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The conventional interpretation of spikes is from the perspective of an external observer
with knowledge of a neuron’s inputs and outputs who is ignorant of the contents of the
“black box” that is the neuron. Here we consider a neuron to be an observer and we
interpret spikes from the neuron’s perspective. We propose both a descriptive hypothesis
based on physics and logic, and a prescriptive hypothesis based on biological optimality.
Our descriptive hypothesis is that a neuron’s membrane excitability is “known” and the
amplitude of a future excitatory postsynaptic conductance (EPSG) is “unknown”. Therefore
excitability is an expectation of EPSG amplitude and a spike is generated only when EPSG
amplitude exceeds its expectation (“prediction error”). Our prescriptive hypothesis is that
a diversity of synaptic inputs and voltage-regulated ion channels implement “predictive
homeostasis”, working to insure that the expectation is accurate. The homeostatic ideal
and optimal expectation would be achieved when an EPSP reaches precisely to spike
threshold, so that spike output is exquisitely sensitive to small variations in EPSG input.
To an external observer who knows neither EPSG amplitude nor membrane excitability,
spikes would appear random if the neuron is making accurate predictions. We review
experimental evidence that spike probabilities are indeed maintained near an average of
0.5 under natural conditions, and we suggest that the same principles may also explain
why synaptic vesicle release appears to be “stochastic”. Whereas the present hypothesis
accords with principles of efficient coding dating back to Barlow (1961), it contradicts
decades of assertions that neural activity is substantially “random” or “noisy”. The
apparent randomness is by design, and like many other examples of apparent randomness,
it corresponds to the ignorance of external macroscopic observers about the detailed inner
workings of a microscopic system.
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INTRODUCTION
Within the field of information theory, there is a common though
often implicit belief that the information content of a signal
depends only on its statistical relationship to the quantity of
interest (e.g., Rieke et al., 1997). In this view, we should be
able to understand the meaning of a neuron’s spikes entirely
through an input-output (I-O) analysis, without any consid-
eration of events happening within the neuron. This view
of information is a natural consequence of the opinion that
probabilities are essentially equivalent to frequencies and are
properties of an observed system, rather than being entirely
conditional on the knowledge possessed by an observer about
that system (Fiorillo, 2012). The faults and limitations of the
“frequentist” definition of probability and information within
neuroscience have been discussed previously, together with the
virtues of the “Bayesian” definition advocated by Jaynes (Fiorillo,
2012). The present work considers a neuron as an observer

that knows only what is in its internal biophysical state. Like
Jaynes (2003), we presume that probabilities are always condi-
tional on the local and subjective information of an observer,
through the universal and objective principle of logic (Fiorillo,
2012).

At the center of the present work is a very simple idea that
has been around at least since the advent of information theory
(Shannon, 1948). If an event has two possible outcomes, observa-
tion of the outcome will convey the maximum amount of infor-
mation if the probability of each is equal prior to observation.
The output of most neurons is a spike that is virtually all-or-none
(unlike a graded output, this allows for reliable communication
across distances), and thus the amount of information that could
be conveyed by a spike will be maximal when its probability is
1/2. Although this is not controversial, it has nonetheless been
associated with considerable confusion. This is because the infor-
mation conveyed by any event will necessarily depend entirely on
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the prior knowledge of the observer, and a signal that is highly
informative to one observer could be entirely uninformative to
another. Without a clear understanding of how probabilities and
information depend on the observer, scientists have often mis-
attributed their information to the neurons they study (Fiorillo,
2012).

Consider the case of selecting questions that must have “yes”
or “no” answers (as in the game “20 Questions”). If there is a real
number known to be within the range of 0–10, and the goal is
to guess it as accurately as possible after receiving the answer to
a yes-no question, then the best strategy would be to bisect the
range of possible numbers evenly by asking “is the number greater
than 5?” This is the optimal question because “5” is the expected
value and will maximize the questioner’s uncertainty (entropy) by
causing both “yes” and “no” to have equal probabilities of 1/2. The
answer will therefore provide the maximal amount of information
by eliminating this uncertainty. Any other question would result
in less initial uncertainty about the answer, and therefore the
answer would convey less information. However, the answer is
informative only if one knows the question. A second observer
may also know that the answer will be “yes” or “no”, but not know
the question. Thus two observers could agree with one another
that the probability of “yes” is 1/2, but the one who knows the
question could get maximal information, whereas the one who
is entirely ignorant of the question would learn nothing useful
from the same answer, and might be tempted to declare that the
answer was entirely random noise. Here we suggest that in many
instances neuroscientists have essentially taken the perspective of
the naive observer, being ignorant of the prior information of the
neuron that “asks the question” and generates and interprets the
spikes.

It is well known that the spike output of neurons often appears
“stochastic”, insofar as the same stimulus input causes a variable
spike output. Likewise, when an action potential arrives at a
synaptic terminal, it may or may not causes release of neurotrans-
mitter. Although it has been noted that this variability in I-O rela-
tions could convey information (Softky and Koch, 1993; Softky,
1995), over decades it has repeatedly been attributed to “noise” or
“randomness” that is presumed to degrade the ability of neurons
to transmit information (Calvin and Stevens, 1968; Tolhurst et al.,
1983; Shadlen and Newsome, 1994, 1998; London et al., 2010).
Models of how neurons could perform inference have proposed
that the variability may serve a function by signifying subjective
uncertainty (Pouget et al., 2000; Deneve et al., 2001; Hoyer and
Hyvarinen, 2003; Jazayeri and Movshon, 2006; Ma et al., 2006;
Beck et al., 2008; Berkes et al., 2011). Whether the variability is
noise or a functional signal related to uncertainty, uncertainty
(ignorance) itself is not desirable, and both of these viewpoints
propose that a more variable output (in response to a fixed input)
would correspond to greater uncertainty. In contrast, a central
conclusion of the present work is that this same variability is a
signature of optimality and knowledge if we consider the per-
spective of a neuron, which performs work (consumes energy) to
produce it.

It may seem strange or even unscientific to treat neurons as
observers. Indeed, Skinner and other “behaviorists” argued that
to be objective and to give psychology a firm scientific basis, we

should not even treat humans and other animals as observers, but
that we should instead characterize their behavior solely in terms
of I-O relations (environmental inputs and behavioral outputs).
Psychology has now mostly rejected that view, and instead seeks
to understand mental events and behavior from the first-person
perspective of the brain as it observes its world. The probability
theory of Jaynes (2003) allows us to describe a subjective state
of knowledge in an objective manner (Fiorillo, 2012). Many
elegant studies have now demonstrated that aspects of perception,
cognition, and motor control that appeared maladaptive can
be understand as optimal (rational or Bayesian) if we take the
brain’s perspective, including sensory illusions (e.g., Weiss et al.,
2002; Niemeier et al., 2003; Yang and Purves, 2003; Körding and
Wolpert, 2004).

Illusions would seem to provide clear evidence of the brain’s
malfunction. However, the brain only appears to function poorly
from the perspective of a third-party observer who knows some-
thing that the brain itself does not and could not know. Whereas
the brain must infer the sensory stimulus given limited sensory
evidence and its own prior knowledge of what is likely, the third
party has privileged knowledge of the “true sensory stimulus”. The
brain integrates its information as well as it possibly can, but it
nonetheless “misperceives” the stimulus on those rare occasions
when the stimulus is something unusual and unexpected, like a
fast moving object (Weiss et al., 2002). Thus, what once appeared
pathological from our perspective as external observers can sud-
denly be understood as optimal once we consider the unique
perspective of the neural observer. We propose that, in a precisely
analogous manner, the variability in a neuron’s I-O relationship
is optimal rather than pathological once one takes the neuron’s
perspective.

INFORMATION THEORY FROM THE NEURON’S PERSPECTIVE
Our theory is closely related to Barlow’s theory of “efficient
coding” (Barlow, 1961) and the extensive literature that followed
on the relation between neural activity and natural stimulus
statistics (e.g., Laughlin, 1981; Srinivasan et al., 1982; Linsker,
1988; Rieke et al., 1997; Stemmler and Koch, 1999; Brenner
et al., 2000; Simoncelli and Olshausen, 2001; Hosoya et al., 2005;
Sharpee et al., 2006). In particular, the frequency distribution of
a neuron’s output (e.g., firing rate) should be “matched” to the
distribution of its input intensity, so that if the input distribution
is Gaussian, then the I-O relation should ideally follow the form of
the corresponding cumulative Gaussian (Laughlin, 1981; Brenner
et al., 2000). A neuron’s membrane excitability determines its I-O
relationship, and excitability should adapt so that the location (x-
offset) and scale (slope) of the I-O curve cause the neuron’s output
to be most sensitive to the most probable inputs (the steep and
linear portion of the curve) at the expense of improbable inputs
(the non-linear and nearly flat portion of the curve). Figure 1
illustrates this principle as it applies to the cellular level, with
the amplitude of excitatory postsynaptic conductance (EPSG)
as input and a binary spike or no spike as output. We refer to
the principle as “predictive homeostasis”, rather than “predictive”
or “efficient” coding, to emphasize that it is implemented by
numerous homeostatic mechanisms of the same sort that are well
known by biologists to be present in all cells.
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FIGURE 1 | Membrane excitability and the I-O relation. (A) A simulated
neuron receives EPSGs (top) of only three amplitudes (1, 2, and 3 units)
with intervals long enough so that there is no temporal summation of
EPSPs (bottom). It generates a spike only if EPSG amplitude is 2.5 units or
greater (dashed blue line), and Hypothesis 1 states that 2.5 is therefore the
expectation from the neuron’s perspective. If its excitability were optimal
(given knowledge of the 3 EPSG amplitudes but no means to know which
would occur at a particular moment), its spike threshold would correspond
to 2.0 units (dashed red line). (B) Spike output as a function of EPSG input
amplitude, for the neuron illustrated in “A” (blue) and for the optimal
neuron (red). Step functions (solid lines) correspond to binary spike output,
and sigmoid functions (dotted curves, with arbitrarily chosen slopes) to
spike probability (SP) as measured from the perspective of an external
observer who does not know excitability or EPSG amplitude.

Efficient coding by a neuron should ideally have the effect
of maximizing the Shannon information in its spike output (IS)
about its excitatory synaptic input (EEPSG). This information
would be equal to the reduction in entropy (H) caused by obser-
vation of the spike output (S).

IS (EEPSG|EXS) = H(EEPSG|EX)−H(EEPSG|EXS) (1)

The “prior entropy” [H(EEPSG|EX)] would be the width or
uncertainty of the probability distribution, which would be
reduced by observing spike output (S). We equate a neuron’s
membrane excitability with the prior information (EX). Unfor-
tunately we are unable at this time to derive the prior probabil-
ity distribution [p(EEPSG|EX)], as discussed previously (Fiorillo,
2012). However, since spike output (S) is binary, its information
content is maximized when its prior probability [p(S|EX)] is
1/2. This corresponds to that case that it indicates whether the
input is more or less than the prior expectation (<EEPSG>|EX),
so that observation of spike output reduces the prior entropy
[H(EEPSG|EX)] by 1/2 (assuming the prior distribution is symmet-
ric). We propose below that this is precisely the meaning of a spike
from the neuron’s point of view.

There are at least three respects in which the present hypothesis
goes beyond previous conceptions of this principle. First and
of greatest importance, we consider the neuron’s point of view,
by which we mean that the expectation of interest is entirely
conditional on the neuron’s prior information as inherent in its
membrane excitability (EX). This contrasts with the conventional
approach in which probabilities are conditional on the knowledge
of an external observer (e.g., Rieke et al., 1997). Although the
importance of “taking the neuron’s point of view” has been
recognized previously (Rieke et al., 1997), it has virtually never
been done for reasons described elsewhere (Fiorillo, 2012). It
requires that we set aside whatever knowledge we might have
about the neuron’s input (such as knowledge of the frequency
distribution of its inputs, commonly referred to as “the stimulus
ensemble”) and its statistical relationship to the neuron’s output.
Instead, we consider only the information that we believe to be
contained within the physical structure of the neuron or other
observer.

A second distinction from most previous work is in consider-
ing the millisecond timescale, in which spike output is necessarily
binary. Most previous work on efficient coding, including our
own (Fiorillo, 2008), considered output to be analog firing rate or
membrane voltage (Laughlin, 1981; Linsker, 1988; Stemmler and
Koch, 1999; Brenner et al., 2000; but see Deneve, 2008a). However,
all the relevant membrane properties evolve on the scale of 1 ms or
even less (Softky, 1995), including synaptic conductance and the
action potential itself. There are many slower processes as well,
some of which effectively average over spikes, and these are also
incorporated within the theory (Fiorillo, 2008). But to adequately
capture the informational dynamics, and especially the proximal
cause of spikes, we must consider the fastest time scale in which
membrane properties vary. Our approach rests on the intuitive
notion that information is inseparable from matter, energy, and
causation, so that if the charge distribution across a neuron’s
membrane is changing within a millisecond, so is the information
that it contains.

Third, like Stemmler and Koch (1999), we focus on a single
neuron at the cellular level, so that input and output are both
within the neuron. This contrasts with most previous work on
efficient coding in which input corresponds to external sensory
stimuli, and thus multiple neurons intervene between input and
spike output. The cellular approach has several advantages. First,
as a simpler system, analysis of a single neuron better allows us
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to identify mechanisms by which neurons predict their input and
adapt their I-O relation (e.g., Hong et al., 2013). Second, whereas
efficient coding is often thought of as a “sensory problem”, the
cellular analysis emphasizes the general nature of the problem,
since all spiking neurons are faced with the problem of using
a binary output to efficiently represent an analog input. Third,
the inference made by a neuron or any observer must be based
entirely on local information, as must all learning. Compared to a
network of neurons, it is relatively easy to imagine how learning or
natural selection might optimize I-O relations of single neurons
(Fiorillo, 2008). If a single neuron can optimize its local I-O
relation, a feedforward series of such neurons, each adapted to
the local statistics of its input, can be expected to approximately
optimize the systems-level I-O relation (between external sensory
stimuli and spike output).

A PREVIOUS MODEL OF PREDICTION BY A SINGLE NEURON
A previous theory had the goal of providing a general informa-
tional account of the nervous system (Fiorillo, 2008). Although
narrower in scope, the present work builds on the previous
framework. In both cases, a neuron’s membrane compares the
intensity of its sensory related input to its expectation, and its
output signals “prediction error”. As in other models of neu-
ronal prediction error (e.g., Schultz et al., 1997; Izhikevich, 2006;
Frémaux et al., 2010), the homeostatic null point was presumed to
correspond to “baseline firing rate” or an intermediate membrane
voltage “just below” spike threshold (Fiorillo, 2008). The null
point and its neural basis was not precisely defined or justified.
Indeed, the notion of a “firing rate” is itself problematic, since it
is not a physical entity that exists at any particular point in space
and time. The present work provides a solution by considering
the timescale of a single spike and proposing that the threshold
voltage for a spike corresponds to the homeostatic point at which
the prediction error is 0.

Information necessarily has both a qualitative and quantitative
component, and the earlier theory dealt with both (Fiorillo,
2008). Like Shannon (1948), we deal here only with the quanti-
tative aspect. Since EPSGs are the proximal cause of spikes, the
set of excitatory synapses will determine the qualitative nature of
the information within spikes by specifying the neuron’s receptive
field, or “stimulus” (for example, light of certain wavelengths in
some region of space). Previous work suggested how learning
could shape a receptive field to insure that it contributes informa-
tion of biological importance (e.g., Schultz et al., 1997; Izhikevich,
2006; Fiorillo, 2008; Frémaux et al., 2010). Here we address only
the issue of how membrane excitability can enable spike output
to best preserve (maximize) information about EPSG input (the
“coding strategy”), regardless of the meaning and importance of
that input (and “what it should code”).

THEORY OF PREDICTIVE HOMEOSTASIS
After specifying a simple biophysical model of membrane
excitability, we proceed to describe its information content based
only on its physical properties (Hypothesis 1), and then to pre-
scribe excitability based on biological optimality (Hypothesis 2).

THE BIOPHYSICAL MODEL
We assume a generic neuron that follows established biophysics.
It has a spike generating mechanism as well as two conductances,
an EPSG and an “intrinsic” conductance. In general, each of
these will vary over time, and will be the sum of multiple indi-
vidual conductances (synapses or types of ion channel). EPSGs
are discrete events consisting of one or more unitary EPSGs,
where a unitary EPSG results from a spike in a single presynaptic
neuron (which releases at least one vesicle of neurotransmitter,
and usually more). Unitary EPSGs vary in amplitude over time,
even in the case that they derive from the same presynaptic
neuron (due to variable numbers of vesicles being released across
multiple release sites). In addition, unitary EPSGs and their
associated EPSPs will display spatial and temporal summation.
Although, they are discrete events and may occur only sparsely
over time, they convey information about continuously varying
external variables, such as light or sound intensity. We focus on
the amplitude of EPSGs because although they are internal to a
neuron, their timing and amplitude depend almost entirely on
variables external to the cell.

Whether an EPSG arriving at a synapse causes a spike to be
initiated near the soma depends on many well known factors,
including initial membrane voltage, axial resistance, and mem-
brane capacitance and conductance. Voltage-regulated ion chan-
nels change membrane conductance to amplify or suppress an
EPSP, even during its brief rise time (∼1 ms). The summed effect
of all of these factors is encapsulated by the term “excitability”. We
define it here as the energy barrier (EX) which separates an EPSG
from spike threshold, although to be consistent with common
usage we would say that a lower energy barrier (a smaller distance
from spike threshold) corresponds to a higher excitability. A spike
will occur only if the energy in an EPSG (EEPSG) exceeds the
barrier (EX). Thus excitability is the amount of work that an
EPSG must perform to cause a spike, and this corresponds to the
amount of charge that must be transferred from the synapse to the
site of spike initiation. This could be calculated in principle given
a detailed model, but it can be found more easily by injecting
“test EPSGs” of incrementally increasing amplitude until spike
threshold is reached (Figure 2A). The amplitude of the “threshold
EPSG” that is found in this way has precisely the energy EX that it
is needed to reach spike threshold.

DESCRIBING A NEURON’S EXCITABILITY AND EXPECTATION
Here we equate “the observer” with “membrane excitability”. The
excitability at time t will determine whether an EPSG with onset at
time t will cause a spike. What is the expectation of EPSG ampli-
tude given only excitability? Some would answer that this question
cannot be answered unless one first observes EPSG amplitudes
and thus has knowledge of the frequency of various amplitudes.
However, we follow the probability theory of Jaynes (commonly
referred to as “Bayesian”), according to which one “sample” of any
quantity can provide an expectation of another (through logic, as
expressed in the principle of maximum entropy) (Jaynes, 2003;
Fiorillo, 2012). From this we presume that knowledge of one mass
can be used to estimate another mass, one energy can be used to
estimate another energy, etc. More information is always better
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FIGURE 2 | Finding the optimal homeostatic conductance. A neuron
with only a leak conductance (reversal at −70 mV) and spike mechanism
was simulated using NEURON software. (A) The method of measuring
distance from optimality. Top, the neuron received two EPSGs of equal
amplitude (30 nS) separated by a 5 ms interval (thick black). At onset of each
real EPSG, test ESPGs (thin black, shown only for the second) of varying
amplitudes were applied to find the “threshold EPSG” (thick gray) for which
the EPSP peak (bottom) is precisely at spike threshold. The “residual” is
the difference in peak amplitude of the real and threshold EPSG, and it
measures the distance of excitability from optimality. (B) EPSPs generated
by the real EPSGs in “A”, but with leak conductances of 10, 30, and 50 nS.
(C) Threshold EPSGs for the same three leak conductances. The 10 nS
conductance best minimized the residual for the first EPSG, but the sum of
the two squared residuals is less for the 30 nS conductance. (D) The sum
of squared residuals was minimized by leak conductances of 30 and 25 nS
in the case of 5 and 10 ms inter-EPSG intervals, respectively.

for a biological observer, but an observer simply “knows what it
knows”.

The EPSG performs work to drive membrane voltage towards
spike threshold, and excitability works against the EPSG. In
the absence of any information beyond excitability itself, the
probability that an EPSG will cause a spike is 1/2 (based on
logic, the maximum entropy principle), and thus the expectation
(<EEPSG>) must be equal to the excitability (EX) (equation 2) (by
the mathematical definition of “expectation”).

Hypothesis 1: A spike is generated only if EPSG amplitude is greater
than expected given the information in membrane excitability
(equation 2).

< EEPSG,t+r > |EX,t = EX,t (2)

Equation 2 refers to the expectation (at time t) of the peak
amplitude of an EPSG if one were to start at that same time
(which would reach its peak at time t + r, where r refers to the
stereotyped rise time of an EPSG, typically about 0.5 ms). Thus,
we are referring to an expectation of a potential future event.
When excitability is low, the energy barrier (EX) is high, and a
large EPSG is expected. The expectation is just the “center” of a
probability distribution, and we are not speculating here about
the uncertainty (width) of the distribution. Because spike thresh-
old corresponds to the expectation, a spike conveys maximal
information (relative to any other relation between expectation
and spike threshold, assuming that the prior probability distribu-
tion is symmetrical). A spike would not convey any information
beyond that in membrane voltage at the spike initiation site at
the time of its generation, but it would reliably communicate that
information throughout the entire neuron.

Given an EPSG with onset at time t, it is useful to denote
membrane excitability at time t as “prior information” to distin-
guish it from the new information in the EPSG. Hypothesis 1 is
essentially just that a spike signals “prediction error”. Prediction
errors are known to be efficient and useful signals, but there is not
much intelligence in a prediction error if the prediction itself is
not accurate. Our use of “prediction error” is merely descriptive
and could be applicable to a large variety of physical entities.

A traditional balance scale provides a useful analogy. It consists
of an arm that rotates around a central joint depending on a
known reference weight on the left (excitability) and an unknown
weight on the right (the EPSG). The arm rotates continuously
(over some range) as a function of the difference between the two
weights (membrane voltage). The scale generates a binary output
to signal which weight is greater (right side up or down, analogous
to a spike). Prior to placement of the unknown weight on the right
side, the expectation of the unknown weight would be equal to the
known weight, and “right side up” (a spike) would indicate that
the unknown weight was greater than the expectation.

Our challenge here is merely to describe the information in a
physical entity based on physics and logic. Unlike most of biology,
physics is purely descriptive insofar as it is agnostic to “how the
world should work”. In describing the knowledge within a balance
scale or a neuron, we do not presume that the reference weight or
the excitability is well suited for measuring the unknown weight
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or EPSG. Rather we presume that it is the only information
possessed by the observer.

CRITIQUE OF HYPOTHESIS 1
We believe that an observer is something remarkably simple.
Excitability is simple insofar as it is just a single number at a single
moment in time. We presume that knowledge of excitability does
not include knowledge of its constituents, not even membrane
voltage and conductance. Furthermore, excitability is entirely
internal to a neuron, and therefore it could be said that we are
“taking the neuron’s point of view”. However, we also believe
that a single observer should correspond to information that is
physically integrated in space and time. Membrane voltage fits this
definition, summing currents over a local region of membrane.
By contrast, excitability includes multiple factors in addition to
membrane voltage. Even though those factors are all present in
a small and well defined part of a neuron, they are not being
physically summed together. Therefore we infer that excitability
corresponds to information distributed across more than one
observer, and Hypothesis 1 falls short of our ideal of “describing
the knowledge of an observer”. It remains for future work to
describe the knowledge in membrane voltage about EPSG input.

Despite its limitations, we conclude that Hypothesis 1 repre-
sents a useful default hypothesis by virtue of its simplicity. For
the expectation of EPSG amplitude given excitability to be other
than excitability itself, and the prior probability of a spike to be
other than 0.5, would require additional information that we have
not assumed. We assume that our observer has knowledge, but
it is an absolute minimal level of knowledge. The prescriptive
hypothesis presented below does not depend upon the veracity
of this descriptive hypothesis. However, the simple logic of this
descriptive hypothesis suggests that a neuron does not need any
particular design in order for it to have an expectation, and
for its spikes to be maximally informative from its perspective.
Hypothesis 1 states that a known is the best guess of an unknown,
whereas Hypothesis 2 states that biology works towards the ideal
in which the known is in fact equal to the unknown.

PRESCRIBING A NEURONS EXCITABILITY AND EXPECTATION
Hypothesis 2 expresses our belief that the excitability of a healthy
adult neuron will tend to accurately predict EPSG amplitude,
because it has been shaped by both natural selection over gen-
erations and associative learning rules. An accurate analog expec-
tation of an analog variable will be too high in half of cases, and
too low in the other half.

Hypothesis 2: Expectations will be accurate under natural condi-
tions, and therefore half of EPSGs will cause spikes.

The perfect match of EPSG amplitude to its expectation is not
attainable, and even if it were, the spike output must be 0 or
1, corresponding to a negative or positive prediction error. The
optimal expectation would therefore result in a spike in response
to precisely half of EPSGs (Figure 1). The spike probability (SP) of
1/2 given the neuron’s prior information (Equation 2) would then
match the frequency distribution of spikes given EPSGs. Although
this optimal neuron would have low subjective uncertainty (which

we do not attempt to quantify here), its spikes would appear to be
random to an external observer who is ignorant of variations in
excitability and EPSG amplitude.

Hypothesis 1 proposes that spikes are maximally informative
simply as a consequence of logic and physics, regardless of the
prior information in excitability. Hypothesis 2 implies that accu-
rate prediction (or minimizing total entropy) is an important
biological goal, and it will be aided by accurate prior information
(a low prior entropy, [H(EEPSG|EX)]. As a contrived example,
neuron “A” has prior knowledge that EPSG amplitude must be
between 0 and 10, and neuron “B” knows that it must be between
4 and 6. If the expectation of each neuron is 5, then a spike
would tell neuron “A” that the actual amplitude must be between
5 and 10, whereas it would indicate to neuron “B” that it is
between 5 and 6. Neuron “B” would have more total information
given its prior information and a spike [less “posterior” entropy,
H(EEPSG|EXS)].

MEASURING THE ACCURACY OF A NEURON’S PREDICTIONS
Here we propose methods by which we can measure the accuracy
of a neuron’s expectation. The neuron itself also needs to assess
the accuracy of its predictions, but we address this in a later
section (Prediction Errors in Learning). We use “accuracy” to
refer to a distance between two expectations, the more certain
of which could be called “reality” or the “actual” or “true” value,
and the less certain “the expectation”. Thus “accuracy” is not the
same as uncertainty (entropy). We have not attempted to quantify
uncertainty, but greater uncertainty would naturally tend to be
associated with less accuracy.

RESIDUALS
The best method for us to assess the accuracy of expectations will
depend on our ability to know and control the neuron. If we have
complete knowledge and control, as in a Hodgkin-Huxley model,
then it is easy to measure excitability by injecting “test EPSGs” of
varying amplitude to find the “threshold EPSG” amplitude that
causes an EPSP to reach precisely to spike threshold (Figure 2A).
This “threshold EPSG” is our measure of excitability (EX) and
corresponds to the neuron’s expectation of EPSG amplitude
(Hypothesis 1). The “residual” EPSG amplitude (Eres) measures
the difference between the neuron’s expectation (EX) and the
actual EPSG (EEPSG) (Figure 2A).

Eres = EEPSG − EX (3)

Indices for time have been omitted for simplicity. In princi-
ple, excitability could be measured at each instant (“real time”).
However, it is not an expectation of EPSG likelihood, but of EPSG
amplitude if one were to occur. Thus the expectation is only
put to the test when an EPSG occurs. A high level of inhibitory
conductance would correspond to expectation of a large EPSG,
but if none occurs, the cost would be only metabolic and not
informational. Thus we measure excitability only at the time of
real EPSGs (onset of test and real EPSGs are always synchronous)
(Figure 2A).

A residual (Eres) will be positive if the EPSG causes a spike,
and will indicate the extent to which the EPSG was greater than
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expected and excitability was too high (EX was too low). It will be
negative if EPSG amplitude was less then expected, indicating that
excitability was too low (EX was too high). If a neuron is making
accurate predictions, the residuals will be small with an average of
0, and spike generation will be highly sensitive to small variations
in EPSG amplitude, as experiments have demonstrated in some
cases (Carandini, 2004; Kuenzel et al., 2011).

The residual is an error of sorts, and an objective of learning
would be to modify homeostatic conductances so that residuals
are minimized. However, we are not suggesting that a neuron has
any direct means of knowing the residuals, and we reserve the
term “prediction error” to describe errors from the neuron’s point
of view (as signaled by spikes). Thus the residuals cannot drive
learning, and we present them only as a means for us to assess the
accuracy of a neuron’s predictions (its distance from optimality)
(Figure 2).

SPIKE PROBABILITY FROM THE EXPERIMENTER’S POINT OF VIEW
Hypothesis 2 states that predictions should be accurate under nat-
ural conditions in a normally functioning brain. Even with in vivo
intracellular recording (Figure 3) it is challenging to estimate
EPSG amplitudes and excitability. It is therefore useful to assess
the accuracy of a neuron’s expectations given only knowledge of
the time of EPSG inputs (or presynaptic spikes) and spike outputs.
For this purpose we define spike probability (SP):

Spike probability (SP): The probability that at least one output spike
is caused by an EPSG at a “driving” synapse.

SP is defined to incorporate knowledge that at least one input
spike and associated EPSG has occurred at a “driving” synapse
(see Driving EPSGs as the Cause of Spikes), and that if the EPSG
causes a spike, it will occur within a certain delay (generally less
than 5 ms in a typical neuron). A unitary EPSG could be the
sole cause of a spike or a partial cause together with other EPSGs
that are nearly synchronous. SP does not include knowledge of
excitability or the specific amplitude of the EPSG (since that infor-
mation is seldom available from experimental data). Thus, our
uncertainty about whether or not a spike will occur is not because
there is anything intrinsically “random” about the occurrence of
spikes, but because we are ignorant of the “black box” that is EPSG
amplitude and membrane excitability.

SP of 1/2 is the homeostatic ideal and will cause spike output
to be maximally sensitive to small gradations in EPSG amplitude
(Figure 1). However, we presume that it is a virtually impossible
goal to achieve, for the same reason that predictions of the future
market value of stocks are almost never precisely accurate. We
expect that SP varies dynamically from near 0 to 1 under natural
conditions, but with an average over time that is near 1/2.

IMPLEMENTATION OF PREDICTIVE HOMEOSTASIS
DRIVING EPSGs AS THE CAUSE OF SPIKES
We presume that information follows causation, and that the
EPSG is (and should be) the proximal cause of spikes. The
neuron’s knowledge is substantially limited to its proximal causes,
for the same reason that our conscious perception corresponds
to proximal sensory causes in the immediate past, which we

can infer with relatively little uncertainty, but not the innu-
merable distal causes further in the past. In a typical neuron
the proximal cause of a spike would be an EPSG with onset
about 0.5–5 ms earlier, mediated primarily by AMPA-type glu-
tamate receptors (Figure 3). We propose that slow membrane
depolarization would not be the proximal cause of spikes under
natural conditions, including that initiated by offset of synap-
tic inhibition, activation of G-protein-coupled receptors, and
perhaps even AMPA-type glutamate receptors located on dis-
tal dendrites (Branco and Häusser, 2011). Excitatory synapses
have been classified as either “drivers” or “modulators”, which
are distinguished from one another by dendritic location and a
variety of other features (Sherman and Guillery, 1998). “Drive”
means “cause” in this case, and the drivers alone cause spikes
and determine a neuron’s receptive field. In the lateral geniculate
nucleus of the thalamus (LGN), “feedforward” retinogeniculate
AMPA EPSGs on proximal dendrites are the drivers of spikes,
whereas “feedback” corticogeniculate AMPA EPSGs on distal den-
drites are “modulatory” (Sherman and Guillery, 1998). The latter
could provide “value information” that modulates the strength
of driving synapses and thereby changes the shape of a neuron’s
functional receptive field (Fiorillo, 2008), but we do not consider
its particular function here. “The EPSG” to which we refer is
exclusively from “driving synapses”. Slow excitation is naturally
more predictable, and predictive homeostasis should work to
insure that only fast and large EPSPs cause spikes.

MECHANISMS AND TIMESCALES
We propose that there are a vast array of homeostatic ion channels
and synapses functioning simultaneously on numerous timescales
within a single neuron. Each would make a prediction based on a
particular recurring pattern of synaptic excitation or inhibition,
like those in Figure 3. Homeostatic synaptic inhibition would
be dedicated to spatial patterns of activity across neurons (as
in the case of “surround inhibition”), whereas voltage-regulated
ion channels would be dedicated to temporal patterns (Fiorillo,
2008). To illustrate and test this idea, we need to relate specific
homeostatic mechanisms to specific patterns of synaptic drive.

Figure 1 illustrates the case of a neuron that receives EPSGs of
only three amplitudes (1, 2, and 3) that are sufficiently separated
in time so that there is no temporal summation. Knowing those
three amplitudes but nothing else, the optimal expectation is “2”
and an EPSG of amplitude “2” should cause an EPSP that reaches
precisely to spike threshold (Figure 1). Figure 2 illustrates the case
of a neuron that receives excitatory drive from a single presynaptic
neuron, with each presynaptic spike causing a unitary EPSG of
identical amplitude. Despite the simplification of identical uni-
tary amplitudes, this example remains interesting since temporal
summation will cause EPSG and EPSP amplitude to vary with
presynaptic inter-spike interval (ISI). This is in fact similar to
some real synapses, as discussed further below.

The neuron of Figure 2 is the simplest possible insofar as its
only homeostatic conductance is a “leak” conductance, which
is voltage-insensitive and constant by definition. If the leak
conductance is optimal, it will accurately predict the long-term
average EPSG and EPSP amplitude, which vary due to temporal
summation. Thus half of unitary EPSGs will exceed average
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FIGURE 3 | Whole-cell recording of membrane voltage from a
thalamocortical neuron in LGN of anesthetized cat during visual
stimulation with a naturalistic movie (adapted with permission from
Figure 2 of Wang et al., 2007). The hyperpolarized period without EPSPs

corresponds to opponent inhibition (caused by light in the receptive field of
this OFF-type neuron), whereas homeostatic “same-sign” synaptic inhibition
tends to occur at nearly the same time as synaptic excitation and thus is not
visible here (Wang et al., 2011).

amplitude and cause a spike, and this will only occur when there
is sufficient temporal summation (Figures 2A, B). When the
neuron’s excitability is “at rest”, the first EPSG in a pair will be
of less than expected amplitude and cause no spike, but it will
increase excitability so that a second EPSG 5 ms later will cause
a spike. We note that even when EPSGs cease and excitability
approaches a stable resting level, excitability still provides an
expectation of EPSG amplitude, and this could be called the
neuron’s “default prior”. Since the amplitude of EPSGs provides
information about the intensity of external stimuli, like light
intensity, the neuron would always have an expectation of both
EPSGs and external stimuli.

Although accurate prediction of the long-term average is
important, it would generally be highly inaccurate over shorter
periods. Prediction using only a very slow ion channel, like a leak
conductance, is analogous to predicting the market value of a
stock using only knowledge of its trajectory over the last 10 or 100
years. Better predictions can be made given additional knowledge
of any regular pattern, including short term trends. There are
a remarkable diversity of voltage-regulated ion channels with a
spectrum of kinetic properties, and each of these is proposed
to be specialized for making a prediction based on a particular
recurring pattern (Fiorillo, 2008). There are obviously many
patterns that involve changes in EPSG rate. An increased rate of
EPSGs and spikes would activate K+ channels with moderately
slow kinetics (such as Kv 7), which would then mediate “spike
frequency adaptation” and restore SP towards 0.5 over periods of
tens of milliseconds or more.

The rising phases of EPSPs and action potentials are the
fastest changes in excitatory drive. Excitability will provide an
expectation of an EPSG’s amplitude prior to its onset, but A-type
K+ channels activate during the rising phase of an EPSP and thus
contribute to excitability as well (in many types of neurons). In
principle, the amplitude of an EPSP can be predicted by the slope
of its rising phase. If some subtypes of A-type channels inactivate
within a millisecond or two (Migliore et al., 1999), they could
conceivably exploit this pattern by preferentially suppressing
EPSPs with fast rising phases that would otherwise be excessively
large (suprathreshold), while inactivating and thereby causing
less suppression of slowing rising EPSPs that would otherwise be
too small (subthreshold). The amplitude of an individual EPSP
could also be predicted given knowledge of the amplitude of a
related EPSP (sharing the same cause) in another neuron. This
prediction would be mediated by homeostatic synaptic inhibition
via GABAA chloride channels, which typically has an onset about
1 ms after EPSG onset (e.g., Blitz and Regehr, 2005), and derives

from a neuron with a similar and overlapping set of excitatory
drivers (a similar receptive field) (e.g., Wang et al., 2011). GABAA

and A-type channels both provide fast homeostatic mechanisms
that may “update expectations” within the brief period between
EPSG onset and EPSP peak. In addition, it is likely that during
a large EPSP (with or without a spike), these channels open
and thereby decrease excitability in anticipation of an additional
EPSG, since otherwise the sum of the two would greatly exceed
spike threshold (Figures 2A–C). It should be noted in this respect
that homeostatic mechanisms should be finely tuned not only to
excitatory drive but to other homeostatic mechanisms as well. For
example, the inactivation of A-type K+ channels could conceiv-
ably implement a predictive compensation for GABAA inhibition,
since simultaneous activation of both conductances could cause
an excessive decrease in excitability.

FINDING THE OPTIMAL HOMEOSTATIC CONDUCTANCE
Figure 2 illustrates how we can find the optimal leak conductance
for a neuron that has no other homeostatic conductances and
receives two EPSGs of equal amplitude that are separated by a 5 ms
interval. Because of temporal summation (Figures 2A, B), it is
not possible with only a leak conductance to have two EPSPs with
both peaks at spike threshold. The best that can be done is for the
first to be too small and the second too large (Figure 2C). We pre-
sume that the optimal leak conductance is the one that minimizes
the sum of the two squared residuals (Figure 2D). If the EPSG
interval is 10 rather than 5 ms, there is less temporal summation
and thus the optimal leak conductance is smaller (Figure 2D).
The optimal conductance in a real neuron would depend on the
entire ensemble of EPSG amplitudes that the neuron experiences,
and a conductance that is optimal for one pattern will often
be suboptimal for another. It is apparent from Figure 2 that if
inhibition were increased by an appropriate amount following the
first EPSG it would help to restore excitability and thereby make
the neuron better prepared for addition of the second EPSG. A
neuron with a suitable dynamic homeostatic conductance (like
GABAA or A-type channels) would therefore be closer to optimal
than any neuron with only a leak conductance.

TWO CLASSES OF ION CHANNEL
Our earlier work distinguished two classes of ion channel
(Fiorillo, 2008). Class 1 ion channels were proposed to con-
tribute “current” sensory related information, which generally
corresponds to the EPSG, whereas class 2 inputs contribute “prior
information” that is “the prediction” in “prediction error”. The
defining and categorical distinction was that class 1 ion channels
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(and synapses) have been selected through evolution or Hebbian
learning to drive membrane voltage (or firing rate) away from
the homeostatic level where the error is 0, whereas class 2 ion
channels have been selected (through evolution or anti-Hebbian
learning) to drive voltage towards its homeostatic level. The
distinction is categorical (rather than merely denoting statistical
tendencies) since implementation of one learning rule rather
than its opposite would require that ion channel proteins are
somehow “tagged” in a way that would determine whether the
channel is to be regulated by either a Hebbian or anti-Hebbian
rule (Fiorillo, 2008). The proposal that voltage-regulated ion
channels can be regulated by associative learning rules remains
unverified.

The present work provides further insight by specifying that
the homeostatic level is spike threshold. GABAA-mediated IPSGs
can be class 1 or 2, as illustrated by the two types of GABA
synapse on thalamocortical neurons of LGN, both of which
derive from local interneurons (Blitz and Regehr, 2005; Wang
et al., 2007, 2011). Retinogeniculate excitation of an ON-type
neuron provides evidence for high light intensity (or positive
contrast), whereas excitation has the opposite meaning in an
OFF-type neuron. In an ON-type neuron, inhibition from an
OFF-type interneuron (with an almost identical receptive field)
contributes evidence against high light intensity (and against
the EPSG), as shown in Figure 3 (Wang et al., 2007). Some-
times there will be evidence both for and against light in the
receptive field at the same time, but generally these will be
anti-correlated (Mastronarde, 1989). Thus OFF-type inhibition
will usually occur in the absence of EPSGs and drive hyperpo-
larization away from spike threshold (Figure 3). However, an
ON-type neuron also receives synaptic inhibition from an ON-
type interneuron (with a similar receptive field). This “same-
sign” inhibition naturally occurs at nearly the same time as
retinogeniculate excitation (typically delayed by 1 ms), and is
caused in a feedforward manner by the same retinal ganglion
neuron (Blitz and Regehr, 2005), and thus it is homeostatic
and prevents excessive excitability. We did not incorporate oppo-
nent inhibition into our framework above, but we could do
so by proposing that homeostatic mechanisms should predict
the sum of new evidence for and against a neuron’s stimu-
lus, and a neuron generates a spike when new evidence for
its stimulus (an EPSG) exceeds both new evidence against it
(opponent inhibition) as well as old evidence for it (homeostatic
inhibition).

Sodium channels may also be class 1 or 2. Axonal action
potentials are the “all-or-none” output of a neuron, and the
sodium channels that cause them clearly drive voltage away from
homeostasis and would be class 1. By contrast, it is generally
believed that dendritic sodium channels do not consistently con-
tribute to causing axonal action potentials (axonal spikes are not
initiated in dendrites). If they usually amplify dendritic EPSPs
towards threshold for an axonal spike under natural conditions,
they would be homeostatic, whereas if they usually drive depolar-
ization beyond threshold for an axonal spike, they would oppose
homeostasis and be in class 1. It is interesting to note that class
1 and class 2 sodium channels could have identical structure at
the level of individual channels, but their opposite relationship to

homeostasis could be due solely to their sub-cellular localization
and density.

SENSORY VERSUS MOTOR NEURONS
The principle of predictive homeostasis should apply to all
neurons, and even all cells. However, we suspect that there is
an important difference between sensory and motor neurons,
and that above we have described sensory neurons. We do not
try to justify the distinction here, but a rough and intuitive
summary is that sensory neurons use a binary spike output to
efficiently convey information about “shades of gray” in their
sensory input (EPSG amplitude), whereas motor neurons use
it to convert a shade of gray into a “black or white decision”.
As partially summarized elsewhere (Fiorillo, 2013a), neurons in
motor systems are proposed to express voltage-regulated ion
channels (such as L- and T-type calcium channels) that drive
voltage away from spike threshold (class 1 ion channels). This
is known to be the case in some motor neurons (Marder and
Bucher, 2007), but we propose it to be a general feature of
motor neurons. In the case that these channels are excitatory,
they would tend to be coactive with EPSGs, and together with
EPSGs they would cause spikes. The goal of predictive home-
ostasis (class 2 ion channels) in motor neurons would be to
maintain excitability by predicting the sum of EPSGs and these
pattern-amplifying intrinsic conductances. Our definition of SP
does not incorporate knowledge of the state of these intrinsic
“drivers”, and we suspect that they would have the effect of
driving SP towards the extremes (0 or 1) so that it is rarely near
0.5. Nonetheless, effective homeostatic mechanisms should still
cause long-term average SP to be near 0.5. Furthermore, since
EPSGs would not be the sole cause of spikes in motor neurons,
spike count may outnumber EPSG count during some excitatory
events.

IMPLICATIONS OF PREDICTIVE HOMEOSTASIS
METABOLIC COST OF PREDICTIVE HOMEOSTASIS AND SPIKES
The importance of predictive homeostasis is evident in the large
amount of energy that it consumes. Sodium, potassium, and chlo-
ride conductances all tend to increase in synchrony, allowing these
ions to flow down their electrochemical gradients and counteract
one another electrically while causing only modest changes in
membrane voltage (Pouille and Scanziani, 2001; Shu et al., 2003;
Wehr and Zador, 2003; Blitz and Regehr, 2005; Hosoya et al., 2005;
Wilent and Contreras, 2005; Berg et al., 2007; Okun and Lampl,
2008; Wang et al., 2011; Sengupta et al., 2013). The high cost that
neurons pay demonstrates the biological value of the information
that they gain from predictive homeostasis.

In proposing that SP of 0.5 is optimal, we are ignoring the
metabolic cost of action potentials (Attwell and Laughlin, 2001).
If their cost were high relative to the value of the information
they convey, the optimal SP should be lower than 0.5 to conserve
energy. Although we do not consider metabolic costs here, we do
review experimental evidence below that SP is maintained mod-
erately close to 0.5, consistent with the possibility that metabolic
costs do not have a large impact on SP.
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THE MEANING OF SPIKE OUTPUT TO SUB-CELLULAR OBSERVERS
A spike exerts its effect on sub-cellular observers (e.g., proteins)
throughout the neuron. A spike can be approximated as a digital
or binary signal, but it acts on virtually all neural observers as
an analog signal, perhaps most notably in its effects on calcium
concentration. If we were to analyze what these observers know
about EPSG amplitude and what information is provided by the
spike, we would follow the same framework given above. By
predicting some local quantity like calcium concentration, they
would also be predicting the more distal EPSG amplitude, which
in turn corresponds to information about more distal quantities
including a stimulus external to the nervous system.

Will the optimal “encoding strategy” of our neuron benefit
these other observers, even though they are ignorant of the mem-
brane excitability? The answer is “yes” because the more effective
the predictive homeostasis, the less patterned the spike output,
which would be “temporally decorrelated” relative to synaptic
input (e.g., Wang et al., 2003; Deneve, 2008a). A spiking neuron
with any other encoding strategy, or which makes inaccurate
predictions, would have a less variable and more predictable
output and thus convey less information from the perspective
of most observers. This also applies to an observer who counts
spikes over a longer period of time (a “rate code”). The fact
that the firing rate of neurons is “analog” and not merely binary
depends on the same sorts of homeostatic mechanisms, such
as the potassium channels that are activated following a spike
and create the “relative refractory period”. Without a relative
refractory period, a neuron’s firing rate would be either 0 or a fixed
number of spikes in response to any input (the number depending
only on the absolute refractory period).

The benefit of maximizing the variance of input or output
can be a source of confusion. It may seem that if the goal of
an observer is to minimize its uncertainty (posterior entropy),
it would be best to select inputs that have minimum variance
and are thus more predictable. This issue has been called “the
dark room problem”, since the uncertainty of neurons in the
visual system would appear to be minimized if the animal simply
avoids light (Friston et al., 2012). The reason that unpredictable
inputs are better, other things being equal, is that the uncertainty
that ultimately matters is not about EPSG amplitude, or the
amount of light that enters the eye, or even about the identity
of distant objects, but about future value. This explains the fact
that animals explore uncertain environments, and the utility of
Hebbian learning, which maximizes positive prediction errors
(Fiorillo, 2008).

We favor the view that the flow of information follows the
flow of force and energy and causation, implying that the absence
of one event (a spike) is never the cause of another event, and
therefore conveys no information. However, in the context of a
force and energy that creates an expectation (e.g., a potassium
current), the absence of an event (e.g., an EPSG) could allow
the expectation itself to modify the observer’s knowledge (e.g.,
hyperpolarize the membrane). The occurrence of an EPSP would
be known to some dendritic proteins, and the EPSP would cause
the expectation of a spike. The absence of a spike in the context of
an EPSP would indicate that the EPSP was smaller than expected.
By contrast, an axon terminal (or its postsynaptic targets) does

not experience an EPSP. Such an observer would have no means
to distinguish whether the absence of a spike corresponds to
no EPSP or an EPSP of less than expected amplitude, and thus
absence of a spike would convey little or no information.

OPPONENT (ON–OFF) REPRESENTATIONS
If the absence of a spike conveys little or no information to an
axon terminal and its postsynaptic targets, and yet a system is to
be sensitive to decrements as well as increments, there must be
“opponent” neurons that represent the same stimulus dimension
(like light intensity) but with opposite polarity. The ON and OFF
neurons in the visual system are a well known example (Wang
et al., 2011), and it is likely that the neural representation of
reward value follows the same principle (Fiorillo et al., 2013;
Fiorillo, 2013b). The value of opponent representations has long
been recognized on the grounds that firing rates are highly “recti-
fied”, but single spikes are “fully rectified”. Thus a spike in an ON
neuron would be evidence of “high”, a spike in an OFF neuron
evidence of “low”, and absence of a spike is not evidence at all.

PREDICTION ERRORS IN LEARNING
A spike functions as a “teaching signal”, and what the “student
observer” learns will depend on whether or not that observer
knows that an EPSG has occurred. Observers within a dendritic
spine can and should have information about the occurrence and
timing of three events: a local EPSG at that synapse, a global EPSP,
and a spike. Given this information and the Hebbian objective
at an excitatory synapse of maximizing positive prediction errors
(spikes) (Fiorillo, 2008), if an excitatory synapse was active just
prior to a spike, it contributed to a positive error and should be
strengthened. If a local EPSG at that synapse failed to cause a
spike, then it contributed to a negative error (or alternatively, we
can say that it was not associated with a positive error), and thus it
should be weakened. If the local synapse was inactive, then it bears
no responsibility for a spike or its absence, and its strength should
not be changed substantially. This proposed rule is spike-timing
dependent and shares an essential feature of the rule proposed
by Bienenstock, Cooper, and Munro (the “BCM rule”), in which
synaptic activation paired with only modest postsynaptic activity
causes depression of synaptic strength (Bienenstock et al., 1982).
The BCM rule has useful computational properties and is sup-
ported by experimental evidence (Cooper and Bear, 2012). The
BCM-like rule proposed here would allow a neuron to selectively
strengthen those excitatory synapses that are least predictable and
thus provide the neuron with the most new information (Fiorillo,
2008).

Whereas observers in the dendrite can gain information from
a “spike failure” (EPSG + no spike), downstream observers in the
axon terminal or its postsynaptic target neuron would not. For
example, midbrain dopamine neurons signal a “reward prediction
error” that is thought to teach reward value to downstream
neurons (e.g., Schultz et al., 1997; Izhikevich, 2006; Fiorillo, 2008;
Frémaux et al., 2010). Whereas past models used both increments
and decrements in firing rate (positive and negative prediction
errors relative to “spontaneous, baseline firing rate”), here we con-
clude that teaching should be performed by spikes alone, not their
absence. Indeed, recent experiments have shown that decrements
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in firing of dopamine neurons are not useful for learning about
“negative reward value” (Fiorillo et al., 2013; Fiorillo, 2013b).
Rather, spikes from an opponent (“reward-OFF”) neuron would
be essential for “bidirectional” learning.

COMPARISON TO OTHER INTERPRETATIONS OF SPIKE VARIABILITY
Whereas virtually all previous models have proposed that spike
variability is indicative of greater uncertainty of neurons about
their sensory inputs, we propose the opposite. Our optimal neu-
ron fulfills Softky’s definition of an “efficient neuron”, having
membrane excitability that is exquisitely fine-tuned to its synaptic
input (Softky, 1995). Our ignorance of the neuron’s excitability
(its internal knowledge) causes output that is maximally informa-
tive from the neuron’s perspective to appear random to us (Softky,
1995; Fiorillo, 2012).

The characterization of spike variability depends on proba-
bilities, and we have previously criticized the field in general for
failing to adequately distinguish conditional probabilities from
event frequencies, and for failing to take the neuron’s point of view
(Fiorillo, 2012). Spike variability is conventionally interpreted as
“noise” within the literature on “efficient coding” (EC; Barlow,
1961; Rieke et al., 1997). Although we have come to the opposite
conclusion, our interpretation is a straightforward application of
information theory and it is generally in the spirit of EC.

We view our work, and the EC literature in general, as very
distinct from a viewpoint that might be called “probabilistic
computation” (PC), which is characterized by the assumption
that neurons need to “represent and compute probabilities”. We
agree with this viewpoint with respect to the general premise that
the function of neurons is related to “Bayesian inference”, but we
have a very different view of what this means (Fiorillo, 2012).
First, opposite to our conclusion, a popular view within PC is
that spike variability (in response to fixed inputs) increases with
the subjective uncertainty of neurons (Pouget et al., 2000; Deneve
et al., 2001; Hoyer and Hyvarinen, 2003; Jazayeri and Movshon,
2006; Ma et al., 2006; Beck et al., 2008; Berkes et al., 2011).
Second, PC presumes that inference requires probabilities to be
“calculated” by the brain, and thus neurons may perform methods
like Expectation-Maximization (presuming that exact integration
in calculus may be beyond the brain’s abilities) (Deneve, 2008a,b;
Friston, 2010; Clark, 2013). Equations that describe reason, like
Bayes’s Theorem, are viewed as prescriptive of what the brain
should do. This is in sharp contrast to our view, and that of
the EC literature and physics in general, in which probabilities
are merely descriptive. We presume that, at least in principle,
probabilities can be used by scientists to describe information
that is physically integrated in both space and time (as in a
neuron’s membrane voltage). This is precisely analogous to the
way that calculus describes motion in physics. A moving object
does not “perform calculus”, and the methods of calculus do not
prescribe the motion of an object. The descriptive view is that
it is sufficient to have the right information in the right place
at the right time, without any additional need for “performing
mathematics”. Biophysical models are purely descriptive, but PC
and other theories that prescribe Bayesian principles for the brain
have generally not addressed the fundamental issue of biophysical
description (Fiorillo, 2012).

A particularly comparable example of PC is Deneve’s
“Bayesian spiking neuron”, which signals prediction error
(Deneve, 2008a,b). This model presumes that probabilities are
a property of the neuron’s external stimulus, and that they are
synaptically conveyed to a neuron. Thus a neuron’s membrane
voltage and spike output represents probabilities (frequencies)
of the stimulus, whereas our neuron represents the stimulus
itself (its physical intensity). Beyond this fundamental difference,
Deneve’s optimal neuron produces identical output in response to
repeated presentations of identical input, whereas ours produces
variable output (it would be impossible for any neuron to know if
repeated inputs are identical, and we doubt that they ever can be
identical in reality). The presumption of Deneve was that the null
point, where the error is 0, should lie some distance below spike
threshold (specified by the free and constant parameter “g0” in the
model of Deneve). Thus if spike threshold is −50 mV, a perfect
expectation might result in a membrane voltage of −55 mV, and
would therefore never cause a spike in Deneve’s neuron. In our
neuron, a perfect expectation would cause membrane voltage
to be at spike threshold, thereby generating maximally variable
output (SP = 0.5, similar to Deneve’s model if g0 is 0).

EXPERIMENTAL EVIDENCE FOR PREDICTIVE HOMEOSTASIS
The theory predicts that homeostatic conductances should coun-
terbalance EPSGs to maintain excitability, and that this should
happen on all timescales, including the millisecond scale. The
predictions of the theory can be made quantitatively precise given
a particular EPSG pattern (Figure 2), as discussed above. In sup-
port of the theory, a remarkably precise balance of excitation and
inhibition has been found in brain slices (Pouille and Scanziani,
2001; Shu et al., 2003; Blitz and Regehr, 2005) as well as in vivo
in both sensory neurons (Wehr and Zador, 2003; Hosoya et al.,
2005; Wilent and Contreras, 2005; Higley and Contreras, 2006;
Okun and Lampl, 2008) and spinal motoneurons (Berg et al.,
2007), even on a millisecond timescale (e.g., Wehr and Zador,
2003). Since this phenomenon is moderately well known we do
not review it here, but instead focus on I-O relations.

TEMPORAL DECORRELATION AND SPIKE STATISTICS
If a neuron makes accurate predictions and signals prediction
error, its spike output should have less temporal pattern than its
input, since the predicted patterns have been removed from the
output. Multiple studies have demonstrated “temporal decorre-
lation” within sensory systems (e.g., Dan et al., 1996; Brenner
et al., 2000), including at the level of single neurons (e.g., Wang
et al., 2003, 2010b). Many additional studies have described spike
statistics without such analyses of I-O relations. The present
theory predicts that the more accurate a neuron’s predictions,
the more random its spikes will appear (SP will be closer to
0.5). Thus neurons presented with dynamically varying inputs
or complex patterns that are inherently more difficult to predict
should have less random output than neurons exposed to more
static conditions or simpler patterns. It is well known that many
neurons have a relatively random, “Poisson-like” pattern of spike
output under “resting conditions” (Tolhurst et al., 1983; Softky
and Koch, 1993; Shadlen and Newsome, 1998; Churchland et al.,
2010), which are relatively static by definition. By contrast, stimuli
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that are difficult to predict due to rapid temporal dynamics cause
spike counts and intervals to be extremely regular across repeated
trials (Mainen and Sejnowski, 1995; Bair and Koch, 1996; Berry
et al., 1997; de Ruyter van Steveninck et al., 1997; DeWeese
et al., 2003; Avissar et al., 2007; Butts et al., 2007). When the
same stimuli are constant or more slowly varying, and thus more
predictable, the same neurons show much greater variability in
their spike statistics (Mainen and Sejnowski, 1995; de Ruyter van
Steveninck et al., 1997; Butts et al., 2007).

THALAMOCORTICAL NEURONS IN LGN
Thalamocortical neurons in LGN offer several advantages for
testing the theory. First, as part of the early visual system, they
have been studied extensively both in vivo and in vitro, with
respect to information theory as well as mechanisms. Second,
they have a spiking input and output, like most neurons in
the brain but distinct from some early sensory neurons such
those in the retina. Third, they have one dominant presynaptic
excitatory “driver” that generates large unitary retinogeniculate
EPSPs (Usrey et al., 1998; Figure 3). This provides an important
technical advantage, since the large size of unitary EPSPs allows
them to be recorded simultaneously with spikes in a single neuron
with a single extracellular electrode (Kaplan and Shapley, 1984).
It also narrows the range of possible EPSG patterns, since there
is little spatial summation. Furthermore, each unitary EPSG is of
similar amplitude in vivo in LGN (Carandini et al., 2007; Wang
et al., 2007), as well as in the case of other powerful synapses
(Lorteije et al., 2009; Borst, 2010; Kuenzel et al., 2011). Thus we
can approximate the input pattern by considering that it consists
only of unitary EPSGs of equal amplitude, so the total synaptic
drive is determined solely by temporal summation (Figure 2).

Table 1 and Figure 4 show output and input rates from studies
in LGN and elsewhere in which both were recorded simultane-
ously. Most studies reported only averages of SP over periods of
seconds or minutes. We sometimes report averages of SP across
populations of cells, but this is done only to provide a concise
summary, or because greater detail was not reported in some
studies.

Retinal spikes are the cause of all spikes in LGN (Kaplan and
Shapley, 1984), and it is well established that average SP is near
0.5 at the retinogeniculate synapse in vivo (Kaplan et al., 1987;
Movshon et al., 2005; Carandini et al., 2007; Casti et al., 2008),
including when naturalistic stimuli are presented (Sincich et al.,
2007) and in the awake state (Weyand, 2007). Casual inspection
of whole-cell voltage recordings suggests that average SP has
intermediate values even over periods of about a second (Figure 3;
Wang et al., 2007). At least 95% of all spikes in LGN neurons were
caused by retinogeniculate EPSGs (Sincich et al., 2007; Weyand,
2007). When an EPSG followed a long period without one, it
rarely caused a spike (SP < 5%). However, following a first
ESPG, SP at the time of a second rose to a population average
of about 85% at 2 ms, and then declined back to its low “resting
level” over 40 ms (Figure 5; Sincich et al., 2007). Weyand (2007)
found similar results. There is strong evidence that SP over this
time scale in LGN is influenced by fast homeostatic mechanisms
(Blitz and Regehr, 2005), but in principle these data can be
explained by temporal summation alone (Carandini et al., 2007;

FIGURE 4 | Output to input ratios from the references in Table 1.
Symbols indicate mean across cells (large circles), individual cells (small
circles), s.d. or quantiles (short lines), and range (long lines). For references
6 and 10, the “X” (mean) and other symbols correspond to a subset of cells
in which O/I was less than 1, whereas large circles indicate our estimates
of the total population mean. The strongest stimulus condition is shown for
those references for which more than one condition is reported in Table 1.
Reference 1 has data for cat (left) and monkey (right). A single cell with O/I
of 150% is not shown for “12”.

FIGURE 5 | Mean SP across 15 neurons as a function of time elapsed
since the last EPSP (adapted from Sincich et al., 2007, with permission
of the authors). Simultaneous extracellular recordings were made of both
retinogeniculate EPSPs and the spikes they caused in individual neurons in
anesthetized macaques. A spot of light or dark filled the receptive field
center and varied with naturalistic patterns of contrast. Standard deviations
of about ±0.25 were removed from the original figure. A spike caused no
significant effect on SP across the population of neurons. Mean SP across
the 15 neurons, and across time, was 0.46 ± 0.16 (see Table 1 and
Figure 4).

Casti et al., 2008) if cells have a nearly optimal leak conductance
(Figure 2).

Sincich et al. (2007) also found that SP was not altered fol-
lowing a spike (Figure 5). This supports our theory, according
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Table 1 | Time averaged input and output rates and ratios from studies that measured both simultaneously over seconds or more in cells
known to receive driving excitation from just one or a few presynaptic neurons.

Reference Cells Stimulus N Input (Hz) Output (Hz) O/I (%)

1. Kaplan et al. (1987) Cat LGN Contrast 64–80% 37 NA NA 51 ± 20, 19–91
Monkey LGN Contrast 64–80% 26 NA NA 71 ± 17, 32–99

2. Movshon et al. (2005) Monkey LGN Contrast 7 NA NA 11–45
3. Sincich et al. (2007) Monkey LGN Contrast 15 29 ± 9 (n = 13) 13* 46 ± 16
4. Casti et al. (2008) Cat LGN Contrast 14 NA NA 35 ± 19,

7–70
5. Weyand (2007) Cat LGN Contrast 12 50 ± 16 24 ± 8 50 ± 13
6. Lorteije et al. (2009) Mouse MNTB Spontaneous 11 71 ± 11, 0.4–174 62* 87, 32–99

Monaural tone, 80 dB 15 352 ± 34 289* 82, 27–99
7. Hermann et al. (2007) Gerbil MNTB 300 Hz Elec. Stim. 18 300 150* 50*
8. Kopp-Scheinpflug et al. (2003) Gerbil MNTB Spontaneous 54 49 [17–79] 1–308 21 [6–45] 0–189 48 [36–71] 5–94

One tone 355 [212–486] 194 [126–230] 55 [38–74]
48–868 18–334 23–95

Two tone NA NA 26 [23–40]
9. McLaughlin et al. (2008) Cat MNTB Binaural tone 49 100–500* 100–500* 100
10. Englitz et al. (2009) Gerbil MNTB Spontaneous 3 NA NA 79, 39, 43

Gerbil AVCN Spontaneous 27 NA NA 76 ± 17
1 and 2 tone monaural 34 NA NA 52 ± 19

11. Kuenzel et al. (2011) Gerbil AVCN Spontaneous 39 79* 56 ± 23 71 ± 26
Monaural Tone, 39 NA NA 50*
51 ± 11 dB

12. Chadderton et al. (2004) Rat cerebellar Tactile, Ipsilateral 5 3.2* EPSCs 2.2* spikes 71, 23–150*
granule cells

13. Bratton et al. (2010) Rat lumbar SG Spontaneous 38 5.4 2.9 ± 0.3 54*
14. McAllen et al. (2011) Rat cardiac SG Spontaneous 6 4.1 ± 0.7 0.2–4.3 55*

Portions of these data are illustrated graphically in Figure 4. The output to input ratio (O/I) should match average SP in principle, but could differ due to a technical

failure to detect an input, especially in cases of high frequency bursts of input. Only “12” reported a single cell in which output exceeded input, but “12” was also

the only study in which input and output counts were not measured simultaneously. None of these studies reported a significant incidence of either spikes in the

absence of input, or more than one output spike resulting from a single input spike. Data are number of neurons (N), population mean ± sd (median and quantiles

for “8”) and range, except for 3 single cell’s in MNTB for “10”. Asterisks (*) indicate our estimates based either on our calculations or visual inspection of figures.

NA: not available. “Spontaneous” indicates that sensory conditions were not specified and may not have been controlled. Studies were in anesthetized animals

except “5” in awake cats, and “7” and “14” in vitro during efforts to mimic natural conditions. Data was obtained with extracellular recordings, except intracellular

recordings in 6–7 and 12–14. In “6” and “10”, O/I are only presented for those neurons that displayed “failures” (O/I < 1.0), whereas O/I was reported as 1.0 in the

remainder of 24 total neurons in “6”, and in 63, 21, and 9 other cells in “10” in the cases of spontaneous activity in MNTB and AVCN, and sound evoked activity in

AVCN, respectively.

to which opening of potassium and other channels following
an action potential helps to maintain homeostatic excitabil-
ity rather than causing hyperpolarization (see Mechanisms and
Timescales).

Given sufficient knowledge of natural patterns, the theory
should allows us to predict membrane excitability and the
properties of specific ion channels. In work presented in
preliminary form and currently under review for publica-
tion, we provide evidence in brain slices of LGN that T-type
Ca2+ channels promote predictive homeostasis by restoring SP
towards 0.5 during naturally occurring periods of hyperpolar-
ization like that illustrated in Figure 3 (Hong et al., 2013).
Without predictive amplification of EPSPs by T-type channels,
SP would be near 0 for extended periods and spike output
would be temporarily “blind” to visual stimuli. In support
of theory, we found that the amplification of retinogenicu-
late EPSPs by T-type channels typically results in just 0 or
1 spike. Previous reports of T-type driven bursts of multiple
spikes were most likely due to the unnaturally high membrane

excitability that is typical of experimental conditions in brain
slices.

EVIDENCE FROM OTHER TYPES OF NEURONS
In the medial nucleus of the trapezoid body (MNTB) in the early
auditory system, the calyx of Held is an exceptionally powerful
synapse in which a single presynaptic terminal wraps almost
entirely around the postsynaptic soma. It was long believed to
be a reliable “fail-safe relay” with SP very near 1. However, the
existence of powerful synaptic inhibition suggests that SP should
sometimes be lower (Awatramani et al., 2004). SP has been found
to be intermediate (Kopp-Scheinpflug et al., 2003) or almost 1.0
(McLaughlin et al., 2008; Englitz et al., 2009) based on extracel-
lular recordings, but the more definitive technique of whole-cell
patch recording found SP across cells to be near 0.9 in vivo with a
monaural single tone (Lorteije et al., 2009). When attempts were
made to mimic in vivo conditions within brain slices, SP varied
across a range of about 0.2–1.0 centered near 0.5 (Hermann et al.,
2007). None of the in vivo studies attempted to examine natural
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patterns of sound, and most used monaural or binaural pure
tones (Table 1). Pure tones and monaural stimulation are rare
events in the natural world. Sound intensities are usually similar
across tones (“broadband”) and in both ears, and this likely
provides the basis for homeostatic synaptic “surround” inhibition
that suppresses SP, as found in many other neurons. Indeed, SP
in response to the neuron’s preferred tone was suppressed (below
0.4) by simultaneous presentation of a second tone (Table 1;
Kopp-Scheinpflug et al., 2003).

The endbulb of Held in the anteroventral cochlear nucleus
(AVCN) is another powerful axosomatic synapse, and SP has
been found to be near 0.5 during acoustic stimulation (Englitz
et al., 2009; Kuenzel et al., 2011). Further support for the theory
comes from the observation that as EPSP amplitude declined as
a function of inter-EPSG interval over a period of milliseconds
(apparently due to presynaptic decay of paired-pulse facilitation),
excitability (and SP) increased in a corresponding manner so that
spike generation adapted its sensitivity to the smaller range of
EPSP amplitudes (Kuenzel et al., 2011).

That even the most powerful axosomatic synapses appear to
have average SP nearer to 0.5 than 1.0 under natural conditions
supports the theory, and makes it doubtful whether average SP is
near 1.0 at any synapse. The climbing fiber to Purkinje cell synapse
in the cerebellum is reliable (SP = 1) under standard conditions
in brain slices, but the strength of other powerful synapses has
been found to be much weaker under natural conditions in vivo,
due to both pre- and postsynaptic factors (see Borst, 2010, for
a review of presynaptic factors). We did not find any reports of
stable, simultaneous recordings of pre- and postsynaptic activity
in vivo at the climbing fiber to Purkinje cell synapse.

A typical cerebellar granule cell has four excitatory synapses of
approximately equal strength, whereas sympathetic ganglion neu-
rons are autonomic motoneurons that receive synaptic excitation
from about 2–5 cholinergic preganglionic neurons, one of which
is typically the main driver. Intracellular recordings have found
SP to be near 0.5 in each of these cell types (Table 1; Figure 4;
Chadderton et al., 2004; Bratton et al., 2010; McAllen et al., 2011).

In cells with larger numbers of drivers, such as cortical neu-
rons, unitary EPSPs in the soma are typically not more than 1 mV,
and significant spatial summation across synapses is required to
evoke a spike. According to the theory, small unitary EPSPs should
not be common under natural conditions, since that would cause
SP to be very low. Indeed, there can be a high degree of syn-
chronous excitation causing large EPSPs in at least some cortical
neurons (DeWeese and Zador, 2006; Poulet and Petersen, 2008;
Okun and Lampl, 2008; Gentet et al., 2010; Yu and Ferster, 2010),
as suggested by simulations and theory (Softky and Koch, 1993;
Wang et al., 2010a). In auditory cortex, extracellular recordings
of spikes (DeWeese et al., 2003) and intracellular recordings of
EPSPs with spikes blocked (DeWeese and Zador, 2006), were each
performed under otherwise similar conditions. Taken together,
these latter two studies imply that large EPSPs cause spikes with
intermediate SP.

We have summarized above all of the highly relevant data
that we found from simultaneous recordings of synaptic drive
and spike output, and it supports our hypothesis that average
SP is near 0.5 under natural conditions. However, of the modest

number of in vivo studies that are most relevant to our hypothesis,
few reported direct and detailed analyses of SP, and few attempted
to study natural patterns of synaptic excitation.

VESICLE RELEASE PROBABILITY AT PRESYNAPTIC
TERMINALS
When a spike arrives at a single release site in a presynaptic
axon terminal, it typically causes release of just 0 or 1 vesicle.
Release is commonly said to be “stochastic”, but it is a highly
regulated process (Branco and Staras, 2009), and the appearance
of “randomness” reflects our ignorance of the internal machinery
that determines whether or not a vesicle is released (see Fiorillo,
2012). It seems almost inconceivable that biology could not have
achieved reliable transmission if it were desirable. We propose
that vesicle release is analogous to spike generation, and that it
only occurs when spike input exceeds its expected value. Since a
neuron’s spike conveys information that is qualitatively identical
to its EPSG input (it shares the same receptive field and thus
concerns the same part of the world), it may seem redundant
and pointless to repeat in the axon terminal the same sort of
process that occurs in the dendrites and soma. However, an axon
terminal is generally far from the soma, and we presume that
there is information delivered to the terminal from local neurons
(for example, via GABA). In principle this information could be
conveyed to the soma, but that would consume time and energy,
and it is thus more efficient to use it locally to predict incoming
spikes, as previously suggested (Fiorillo, 2008).

Spikes entering a terminal from the axon would presum-
ably be the sole driver and proximal cause of almost all vesicle
release. They act via a transient increase in calcium conductance
(analogous to an EPSG) and cytosolic concentration (analogous
to an EPSP). The free calcium concentration varies from spike
to spike and depends on a variety of factors, including the state
of potassium channels (that influence action potential duration),
calcium channels, and calcium buffers (Meinrenken et al., 2003).
A vesicle that is “docked” and “ready” will be released in the
event that calcium concentration exceeds a threshold (created by
the requirement for binding of multiple Ca2+ ions to proteins
that drive vesicle exocytosis). “Vesicle releasability” (analogous to
membrane excitability) would be defined as the energy barrier
separating the state of the release site from release threshold. In
analogy to Hypothesis 1, it would correspond to the expectation
at the onset of a spike of the peak calcium conductance (which
would typically be reached a fraction of a millisecond later).
Vesicle release would therefore only occur when the expectation is
exceeded. Since we cannot directly observe releasability, we define
release probability (RP, more commonly abbreviated “Pr”) as the
probability that an action potential will cause release of at least
one vesicle at a single release site. As in the case of SP, RP reflects
our ignorance of the internal state of the synaptic terminal.

If we could measure RP in real time at a single release site,
then we would expect it to have the general features of SP, with
numerous processes of excitation and inhibition (“facilitation and
depression”) acting on numerous timescales. The goal of predic-
tive homeostasis would be to make accurate predictions of cal-
cium conductance, with the result that vesicle release is maximally
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sensitive to small variations in the amplitude of calcium events
(conductance and concentration). A perfectly accurate expecta-
tion would result in RP of 0.5. Like SP, we would expect RP to
vary dynamically from nearly 0 to 1 with a homeostatic average of
0.5.

Average RP (across release sites and over time) has been found
to fall within an intermediate range (∼0.1–0.9) with an “average
of averages” near 0.5 across a diversity of synapses (Branco and
Staras, 2009). However, measures of RP are typically performed
in brain slices in the presence of unnaturally high extracellular
calcium and low firing rates (Hermann et al., 2007; Borst, 2010).
A more general obstacle is that synaptic terminals are relatively
poorly understood, mostly due to their small size, and this limits
our ability to “take the release site’s point of view”. If we had a
model of vesicle release comparable to a Hodgkin-Huxley model
of membrane voltage, and the ability to monitor local calcium
concentration at a single release site on a millisecond timescale,
then we would not need to rely so heavily on the crude and
indirect measure of RP. Typical measures of RP are less direct
than what we have presented above for SP, since they are usually
averages over many release sites, sometimes involving multiple
presynaptic neurons.

We would like to know RP as a function of ISI, analogous
to SP in Figure 5. However, studies often track the dynamics of
RP (through its influence on EPSG amplitude) without quan-
tifying its actual value. Because calcium concentration depends
strongly on ISIs, and predictions should be accurate in the case
of commonly occurring ISIs, we would expect that RP should
be particularly sensitive to variations near these typical intervals.
Indeed, in neurons of the fish electrosensory system that have
average firing rates near 200 Hz, RP is highly sensitive to ISI
variations near the average of 5 ms (Khanbabaie et al., 2010).

A unitary EPSG usually involves multiple release sites, and
the powerful synapses discussed above have hundreds. Thus a
presynaptic spike will almost always cause an EPSG, and its
amplitude will be determined by the average RP across multiple
release sites. Because homeostatic mechanisms at each release
site are all working independently to “pull” RP towards 0.5,
and because each release site experiences the same pattern of
spikes, average RP across a presynaptic neuron’s synapses (and the
corresponding postsynaptic EPSG amplitude) should not show
large variations over time (depression and facilitation should be
modest). This has indeed been found to be the case in vivo (Borst,
2010). However, maintaining average RP near 0.5 across release
sites would maximize the variance (over time and release sites)
in RP and unitary EPSG amplitude relative to any other average
RP. The resulting variations in EPSG amplitude should convey
information, and effective homeostasis of excitability in the post-
synaptic neuron would maximize the sensitivity of spike output to
these variations (and thus to presynaptic RP). In support of this
theory, it has been found that although variations in presynaptic
RP and postsynaptic EPSG amplitude are modest, spike output
adapts to maintain high sensitivity to them (Kuenzel et al., 2011).

CONCLUSION
We believe that taking the neuron’s point of view is essential if we
are to understand the relation between biophysical mechanisms

and their information content. Perhaps the most striking insight
provided by our approach is its simple explanation of why spikes
appear so “random”. What appears noisy and even pathological
from the standard perspective of a physiologist can be readily
understood as optimal from the perspective of a neuron. Taking
the neuron’s point of view is a radical departure from past
efforts to understand the neural “code”, and it could provide
the foundation for a general theory of brain function that is
able in principle to explain and predict the diversity of neural
mechanisms (Fiorillo, 2008, 2012; Hong et al., 2013).
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