an intuitive access for better
interpretability. For imbalanced classes it is difficult to compare
values of a metric where the guessing probability is depending
on the class ratio, like is the case for the F-Measure. To generally
improve the comparability between studies, the confusion matrix
and an estimate of the class distribution could be supplementar-
ily reported to the metric used. Many performance metrics can be
computed from these numbers, so reporting these numbers could
serve as a common ground to compare one’s own results to exist-
ing ones even if a different metric was chosen. This information
could be provided in a compressed way, e.g., the BA and the TPR
alone can be used to compute a confusion matrix (containing
rates).
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