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A signature feature of cortical spike trains is their trial-to-trial variability. This variability is
large in the spontaneous state and is reduced when cortex is driven by a stimulus or
task. Models of recurrent cortical networks with unstructured, yet balanced, excitation
and inhibition generate variability consistent with evoked conditions. However, these
models produce spike trains which lack the long timescale fluctuations and large
variability exhibited during spontaneous cortical dynamics. We propose that global
network architectures which support a large number of stable states (attractor networks)
allow balanced networks to capture key features of neural variability in both spontaneous
and evoked conditions. We illustrate this using balanced spiking networks with clustered
assembly, feedforward chain, and ring structures. By assuming that global network
structure is related to stimulus preference, we show that signal correlations are related
to the magnitude of correlations in the spontaneous state. Finally, we contrast the impact
of stimulation on the trial-to-trial variability in attractor networks with that of strongly
coupled spiking networks with chaotic firing rate instabilities, recently investigated by
Ostojic (2014). We find that only attractor networks replicate an experimentally observed
stimulus-induced quenching of trial-to-trial variability. In total, the comparison of the
trial-variable dynamics of single neurons or neuron pairs during spontaneous and evoked
activity can be a window into the global structure of balanced cortical networks.
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1. INTRODUCTION
The rich structure of neural firing patterns provides ample chal-
lenges for the systems neuroscience community. The complexity
of in vivo neural responses depends, in part, on detailed single
neuron biophysics, synaptic dynamics, and network interactions.
To make sense of such complexity, it is often necessary to treat
brain activity as probabilistic, similar to how statistical physics
treats large ensembles of particles. In this spirit, collecting the
responses of a neuron (or a population of neurons) over many
trials of an experiment permits a statistical characterization of
neural activity. A widespread observation is that the trial averaged
response of a neuron’s spike output is stimulus or action tuned
(Decharms and Zador, 2000), and this has grounded many the-
ories of neural coding (Dayan and Abbott, 2001). However, only
considering the trial averaged response of a neuron glosses over
many complex response dynamics that may give further insight
into neural function.

Large trial-to-trial variability of the neural response is a general
characteristic of cortical dynamics (Britten et al., 1992; Shadlen
and Newsome, 1994; Averbeck et al., 2006; Cohen and Kohn,
2011; Ponce-Alvarez et al., 2013). In stimulus or task evoked
states, spiking responses are well modeled as an inhomogeneous
Poisson process, whose firing rate dynamics can be obtained from
trial averaged responses. In this case, the response variability is
equal to the trial averaged evoked response, and little is learned
about cortical processing by considering neural variability. Neural

activity during spontaneous dynamics (dynamics in the absence
of a driving stimulus or action) is more complex (Ringach, 2009).
In particular, the trial-to-trial spike variability during sponta-
neous states is larger than that predicted by a Poisson process
(Churchland et al., 2006, 2010), and exhibits fluctuations over
a range of timescales (Smith and Kohn, 2008). The state of cor-
tex during spontaneous conditions is both an influence (Arieli
et al., 1996; Fukushima et al., 2012) and a reflection of stimulus
evoked activity (Tsodyks et al., 1999; Luczak et al., 2009; Luczak
and MacLean, 2012). Thus, understanding the mechanics behind
spontaneous activity may give new insight into the structure and
function of cortical circuits.

Recent theoretical studies have shown that cortical models
with balanced excitation and inhibition and clustered excitatory
connectivity capture the trial-to-trial variability of both sponta-
neous and evoked conditions (Deco and Hugues, 2012; Litwin-
Kumar and Doiron, 2012). In this article, we present a unified
view of spontaneous dynamics in a variety of neural architectures.
The core mechanic is that networks with a large number of stable
states allow spontaneous fluctuations to stochastically “sample”
the various states (Goldberg et al., 2004), leading to high spiking
variability in spontaneous conditions. For stimuli to quench spik-
ing variability, such models require that the recurrent architecture
that supports network metastability be coherent with feedforward
afferent projections. Under this assumption, we predict that pair-
wise spiking correlations as measured in the spontaneous state
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will be related to signal correlations in evoked states. Our article
extends the framework of balanced excitation and inhibition (van
Vreeswijk and Sompolinsky, 1996, 1998; Renart et al., 2010) to
more structured network architectures, leading to a theory of
variability that is consistent with spontaneously active cortex and
its relation to the evoked cortical response.

2. RESULTS
2.1. NEURAL VARIABILITY IN BALANCED EXCITATORY AND

INHIBITORY NETWORKS
Cortical circuits have recurrent excitatory and inhibitory connec-
tions that are sparse and random (Figure 1A). As a first model,
we consider no underlying global cortical architecture and rather
assume wiring that obeys a pairwise independent model (mean-
ing that a single connection between two neurons occurs with a
probability that is independent of the rest of the network). Despite
sparse wiring, the high number of cortical neurons ensures that
a postsynaptic cell receives a large number (∼103) of synap-
tic inputs from other cortical neurons (Binzegger et al., 2004).
Furthermore, the membrane potential deflection from an indi-
vidual excitatory or inhibitory input can be on the order of
1 mV (Lefort et al., 2009). The convergence of a high number
of large amplitude excitatory or inhibitory inputs could over-
whelm a postsynaptic cell. However, in practice, the firing rates
of cortical neurons are neither negligible nor driven to saturation
(Hromádka et al., 2008). To explain this seeming contradiction
between anatomy and physiology, Shadlen and Newsome (1994,
1998) proposed that large excitation and inhibition effectively bal-
ance one another (on average), so that the net mean input is small
and output rates can be moderate (Figure 1B). This conjecture
has experimental support from in vivo whole cell recordings from
cortical neurons, in which the magnitudes of isolated excitatory
and inhibitory inputs are large yet balanced when neurons are
near their resting state (Haider et al., 2006).

A key feature of balanced cortical networks is that spik-
ing activity is dominated by the fluctuations in synaptic input

(Shadlen and Newsome, 1994). These fluctuations can be sizable,
since synaptic strengths are relatively large (only a small fraction
of afferent inputs are necessary to drive the voltage to its threshold
value). Synaptic input fluctuations provide a mechanism for the
large dynamic and trial-to-trial variability of spiking activity that
is characteristic of cortex (Figure 1B, top). Using techniques from
statistical physics, van Vreeswijk and Sompolinsky (1996, 1998)
provided a formal link between balance in recurrent networks
and spiking variability. Specifically, they considered the statistics
of the synaptic input into a representative cell in the network
that received on average K inputs from recurrent excitatory and
inhibitory wiring. With minimal assumptions, the mean M and
variance V of the input obey:

M = JErEK − JIrIK + Iext,

V = (JE)2rEK + (JI)2rIK.

Here Jα and rα are the synaptic strength and firing rates of the α ∈
{E, I} population and Iext is an external drive to the network. For
a reasonable theory we require that M and V to be independent
of system size for large K. For the input variance V to neither
vanish nor explode as K → ∞, we must scale Jα = jα/

√
K where

the parameter jα ∼ O(1). If we let the external input scale as Iext =
iext

√
K, then we have the following expression for M:

M = √
K

(
jErE − jI rI + iext

)
︸ ︷︷ ︸

O
(

1/
√

K
)

∼ O(1).

For the mean input M to neither vanish nor explode as K → ∞,
the interior of the bracketed term must, as a whole, scale
as O(1/

√
K). This only occurs when the recurrent and exter-

nal excitation are balanced by recurrent inhibition, and with
iext > 0 this can occur robustly over a wide range of network
parameters.

FIGURE 1 | Asynchronous and irregular dynamics in balanced excitatory

and inhibitory networks. (A) Schematic of excitatory (red) and inhibitory
(blue) network. (B) Membrane potential dynamics (black) from a
representative neuron in the network. Membrane potential threshold

crossings are indicated with a vertical spike. The irregular membrane
potential activity is due to large amplitude, yet opposing, excitation (red) and
inhibition (blue). (C) Network spike time raster plot. The inter-spike interval
histogram is broad with a short refractory period (see inset).
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Using this mean field approach van Vreeswijk and
Sompolinsky showed that balanced networks were dynami-
cally stable over a wide range of parameters, with asynchronous
spiking dynamics (Figure 1C), and single neuron statistics
consistent with Poisson-like variability (Figure 1C, inset). An
important component of this variability is that it is self-generated
through network interactions, making it akin to high dimen-
sional chaos. Such chaotic network-based variability has in
vivo experimental support (London et al., 2010), and been the
focus of recent theoretical investigations (Banerjee et al., 2008;
Monteforte and Wolf, 2010, 2012). Furthermore, the fact that
the variability is self-generated shows that the high degree of
variability of cortical dynamics may be an intrinsic property of a
cortical circuit, rather than being inherited from external sources
to the network.

In these analyses it is often assumed that connectivity is sparse.
However, later work by Renart et al. (2010) relaxed this assump-
tion and showed that asynchronous activity could be achieved in
densely coupled balanced networks. More recent work has dis-
cussed the impact of balance in working memory (Boerlin and
Denève, 2011; Lim and Goldman, 2013)1 , and the formation
of orientation selectivity in visual cortices that lack functional
topography (Hansel and van Vreeswijk, 2012). In total, balanced
networks have been a successful framework to probe the mecha-
nisms through which cortical dynamics are irregular, both in time
and over repeated presentations of a fixed input.

2.2. SPONTANEOUS AND EVOKED DYNAMICS IN METASTABLE
POPULATION DYNAMICS

The spike patterns from model neurons in balanced networks
capture the irregular and asynchronous spike dynamics of evoked
cortical response. However, balanced networks fail to capture the
dynamics of cortical networks in spontaneous conditions (i.e.,
when the cortex is “idling”). In both sensory and motor cortices,
the variability of spiking activity during spontaneous conditions
is larger than that of a homogeneous Poisson process of the same
firing rate (Churchland et al., 2006, 2010). A useful simplification
is to treat a spike train in spontaneous conditions as a “doubly
stochastic” process (Byron et al., 2009; Churchland and Abbott,
2012; Ponce-Alvarez et al., 2013), with one process modeling fast
Poisson-like spike discharge and the other process capturing a
slow fluctuation in the firing rate. Balanced networks of model
neurons with independent wiring do not show the slow firing
rate variability, and rather only capture the fast spiking vari-
ability (Figure 1C). In this section we show how higher order
architectural structure in excitatory–excitatory connectivity allow
balanced networks to replicate the variability reported in both
spontaneous and evoked conditions.

2.2.1. Excitatory networks with clustered architectures
Over the past decade, several experimental groups have per-
formed careful analysis of the microstructure in cortical networks.
One clear finding is an architectural structure that is beyond
that of a simple independent wiring model. In particular, small

1However, in these studies a fine balance between excitation and inhibition is
required, necessitating some fine tuning of network parameters.

interconnected clusters of excitatory neurons are overrepresented
in the cortex (Song et al., 2005; Perin et al., 2011). Cluster mem-
bership is often stimulus (Hofer et al., 2011; Ko et al., 2011),
circuit input (Yoshimura and Callaway, 2005; Yoshimura et al.,
2005), or activity (Yassin et al., 2010) dependent. Motivated by
these anatomical findings, we subdivided excitatory cells into
small clusters, and let the wiring probability be higher for two
cells within the same cluster, compared to cells that are in distinct
clusters (Figure 2A top, Materials and Methods). The chaotic
dynamics of the network (Figure 2A, middle) is very distinct from
that of an unclustered balanced network (Figure 1C). Specifically,
cells within a cluster show periods of coordinated low and high
firing activity, and the transitions between activity states occur
over long timescales. These firing rate transitions are in addi-
tion to the spike time variability caused by the balanced state
input fluctuations, so that spiking dynamics are “doubly stochas-
tic.” Indeed, the spike count Fano factor over trials (normalized
measure of variability, see Materials and Methods) is significantly
above unity (Figure 2A, bottom), consistent with experimental
measurements across cortex (Churchland et al., 2010).

When the neurons in a cluster are stimulated together they
have a higher likelihood of being in a high firing rate state when
compared to spontaneous conditions. Furthermore, recurrent
inhibition permits only a fraction of the clusters to have high
firing rates at any time, meaning that neurons in unstimulated
clusters have a higher likelihood of being in a low firing rate state
compared to spontaneous conditions. Thus, by stimulating a sub-
set of the clusters, the network is biased to be in a specific firing
rate configuration. This removes the trial-to-trial rate variabil-
ity characteristic of spontaneous dynamics (Figure 2A, middle),
leaving only the Poisson-like spike dynamics due to balanced exci-
tation and inhibition. As a result the Fano factor is reduced to
near one in evoked conditions (Figure 2A, bottom), again match-
ing experiments (Churchland et al., 2010). In our analysis we
have corrected for reductions in Fano factor that would be caused
by an increase in firing rate. This was done through a mean-
matching algorithm, originally presented in Churchland et al.
(2010), that discards data in evoked and spontaneous conditions
so that the firing rate distributions overlap (see Methods). Thus,
the stimulus-induced reduction in Fano factor cannot be triv-
ially due to an increase in the mean spike count that exceeds an
increase in spike count variance, and is rather because of an active
reduction in spike count variance.

The mean field analysis that was applied to unclustered bal-
anced networks can be applied to clustered networks. Consider
the mean synaptic input M given to a representative neuron. Split
the recurrent excitation into the number of connections coming
from within the neuron’s cluster Kin, and the remaining con-
nections from outside the cluster Kout = K − Kin. This gives the
mean input as:

M = √
K

(
jout
E rout

E − jI rI + iext
)

︸ ︷︷ ︸
O

(
1/

√
K

)

+
(

K in/
√

K
)

︸ ︷︷ ︸
O(1)

(
jinE rin

E − jout
E rout

E

)
︸ ︷︷ ︸

O(1)

∼ O(1).
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FIGURE 2 | Spontaneous and evoked variability in balanced networks

with global architectures. (A) (top) Schematic of a network with
clustered excitatory connections. Solid (dashed) red arrows denote high
(low) probability coupling. (middle) Spike train raster for the network;
neurons are ordered with the cluster grouping. The orange bar denotes
the stimulation period and the gray shaded region shows clusters that
were stimulated. (bottom) Population averaged spike count Fano factor for
the stimulated neurons; the shaded region denotes the standard error.
(B) (top) Schematic of a network with ring topology. (middle) Spike train
raster for the network; neurons are ordered with position on the ring.

(bottom) Population averaged Fano factor for the stimulated neurons.
(C) (top) Schematic of a network with dominant feedforward connections.
(middle) Spike train raster for the network; neurons are ordered with
position on the ring. (bottom) Population averaged Fano factor for the
stimulated neurons. The Fano factor for a homogenous (i.e., unstructured)
balanced network (see Figure 1) network is also shown (dashed lines). For
the homogeneous networks a random subset of neurons were excited
during the stimulation period. In all networks, the inhibitory connections
were not selective for any excitatory topology, and rather connected to all
targets with a uniform probability.

For excitatory cells that are within and outside the cluster we dis-
tinguish their connection strengths, jinE and jout

E , and firing rates,
rin

E and rout
E . The first term on the right hand side is O(1) when the

large recurrent excitation from outside the cluster and external
drive are balanced by large recurrent inhibition. This is identical
to the balance condition of the unclustered network. The second
term is a perturbation from the balanced state that is induced
by the clustered architecture. For this term to neither vanish nor
overwhelm the network we require that the number of inputs that
drive a cell from within its cluster K in scale as

√
K (van Vreeswijk

and Sompolinsky, 2005). For our network we set K ≈ 800 so that
K in ≈ 30, meaning that the excitation from within the cluster is
a small fraction of the total recurrent excitation. Equivalently, for
each neuron to be in a single cluster, we require the network to
be divided into Npin

EE/K in ≈ 50 clusters. Overall, this means that
the network will have a large number of stable states that pro-
vide a rich repertoire of dynamics in spontaneous conditions.
The interested reader can see a full exposition of the trial-to-
trial variability of balanced networks with clustered connections
in Litwin-Kumar and Doiron (2012).

The above cluster-based mechanism for a stimulus-induced
reduction in spiking variability suggests a general framework.
Highly variable spontaneous dynamics should occur in balanced
networks with a large number of symmetric stable firing rate con-
figurations. When population driven fluctuations cause stochastic
transitions between distinct rate configurations, individual neu-
rons will inherit these transitions as a new source of long timescale
firing variability. Stimuli can break the network symmetry and
bias specific firing rate patterns, reducing trial-to-trial firing rate
variability. As a proof of principle, we show stimulus-induced
reductions in variability in balanced networks with two global
architectures that are distinct from clustered networks, yet satisfy
the core requirements of our framework.

2.2.2. Excitatory networks with ring and feedforward architectures
Networks with local excitation and global (or lateral) inhibition
arranged on a “ring” (Figure 2B, top) have been well studied as
models of cortical orientation tuning (Ben-Yishai et al., 1995)
as well as working memory (Compte et al., 2000). Ring net-
works support neutrally stable solutions where elevated rates
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are localized in space on the ring, often labeled a “bump” of
activity (Ermentrout, 1998). In the absence of a stimulus, the
network has a continuum of stable bump solutions, and popu-
lation fluctuations allow a slow timescale wandering of the bump
(Figure 2B, middle). Over realizations of the network, the ran-
dom initial position and stochastic wandering of the bump drive
slow firing rate variability so that single neuron Fano factors are
large (Figure 2B, bottom). When a specific region on the ring
is stimulated it becomes globally stable and other regions lose
their stability, so that a bump of activity appears in that region
and is pinned in space. Consequently, the firing rate variabil-
ity is removed and single unit Fano factors drop to levels below
spontaneous conditions (Figure 2B, bottom).

Another well studied architecture in theoretical neuroscience
is networks with dominant feedforward coupling (Figure 2C
top)2 . Feedforward networks support the creation and prop-
agation of synchronous waves of activity along the network
(Kumar et al., 2010), as well as provide a mechanism for selective
amplification of activity that produces long timescale dynamics
(Goldman, 2009; Murphy and Miller, 2009). The symmetry in the
network supports wave initiation at any position in the chain, so
that population fluctuations spuriously cause and destroy wave
dynamics over time (Figure 2C, middle). Over trials of the net-
work, these wave events drive single unit firing rate variability
so that Fano factors are elevated (Figure 2C, bottom). Stimuli
at a fixed point along the chain break the translational symme-
try along the network and effectively pin activity in that region
since global network inhibition prevents wave propagation. Thus,

2In our networks we did not force a strict feedforward structure, instead we
introduced an anisotropy along the chain so that backward connections were
less likely than forward connections.

over repeated trials the wave induced dynamics are absent and the
evoked Fano factor are below what is observed in spontaneous
conditions (Figure 2C, bottom).

In total, networks with balanced excitation and inhibition with
ring or feedforward architectures also capture high variability in
spontaneous conditions and the reduction of variability in evoked
states.

2.3. COHERENCE BETWEEN STIMULUS DRIVE AND RECURRENT
ARCHITECTURES

In the balanced network with clustered excitation, we chose
feedforward stimulus drive to be aligned with cluster member-
ship (Figure 2). In other words, neuron pairs that belonged to
the same cluster received coordinated stimulation, while neuron
pairs in different clusters did not. In this section we compare
the recruitment of clustered network activity when stimulation
respects cluster membership (cluster matched, Figure 3A, left)
to when a random assortment of neurons are stimulated, with
no relation to the underlying cluster membership (cluster inter-
leaved, Figure 3A, right).

The stimulus-response gain of the trial-averaged single neuron
firing rate is higher for the cluster matched than for the cluster
interleaved protocol (Figure 3B). Furthermore, the cluster inter-
leaved stimulation did not cause a reduction in the spike count
Fano factor compared to the spontaneous state, in contrast to the
cluster matched case (Figure 3C). Thus, for the stimulus inten-
sities studied, only cluster matched stimulation cause an evoked
response that differs from the spiking statistics of the spontaneous
state. This result is expected, as we describe below.

By design, the cluster of neurons driven by cluster matched
inputs share more recurrence with one another than the neu-
rons driven by cluster interleaved inputs. Because of this the

FIGURE 3 | Coherence between the spread of stimulation over the

network and the recurrent architecture controls the difference

between spontaneous and evoked activity. (A) Schematic of the case
when distinct stimuli (green vs. yellow) drive either distinct clusters (left)

or are distributed evenly over all clusters (right). (B) The mean
trial-averaged firing rate of a stimulated neuron as a function of stimulus
amplitude. (C) The spike count Fano factor during the time course of
spontaneous and evoked states.
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positive feedback recruited by the stimulus is larger for the clus-
ter matched protocol than for the interleaved protocol. Positive
feedback increases response gain in spiking networks (Sutherland
et al., 2009), allowing the response to weak inputs to be amplified.
Furthermore, when the stimulation is interleaved, each clus-
ter receives inputs to only a fraction of its neurons, distributed
roughly evenly over the clusters. Thus, stimulus interleaved stim-
ulation does not bias any one firing rate configuration more than
any other, and the mechanism for firing rate variability is left
unaffected. Hence so that the Fano factor remains high through-
out stimulation. In total, these results show that a coherence
between how the stimulus is distributed over the network and
the global recurrent architecture is needed for evoked spiking
variability to differ from those in the spontaneous state.

2.4. RELATING SPIKING CORRELATIONS IN THE SPONTANEOUS AND
EVOKED STATES

Balanced networks with unstructured connectivity have a sta-
ble asynchronous state (Renart et al., 2010). As such, in these
networks the spike count correlation coefficient from pairs of
neurons is on average close to zero, and for large networks (N >

1000) the likelihood of correlation coefficients above 0.2 is negli-
gible. The clustered network is also balanced and, similar to the
unclustered network, has a density of pairwise correlation that is
approximately Gaussian with a small spread about a near zero
mean (Figure 4A, black curve). While asynchronous dynamics
are consistent with some cortical recordings (Ecker et al., 2010;
Renart et al., 2010), there are many studies that show an average
positive spike count correlation, with some pairs having signif-
icant (>0.2) correlations (Cohen and Kohn, 2011). However,
in these experimental studies the correlation is measured from
evoked, and not spontaneous, states.

The trial-to-trial co-variability of pairwise response in evoked
states is termed “noise” correlations (Averbeck et al., 2006), to be
distinguished from correlations in the trial-averaged activity due
to the signal preferences of the neuron pair, i.e., “signal” corre-
lations. In the clustered network we have assumed that stimulus
preference and cluster membership are related (Figure 3). When
pairwise correlation is conditioned on each neuron of the pair

being a member of the same cluster, the mean correlation is far
from zero, and the density has a heavy tail at positive correla-
tions (Figure 4A, green curve). This is due to neurons that are
members of the same cluster being subject to the same firing rate
fluctuations in spontaneous conditions, manifesting as a positive
correlation coefficient. Thus, clustered architectures in balanced
networks provide a mechanism for positive spike count correla-
tions between select pairs. Further, because of the large number of
clusters in the network, the number of pairs that are in the same
cluster is far less than the number of total pairs in the network.
This fact allows the clustered architecture to support a rough
asynchronous state across the entire network, a requirement of
balanced solutions (Renart et al., 2010).

The combination of these results suggests that a pair of neu-
rons in the same cluster will have both a net positive correla-
tion and an assumed common feedforward stimulus drive. This
produces a clear and testable prediction: the signal correlation
between pairs of neurons should be positively related to their
correlation in the spontaneous state. This is certainly the case in
our network simulations (Figure 4B); however, this has yet to be
tested from in vivo data (to our knowledge).

2.5. SPONTANEOUS ACTIVITY “SAMPLES” THE RANGE OF EVOKED
STATES

Our analysis of spontaneous and evoked network activity has
focused on its reflection in single neuron (Figures 2, 3) or pair-
wise (Figure 4) spike count statistics. However, the high correla-
tion for pairs of neurons within the same cluster suggests that an
analysis of the population dynamics of pairs of clusters will pro-
vide a network perspective on the dynamics of spontaneous and
evoked activity.

In the spontaneous state, cluster activity randomly transitions
between low and high firing rate regimes. The recurrent inhibi-
tion regulates the overall network activity such that if neurons
in one cluster are firing at high rates then neurons in another
cluster are likely firing at low rates. This is seen in the joint activ-
ity of a pair of clusters in the network, since their joint firing
rate trajectory shows an anti-correlation (Figure 5, gray curve).
However, when a stimulus is given that drives either one of the

FIGURE 4 | Spike count correlations in clustered networks. (A) Estimated density of spike count correlation coefficients for all pairs (black) and pairs that are
in the same cluster (green). (B) The relation between signal and spontaneous correlations in the clustered network.
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FIGURE 5 | Joint firing rate trajectory in spontaneous and evoked

conditions for the clustered network. The gray curve is the trajectory
during spontaneous activity, while the red and blue curves are for
stimulation of the first and second cluster, respectively.

clusters, the joint firing rate trajectory is effectively clamped so
that the driven cluster’s firing rate is high and the other cluster’s
is low. In the space of joint firing rates this collapse of network
dynamics is such that the evoked state is a subset of the sponta-
neous state (Figure 5, red and blue curves compared to the gray
curves).

2.6. STIMULUS QUENCHED VARIABILITY IN CHAOTIC FIRING RATE
NETWORKS

We have presented a model for spontaneous cortical dynam-
ics with high variability that is based on either a discrete
(Figure 2A) or continuous (Figures 2B,C) attractor structure.
Attractor dynamics require that recurrent cortical architecture
provides a large set (or continuum) of stable network states.
Such a constraint confers a fragility to the model dynamics,
with unstructured heterogeneity in network architecture causing
a collapse of network dynamics to only a few stable states. This
criticism of attractor dynamics is often countered by assuming
appropriate homeostatic mechanisms which provide a robustness
to the attractor structure (Renart et al., 2003; Vogels et al., 2011).
However, more research is needed to properly understand how
attractor dynamics depends on the combination of homeostasis
and rich spontaneous dynamics.

An alternative model of cortex is a recurrent excitatory–
inhibitory network built from phenomenological firing rate mod-
els (Ermentrout and Terman, 2010). When recurrent coupling is
strong, these models show chaotic solutions (Sompolinsky et al.,
1988; Sussillo and Abbott, 2009; Rajan et al., 2010), where firing
dynamics are trial-to-trial variable due to the extreme sensitivity
of the state of the network at the time of stimulation. In con-
trast to attractor networks, these networks are not dependent
on any fine structured architecture, so that the chaotic solutions
are robust to parameter variations. However, by design these
models consider only output firing rates, and we must assume

a suitable mechanism for how spike trains are generated from
a rate dynamic. It is natural to consider the rate solutions as
generating an inhomogeneous Poisson process. In this case, the
trial variable chaotic dynamics of the rate model would produce
spike trains that are “doubly stochastic” point processes, with an
expected Fano factor larger than unity (Churchland and Abbott,
2012).

Rajan et al. (2010) observed that global, dynamic stimula-
tion quenched internally generated chaotic dynamics in firing
rate models. Thus, network firing rates in stimulated conditions
lacked the dynamic variability characteristic of the spontaneous
state. If a network produced spikes according to an inhomoge-
nous Poisson process with firing rates consistent with this model,
then we expect a stimulus-induced reduction in the Fano fac-
tor, similar to that reported in our attractor model (Figure 2).
However, it is still unclear if a network composed of actual spiking
units, rather than interacting firing rates, is capable of reproduc-
ing the results of Rajan et al. (2010). This reproduction is not
trivial because in most recurrent networks firing rates are sta-
ble (Figure 6A, top) (van Vreeswijk and Sompolinsky, 1996, 1998;
Brunel, 2000; Renart et al., 2010), as opposed to chaotic.

Fortunately, Ostojic (2014) has recently shown how strong
recurrent coupling in excitatory–inhibitory networks of spik-
ing neuron models can destabilize firing rates, causing chaotic
dynamics reminiscent of those predicted in firing rate net-
works (Figure 6A, bottom). This destabilization produces longer
timescale spike train fluctuations reminiscent of a burst-like dis-
charge that is absent in standard balanced networks (compare
inset auto-covariance functions in Figure 6A). The network nev-
ertheless shows roughly asynchronous spiking behavior and is a
reasonable candidate model for rich spontaneous cortical dynam-
ics. We implemented this spiking network in an effort to test the
alternative theory for stimulus induced reduction in spike count
variability proposed by Rajan et al. (2010).

The rate variability in the strongly coupled network produces
high trial-to-trial variability in spiking dynamics in the spon-
taneous state, as characterized by a sizable Fano factor (∼4;
Figure 6B, bottom panel before stimulation). When a static depo-
larizing input stimulus was applied to a half of the excitatory
neurons, the firing rates of the stimulated neurons naturally
increased (Figure 6B, top and middle panels). However, the mean
matched Fano factor also increased, because the elevated firing
rates recruited more burst behavior (Figure 6B, bottom pan-
els). This is in contrast to the drop in variability seen in the
attractor networks presented earlier (Figure 2), as well recorded
spike trains from sensory and motor cortex (Churchland et al.,
2010).

We also tested if periodic stimulation could quench the spiking
variability in strongly coupled networks, as suggested by chaotic
rate networks (Rajan et al., 2010) as well as data from rodent
visual cortex (White et al., 2012). Periodic input was reflected in a
periodic modulation of both firing rate and spike count Fano fac-
tor (Figure 6C); however, the average Fano factor was not reduced
by stimulation. This weak modulation of Fano factor, despite
large changes in evoked rates, occurred over a range of stimu-
lation frequencies (Figure 6D). Thus, further work is needed to
determine whether certain stimulus or network structures can
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FIGURE 6 | Firing rate instabilities in spiking networks do not show

stimulus-induced quenching of trial-to-trial variability. (A) Spike train
rasters from a recurrent excitatory–inhibitory network in stable firing rate
(top) and unstable firing rate (bottom) regimes. (B) Spike count mean
and Fano factor during spontaneous and evoked (zero-frequency stimulus)
conditions. (C) Same as (B), but with periodic stimulation. (D) The
change in Fano factor �F = Fspont − Fevoked as a function of stimulation

frequency. Here Fano factors are time averaged during stimulation. All
Fano factors were computed with mean matched data. Network
parameters are identical to those of Ostojic (2014) with coupling strength
J = 0.2 (stable network) or J = 0.6 (unstable network). Stimuli consisted
of a modulation of the external bias to half of the 8000 excitatory
neurons by an amount given by 0.25 cos (2π ft). All Fano factors were
computed using a mean-matched analysis.

reproduce the quenching of chaos seen in continuous firing rate
networks.

3. DISCUSSION
The relation between spontaneous and evoked cortical dynam-
ics is a popular topic of study (Ringach, 2009). Voltage sensitive
dye imaging of visual cortex in cats has shown the spontaneous
dynamics of large regions of cortex can mirrors evoked dynam-
ics (Arieli et al., 1996; Tsodyks et al., 1999; Luczak and MacLean,
2012). Population recordings in the auditory system of rodents
(Luczak et al., 2009) and primates (Fukushima et al., 2012) show
that spontaneous dynamics contain a large repertoire of activ-
ity, with an evoked state being merely a subset of that repertoire.
Our study contributes to this literature by identifying cortical
network architecture which supports rich spontaneous dynam-
ics, that nevertheless has a clear relation to evoked dynamics. We
expand on our previous study (Litwin-Kumar and Doiron, 2012)
and argue that the excess variability in spontaneous conditions
(Churchland et al., 2010) is a characteristic of balanced networks
with a large number of stable firing rate states.

3.1. BALANCED ATTRACTOR NETWORKS AND SCALING
The networks discussed in this paper are a merging of ideas from
the balanced network literature (van Vreeswijk and Sompolinsky,
1996, 1998; Renart et al., 2010), which proposes models of trial-
to-trial variability, and the Hopfield network literature (Hopfield,
1982), which proposes models of neuronal assemblies. This con-
nection has been made in several past studies (Amit and Brunel,
1997; van Vreeswijk and Sompolinsky, 2005; Renart et al., 2007;
Roudi and Latham, 2007). Our contribution is specifically to
study the implications of such attractor structures for trial-to-trial
variability. Below, we discuss more thoroughly the plausibility
of merging these ideas in the context of scaling arguments (see
Renart et al., 2007 for an additional discussion of balance and
scaling).

One requirement needed to merge these two lines of research
was a specific scaling of the size of the neuronal assemblies. In
balanced networks, if neurons receive K connections, then the
connection strength J must be proportional to 1/

√
K. We con-

sidered the case of dense connectivity, so that K ∝ N. Further, the
perturbation away from a homogeneous balanced network due
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to the attractor structure was set to be O(1), to prevent large
attractors from dominating the network activity. Let the size of a
neuronal assembly be K in neurons and define the coding fraction
as K in/N. Then we must have:

K in(Jin
E pin − Jout

E pout) ∼ O(1),

where Jin
E − Jout

E is how much stronger connections within the
assembly are and pin − pout is how much more probable they are.
There are three scenarios:

1. K in ∝ K, that is, each assembly is composed of a macro-
scopic number of neurons and the coding fraction is constant.
This is the case of a classic Hopfield network (Hopfield,
1982). However, to satisfy Equation (1), we must have Jin

E pin −
Jout
E pout ∝ 1/K. This presents a fine-tuning problem, as the

J’s themselves are proportional to 1/
√

K, much larger than
the desired difference between Jin

E and Jout
E . Classic Hopfield

networks avoided this problem as J was proportional to 1/K.
2. K in ∝ √

K, so the coding fraction is small. This was the case
considered in our study and does not require fine-tuning as
setting Jin

E = aJout
E for some constant a ensures Equation (1) is

satisfied. In such networks, the number of neurons in a local
assembly is smaller by a factor of

√
K than the total number of

inputs received. If stimuli are assumed to excite a few assem-
blies at once, this corresponds to a network exhibiting sparse
coding, which is frequently encountered in cortex (Hromádka
et al., 2008).

3. K in ∝ 1. This corresponds to a case of extremely sparse cod-
ing, as assembly size does not grow at all with K. Further, in
this case we must have Jin

E = O(1) while Jout
E = O(1/

√
K), cor-

responding to a few extremely strong local connections. For
these reasons, we do not consider this case.

Typically, spiking implementations of attractor networks fall into
the second category (Amit and Brunel, 1997; van Vreeswijk and
Sompolinsky, 2005; Renart et al., 2007), as was true for our
study. Roudi and Latham (2007) took an alternative approach and
studied the first category, differentiating between “background
weights” that were O(

√
K) and “foreground weights” (connec-

tions between neurons in the same assembly) that were O(1/K).
In order to obtain stable assembly activation, these foreground
weights needed to be tuned to within 6% in a network of 10,000
neurons, and it is unclear that such fine-tuning is plausible.

It is therefore an open question how to robustly merge bal-
anced and attractor networks with a non-vanishing coding frac-
tion. Unlike primary sensory regions, higher-order associative
regions such as prefrontal cortex have a large degree of “mixed
selectivity,” with high coding fractions and assembly overlap
(Rigotti et al., 2013). The fine-scale architecture of such regions
has yet to be determined.

3.2. SYMMETRIC AND FINITE SIZE CLUSTERS
Despite their name, balanced networks are robust to changes in
recurrent synaptic strengths J and admit a stable asynchronous
solution over a wide range of network firing rates (van Vreeswijk
and Sompolinsky, 1996, 1998; Renart et al., 2010). However, the

mechanism for spontaneous dynamics presented in this study
requires a strong assumption of symmetry in the network archi-
tecture. More to the point, rich spontaneous dynamics requires
that each firing rate configuration be roughly equally stable. If
this is not the case then some stable configurations will be over-
represented in the spontaneous state, and the population firing
rates will tend to reside in those states. In the limit where one spe-
cific state is very stable, then the spiking variability in spontaneous
and evoked dynamics would be similar. In our model, symmet-
ric metastability is achieved by assuming that all clusters are of
the same size, introducing a certain fragility into the framework.
This is not an exact symmetry since quenched connection vari-
ability is present in any realization of the network. Nevertheless,
our framework cannot support clusters of widely different sizes,
as might be expected in real cortical networks. Future work
should leverage powerful homeostatic mechanisms (Turrigiano
and Nelson, 2000; Vogels et al., 2011) to prevent “winner-take-all”
dynamics when the size and recurrence are heterogeneous across
attractors.

The fluctuations in our model are an emergent feature of
recurrent wiring, as opposed to being imposed by an external
source. Balanced networks have a well defined solution as the
number of inputs K → ∞ (van Vreeswijk and Sompolinsky,
1996, 1998; Renart et al., 2010). However, in the clustered net-
work the internal variability that promotes stochastic transitions
between stable firing rate states requires K < ∞. Otherwise the
time between firing rate transitions diverges, and the spontaneous
state is no longer dynamically rich. Estimates for the number of
neurons that are afferent to a cortical cell are imperfect, since
anatomically and functionally defined architectures are often dis-
tinct, making a concrete value for K is difficult to obtain. Further,
estimates for the size of a cluster are also difficult; however,
(Perin et al., 2011) give an indirect number of ∼100 neurons per
cluster, consistent with our network model. For models of corti-
cal networks to improve, techniques for functional microcircuit
measurements of large numbers of cells must be developed.

3.3. CORTICAL ARCHITECTURE DETERMINES VARIABILITY IN
SPONTANEOUS AND EVOKED STATES

In our model, feedforward afferent projections are assumed to
be coherent with recurrent architecture (Figure 3A). Without
this feature stimulus drive does not quench trial-to-trial vari-
ability (Figure 3C), and our model would then be at odds with
experimental data across sensory and motor cortex (Churchland
et al., 2010). Also, if stimulus input recruited distinct popula-
tions than those recruited during spontaneous activity, then the
patterning of spontaneous activity would not resemble that in
evoked states, again in disagreement with cortical data (Tsodyks
et al., 1999; Luczak et al., 2009). This circuit assumption is
well justified from recent circuit recordings in mouse visual
cortex (Hofer et al., 2011; Ko et al., 2011), where the stim-
ulus correlation and connection probability of pairs of neu-
rons are positively correlated with one another. Thus, a specific
stimulus should drive neurons that are members of a specific
cluster to a larger degree than other neurons in the network.
Finally, such a wiring rule is consistent with standard Hebbian
plasticity rules, where repeated co-activation of neuron pairs
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would engage plasticity rules that strengthen recurrent coupling
between them.

Understanding the trial-to-trial variability in evoked condi-
tions is important for a complete description of a population code
(Dayan and Abbott, 2001; Averbeck et al., 2006; Josić et al., 2009;
Ponce-Alvarez et al., 2013). For this reason, a large number of
studies focus on the trial-to-trial “noise” correlations of neuron
pairs in evoked states (Cohen and Kohn, 2011). In both visual
(Smith and Kohn, 2008; Ponce-Alvarez et al., 2013) and auditory
(Rothschild et al., 2010) cortex, signal and noise correlations are
themselves correlated, so that neurons that have similar stimu-
lus preference, i.e., positive signal correlation, also have positive
noise correlation. This suggests that the underlying circuits that
establish stimulus preference also contribute to common fluctua-
tions. Our model extends this idea to the spontaneous state, and
predicts a positive relation between signal correlations and the
correlations measured during spontaneous conditions. However,
balanced networks (including the ones used in this study) fail
to capture the positive average pairwise correlation that is con-
sistent with some (Cohen and Kohn, 2011), yet not all (Ecker
et al., 2010), data sets (Figure 4A, black curve). A spiking network
framework that internally generates non-zero mean correlation
consistent with data is, to our knowledge, an open problem.

In sum, our model shows that a coherence between feedfor-
ward and recurrent architectures produces cortical dynamics that
is consistent with a wide array of spontaneous and evoked data,
and makes a clear and testable prediction for pairwise correlations
in the spontaneous state.

4. MATERIALS AND METHODS
4.1. SPIKING NETWORK SIMULATIONS
Neurons were modeled as leaky integrate-and-fire units whose
voltages obeyed:

V̇ = 1

τ
(μ − V) + Isyn(t)

When neurons reached a threshold Vth = 1, a spike was emit-
ted and they were reset to Vre = 0 for an absolute refractory
period of 5 ms. The membrane time constant τ was 15 and 10 ms
for excitatory and inhibitory neurons, respectively. The bias μ

was chosen according to a uniform random distribution between
1.1 and 1.2 for excitatory neurons and between 1 and 1.05 for
inhibitory neurons. While these values are superthreshold, bal-
anced dynamics ensured that the mean membrane potentials
were subthreshold (van Vreeswijk and Sompolinsky, 1998). In
Figure 1, the non-dimensionalized voltages were transformed so
that Vth = −50 mV and Vre = −65 mV.

Synapses between neurons were modeled as differences of
exponentials, and the total synaptic input to neuron i in
population x was:

Ix
i,syn(t) =

∑
jy

J
xy
ij Fy ∗ s

y
j (t)

where ∗ denotes convolution. Here x, y ∈ {E, I} denote excitatory
or inhibitory populations of NE = 4000 and NI = 1000 neurons

each, J
xy
ij is the strength of synaptic connections from neuron j in

population y to neuron i in population x, Fy(t) is the synaptic fil-
ter for projections from neurons in population y, and s

y
j (t) is the

spike train of neuron j in population y, a series of delta-functions
at the time points where the neuron emitted a spike. Fy(t) =

1
τ2 − τ1

(
e−t/τ1 − e−t/τ2

)
, with τ2 = 3 ms for excitatory synapses

and 2 ms for inhibitory synapses while τ1 = 1 ms.
Connection probabilities pxy from neurons in population y to

x were pEI = pIE = pII = 0.5, while pEE was on average 0.2. In
clustered networks, excitatory neurons were partitioned into 50
assemblies of 80 neurons each and the connection probability was
set to pEE

in for neurons in the same assembly and pEE
out for neurons

in different assemblies. These were chosen so that pEE remained
on average 0.2, but pEE

in /pEE
out = REE = 2.5. For ring and feedfor-

ward networks, periodic boundary conditions were applied by
identifying i = 4000 with i = 0. For ring networks, neurons i
and j were said to belong to the same assembly if |i − j| < 40.
For feedforward networks, connections from neuron i to neuron
j were drawn with probability pEE

in if i − j ∈ [−35, 45] and pEE
out

otherwise, thus biasing connections in one direction along the
ring. If a connection from neuron j in population y to neuron
i in population x existed, J

xy
ij = Jxy (unless x, y = E and neu-

rons were in the same assembly, then connection strength was
multiplied by 1.9), otherwise J

xy
ij = 0. Synaptic strengths were

JEE = 0.024, JEI = −0.045, JIE = 0.014, and JII = −0.057. These
parameters, multiplied by 15 mV, would give the deflection of the
membrane potential of the post-synaptic target, neglecting leak,
in our dimensionalized units. When clusters of excitatory neurons
were stimulated, stimulation was accomplished by increasing μ

for neurons in those clusters by 0.07. Simulations were performed
using Euler integration with a timestep of 0.1 ms.

4.2. SPIKE TRAIN STATISTICS
Spike train statistics were computed for excitatory neurons. We
denote the spike times of neuron i as {ti1, ti2, ti3, . . .}. We can then
define neuron i’s spike train: yi(t) = ∑

k δ(tik). The number of
spikes emitted by the neuron between times t and t + �t is

Ni(t, t + �t) =
∫ t + �t

t
yi(t′)dt′

The firing rate of a neuron over an interval (t, t + �t) was
defined as

ri(t, t + �t) = 1

�t
Ni(t, t + �t)

For the networks studied, firing rates and other statistics for the
spontaneous state were calculated with t = 1.5 s to prevent effects
due to initial conditions and �t = 1.5 s.

We also computed the Fano factor Fi(t, t + �t) for neuron i
by evaluating

Fi(t, t + �t) = Var (Ni(t, t + �t))

〈Ni(t, t + �t)〉
where the expectations are over repeated trials of the same net-
work with random initial conditions. When computing the Fano
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factor as a function of time relative to stimulus onset, we com-
puted the mean-matched Fano factor described in Churchland
et al. (2010) to control for changes in firing rate. Fano factors were
computed over 100 ms windows.

We computed correlation coefficients for the spike counts
of neuron pairs. The correlation between neurons i and j was
given by

ρij = Cov
(
Ni(t, t + �t), Nj(t, t + �t)

)
√

Var (Ni(t, t + �t)) Var
(
Nj(t, t + �t)

)

where the covariances and variances were computed over over-
lapping windows within each trial and then averaged across
trials. For spontaneous activity trial averaging was replaced with
temporal averaging.
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